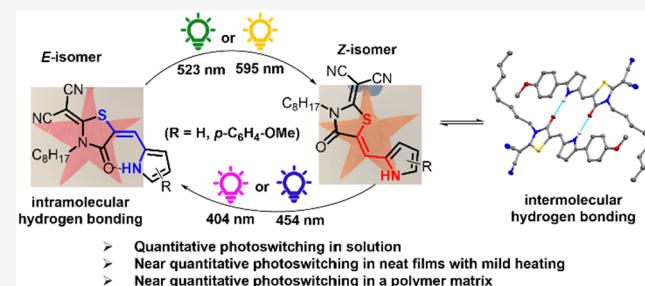


1 Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven 2 Quantitative Photoswitching in Solution and the Solid State

3 Parag Das, Nathan J. Grinalds, Ion Ghiviriga, Khalil A. Abboud, Łukasz Dobrzycki, Jiangeng Xue,*
4 and Ronald K. Castellano*

Cite This: <https://doi.org/10.1021/jacs.4c00983>

Read Online


ACCESS |

Metrics & More

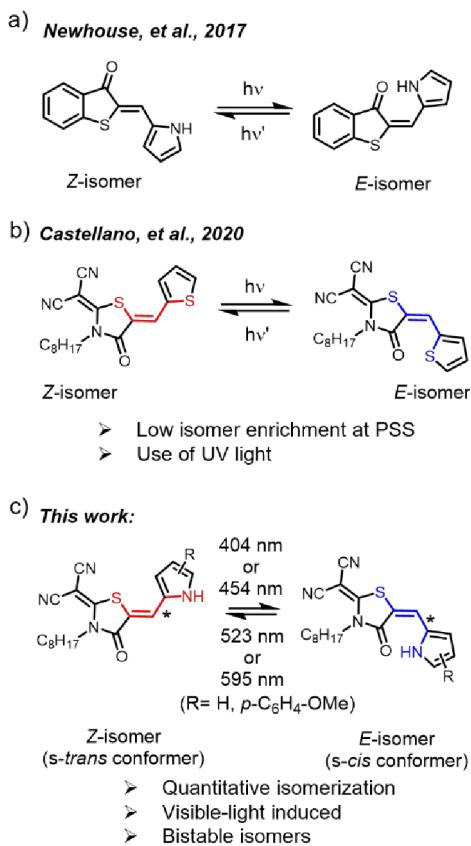
Article Recommendations

Supporting Information

5 ABSTRACT: Small molecule photoswitches capable of toggling
6 between two distinct molecular states in response to light are
7 versatile tools to monitor biological processes, control photo-
8 chemistry, and design smart materials. In this work, six novel
9 dicyanorhodanine-based pyrrole-containing photoswitches are
10 reported. The molecular design avails both the *Z* and *E* isomers
11 from synthesis, where each can be isolated using chromatographic
12 techniques. Inter- and intramolecular hydrogen bonding (H-
13 bonding) interactions available to the *E* and *Z* isomers,
14 respectively, uniquely impart thermal stability to each isomer
15 over long time periods. Photoisomerization could be assessed by
16 solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies,
17 which show good agreement. Quantitative *E* → *Z* isomerization occurs upon 523 nm irradiation of the parent compound (where *R* =
18 H) in solution, whereas *Z* → *E* isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (*E*/*Z*).
19 Extending the π -conjugation of the pyrrole unit (where *R* = *p*-C₆H₄-OMe) pushes the maximum absorption to the yellow-orange
20 region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator
21 molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally,
22 studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of
23 the *Z* and *E* isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including
24 the Sun.

25 ■ INTRODUCTION

26 Molecular photoswitches are a class of photochromic
27 molecules that undergo reversible photochemical reactions
28 using light as an external stimulus.¹ Two popular classes of
29 photoswitching molecules include those that undergo rever-
30 sible *Z*/*E* photoisomerization, azobenzene,² stilbene,³ hemi-
31 thioindigo⁴ (HTI), and hydrazone,⁵ and those that switch
32 between open and closed forms through photoinduced
33 reversible ring-opening/closing mechanisms such as spiro-
34 pyran⁶ and diarylethene.^{7,8} Due to their ability to precisely control
35 chemical and biological processes at the nanoscale,⁹ these
36 molecular photoswitches have received significant attention
37 across many scientific disciplines and application areas
38 including supramolecular chemistry,¹⁰ material science,^{11,12}
39 molecular machines,¹³ photopharmacology,¹⁴ and drug deliv-
40 ery.¹⁵ Considerable attempts have been made over the years to
41 optimize molecular photoswitching behavior in terms of visible
42 light switching,¹⁶ isomer enrichment at the photostationary
43 state (PSS),^{17,18} reduced photodegradation or photoinduced
44 side reactions,¹⁹ and bidirectionally quantitative isomer-
45 ization²⁰ through judicious structural modifications and
46 complementary structure–property studies.²¹


47 Newhouse and coworkers reported bidirectionally quantita-
48 tive HTI-photoswitches by utilizing electron-rich pyrroles that
49 enable hydrogen bonding (H-bonding) interactions and lead
50 to their superior switching properties (Figure 1a).²² Dube and
51 coworkers presented a survey of heterocyclic HTI-photo-
52 switches that displayed notable photoswitching performances
53 along with bistable isomers based on chalcogen and H-bonding
54 interactions.²³ The same group recently reported aryl- and
55 heteroaryl-based (e.g., imidazole, indole) rhodanine chromo-
56 phores as highly photoswitchable motifs.²⁴

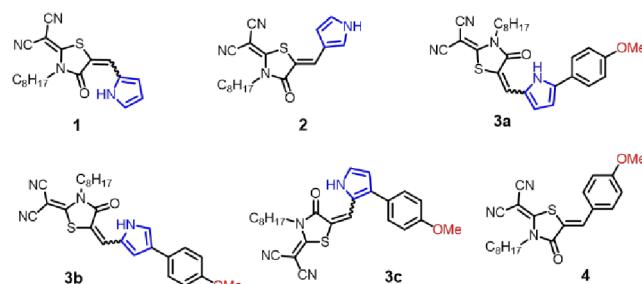
57 2-(1,1-Dicyanomethylene)rhodanine, commonly known as
58 dicyanorhodanine (RCN), is a popular electron acceptor unit
59 in the organic photovoltaics (OPV) community.²⁵ Since its
60 introduction in 2011, the RCN unit has served a significant
61 role in the development of high-performing OPV materials in

Received: January 21, 2024

Revised: April 4, 2024

Accepted: April 5, 2024

Figure 1. (a) Pyrrole-HTI photoswitches reported by Newhouse et al.²² (b) Z/E photoisomerization of an RCN-functionalized thiophene conjugate.²⁷ (c) Visible light-induced quantitative Z/E photoisomerization of the RCN-functionalized pyrrole systems presented in this work. The molecules are depicted in the Z configuration (red) and the E configuration (blue). The conformation about the bond indicated with the asterisk (*) is shown as *s*-trans and *s*-cis, respectively, with respect to the nitrogen atom of the pyrrole unit.


62 acceptor–donor–acceptor (A-D-A) type small molecules.²⁶
 63 Despite its popularity, the configurational and conformational
 64 complexity of RCN π -conjugated molecules have been largely
 65 neglected in the OPV literature. Our group recently brought
 66 attention to these features in a report on the Z/E photo-
 67 isomerization behavior of RCN-functionalized oligothiophenes
 68 (Figure 1b) in solution²⁷ and the solid state.²⁸ In the latter
 69 work, Z/E configurational isomerization was shown to
 70 significantly affect thin-film morphology and optoelectronic
 71 properties.

72 Herein, we report the first RCN-pyrrole conjugates and their
 73 promising photoisomerization properties. Replacing the
 74 thiophene²⁷ unit with the H-bonding capable pyrrole unit
 75 (Figure 1c) secures red-shifted absorption profiles of both Z
 76 and E isomers relative to our previously reported compounds,
 77 thereby promoting visible light-induced quantitative isomer-
 78 ization. Intra- and intermolecular H-bonding available to the E
 79 and Z isomers, respectively, are hypothesized to be critical for
 80 photoswitch bistability and independent isomer isolation. By
 81 extending the π -conjugation on the pyrrole unit using electron-
 82 donating groups (EDGs), we have also realized bidirectional
 83 quantitative photoswitching in solution using alternating
 84 excitation of 404 and 595 nm. Photoswitching can also be
 85 performed in the solid state, both in a photoinactive polymer

matrix and even neat films, where excellent reversibility is
 86 maintained in the former.
 87

RESULTS AND DISCUSSION

Design and Synthesis. To evaluate the photoswitching
 89 capabilities of various pyrrole-containing RCN-functionalized
 90 compounds, we designed and synthesized six model
 91 chromophores (Figure 2). Compounds **1** and **2**, structural
 92

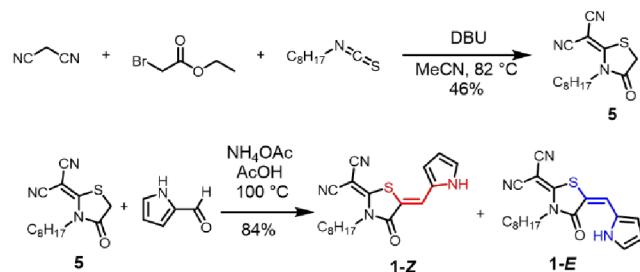
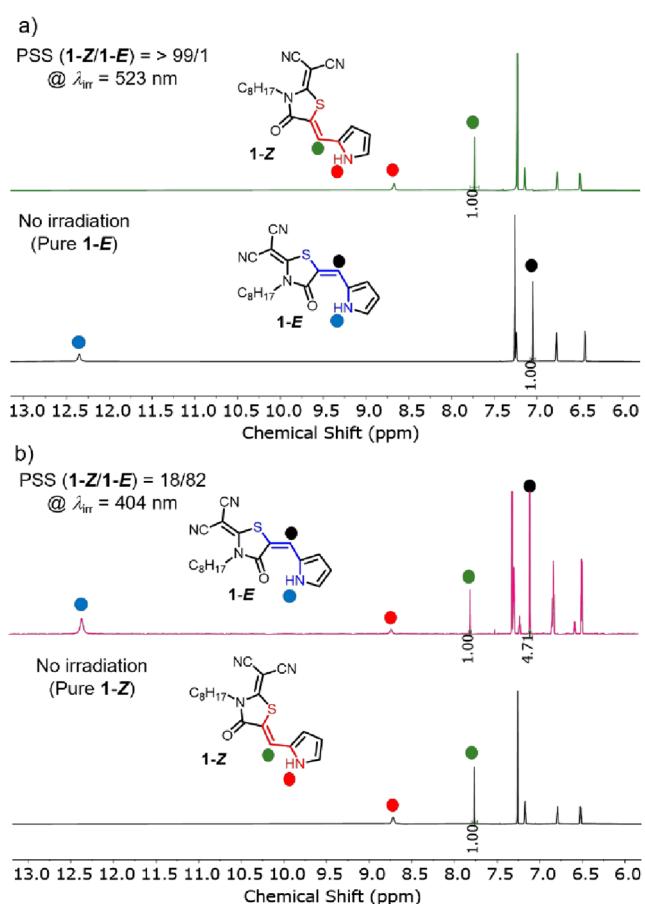


Figure 2. Chemical structures of RCN model compounds **1**–**4** studied in this work. As obtained from synthesis, compounds **1**, **3a**, **3b**, and **3c** are shown as mixtures of Z and E isomers, whereas compounds **2** and **4** are shown only in the Z configuration.

isomers, are the simplest RCN-pyrrole analogs and assess the
 93 influence of H-bonding on photoisomerization behavior.
 94 Structural isomers **3a**, **3b**, and **3c** feature extended π -
 95 conjugation by introducing a *p*-methoxybenzene group at the
 96 5-, 4-, and 3-positions of the pyrrole unit, respectively. These
 97 compounds experience attractive, red-shifted absorbance and
 98 inform us how the regiochemistry of the electron-donating
 99 group affects molecular geometry, H-bonding strength,
 100 optoelectronic properties, and photoisomerization behavior.
 101 Compound **4** eliminates the H-bonding capability and allows
 102 the evaluation of photoswitching efficiency and synthetic
 103 accessibility when no H-bonding is present.
 104

Full synthetic details are provided (Schemes S1–S6).
 105 Syntheses began with the preparation of the parent RCN
 106 acceptor unit (compound **5**, **1**), followed by Knoevenagel
 107 s1


Scheme 1. Synthesis of Model Compounds **1**-Z and **1**-E

condensation with appropriate formylated heteroaryl/aryl units. For example, compound **1** was accessed through condensation between RCN (**5**) and pyrrole-2-carboxaldehyde which, interestingly, afforded both Z (69%) and E (31%) isomers (Scheme 1). Due to a large difference in polarity, as observed by thin-layer chromatography (TLC), the synthesized isomers could be separated using column chromatography (Figure S8). The ability to perform independent studies on pure Z and E isomers is a luxury not afforded by our previously studied RCN-oligothiophenes.²⁷

118 **Structural Characterization of Parent Photoswitch 1.**
 119 Compounds **1-Z** and **1-E** were characterized using ^1H NMR in
 120 chloroform-*d* (Figure S9). The —NH proton of the *E* isomer
 121 is more deshielded ($\delta = 12.35$ ppm) than that of *Z* ($\delta = 8.96$
 122 ppm), a consequence of intramolecular H-bonding between
 123 the carbonyl oxygen of the RCN unit and the pyrrole —NH
 124 proton. Moreover, the olefin proton attached to the isomer-
 125 izable C=C bond is more deshielded for the *Z* isomer ($\delta = 7.80$
 126 ppm) than for the *E* isomer ($\delta = 7.05$ ppm), given its
 127 proximity to the electron-withdrawing carbonyl group of the
 128 RCN unit (Figure S9). Fourier-transform infrared (FT-IR)
 129 spectroscopy of compounds **1-Z** and **1-E** (5 mM, chloroform)
 130 confirmed that both the N—H and C=O stretching modes
 131 for the *E* isomer (3252 and 1688 cm^{-1}) are lower in
 132 wavenumber, broader, and higher in transmittance than those
 133 of the *Z* isomer (3456 and 1717 cm^{-1}), consistent with
 134 intramolecular H-bonding in the *E* isomer (Figure S13).

135 **Solution Photoisomerization Behavior of Parent**
 136 **Photoswitch 1.** We performed *Z/E* photoisomerization
 137 studies (15 mM, chloroform-*d*) of compound **1** with
 138 monitoring by ^1H NMR (details of irradiation sources can
 139 be found Figure S7). Quantitative *E* \rightarrow *Z* photoisomerization
 140 was successfully obtained at 523 nm excitation (Figures 3a and
 141 S15, Tables 1 and S1). Upon selective excitation at 404 and
 142 454 nm, *Z* \rightarrow *E* photoisomerization was observed with a **1-Z**/

Figure 3. Solution ^1H NMR (15 mM, CDCl_3) photoisomerization studies of compound **1** showing (a) **1-E** \rightarrow **1-Z** isomerization upon 523 nm excitation and (b) **1-Z** \rightarrow **1-E** isomerization upon 404 nm excitation.

1-E PSS ratio of 18/82 and 65/35, respectively (Figures 3b and S14, Tables 1 and S1).

143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200

Next, we used UV-vis spectroscopy (20 μM , chloroform) to assess the photoisomerization behavior in-depth. The primary absorption peak maxima of **1-Z** and **1-E** were identified at 436 and 466 nm (Figures 4 and S24). The 30-nm wavelength difference in peak absorbance for **1-Z** and **1-E** (Table 1) is much larger than previously reported RCN-thiophene conjugates²⁷ and clearly influences the extent of photoisomerization. Gas phase time-dependent DFT (TD-DFT) calculations (CAM-B3LYP/cc-pVQZ) predict a 24-nm wavelength difference in peak absorption between **1-Z** and **1-E** with absorption maxima at 353 and 377 nm, in good agreement with experimental values (Figures 4 and S24). Performing the TD-DFT calculations using a solvent model (IEFPCM, chloroform) at the same level of theory, a very similar trend in the *Z* and *E* isomer absorption profiles, was observed (Figure S90). However, red-shifted absorption maxima were observed for both **1-Z** ($\lambda_{\text{max}} = 378$ nm) and **1-E** ($\lambda_{\text{max}} = 397$ nm), which can be attributed to the different dielectric properties offered by the solvent (chloroform).²⁹ The primary absorption bands of the model compounds are attributed to the HOMO-LUMO transitions, as confirmed by inspection of the frontier molecular orbitals through DFT simulations (Figure S76, Tables S6–S9). The *Z/E* photoisomerization behavior observed for **1-Z** and **1-E** using UV-vis spectroscopy (Figure S30) is consistent with the isomerization behavior observed by NMR. A photoswitching experiment was performed using alternating 404 and 523 nm irradiation to promote *Z* \rightarrow *E* and *E* \rightarrow *Z* photoisomerization, respectively. Facile photoswitching is observed even after ten cycles, indicating the system is highly fatigue resistant (Figure S37).

Solution Photoisomerization Studies of Comparator

2. Comparator molecule **2** was detected only in the *Z* configuration from synthesis, unlike molecule **1**, since changing the connectivity between the RCN and pyrrole units removes the intramolecular H-bonding that stabilizes the *E* configuration. Furthermore, 254 and 404 nm irradiations result in **2-Z**/**2-E** mixtures with PSS ratios of 67/33 and 58/42, respectively (Figure S16, Tables 1 and S1). TD-DFT studies reveal a significant overlap of the **2-Z** and **2-E** absorption profiles (Figure S25), which rationalizes the incomplete *Z* \rightarrow *E* photoisomerization observed with UV-vis spectroscopy (Figure S31). TLC of a **2-Z**/**2-E** mixture demonstrates that the **2-E** isomer has a minimal difference in the R_f value from **2-Z** (Figure S8), and these isomers could not be separated. These findings demonstrate the importance of H-bonding to the superior photoisomerization and synthetic accessibility of compound **1** over compound **2**.

Structural Characterization of π -Extended RCN-Pyrrole Conjugates. The photoswitching performance of π -conjugated pyrrole-RCN conjugates with greater π -conjugation was explored using compounds **3a**–**3c**. For all three versions of compound **3**, both *Z* and *E* isomers were identified from synthesis and could be isolated using column chromatography (Figure S8), like compound **1**. The isomers were distinguished following the same trend in chemical shifts from ^1H NMR spectroscopy

observed for compound **1**. For compound **3a** (Figure S10), the —NH proton peak is found to be more shielded for the *Z* isomer ($\delta = 9.06$ ppm) compared to *E* ($\delta = 12.91$ ppm), which again supports intramolecular H-bonding in the *E* isomer. The *Z* and *E* isomers of compounds **3b** (Figure S11) and **3c** (Figure S12) show similar chemical shift trends, with the *Z* isomer exhibiting more shielded peaks for the —NH protons compared to the *E* isomer.

Table 1. DFT-Simulated and Solution Absorption and Photoisomerization Studies of Model Compounds 1–4

model compounds	gas phase DFT studies				solution studies in chloroform				
	relative energy (kcal/mol) ^a		absorption maximum (nm)		absorption maximum (nm)		$\Delta\lambda_{\text{abs}}$ (nm)	Z/E composition (%/%) at the PSS ^b	
	Z	E	Z	E	Z	E	$\Delta\lambda_{\text{E/Z}}$	Z→E (λ_{irr} in nm)	E→Z (λ_{irr} in nm)
1	3.68	0	353	377	436	466	30	18/82 (404)	>99/1 ^c (523)
2	0	2.57	329	350	407	N/A ^d	N/A ^d	58/42 (404)	N/A ^d
3a	4.10	0	393	432	492	534	42	<1/99 ^c (404, 454)	>99/1 ^c (595)
3b	3.61	0	371	399	462	493	31	24/76 (454)	>99/1 ^c (523)
3c	4.02	0	375	398	458	488	30	17/83 (404)	>99/1 ^c (523)
4	0	4.17	344	360	411	N/A ^d	N/A ^d	53/47 (404)	N/A ^d

^aEnergy values reported of the most stable conformer in the Z and iE states. ^bFor each sample, the PSS ratios have been reported based on three measurements (with an error of $\pm 1\%$). ^cQuantitative photoisomerization observed. ^dThe pure E isomer could not be isolated to perform independent solution studies.

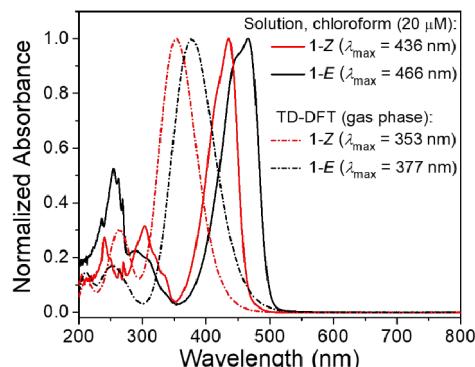


Figure 4. Solution (solid lines) UV-vis (20 μM , chloroform) and gas phase TD-DFT-predicted (dashed lines) absorption profiles of compounds 1-Z (red spectra) and 1-E (black spectra).

206 (Figure S12) show similar chemical shift trends. Stereo-
207 chemical analysis was conducted using 2D NMR experiments
208 (Figures S1–S6), including in-phase/antiphase gradient-
209 selected heteronuclear single- and multiple-bond correlation
210 (IPAP-gHSIMBC) spectroscopy. 2D NMR analysis (Figure S6)
211 of a 3b-Z/3b-E mixture (chloroform-*d*) obtained via
212 irradiation to the PSS (using 454 nm LED) indicates the

three-bond heteronuclear coupling ($^{1,3}\text{J}$) between the 213 rhodanine C=O, and the isomerizable olefin is larger for the 214 E isomer ($^{1,3}\text{J}_{\text{C}3-\text{H}8} = 11$ Hz) compared to the Z ($^{1,3}\text{J}_{\text{C}3-\text{H}8} = 215$ 215 5.7 Hz), which is in compliance with our previous RCN 216 work.²⁷

We were also able to obtain the single-crystal X-ray 218 structures of compounds 3a-Z (Figure 5) and 3b-Z (Figures 219 S91–S100, Tables S12–S14). The Oak Ridge Thermal 220 Ellipsoid Plot (ORTEP) of 3a-Z confirms the Z stereo- 221 chemistry of the molecule about the exocyclic olefin. A twisted 222 geometry is adopted by 3a-Z in the crystal, likely to minimize 223 the steric interactions with deviations from planarity. This is 224 defined by the dihedral angles S1–C14–C24–C25 (-5.44°) 225 and N1–C7–C1–C6 (-16.27° , Figure 5b). The unit cell 226 contains two molecules (Z = 2) of 3a-Z (Figure 5c), and the 227 π – π distance between the two monomers is found to be 2.38 228 Å, as measured between planes defined by the cyclic RCN 229 (Figure 5c). One Z monomer can participate in intermolecular 230 H-bonding through the carbonyl oxygen (O₂) of the RCN 231 unit, with the hydrogen attached to the pyrrole nitrogen (N1) 232 of another monomer to form a dimeric structure. The distance 233 between the hydrogen and the carbonyl oxygen is found to be 234 2.16 Å (Figure 5d). The long-range packing of 3a-Z displays a 235 cofacial, head-to-tail arrangement (Figure 5e). Compound 3b- 236

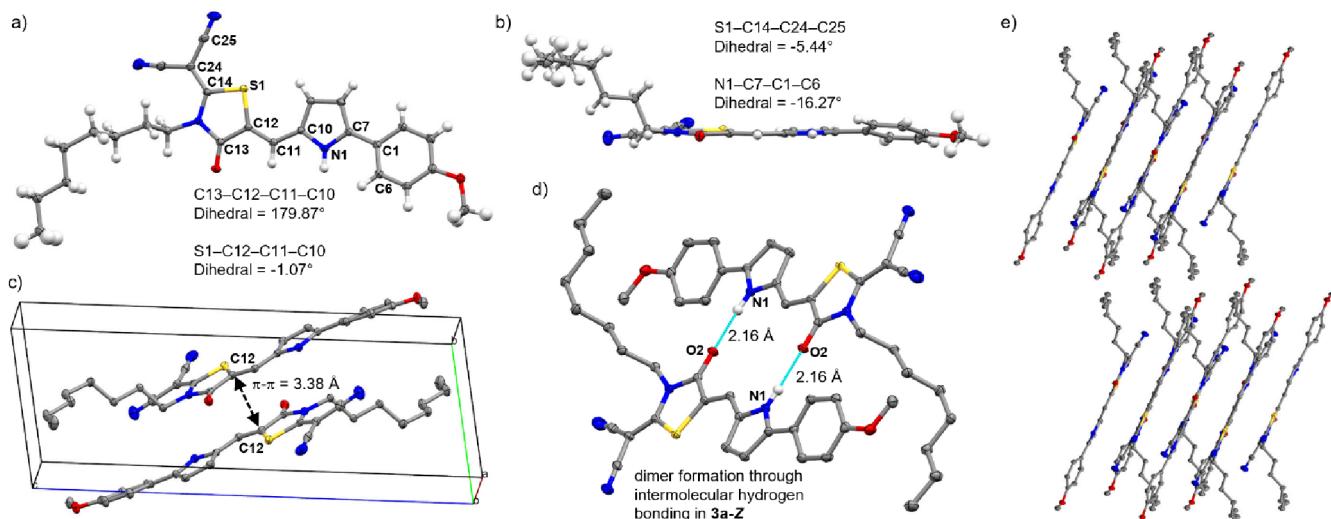


Figure 5. Single-crystal X-ray analysis of 3a-Z. (a) ORTEP representation of the 3a-Z monomer, face-on view (thermal ellipsoids are set at a 50% probability level). (b) Edge-on view of the 3a-Z monomer. (c) Unit cell containing two molecules of 3a-Z. (d) Dimeric interaction through intermolecular hydrogen bonding between two monomers of 3a-Z. (e) Long-range packing of 3a-Z in the solid state (view along 100 plane).

237 **Z** also adopts a twisted geometry in the crystalline state,
 238 defined by the dihedrals S1–C14–C24–C25 (4.82°) and
 239 C7–C8–C1–C2 (23.21° , Figure S94), indicating that the 3b–
 240 Z regiochemistry forces a slightly more twisted structure than
 241 3a–Z. The unit cell comprises eight monomers ($Z = 8$) of 3b–Z
 242 (Figure S95a), and the presence of the intermolecular H–
 243 bonded dimer is observed, like 3a–Z, with an H-bonding
 244 distance of ~ 2 Å (Figure S95b). Interestingly, the 3b–Z crystals
 245 undergo reversible phase transition in the range of 290 K–300
 246 K on heating (Figures S99 and S100, Table S14). The high–
 247 temperature polymorph measured at 300 K was found to be
 248 disordered with four monomers in the unit cell ($Z = 4$).

249 **Enhanced Photoswitching Behavior of 3a–3c.** ^1H
 250 NMR was used to monitor the photoswitching of the three
 251 versions of compound 3 using various excitation sources
 252 (Table 1 and Figures S17–S22). For compound 3a (15 mM,
 253 chloroform-*d*), quantitative *E* \rightarrow *Z* photoisomerization was
 254 achieved using 595 nm irradiation (Figure 6a), while 404 and

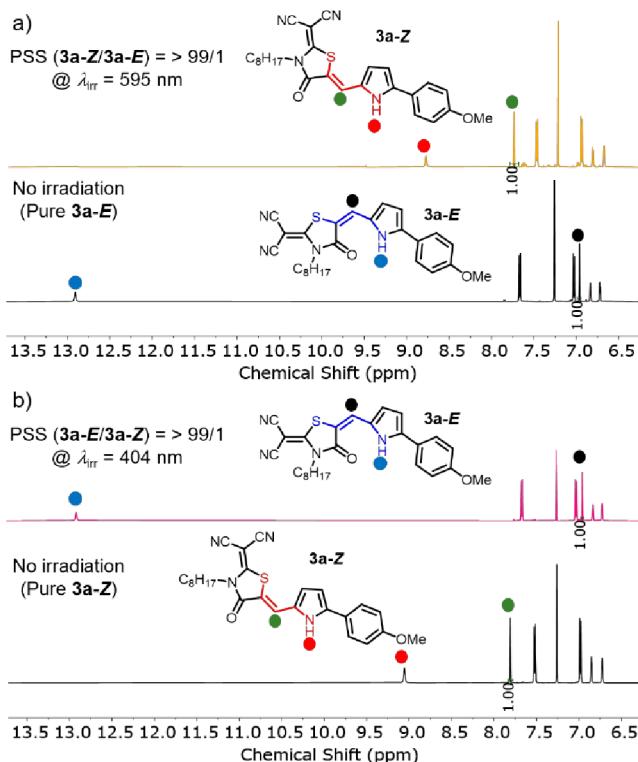


Figure 6. Solution ^1H NMR (15 mM, CDCl_3) photoisomerization studies of compound 3a showing (a) 3a-E \rightarrow 3a-Z isomerization upon 404 nm excitation. (b) 3a-Z \rightarrow 3a-E isomerization upon 595 nm excitation.

255 454 nm irradiation revealed quantitative *Z* \rightarrow *E* switching
 256 (Figure 6b), indicating complete bidirectional photoswitching.
 257 Quantitative *E* \rightarrow *Z* photoisomerization was also achieved
 258 when 3b–*E* and 3c–*E* were irradiated at 523 nm. Excitation of
 259 3b–Z and 3c–Z at 404 or 454 nm, while not quantitative, leads
 260 to PSSs composed of $\sim 80\%$ *E*. Achieving quantitative
 261 bidirectional photoswitching with compounds 3b and 3c
 262 might be possible with the correct choice of solvent and
 263 excitation wavelength, which warrants further investigation.
 264 The UV–vis absorption spectra of compound 3a displays a
 265 large red shift for both *Z* and *E* isomers in solution relative to
 266 compound 1 with absorption maxima at 492 and 534 nm,

267 respectively (Figure 7a). The 42 nm difference in maximum
 268 absorption between *E* and *Z* isomers explains the well-behaved
 269

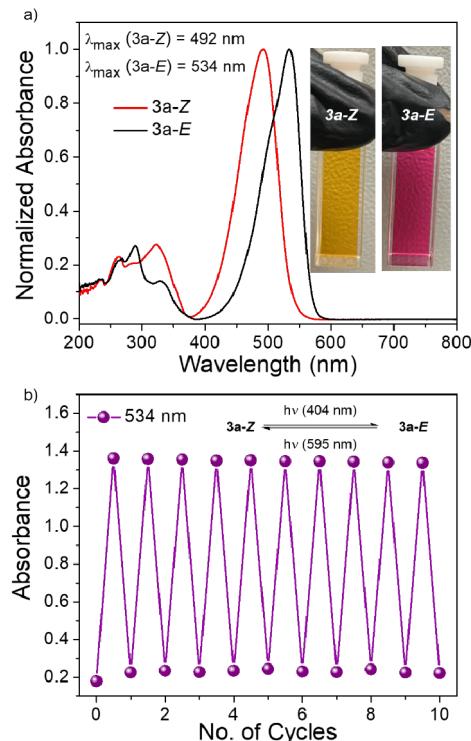


Figure 7. (a) Solution UV–vis (20 μM , chloroform) spectra of compounds 3a–Z (red spectrum) and 3a–E (black spectrum), inset: as-prepared solutions of 3a–Z and 3a–E in a 1-cm quartz cuvette. (b) UV–vis photoswitching of compound 3a (20 μM , chloroform). The absorbance change at 534 nm was monitored while alternating between 404 and 595 nm irradiation.

bidirectional quantitative switching behavior of 3a. The large difference in peak absorbance wavelength between the 3a isomers is well-supported by TD-DFT (Figure S26). The pronounced difference in color (Figure 7a, inset) of compounds 3a–Z (yellow-orange) and 3a–E (red-violet), along with excellent photochromism, is quite interesting in terms of their potential solid-state applications as sensors or smart materials.³⁰

Compared with 3a, compounds 3b and 3c show hypsochromic shifts for both *Z* and *E* isomers. Absorption maxima of 3b–Z and 3b–*E* are found at 462 and 493 nm, respectively, whereas for 3c–Z and 3c–*E*, the peaks lie at 458 and 488 nm, respectively (Figures S27–S28). The absorption spectra for compounds 3a–3c (Figures S26–S28) determined by using TD-DFT simulations agree well with the trends observed in solution. The higher-energy absorption maxima of 3b and 3c compared to 3a suggest the extent of π -electron delocalization is significantly less with arylation at the 3- and 4-positions of the pyrrole compared to the 5-position.³¹

Z/E photoisomerization studies of series 3 in solution (20 μM , chloroform) using UV–vis (Figures S32–S34) are consistent with the photoisomerization behavior observed using NMR. Bidirectional complete photoisomerization is achieved for compound 3a, and a photoswitching experiment could be performed using alternating 404 and 595 nm irradiation to promote *Z* \rightarrow *E* and *E* \rightarrow *Z* photoisomerization, respectively. The system appears to be highly fatigue resistant

296 after ten cycles (Figures 6b and S37). Facile photoswitching is
 297 also observed for compounds 3b (Figure S38) and 3c (Figure
 298 S39), highlighting the excellent switching behavior of these
 299 compounds. Photoluminescence studies in solution (20 μ M,
 300 chloroform) of two model compounds, 3a and 3b, were also
 301 performed. Both the Z and E isomers exhibit considerable
 302 luminescence when excited at their respective absorption
 303 maxima. For compound 3a, the emission maxima of the Z and
 304 E isomers are observed at 570 and 572 nm, respectively. For
 305 compound 3b, the emission maxima of the Z and E isomers are
 306 found at 553 and 570 nm, respectively (Figure S41). The
 307 photoluminescence of the RCN-pyrrole conjugates is promis-
 308 ing for the design of emissive photoswitches upon further
 309 molecular engineering in the future.³²

310 To assess the overall efficacy of pyrrole (and arylated
 311 pyrrole) units on the photoswitching properties of RCN
 312 molecules, comparator molecule 4 was synthesized through
 313 condensation of RCN and *p*-methoxybenzaldehyde. Only the
 314 Z isomer was obtained from the synthesis. As determined by
 315 1 H NMR, 254 and 404 nm irradiation results in a 4-Z/4-E
 316 mixture with a PSS ratio of 71/29 and 53/47 (Figure S23,
 317 Tables 1 and S1). Both solution (20 μ M, chloroform) and TD-
 318 DFT studies show lower-wavelength absorption maxima for 4-
 319 Z at 411 and 344 nm, respectively, (Figure S29) compared to
 320 the RCN-pyrrole switches. UV-vis spectroscopy reports
 321 incomplete Z \rightarrow E photoisomerization in solution for
 322 compound 4 (Figure S35), providing further evidence that
 323 pyrrole-conjugated RCN molecules are more efficient photo-
 324 switches.

325 **Origins of Bistability.** For most of the common
 326 photoswitching molecules such as azobenzenes and HTIs,
 327 one of the isomers is more thermodynamically stable.
 328 Consequently, only one isomer is available from synthesis,
 329 while the other metastable isomer is obtainable by photo-
 330 irradiation. Surprisingly, both Z and E isomers were accessible
 331 from synthesis for RCN-pyrrole switches 1 and 3a–3c. These
 332 observations were repeatable even with the reaction vessels
 333 being covered with aluminum foil throughout the entire
 334 synthesis and purification processes to minimize the possibility
 335 of unintentional photoisomerization by ambient light. This
 336 unique isomer accessibility from synthesis is dissimilar to our
 337 previous work on RCN²⁷ and INCN-functionalized³³ thio-
 338 phene oligomers, where only the more thermodynamically
 339 stable Z isomer could be obtained from synthesis.

340 We speculate that the intermolecular H-bonding in the Z
 341 isomers and intramolecular H-bonding in the E isomers
 342 facilitate two thermodynamically stable states. While the
 343 intramolecular H-bond interaction between the carbonyl
 344 oxygen and pyrrole —NH in the E isomer is obvious as
 345 confirmed by NMR and IR spectroscopic techniques (Figures
 346 S9 and S13), the intermolecular H-bonding in the Z isomer is
 347 demonstrated by the crystal structures of 3a-Z and 3b-Z. As
 348 shown in Figures 5d and S95b, Z monomers can participate in
 349 intermolecular H-bonding to form dimeric structures. The
 350 extent to which H-bonding enhances the stability of both
 351 isomers is described below.

352 To gain more insight into the origin of bistability, we
 353 performed gas phase DFT calculations (B3LYP/6–31+G(d))
 354 to compare the molecular structures of the E and Z isomers.
 355 For compound 1, a planar geometry was obtained for both 1-Z
 356 and 1-E (Figure 8a,b). However, when the relative energies of
 357 the isomers were compared, the *s-cis* conformer of 1-E was
 358 most stable, while the *s-trans* conformer of 1-Z was 3.68 kcal/

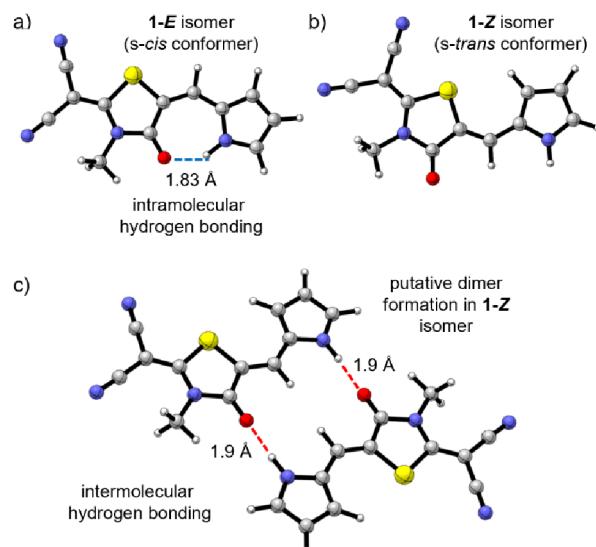


Figure 8. Optimized lowest energy conformers (DFT, B3LYP/6–31+G(d)) of (a) 1-E (face-on view, showing possible intramolecular hydrogen bonding interaction) and (b) 1-Z (face-on view). (c) Putative dimer formation of 1-Z through intermolecular hydrogen bonding interactions.

mol higher in energy (Table 1). The intramolecular H-bonding interaction between the —NH proton and carbonyl oxygen in the E isomer (Figure 8a), characterized by an O...H distance of 1.83 Å and C=O...H angle of 117°, has been discussed in related contexts.²² Solvent model calculations (IEFPCM, chloroform) also present the 1-E isomer as thermodynamically more stable than 1-Z (by 1.89 kcal/mol), possibly due to the presence of intramolecular H-bonding in the E form (Figure S89). The difference observed in the relative stability of the two isomers from the gas phase and the solvent model DFT calculations can be attributed to the change in the interfacial and dielectric properties offered by the solvent versus the in-vacuum conditions for the gas phase calculations.

As the stability of the Z isomer can come in part from self-association, first observed by X-ray analysis, we also found that the DFT calculations support the geometric requirements for this interaction quite well. A putative 1-Z dimer would form through two H-bonds, with O...H distances of 1.9 Å and a C=O...H angle of 179°, which is typical for intermolecular H-bonding (Figure 8c).³⁴ The gas phase-binding enthalpy of the dimer, -13.63 kcal/mol (-6.82 kcal/mol per 1-Z monomer) could explain the stability of the Z isomer if preserved in solution.³⁵ Similar dimeric interactions through intermolecular H-bonding were previously reported in related conjugated molecules.^{34,36} When considering the monomeric state for compounds 3a–3c, the E isomer was found to be more stable than Z due to the presence of intramolecular H-bonding in the *s-cis* conformer of the E state (Table 1). However, for comparators 2 and 4, the Z isomer is found to be more stable than the E isomer, which is consistent with observations during synthesis (Table 1). Computational details of all compounds are available (pages S81–S107).

Assessment of H-Bonding Interactions. To deepen our understanding of the H-bonding interactions present in the Z and E isomers, temperature-dependent 1 H NMR was performed from 25 to 90 °C (15 mM, tetrachloroethane-*d*₂). For compound 1-Z, a gradual upfield chemical shift (8.86 to 8.68 ppm, $\Delta\delta = 0.18$ ppm) of the —NH proton was observed

397 when increasing the temperature from 25 to 90 °C (Figure 398 S57). Upon gradual cooling of the sample back to 25 °C, a 399 downfield chemical shift (8.68 to 8.85 ppm, $\Delta\delta = 0.17$ ppm) 400 was observed (Figure S58). This suggests that the 401 intermolecular H-bonding might be disrupted as the temper- 402 ature increases, breaking the dimeric interactions present in 1- 403 Z. Similar experiments with compound 1-E demonstrated only 404 a very small shielding (12.32 ppm to 12.29 ppm, $\Delta\delta = 0.03$ 405 ppm) and deshielding (12.29 ppm to 12.32 ppm, $\Delta\delta = 0.03$ 406 ppm) of the —NH proton peak upon increasing and 407 decreasing the temperature (Figures S59–S60). For com- 408 pound 2-Z (Figures S61–S62), the change in chemical shift of 409 the —NH proton was found to be 0.09 ppm, around half of 410 the change found in the case of 1-Z. These results further 411 justify that the —NH proton in 1-Z is involved in 412 intermolecular H-bonding, in contrast to the temperature 413 insensitive —NH proton in 1-E that is engaged in intramolecular 414 H-bonding (Figure S63). Similar studies (15 mM, tetrachloro- 415 ethane-*d*₂) with compounds 3a-Z ($\Delta\delta = 0.22$ ppm, Figure 416 S64) and 3b-Z ($\Delta\delta = 0.18$ ppm, Figure S65) also show 417 shielding of the —NH proton peak upon gradual increase of 418 temperature from 25 to 90 °C, consistent with the disruption 419 of dimerization at higher temperatures.

420 We also performed concentration-dependent studies for 421 compound 1-Z (chloroform-*d*) from 2 to 30 mM. A downfield 422 shift (8.64 to 8.71 ppm, $\Delta\delta = 0.07$ ppm) of the —NH proton 423 peak is observed with increasing concentration, which also 424 points to H-bonding present in the Z isomer (Figure S66). 425 However, for compound 3a-Z (1 mM to 50 mM, chloroform- 426 *d*), a significantly larger downfield chemical shift change ($\Delta\delta = 427 0.81$ ppm) is observed upon increasing the concentration 428 (Figure S67), which suggests that the electronics of these 429 RCN-pyrrole conjugates influence the strength of dimeric 430 association.

431 **Thermal Isomerization Studies.** Remarkably, no thermal 432 isomerization was observed in either direction for 1-Z and 1-E 433 in tetrachloroethane up to 80 °C (Figures S68–S69) or in 434 acetonitrile-*d*₃ up to 60 °C (Figures S70–S71) over 120 and 435 80 h, respectively, which speaks to the bistable nature of the 436 isomers. These findings deviate from our previous work on 437 INCN-based donor–acceptor molecules, where we observed 438 that higher polarity solvent induced faster thermal isomer- 439 ization compared to a lower polarity solvent, in case of an 440 INCN-monothiophene analog.³³ In a H-bonding competitive 441 solvent such as DMSO-*d*₆ at 60 °C, no Z → E thermal 442 isomerization was observed within 80 h (Figure S72), but the 443 1-E isomer relaxes to 1-Z completely within 3 h (Figure S73). 444 In DMSO, the Z isomer is preferred because DMSO can 445 stabilize the Z isomer through intermolecular H-bonding 446 (Figures S72–S73). The thermal half-life of the 1-E isomer is 447 calculated as 3.18 h in DMSO at 298 K (pages S78–S80). 448 These studies reveal that the thermodynamic preference of the 449 Z and E isomers is highly solvent dependent and worthy to 450 explore in a wide range of solvents in the future.

451 The thermal stability of both isomers of compound 1 was 452 also evidenced during the thermal gradient sublimation studies. 453 Both 1-Z and 1-E were obtained in pure forms after being 454 subjected to temperatures over 130 °C at $<1 \times 10^6$ Torr for 455 24–72 h (Figures S55–S56). This suggests that, in addition to 456 solution processing, these materials could be vacuum 457 deposited, which is advantageous for the fabrication of certain 458 electronic devices like thin-film transistors or in situations 459 where interactions with solvent are undesirable.

460 **Optoelectronic Studies of Thin Films.** The optoelec- 461 tronic properties of compounds 1 and 3a were also 462 investigated in the solid state to explore if their well-behaved 463 photoswitching could be extended to environments more 464 suitable for applications in photoresponsive materials,¹¹ 465 optoelectronics,³⁵ and photonic computing.³⁸ The UV–vis 466 absorption and photoluminescence (PL) data were obtained 467 for neat films fabricated via spin coating, which were 468 characterized as-spun and after thermally annealing at 80 °C 469 for 15 min (Figure 9). The absorption and PL of the 1-Z films 470

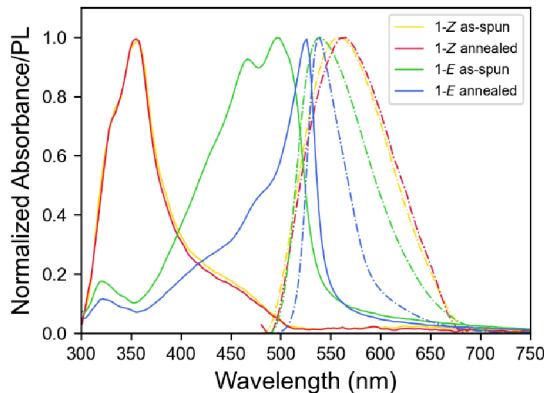
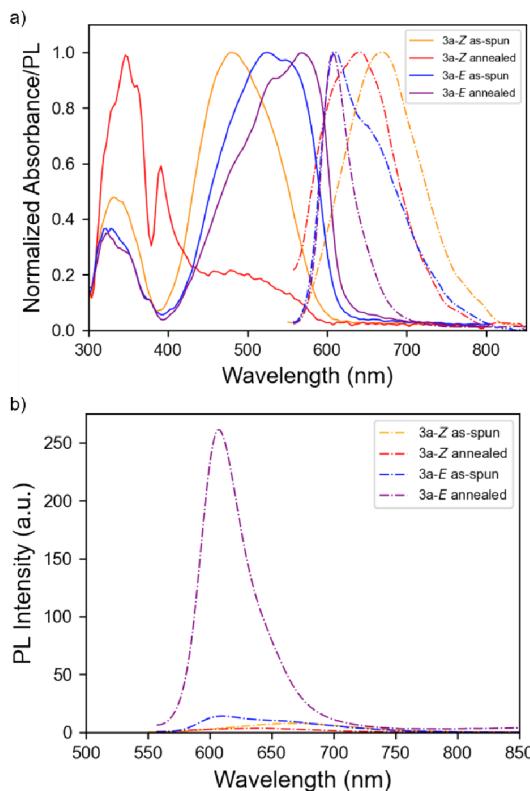



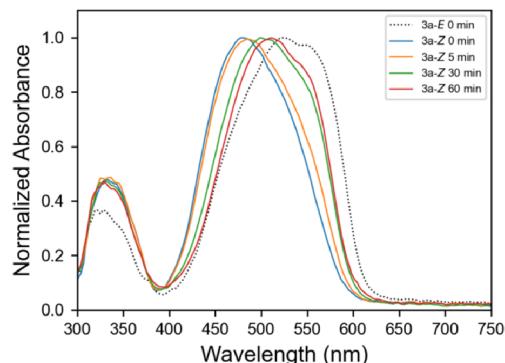
Figure 9. Normalized UV–vis absorption (solid lines) and normalized photoluminescence (PL, dashed lines) spectra for neat films of compounds 1-Z and 1-E.

471 is consistent with the formation of H-aggregates evidenced by 472 the significant reduction in oscillator strength for the $\pi \rightarrow \pi^*$ 473 transition around 440 nm relative to its solution absorption,⁴⁷⁴ 475 very weak PL emission, and large Stokes shift (~ 135 nm).³⁹ 476 The 1-Z films display well-ordered packing following the spin- 477 coating process, with no noticeable changes in absorption after 478 annealing. In contrast, the 1-E films display absorption and PL 479 spectra consistent with J-aggregation evidenced by absorption 480 that is 30 nm red-shifted relative to its solution absorption for 481 as-spun films and 60 nm red-shifted for thermally annealed 482 films. Thermal annealing enhances the PL intensity 3-fold for 483 1-E films with a Stokes shift of just 7 nm, which is 484 characteristic of J-aggregates,⁴⁰ and suggests that as-spun 485 films are relatively amorphous, but more crystalline domains 486 form upon annealing.

487 The tendency of Z isomers to form H-aggregates and E 488 isomers to form J-aggregates was also observed for 3a thin 489 films (Figure 10). After spin coating, as-spun 3a-Z films display 490 absorption spectra reminiscent of their solution absorption,⁴⁹¹ 492 indicating the films are primarily amorphous. After thermal 493 annealing, the $\pi \rightarrow \pi^*$ transition decreases significantly and is 494 accompanied by a new blue-shifted peak at 388 nm due to H- 495 band absorption. Further evidence for the formation of H- 496 aggregates in the case of 3a-Z comes from single-crystal X-ray 497 diffraction (see Figure 5), which illustrates the typical cofacial 498 molecular stacking with a slip angle (i.e., the angle between the 499 stacking axis and the long molecular axis) of about 73°.

499 Like the 1-E films, the 3a-E films appear amorphous after 500 spin coating and become well-ordered J-aggregates after 501 thermal annealing with the lowest energy peak for as-spun 502 films 13 nm red-shifted relative to the solution absorbance and 503 31 nm red-shifted for annealed films. The 3a-E PL intensity 504 increases 10-fold after annealing and the fwhm narrows from 505 0.30 to 0.15 eV indicating a reduction in the static energetic 506

Figure 10. (a) Normalized UV-vis absorption (solid lines) and normalized photoluminescence (PL, dashed lines) spectra for films of compounds 3a-Z and 3a-E. (b) Raw PL intensity for the same films when excited at 495 nm.

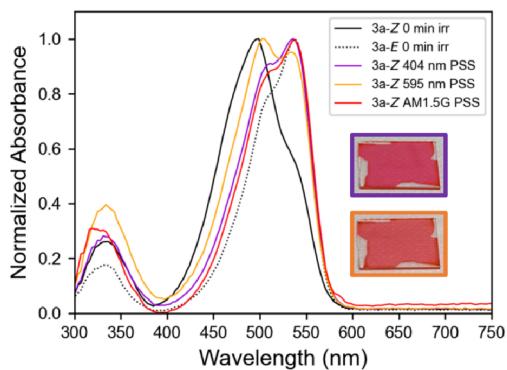

disorder present in the films⁴¹ and crystallization-induced emission enhancement (CIEE).⁴² The synergy of planarity and J-aggregation in the solid-state is known to be propitious for achieving aggregation-induced emission enhancement (AIEE),⁴³ which is intrinsic to the E isomer for compounds **1** and **3a** and is favorable for developing luminescent organic materials.

The annealed **3a-E** films display a 42 nm Stokes shift compared to \sim 160 nm for annealed **3a-Z** films. The remarkable differences in aggregation behavior and optical properties between the E and Z isomers in neat films of **1** and **3a** motivated photoswitching studies of their neat films in the hope of reversibly achieving these distinctive states. These distinct features of isomer-specific J- and H-aggregation for the RCN-pyrrole molecules are quite unique and desirable.⁴⁴

Photoisomerization Experiments on Neat Films. Neat as-spun films of compound **1-E** that were irradiated at 454 nm at room temperature only displayed minor E \rightarrow Z conversion after 1 h of irradiation (Figure S45). However, when the as-spun **1-E** films were simultaneously heated at 55 °C and irradiated at 454 nm, the E \rightarrow Z conversion was almost complete after 1 h (Figure S46). For annealed **1-E** films, no E \rightarrow Z conversion was observed at room temperature or while heated to 55 °C under 454 nm irradiation over 1 h (Figures S45–S46). From these data, it is evident that the as-spun **1-E** films have sufficient motional degrees of freedom to photoisomerize at room temperature (and more so if gently heated), while the tight molecular packing in the annealed **1-E** films resists isomerization even when heated. Interestingly, photoisomerization studies of as-spun and annealed **1-Z** films showed

that 404 nm light could be used to promote Z \rightarrow E⁵³⁴ photoisomerization (Figures S47–S48). The attempt to fully reverse back to the pure Z state with 523 nm light was unsuccessful, although different light sources may enable this capability. We speculate that the tendency of **1-Z** thin films to undergo photoisomerization to a greater extent than **1-E** films is due to their aggregation mode (H versus J) and the strength of π -stacking.⁵⁴¹

In addition to compound **1-Z**, as-spun **3a-Z** thin films displayed significant Z \rightarrow E photoisomerization over 60 min with 454 nm irradiation at room temperature (Figure 11). Compounds **1** and **3a** are the first compounds for which we have observed Z \rightarrow E photoisomerization in neat films among our synthesized RCN-functionalized compounds.⁵⁴⁷


Figure 11. UV-vis absorption spectra for neat as-spun **3a-Z** films after prolonged intervals of 454 nm irradiation.

Surprisingly, Z \rightarrow E photoisomerization was also observed in annealed **3a-Z** films, although to a lesser extent (Figure S51). When the sample is simultaneously heated at 55 °C and irradiated at 454 nm, the Z \rightarrow E conversion is accelerated significantly (Figure S52). We attribute the capability of **3a-Z** to isomerize to the E state, even after its films have been thermally annealed, to its nonplanar structure, which reduces the strength of its π - π interactions and provides more space to isomerize. Once the **3a** molecules reach the E state, the intramolecular H-bonding promotes a planar structure with stronger π - π interactions, which resists conversion back to the Z state. Indeed, almost no E \rightarrow Z photoisomerization was observed for as-spun or annealed **3a-E** films under 595 nm irradiation, even with heating to 55 °C (Figures S49–S50).⁵⁶¹

Photoswitching Experiments in a Polymer Matrix.⁵⁶² Because intermolecular interactions prohibited the reversible photoisomerization of compounds **1** and **3a** in neat films, their photoswitching behavior was explored in a photoinactive polymer matrix to disrupt their aggregation. Polystyrene films were loaded with 1 wt % (w/w) of compounds **1** and **3a** prepared via spin coating from 80 mg/mL polystyrene solutions in chloroform. To our excitement, reversible photoswitching to two unique photostationary states was observed for both compounds, regardless if they were initially loaded with E or Z isomers. The **1-E** PSS after 523 nm irradiation is consistent with near-quantitative conversion to **1-Z**, while the 404 nm PSS shows conversion back to an E-enriched state, although not complete (Figure S53). The same PSSs were achieved after another cycle of irradiation, showing that the conversion was reversible (Figure S53).

The polystyrene films doped with **3a-Z** reached a heavily E-enriched PSS under 404 nm irradiation, and a Z-enriched PSS

580 under 595 nm irradiation (Figure 12). The same PSSs were
581 achieved after another cycle of irradiation, showing that the

Figure 12. UV-vis absorption spectra for polystyrene films loaded with 1 wt % (w/w) 3a-Z and 3a-E and the photostationary states for films containing 3a-Z after 45 min of irradiation at 404 and 595 nm or 10 min under 1 sun intensity (AM1.5G). Picture insets show images of 3a-Z films at 404 nm PSS (violet) and 595 nm PSS (orange).

582 conversion was reversible (Figure S54). The polystyrene: 3a-Z
583 films were also irradiated under the AM1.5G spectrum by
584 using a solar simulator to test if sunlight could be used to
585 induce photoswitching. The AM1.5G PSS closely matches the
586 E-enriched 595 nm PSS, which indicates that photoswitching
587 from Z to E can be carried out by simply going outside for a
588 few minutes (Figure 12).

589 While performing the photoswitching studies of compounds
590 1–3, either in solution or in the solid-state, we have only
591 observed facile well-controlled isomerization. Hence, we do
592 not suspect a competing excited-state intramolecular proton
593 transfer (ESIPT) mechanism,⁴⁵ although this has been
594 observed in HTI-derived photoswitches limiting their isomer-
595 ization efficiency¹⁷ and can be induced by aggregation.⁴⁶
596 Looking ahead, since excited-state inter- and intramolecular H-
597 bonding dynamics are well-studied⁴⁷ and have a significant
598 impact on solid-state optoelectronic properties,⁴⁸ additional
599 excited-state studies with our systems will be important in the
600 future.

601 **Photopatterning Experiments.** The inability to achieve
602 quantitative photoisomerization with compounds 3a and 1 in
603 polystyrene may be due to smaller differences in absorption at
604 the excitation wavelengths compared to chloroform, inter-
605 actions with the polymer matrix, or the concentration of the
606 chromophore within the polymer matrix. Even so, we
607 demonstrated that photopatterning can be performed on
608 polystyrene: 3a-Z films with good color contrast between the
609 E- and Z-enriched regions (Figure 13b2).

610 Much thicker polystyrene samples (~2 mm) were loaded
611 with 0.1 wt % (w/w) 3a-Z to mimic a more application-
612 relevant situation. Consecutive irradiation with 595 and 454
613 nm light facilitates reversible isomerization in the samples with
614 excellent color contrast. Additional experiments are underway
615 to explore how various polymer matrix environments influence
616 the photostationary states of these compounds as well as
617 studies investigating the difference in conductivity between E
618 and Z isomers. Given their dissimilar aggregation behavior, we
619 expect the electrical properties between E and Z films to be
620 markedly different, as well.

621 The novel RCN-functionalized pyrrole photoswitches
622 presented here were discovered to have an exciting

Figure 13. (a) Optical images of polystyrene films loaded with 0.1 wt % (w/w) 3a-Z: as-spun (1), after consecutive irradiations of 454 nm (2), 595 nm (3), 454 nm (4), and in a 365-nm UV light chamber (5). (b) Optical images of polystyrene films loaded with 1 wt % (w/w) 3a-Z: as-spun (1), after area-selective (2) or complete (3) 454 nm irradiation, and after 595 nm irradiation back to the Z-enriched PSS (4).

combination of unique properties such as quantitative
623 photoswitching in solution, visible light photoswitching,
624 excellent thermal stability, synthetic accessibility of pure Z
625 and E states, reversible photoswitching in a polymer matrix,
626 CIEE, photoisomerization in neat films, capability of vacuum
627 deposition, and well-defined J- and H-aggregation for E and Z
628 isomers. While some subset of these properties has been
629 observed in previous photoswitching frameworks, we have not
630 encountered photoswitching compounds with these same
631 characteristics and see great potential for this new class of
632 photoswitch. Further investigation is warranted to test whether
633 these properties may be exploited fruitfully in practical
634 applications. 635

CONCLUSIONS

To summarize, we have successfully developed six RCN-
637 pyrrole conjugates and studied their photoisomerization
638 behavior in solution and in the solid state. Both Z and E
639 isomers were accessible from synthesis and could be separated
640 using conventional silica gel column chromatography. Out-
641 standing photoswitching performance was demonstrated by
642 the target molecules, as reported by ¹H NMR and UV-vis
643 spectroscopy. Quantitative photoisomerization was achieved
644 for all cases with one model compound (3a) undergoing
645 quantitative isomerization in both directions using light
646 sources extending into the red part of the visible spectrum.
647 This photoswitching bidirectionality presents RCN as a strong
648 candidate for highly efficient molecular switches along with the
649 well-known azobenzenes, HTIs, hydrazones, etc. Experimental
650 and computational studies suggest intra- and intermolecular H-
651 bonding interactions present in the E and Z isomers,
652 respectively, which we hypothesize are central to their bistable
653 nature. From detailed studies of the comparator molecules, H-
654 bonding-capable pyrrole units improve the photoswitching
655 capabilities of RCN-functionalized molecules more than
656 benzene- or thiophene-functionalized molecules. UV-vis and
657 PL spectra for neat films of compounds 1 and 3a revealed
658 remarkable differences in optical properties attributed to H-
659 aggregation for Z isomers and J-aggregation for E isomers. The
660 dramatic difference in transparency and PL intensity between
661 the E and Z states facilitates a type of on-off switch that may
662 prove to be advantageous for sensing applications. While
663 photoisomerization in neat films was not shown to be
664

665 bidirectional with our selected light sources, the extent of
666 conversion was nearly quantitative in the case of **1-E** to **1-Z**
667 and **3a-Z** to **3a-E** with mild heating. Moreover, reversible
668 photoisomerization was successfully demonstrated for com-
669 pounds **1** and **3a** in a photoinactive polystyrene matrix where
670 two unique PSSs could be achieved using visible light sources
671 including the Sun. Overall, this study presents the RCN-
672 pyrrole conjugate as an excellent light-responsive unit worthy
673 of investigation for photoswitching applications and as a test
674 bed to better understand *E/Z* isomerization photophysics.

675 ■ ASSOCIATED CONTENT

676 ■ Supporting Information

677 The Supporting Information is available free of charge at
678 <https://pubs.acs.org/doi/10.1021/jacs.4c00983>.

679 Synthesis schemes, written characterization data, ^1H
680 NMR spectra, ^{13}C NMR spectra, 2D NMR character-
681 ization, NMR and UV-vis solution photoisomerization
682 studies, variable temperature and concentration NMR
683 studies, NMR thermal relaxation experiments, thin-film
684 optical studies, polymer matrix photoswitching studies,
685 computational details, and X-ray crystallography details.
686 This material is available free of charge via the Internet
687 at <http://pubs.acs.org> (PDF)

688 ■ ACCESSION CODES

689 CCDC [2325207](https://www.ccdc.cam.ac.uk/data_request/cif), [2327100](https://www.ccdc.cam.ac.uk/data_request/cif), and [2339365](https://www.ccdc.cam.ac.uk/data_request/cif) contain the
690 supplementary crystallographic data for this paper. These
691 data can be obtained free of charge via [www.ccdc.cam.ac.uk/](https://www.ccdc.cam.ac.uk/data_request/cif)
692 [data_request@cif](mailto:data_request@ccdc.cam.ac.uk), or by emailing [data_request@ccdc.cam.ac.](mailto:data_request@ccdc.cam.ac.uk)
693 uk, or by contacting The Cambridge Crystallographic Data
694 Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44
695 1223 336 033.

696 ■ AUTHOR INFORMATION

697 Corresponding Authors

698 **Jiangeng Xue** — Department of Materials Science and
699 Engineering, University of Florida, Gainesville, Florida
700 32611, United States; Email: jxue@mse.ufl.edu
701 **Ronald K. Castellano** — Department of Chemistry, University
702 of Florida, Gainesville, Florida 32611, United States;
703 orcid.org/0000-0003-4322-9932; Email: castellano@chem.ufl.edu

705 Authors

706 **Parag Das** — Department of Chemistry, University of Florida,
707 Gainesville, Florida 32611, United States
708 **Nathan J. Grinalds** — Department of Materials Science and
709 Engineering, University of Florida, Gainesville, Florida
710 32611, United States
711 **Ion Ghiviriga** — Department of Chemistry, University of
712 Florida, Gainesville, Florida 32611, United States;
713 orcid.org/0000-0001-5812-5170
714 **Khalil A. Abboud** — Department of Chemistry, University of
715 Florida, Gainesville, Florida 32611, United States
716 **Łukasz Dobrzański** — Department of Chemistry, University of
717 Florida, Gainesville, Florida 32611, United States

718 Complete contact information is available at:
719 <https://pubs.acs.org/doi/10.1021/jacs.4c00983>

720 Author Contributions

721 All authors have given approval to the final version of the
722 manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for funding this research (CHE-1904534 to RKC and JX; CHE-2203754 to RKC). We acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication (<http://www.rc.ufl.edu>). The mass spectrometric data were obtained by the UF Department of Chemistry Mass Spectrometry Research and Education Center supported, in part, by the National Institutes of Health (NIH S10 OD021758-01A1 and S10 OD030250-01A1). We would like to thank the UF Center for Nuclear Magnetic Resonance Spectroscopy for providing equipment and support that have contributed to these published results. The X-ray measurement was performed at the Center for X-ray Crystallography in the Department of Chemistry at the University of Florida. The NSF (CHE-1828064) and UF are greatly acknowledged for funding the X-ray diffractometer.

■ ABBREVIATIONS

RCN	dicyanorhodanine	744
OPV	organic photovoltaics	745
PSS	photostationary state	746
DFT	density functional theory	747
NMR	nuclear magnetic resonance	748
HTI	hemithioindigo	749
TLC	thin-layer chromatography	750

■ REFERENCES

- (1) (a) Feringa, B. L.; Browne, W. R. *Molecular Switches*; John Wiley & Sons, 2011. (b) Feringa, B. L. *Molecular Photoswitches: Chemistry, Properties, and Applications*, 2 Vol. Set; John Wiley & Sons, 2022; pp 755 11083. (c) Feringa, B. L. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). *Angew. Chem., Int. Ed.* **2017**, *56* (37), 11060–11078.
- (2) (a) Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. *Chem. Soc. Rev.* **2011**, *40* (8), 4422–4437. (b) Makhimwalla, Z.; Yager, K. G.; Mamiya, J.-I.; Shishido, A.; Priimagi, A.; Barrett, C. J. Azobenzene photomechanics: Prospects and potential applications. *Polym. Bull.* **2012**, *69* (8), 967–1006. (c) Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. *Chem. Soc. Rev.* **2012**, *41* (5), 1809–1825.
- (3) Waldeck, D. H. Photoisomerization dynamics of stilbenes. *Chem. Rev.* **1991**, *91* (3), 415–436.
- (4) (a) Wiedbrauk, S.; Dube, H. Hemithioindigo—an emerging photoswitch. *Tetrahedron Lett.* **2015**, *56* (29), 4266–4274. (b) Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Mayer, P.; Zinth, W.; Dube, H. Ingredients to TICT Formation in Donor Substituted Hemithioindigo. *J. Phys. Chem. Lett.* **2017**, *8* (7), 1585–1592. (c) Zitzmann, M.; Hampel, F.; Dube, H. A cross-conjugation approach for high-performance diaryl-hemithioindigo photoswitches. *Chem. Sci.* **2023**, *14* (21), 5734–5742.
- (5) (a) Qian, H.; Pramanik, S.; Aprahamian, I. Photochromic Hydrazones with Extremely Long Thermal Half-Lives. *J. Am. Chem. Soc.* **2017**, *139* (27), 9140–9143. (b) Shao, B.; Aprahamian, I. Hydrazones as New Molecular Tools. *Chem.* **2020**, *6* (9), 2162–2173.
- (6) (a) Klajn, R. Spiropyran-based dynamic materials. *Chem. Soc. Rev.* **2014**, *43* (1), 148–184. (b) Ali, A. A.; Kharbashi, R.; Kim, Y. Chemo- and biosensing applications of spiropyran and its derivatives - A review. *Anal. Chim. Acta* **2020**, *1110*, 199–223.
- (7) (a) Matsuda, K.; Irie, M. Diarylethene as a photoswitching unit. *J. Photochem. Photobiol., C* **2004**, *5* (2), 169–182. (b) Cheng, H.-B.;

786 Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.;
787 Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches:
788 From Molecular Design to Spontaneous Assembly Systems. *Adv. Mater.* 2022, 34 (16), 2108289. (c) Irie, M. *Diarylethene Molecular Photoswitches: concepts and Functionalities*; John Wiley & Sons, 2021.
791 (8) (a) Göstl, R.; Senf, A.; Hecht, S. Remote-controlling chemical
792 reactions by light: Towards chemistry with high spatio-temporal
793 resolution. *Chem. Soc. Rev.* 2014, 43 (6), 1982–1996. (b) Zhang, J.;
794 Zou, Q.; Tian, H. Photochromic Materials: More Than Meets The
795 Eye. *Adv. Mater.* 2013, 25 (3), 378–399.
796 (9) Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A.
797 Light-Controlled Tools. *Angew. Chem., Int. Ed.* 2012, 51 (34), 8446–
798 8476.
799 (10) (a) Kumar, P.; Gupta, D.; Grewal, S.; Srivastava, A.; Gaur, A.
800 K.; Venkataramani, S. Multiple Azoarenes Based Systems –
801 Photoswitching, Supramolecular Chemistry and Application Pros-
802 pects. *Chem. Rec.* 2022, 22 (11), No. e202200074. (b) Remón, P.;
803 González, D.; Li, S.; Basilio, N.; Andréasson, J.; Pischel, U. Light-
804 driven control of the composition of a supramolecular network.
805 *ChemComm* 2019, 55 (30), 4335–4338. (c) Ferreira, P.; Ventura, B.;
806 Barbieri, A.; Da Silva, J. P.; Laia, C. A. T.; Parola, A. J.; Basilio, N. A.
807 Visible–Near-Infrared Light-Responsive Host–Guest Pair with
808 Nanomolar Affinity in Water. *Chem. - Eur. J.* 2019, 25 (14), 3477–
809 3482. (d) Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent Progress
810 in Photoswitchable Supramolecular Self-Assembling Systems. *Adv.
811 Opt. Mater.* 2016, 4 (9), 1322–1349.
812 (11) (a) Russew, M.-M.; Hecht, S. Photoswitches: From Molecules
813 to Materials. *Adv. Mater.* 2010, 22 (31), 3348–3360. (b) Boelke, J.;
814 Hecht, S. Designing Molecular Photoswitches for Soft Materials
815 Applications. *Adv. Opt. Mater.* 2019, 7 (16), 1900404. (c) Pianowski,
816 Z. L. Recent Implementations of Molecular Photoswitches into Smart
817 Materials and Biological Systems. *Chem. - Eur. J.* 2019, 25 (20),
818 5128–5144. (d) Goulet-Hanssens, A.; Eisenreich, F.; Hecht, S.
819 Enlightening Materials with Photoswitches. *Adv. Mater.* 2020, 32
820 (20), 1905966.
821 (12) Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-
822 crystalline polymer organogel: Fabrication, multiresponsiveness, and
823 holographic switching properties. *Chem. Mater.* 2019, 31 (9), 3388–
824 3394.
825 (13) (a) Abendroth, J. M.; Bushuyev, O. S.; Weiss, P. S.; Barrett, C.
826 J. Controlling Motion at the Nanoscale: Rise of the Molecular
827 Machines. *ACS Nano* 2015, 9 (8), 7746–7768. (b) Kassem, S.; van
828 Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A.
829 Artificial molecular motors. *Chem. Soc. Rev.* 2017, 46 (9), 2592–2621.
830 (c) Roke, D.; Sen, M.; Danowski, W.; Wezenberg, S. J.; Feringa, B. L.
831 Visible-Light-Driven Tunable Molecular Motors Based on Oxindole.
832 *J. Am. Chem. Soc.* 2019, 141 (18), 7622–7627. (d) Uhl, E.; Mayer, P.;
833 Dube, H. Active and Unidirectional Acceleration of Biaryl Rotation by
834 a Molecular Motor. *Angew. Chem., Int. Ed.* 2020, 59 (14), 5730–5737.
835 (14) (a) Mukherjee, A.; Seyfried, M. D.; Ravoo, B. J. Azoheteroarene
836 and Diazocine Molecular Photoswitches: Self-Assembly, Responsive
837 Materials and Photopharmacology. *Angew. Chem., Int. Ed.* 2023, 62,
838 No. e202304437. (b) Kobauri, P.; Dekker, F. J.; Szymanski, W.;
839 Feringa, B. L. Rational Design in Photopharmacology with Molecular
840 Photoswitches. *Angew. Chem., Int. Ed.* 2023, 62 (30),
841 No. e202300681. (c) Broichhagen, J.; Frank, J. A.; Trauner, D. A.
842 Roadmap to Success in Photopharmacology. *Acc. Chem. Res.* 2015, 48
843 (7), 1947–1960.
844 (15) (a) Rapp, T. L.; DeForest, C. A. Targeting drug delivery with
845 light: A highly focused approach. *Adv. Drug Delivery Rev.* 2021, 171,
846 94–107. (b) Fitzmaurice, O.; Bartkowski, M.; Giordani, S. Molecular
847 Switches—Tools for Imparting Control in Drug Delivery Systems.
848 *Front. Chem.* 2022, 10 (10), 859450.
849 (16) (a) Bléger, D.; Hecht, S. Visible-Light-Activated Molecular
850 Switches. *Angew. Chem., Int. Ed.* 2015, 54 (39), 11338–11349.
851 (b) Zhang, Z.; Wang, W.; O'Hagan, M.; Dai, J.; Zhang, J.; Tian, H.
852 Stepping Out of the Blue: From Visible to Near-IR Triggered
853 Photoswitches. *Angew. Chem., Int. Ed.* 2022, 61 (31),
854 No. e202205758. (c) Leistner, A.-L.; Pianowski, Z. L. Smart
Photochromic Materials Triggered with Visible Light. *Eur. J. Org. Chem.* 2022, 2022 (19), No. e202101271.
(17) Krell-Jørgensen, M.; Zulfikri, H.; Bonnevie, M. G.; Bro, F. S.; Dohn, A. O.; Laraia, L. Redshifted and thermally bistable one-way quantitative hemithioindigo-derived photoswitches enabled by isomer-specific excited state intramolecular proton transfer. *Chem. Commun.* 2023, 59 (5), 563–566.
(18) Sheng, J.; Danowski, W.; Crespi, S.; Guinart, A.; Chen, X.; Stähler, C.; Feringa, B. L. Designing p-type bi-stable overcrowded alkene-based chiroptical photoswitches. *Chem. Sci.* 2023, 14 (16), 4328–4336.
(19) (a) Tanaka, K.; Taguchi, K.; Iwata, S.; Irie, T. Novel photochromic behavior of benzoylhemithioindigo based on photo-dimerization. *Chem. Lett.* 2004, 33 (7), 848–849. (b) Tanaka, K.; Kohayakawa, K.; Irie, T.; Iwata, S.; Taguchi, K. Novel photoinduced cyclization of pentafluorophenylhemithioindigo. *J. Fluor. Chem.* 2007, 128 (10), 1094–1097.
(20) Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J. P.; Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches Offering Quantitative Isomerization and Long Thermal Half-Lives. *J. Am. Chem. Soc.* 2014, 136 (34), 11878–11881.
(21) (a) Villarón, D.; Wezenberg, S. J. Stiff-Stilbene Photoswitches: From Fundamental Studies to Emergent Applications. *Angew. Chem., Int. Ed.* 2020, 59 (32), 13192–13202. (b) Volarić, J.; Szymanski, W.; Simeth, N. A.; Feringa, B. L. Molecular photoswitches in aqueous environments. *Chem. Soc. Rev.* 2021, 50 (22), 12377–12449.
(22) Zweig, J. E.; Newhouse, T. R. Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. *J. Am. Chem. Soc.* 2017, 139 (32), 10956–10959.
(23) Josef, V.; Hampel, F.; Dube, H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. *Angew. Chem., Int. Ed.* 2022, 61 (43), No. e202210855.
(24) Köttner, L.; Wolff, F.; Mayer, P.; Zanin, E.; Dube, H. Rhodanine-Based Chromophores: Fast Access to Capable Photoswitches and Application in Light-Induced Apoptosis. *J. Am. Chem. Soc.* 2024, 146 (3), 1894–1903.
(25) (a) Insuasty, A.; Ortiz, A.; Tigreros, A.; Solarte, E.; Insuasty, B.; Martín, N. 2-(1,1-dicyanomethylene)rhodanine: A novel, efficient electron acceptor. *Dyes Pigm.* 2011, 88 (3), 385–390. (b) Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. *J. Am. Chem. Soc.* 2015, 137 (11), 3886–3893.
(26) (a) Fan, Q.; Li, M.; Yang, P.; Liu, Y.; Xiao, M.; Wang, X.; Tan, H.; Wang, Y.; Yang, R.; Zhu, W. Acceptor-donor-acceptor small molecules containing benzo[1,2-b:4,5-b']dithiophene and rhodanine units for solution processed organic solar cells. *Dyes Pigm.* 2015, 116, 13–19. (b) Privado, M.; de la Cruz, P.; Gupta, G.; Singhal, R.; Sharma, G. D.; Langa, F. Highly efficient ternary polymer solar cell with two non-fullerene acceptors. *Sol. Energy* 2020, 199, 530–537. (c) Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. *Adv. Mater.* 2021, 33 (27), 2100830. (d) Duan, T.; Chen, Q.; Yang, Q.; Hu, D.; Cai, G.; Lu, X.; Lv, J.; Song, H.; Zhong, C.; Liu, F.; Yu, D.; Lu, S. Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. *J. Mater. Chem. A* 2022, 10 (6), 3009–3017.
(27) Kornman, C. T.; Li, L.; Weldeab, A. O.; Ghiviriga, I.; Abboud, K. A.; Castellano, R. K. Photoisomerization of dicyanorhodanine-functionalized thiophenes. *Chem. Sci.* 2020, 11 (37), 10190–10197.
(28) Camero, D. M.; Grinalds, N. J.; Kornman, C. T.; Barba, S.; Li, L.; Weldeab, A. O.; Castellano, R. K.; Xue, J. Thin-Film Morphology and Optical Properties of Photoisomerizable Donor–Acceptor Oligothiophenes. *ACS Appl. Mater. Interfaces* 2023, 15 (21), 25134–25147.

923 (29) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, 924 R.; Barone, V. Geometries and properties of excited states in the gas 925 phase and in solution: Theory and application of a time-dependent 926 density functional theory polarizable continuum model. *J. Chem. Phys.* 927 **2006**, *124* (9), 094107.

928 (30) Wang, X.; Xu, B.; Tian, W. Solid-State Luminescent Molecular 929 Photoswitches. *Acc. Mater. Res.* **2023**, *4* (4), 311–322.

930 (31) Zweig, J. E.; Ko, T. A.; Huang, J.; Newhouse, T. R. Effects of π - 931 extension on pyrrole hemithioindigo photoswitches. *Tetrahedron* 932 **2019**, *75* (34), 130466.

933 (32) (a) Ji, G.; Wang, N.; Yin, X.; Chen, P. Substituent Effect 934 Induces Emission Modulation of Stilbene Photoswitches by Spatial 935 Tuning of the N/B Electronic Constraints. *Org. Lett.* **2020**, *22* (15), 936 5758–5762. (b) Li, Z.; Liu, Y.; Yang, X.-G.; Gao, X.; Zhang, Y.; 937 Zhang, H.; Kang, G.; Wang, M.; Guo, H. Cyanostilbene-function- 938 alized dithienylethenes with aggregation-induced emission for photo- 939 switching behavior in multi-media. *J. Lumin.* **2022**, *250*, 119061.

940 (33) Das, P.; Kornman, C. T.; Ghiviriga, I.; Abboud, K. A.; 941 Castellano, R. K. Enlightening the Well-Controlled Photochemical 942 Behavior of 1,1-Dicyanomethylene-3-Indanone-Functionalized π - 943 Conjugated Molecules. *Chem. Mater.* **2023**, *35* (19), 8122–8134.

944 (34) Sigalov, M.; Shainyan, B.; Chipanina, N.; Oznobikhina, L.; 945 Strashnikova, N.; Sterkhova, I. Molecular Structure and Photoinduced 946 Intramolecular Hydrogen Bonding in 2-Pyrrolylmethylidene Cyclo- 947 alkanones. *J. Org. Chem.* **2015**, *80* (21), 10521–10535.

948 (35) Sigalov, M. V.; Shainyan, B. A.; Chipanina, N. N.; Oznobikhina, 949 L. P.; Kuzmin, A. V. $E \rightarrow Z$ photoinduced isomerization and hydrogen 950 bonding in the peri-acetamido substituted (1H-pyrrol-2- 951 ylmethylene)benzocycloalkanones. *Tetrahedron* **2020**, *76* (21), 952 131202.

953 (36) Sigalov, M. V.; Shainyan, B. A.; Sterkhova, I. V. Photoinduced 954 Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence 955 of the Components. *J. Org. Chem.* **2017**, *82* (17), 9075–9086.

956 (37) Kohl, F.; Gerwien, A.; Hampel, F.; Mayer, P.; Dube, H. 957 Hemithioindigo-Based Trioxobicyclonadiene: 3D Multiswitching 958 of Electronic and Geometric Properties. *J. Am. Chem. Soc.* **2022**, *144* 959 (7), 2847–2852.

960 (38) (a) Hu, H.; Liu, B.; Li, M.; Zheng, Z.; Zhu, W.-H. Quadri- 961 Dimensional Manipulable Laser with an Intrinsic Chiral Photoswitch. 962 *Adv. Mater.* **2022**, *34* (15), 2110170. (b) Naren, G.; Hsu, C.-W.; Li, 963 S.; Morimoto, M.; Tang, S.; Hernando, J.; Guirado, G.; Irie, M.; 964 Raymo, F. M.; Sundén, H.; Andreasson, J. An all-photonic full color 965 RGB system based on molecular photoswitches. *Nat. Commun.* **2019**, 966 *10* (1), 3996. (c) Marazzi, M.; García-Iriepa, C.; Benítez-Martín, C.; 967 Najera, F.; Monari, A.; Sampedro, D. *E/Z* Molecular Photoswitches 968 Activated by Two-Photon Absorption: Comparison between Different 969 Families. *Molecules* **2021**, *26* (23), 7379. (d) Wu, Y.; Guo, Z.; Zhu, 970 W.-H.; Wan, W.; Zhang, J.; Li, W.; Li, X.; Tian, H.; Li, A. D. Q. 971 Photoswitching between black and colourless spectra exhibits 972 resettable spatiotemporal logic. *Mater. Horiz.* **2016**, *3* (2), 124–129.

973 (e) Ishiguro, Y.; Hayakawa, R.; Chikyow, T.; Wakayama, Y. Optical 974 switching of carrier transport in polymeric transistors with photo- 975 chromic spiropyran molecules. *J. Mater. Chem. C* **2013**, *1* (17), 3012– 976 3016.

977 (39) (a) Kasha, M.; Rawls, H. R.; El-Bayoumi, M.A. The exciton 978 model in molecular spectroscopy. *J. Pure Appl. Chem.* **1965**, *11*, 371– 979 392. (b) Spano, F. C. The Spectral Signatures of Frenkel Polarons in 980 H- and J-Aggregates. *Acc. Chem. Res.* **2010**, *43* (3), 429–439.

981 (40) (a) Hestand, N. J.; Spano, F. C. Molecular Aggregate 982 Photophysics beyond the Kasha Model: Novel Design Principles for 983 Organic Materials. *Acc. Chem. Res.* **2017**, *50* (2), 341–350. (b) Bricks, 984 J. L.; Slominskii, Y. L.; Panas, I. D.; Demchenko, A. P. Fluorescent J- 985 aggregates of cyanine dyes: Basic research and applications review. 986 *Methods Appl. Fluoresc.* **2018**, *6* (1), 012001.

987 (41) Schötz, K.; Panzer, F.; Sommer, M.; Bässler, H.; Köhler, A. A. 988 spectroscopic assessment of static and dynamic disorder in a film of a 989 polythiophene with a planarized backbone. *Mater. Horiz.* **2023**, *10* 990 (12), 5538–5546.

991 (42) Yoshii, R.; Hirose, A.; Tanaka, K.; Chujo, Y. Boron Diiminate 992 with Aggregation-Induced Emission and Crystallization-Induced 993 Emission-Enhancement Characteristics. *Chem. - Eur. J.* **2014**, *20* 993 (27), 8320–8324. 994

995 (43) (a) Gopikrishna, P.; Iyer, P. K. Monosubstituted Dibenzo- 996 fulvene-Based Luminogens: Aggregation-Induced Emission Enhance- 997 ment and Dual-State Emission. *J. Phys. Chem. C* **2016**, *120* (46), 997 26556–26568. (b) Choi, S.; Bouffard, J.; Kim, Y. Aggregation- 998 induced emission enhancement of a meso-trifluoromethyl BODIPY 999 via J-aggregation. *Chem. Sci.* **2014**, *5* (2), 751–755. (c) Feng, X.; 1000 Tong, B.; Shen, J.; Shi, J.; Han, T.; Chen, L.; Zhi, J.; Lu, P.; Ma, Y.; 1001 Dong, Y. Aggregation-Induced Emission Enhancement of Aryl- 1002 Substituted Pyrrole Derivatives. *J. Phys. Chem. B* **2010**, *114* (50), 1003 16731–16736. 1004

1005 (44) Chang, X.; Qarai, M. B.; Spano, F. C. HJ-aggregates of donor– 1006 acceptor–donor oligomers and polymers. *J. Chem. Phys.* **2021**, *155* 1006 (3), 034905. (b) Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. J. 1007 Aggregates: From Serendipitous Discovery to Supramolecular 1008 Engineering of Functional Dye Materials. *Angew. Chem., Int. Ed.* **2009** 1009 *50* (15), 3376–3410. (c) Yamagata, H.; Pochas, C. M.; Spano, 1010 F. C. Designing J- and H-Aggregates through Wave Function Overlap 1011 Engineering: Applications to Poly(3-hexylthiophene). *J. Phys. Chem. B* 1012 **2012**, *116* (49), 14494–14503. 1013

1014 (45) Joshi, H. C.; Antonov, L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. *Molecules* **2021**, *26* (5), 1475. 1015

1016 (46) Zhao, J.; Dong, H.; Yang, H.; Zheng, Y. Aggregation Promotes 1017 Excited-State Intramolecular Proton Transfer for Benzothiazole- 1018 Substituted Tetraphenylethylene Compound. *ACS Appl. Bio Mater.* 1018 **2019**, *2* (11), 5182–5189. 1019

1020 (47) Zhao, G.-J.; Han, K.-L. Hydrogen Bonding in the Electronic 1021 Excited State. *Acc. Chem. Res.* **2012**, *45* (3), 404–413. 1021

1022 (48) (a) Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; 1022 Zou, D.; Jiang, M. Intermolecular Hydrogen Bonds Induce Highly 1023 Emissive Excimers: Enhancement of Solid-State Luminescence. *J. 1024 Phys. Chem. C* **2007**, *111* (17), 6544–6549. (b) Dommett, M.; Rivera, 1025 M.; Crespo-Otero, R. How Inter- and Intramolecular Processes 1026 Dictate Aggregation-Induced Emission in Crystals Undergoing 1027 Excited-State Proton Transfer. *J. Phys. Chem. Lett.* **2017**, *8* (24), 1028 6148–6153. 1029