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Abstract— This letter explores an approach for task-
relevant multi-task representation learning when the amount
of data is limited for both source tasks and target tasks.
Specifically, we consider a low-dimensional setting where
the goal is to sample source task data based on their rele-
vance so as to utilize task-relevant information effectively.
We present a novel learning algorithm based on an alter-
nating projected gradient descent (GD) and minimization
estimator. We present the convergence guarantee of our
algorithm, excess risk, and the sample complexity of our
approach. We evaluated the effectiveness of our algorithm
via numerical experiments and compared it empirically
against three benchmark approaches.

Index Terms— Representation learning, Multi-task learn-
ing, Meta learning, Alternating gradient descent

I. INTRODUCTION

Representation learning is an emerging problem for learning
in a data-scarce environment, where one first learns a feature
extractor or representation, e.g., the last layer of a convolutional
neural network, from different but related source tasks, and
then uses a predictor on top of this representation in the
target task [1]. This process involves uncovering features that
capture essential characteristics and patterns within the data,
allowing for more effective and efficient learning across various
tasks. Representation learning plays a key role in enhancing
the capabilities of machine learning models, particularly in
scenarios with limited data, facilitating improved generalization
and adaptability across diverse tasks.

Multi-task representation learning is one method that as-
sumes all tasks are supported by a common representation. The
fundamental approach to this learning strategy involves using
the source samples to identify the optimal representation, which
is subsequently used to train the linear predictor for a target
task. Most of the existing work on multi-task representation
learning often assumes an unlimited number of samples for
source tasks and a limited number of samples for the target task
[1], [2]. Nonetheless, source tasks frequently have a limited
number of samples as well. Often, in real-world applications
like medical image analysis, it is difficult to have a substantial
dataset, and the samples are limited. Moreover, not all source
tasks contribute equally to learning representation in many
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applications. Therefore, it is crucial to prioritize relevant tasks
during the training rather than assigning them uniform weight
in multi-task learning.

This paper develops a framework for task-relevant multi-task
representation learning to determine an optimal representation
using limited samples from source tasks. Our goal is to
prioritize the relevance of the source task while sampling the
training (source) data rather than a uniform sampling approach.
This situation happens in many practical applications, including
data-driven control for robotics and autonomous driving [3].
For instance, in robotic systems [4], [5], where the model
simultaneously learns representations for various control tasks,
such as navigation, manipulation, and object recognition. This
approach enables the system to leverage shared knowledge
across tasks, improving efficiency and adaptability in diverse
and complex environments.

Related Work: Multi-task representation learning has been ex-
tensively explored, starting with seminal works such as [4], [6],
[7]. There have been many recent works on provable uniform
multi-task representation learning under various assumptions.
[1], [8]–[11] focus on learning a representation function for
any potential target task under the assumption of the existence
of a shared low-dimensional linear representation across all
tasks. Recently, [2], [12] developed an adaptive representation
learning for a specific target task, under a similar setting as in
[1]. [12] improves the sample complexity on [2] under a high
dimension input assumption. The primary distinctions between
our approach and existing works, [1], [2], [8], [12], is in our
consideration of a data-scarce regime, where the availability of
source data is also limited, and that we propose an estimation
algorithm with guarantees for solving the problem.

Contributions: In this letter, we propose a task-relevant
representation learning algorithm based on an alternating
gradient descent and minimization approach. With respect to
the existing works [1], [8], [12] and the closely related work
[2], our work differs in two key aspects. (i) We consider a
data-scarce regime where the number of source data samples is
limited, unlike in [2], which assumes unlimited availability of
source data. Data scarcity is a prevalent challenge in learning,
rendering our approach well-suited for practical settings such as
medical imaging applications, where data samples are limited.
(ii) [1], [2], [8], [12] assumed the availability of the optimal
solution to the estimation problem. This is not feasible since
the rank-constrained estimation problem (Eq.(2)) is a non-
convex problem. We propose a novel estimator and establish the
convergence of the proposed algorithm and sample complexity.



We empirically validated our approach outperforms the state-
of-the-art techniques consistently.

II. PROBLEM FORMULATION AND NOTATIONS

Problem Formulation: Consider M source tasks and
a single target task, referred to as the (M + 1)-th task.
Every task m ∈ [M + 1] is associated with a distinct joint
distribution µm over X × Y , where X ∈ Rd represents the
input space and Y ∈ R represents the output space. For
each source task m ∈ [M ], we are given nm data samples
(xm,1, ym,1), · · · , (xm,nm

, ym,nm
), which are i.i.d. and come

from the distribution µm. The goal of multitask learning is to
simultaneously produce predictive models for all M source
tasks, with the aim of finding common property among these
tasks. We consider the existence of an underlying representation
function ϕ⋆ := X → Z , which transforms inputs into a feature
space Z ∈ Rk with k ≪ d, within a specified set of functions
Φ such as linear functions. Furthermore, we consider a linear
transformation from the feature space to the output space,
represented by the vector w⋆

m ∈ Rk. Specifically, we assume
that a sample (x, y) from µm for any task m ∈ [M + 1] can
be represented as y = ϕ⋆(x)

⊤
w⋆

m + zm, where zm is a noise.
In this letter, we deal with a data-scarce regime, both for

the source and the target task, i.e., nm < d. We consider
limited data for both source and target task, denoted as
{(xm,1, ym,1), · · · , (xm,nm

, ym,nm
)}m∈[M+1] which is drawn

i.i.d. from the task distributions µm for m ∈ [M + 1]. The
number of data samples for the target task is even fewer than
that of the source task, i.e., nM+1 ≪ {n1, . . . , nM}. This
setting aligns with our main objective of representation learning
under scarce data, in which we have a limited amount of data
available for the source task but have even less access to
the target task data. The main objective is to use as few
total samples from the source task as possible to learn a
representation and linear predictor ϕ, wM+1 that effectively
minimizes the excess risk on the target task, defined as

ERM+1(ϕ,w) = LM+1(ϕ,w)− LM+1(ϕ
⋆, w⋆

M+1) (1)

where LM+1(ϕ,w) = E(x,y)∼µM+1
[(⟨ϕ(x), w⟩ − y)2].

We focus on the linear representation function class, which
is studied in [1], [2], [8], [13]. We have the assumption below.

Assumption II.1 (Low-dimension linear representation). Φ =
{x → B⊤x|B ∈ Rd×k}. We denote the true underlying
representation function as B⋆.

Inspired by [2], in our model, task relevance is a crucial
factor. That is, we consider a setting where the goal is to learn
a representation of a specific target task rather than a generic
target task as in [1], [8]. Notice that, by Assumption II.1,
Θ⋆ := [θ⋆1 , . . . , θ

⋆
M ] = B⋆W ⋆ is a rank-k matrix, where W ⋆ ∈

Rk×M and k ≪ min{d,M}. Given that σmin(W
⋆) > 0, the

coefficient w⋆
M+1 can be considered a linear combination of the

coefficients {w⋆
m}m∈[M ]. Therefore, we make the assumption

that ν⋆ ∈ RM , such that W ⋆ν⋆ = w⋆
M+1, where a larger value

of |ν⋆(m)| indicates a stronger connection between the source
task m and the target task. Based on the information provided
by ν⋆, we give priority to samples from source tasks that have
the highest relevance.

Notations: We denote the set containing the first n positive
integers as [n], which is defined as {1, 2, . . . , n}. The ℓ2 norm
of a vector x is represented by ∥x∥, while the spectral norm
and the Frobenius norm of a matrix A are denoted by ∥A∥ and
∥A∥F , respectively. The max-norm is expressed as ∥A∥max =
maxi,j |Ai,j |. The transpose operation for matrices and vectors
is indicated by ⊤, and |x| refers to the element-wise absolute
value of the vector x. The identity matrix of size n × n is
symbolized by In, often abbreviated as I , and ek denotes the k-
th canonical basis vector, i.e., the k-th column of In. We define
the nm i.i.d. samples from the m-th source task as an input
matrix Xm ∈ Rnm×d, with the corresponding output vector
Ym ∈ Rnm and a noise vector Zm ∈ Rnm . Furthermore, the
collection of vectors {wm}m∈[M ], where wm is associated with
the m-th source task, is assembled into the matrix W ∈ Rk×M .
The notation a ≳ b means that approximately a ⩾ Cb, C > 1.

Let Θ⋆ := B⋆W ⋆ SVD
= B⋆ΣV ⋆ denote its reduced (rank k)

SVD, i.e., B⋆ and V ⋆⊤ are matrices with orthonormal columns
(basis matrices), B⋆ is d× k, V ⋆ is k×M , and Σ is an k× k
diagonal matrix with non-negative entries (singular values).
We let W ⋆ := ΣV ⋆. We use σ⋆

max and σ⋆
min to denote the

maximum and minimum singular values of Σ, and we define its
condition number as κ := σ⋆

max/σ
⋆
min. We have the following

standard assumptions.

Assumption II.2. (Gaussian design and noise) We assume
xm,n follows an i.i.d. standard Gaussian distribution. More-
over, the additive noise variables zm follow i.i.d. Gaussian
distribution with a zero mean and variance σ2.

Assumption II.3 (Incoherence of right singular vectors). We
assume that ∥w⋆

m∥2 ⩽ µ2 k
M σ⋆

max
2 for a constant µ ⩾ 1.

III. PROPOSED ALGORITHM AND ANALYSIS: TASK
RELEVANT REPRESENTATION LEARNING VIA ALTGDMIN

Our objective is to learn a low-dimensional linear represen-
tation from the training samples (source tasks) through an task-
relevance based sampling approach, allowing the utilization
of more data from source tasks that are more relevant to the
target task, rather than a uniform sampling approach as in
[1], [8]. The rationale is that by incorporating more samples
from pertinent tasks, we can accelerate the learning process.
To this end, our algorithm starts by drawing ∝ (ν⋆(nm))2 i.i.d.
samples from the corresponding offline data for each source
task m ∈ [M ]. Following that, we use these samples in all
source tasks to minimize the cost function

f(B̂, Ŵ ) =
M∑

m=1

nm∑
n=1

∥ym,n − x⊤
m,nB̂ŵm∥2. (2)

Subsequently, we use the estimated parameter B̂ and the sample
of the target task to further optimize the cost function

ŵM+1 = argmin
w

∥X⊤
M+1B̂Tw − YM+1∥2. (3)

Using least-squares, Eq. 3 estimates the parameter ŵM+1

for the target task. We will elaborate on our approach for
solving Eq. (2). Our approach utilizes the recently introduced
alternating gradient descent and minimization (AltGDmin)



Algorithm 1: Active Representation Learning Algorithm

1: Input: Confidence δ, representation function class Φ,
relevance parameter ν⋆, source-task sampling budget N ≫
M( k√

M3
((d− k) + log( 1δ )), multiplier for α in init step,

C̃, GD step size η, number of GD iterations T
2: Initialize the lower bound N = k√

M3
((d−k)+log( 1δ )) and

number of samples nm = max{(N −MN) (ν
⋆(m))2

∥ν⋆∥2
2

, N}
3: For each task m, draw nm i.i.d samples from the corre-

sponding offline dataset denoted as {Xm, Ym}Mm=1

4: Set α = C̃
NM

∑M,nm

m=1,n=1 y
2
m,n

5: ym,trunc(α) := Ym ◦ 1{|Ym|⩽
√
α}

6: Θ̂0 :=
∑M

m=1
1

nm
X⊤

mym,trunc(α)e
⊤
m

7: Set B̂0 ← top-k-singular-vectors of Θ̂0

8: GDmin iterations:
9: for t = 1 to T do

10: Let B̂ ← B̂t−1

11: Update ŵm, θ̂m: For each m ∈ [M ], set (ŵm)t ←
(XmB̂)†Ym and set (θ̂m)t ← B̂(ŵm)t

12: Gradient w.r.t B̂: Compute ∇B̂f(B̂, Ŵt) =∑M
m=1 X

⊤
m(XmB̂(ŵm)t − Ym)(ŵm)⊤t

13: GD step: Set B̂+ ← B̂ − η
N/M∇B̂f(B̂, Ŵt)

14: Projection step: Compute B̂+ QR
= B+R+

15: Set B̂t ← B+

16: end for
17: Compute ŵM+1 = argminw ∥X⊤

M+1B̂Tw − YM+1∥2
18: Return B̂T , ŵM+1

algorithm [14], [15] for matrix learning. The main distinctions
lie in our consideration of a noisy setting, where the observed
signal contains noise, which is the common observation model
studied in multi-task learning [1], [2], [8]. Further, we consider
a task-relevant sampling technique as in [2] rather than uniform
sampling, which is highly beneficial for generalizing to a
target task as also demonstrated in the simulations (Fig. 1).
Additionally, the goal of matrix learning works [14], [15] is
to estimate an unknown low-rank matrix (under non-noisy
settings) and there is no focus on generalizing to a target task
and quantifying the excess risk.

Recall that nm < d and rank k ≪ d. Due to the non-
convex cost function f(B̂, Ŵ ) with respect to the unknowns
{B̂, Ŵ} the AltGDmin algorithm [14] starts with a careful
initialization, referred to as spectral initialization. We extract
the top k singular vector from

Θ̂0,full =
[
(
1

n1
X⊤

1 Y1), · · · , (
1

nM
X⊤

MYM )

]
=

M∑
m=1

1

nm

nm∑
n=1

xm,nym,ne
⊤
m

where Xm represents the feature matrix obtained by con-
catenating the feature vectors associated with task m. The
expected value of the m−th task represents B⋆w⋆

m with
E[Θ̂0,full] = B⋆W ⋆. However, the large magnitude of the
sum of independent sub-exponential random variables presents
a significant challenge that restricts the ability to determine a
bound for the ∥Θ̂0,full − B⋆W ⋆∥ within the desired sample
complexity. Consequently, a strategic approach is necessary to
effectively handle this challenge. In order to tackle this issue,

we use the truncation method introduced in [16], carefully
starting with the top k singular vectors of

Θ̂0 =
M∑

m=1

nm∑
n=1

xm,nym,ne
⊤
m1{y2

m,n⩽α},

where α = C̃
NM

∑M,nm

m=1,n=1 y
2
m,n, C̃ = 9κ2µ2, and

ym,trunc(α) := Ym ◦ 1{|Ym|⩽
√
α}. Using Singular Value

Decomposition (SVD), we derive the top k singular vectors
from Θ̂0 to obtain initial estimate B̂0. This method filters out
large values while maintaining the remaining values and serves
as a reliable initial step in accurately estimating parameters.

After the initialization phase, we perform an alternating GD
and minimization step to minimize the cost function (2). In
each iteration, we independently optimize ŵm for each task
via a least square minimization step, followed by a GD step
to update B̂, utilizing the QR decomposition to obtain the
updated matrix B+, represented as B̂+ QR

= B+R+. Using the
estimated parameter matrix B̂ obtained from the source tasks,
we compute the estimated parameter ŵM+1 by minimizing the
cost function (3) using the least squares estimator.

Below, we present the excess risk bound for Algorithm 1.

Theorem III.1. Consider Assumptions II.2 and II.3 hold. For
any ϵ > 0, success probabilities δ, δ′ ∈ [0, 1], C > 1, let
σ2 ⩽ min

{
c∥θ⋆

m∥2

k3κ6 ,
ϵ2∥θ⋆

m∥2

c2κ2

}
, η = 0.4

σ⋆
max

2 , and T = Cκ2 log 1
ϵ .

If nm ⩾ Cmax(log d, logM,k) log 1
ϵ , then with probability

O(1− δ − d−10 − de
−

δ′2nM+1

3∥xM+1,n∥2 , the output of Algorithm 1
guarantees that ER(B̂T , ŵM+1) ⩽ ϵ whenever the total
sampling budget from all sources N is at least

O

(
min

{
(1 + δ′)

(1− δ′)2
k∥ν⋆∥22s⋆ϵ log

1

δ
, (d+M)k(k2 + log

1

ϵ
)

})
and the number of target samples nM+1 is at least

O

(
σ2(k + log 1

δ )

(1− δ′)
ϵ−1

)
where s⋆ = (1 − γ)∥ν∥0,γ + γM , ∥ν∥0,γ :=∣∣∣∣{m : |νm| >

√
γ
∥ν⋆∥2

2

N

}∣∣∣∣ for γ ∈ [0, 1].

Proof. Proof is provided in Appendix II.
Remark III.2. The probability of the guarantee increases as
the number of target samples nM+1 increases and the number
of target samples scales only with k ≪ d. Theorem III.1 shows
that the number of source samples required depends on the task

relevance denoted by s⋆. Since
√

∥ν⋆∥2
2

N is of the order of ϵ, for
γ ≈ 1/M , we have ER(B̂T , ŵM+1) ⩽ ϵ by using only those
source tasks with relevance |ν⋆(m)| ≳ ϵ. Let us consider two
boundary cases: (i) ν⋆ is a 1-sparse vector, i.e., the target task
only depends on one source task, and (ii) ν⋆ is a scaled vector 1
where 1 is a vector of all ones, i.e., all source tasks are equally
relevant (uniform sampling). For γ = 0, (i) gives s⋆ = 1 and
(ii) gives s⋆ = M . Thus, uniform sampling requires M times
more source data samples than (i), validating the effectiveness
of the task-relevance-based sampling. The result in [2] requires
that the total sampling budget from all sources N is at
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Fig. 1: proposed algorithm (relevance sampling), proposed algorithm (uniform sampling), MoM (relevance), Chen et al. (relevance). We
considered 200 data samples for each source task and 100 data samples for the target task. We varied the number of tasks as M = 50, 75, 100,
varied the rank of the Θ⋆ as k = 2, 4, 8, and varied the dimension as d = 200, 300, 400. Based on the plots (Figures 1a, 1b, and 1c), our
proposed approach with adaptive sampling (also even if we use uniform sampling) outperforms the existing approaches.
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Fig. 2: Estimation error vs. GD iterations. We set d = 300, M = 100,
C̃ = 3, k = 2, noise variance = 10−6.

least O
(
(kd+ kM + log( 1δ ))σ

2s⋆∥ν∥22ϵ−2
)

and the number
of target samples nM+1 is at least O

(
σ2(k + log( 1δ ))ϵ

−2
)
.

Further, the guarantees in [2] are under the assumption that an
optimal solution to the non-convex cost function is available.
Theorem III.1 presents the guarantees on the excess risk for
the target task using an AltGDmin estimator.

Remark III.3. The proposed approach can be extended to
multiple target task settings, say K tasks, each with a relevance
parameter ν⋆i where i ∈ {M + 1, . . . ,M +K}. The number
of data samples for each source task will be determined by
the target task with the highest relevance for it.

IV. SIMULATIONS

We evaluated the effectiveness of our proposed algorithm
compared to three benchmarks (i) our estimator with uni-
form sampling (to validate the effectiveness of task-relevant
sampling), (ii) Method-of-Moments (MoM) estimator in [8],
and (iii) Chen et al. in [2]. The MoM estimator com-
putes the top k singular value decomposition on Θ̂ =
1

NM

∑M
m=1

∑nm

n=1 y
2
m,nxm,nx

⊤
m,n to obtain the estimated ma-

trix B̂. In our algorithm, we set GD step-size η = 0.4/∥Θ̂0∥2
and GD iterations T = 1000. The entries of matrix B⋆ were
randomly generated by orthonormalizing an i.i.d. standard
Gaussian matrix, and the entries of matrix W ⋆ for the source
tasks were randomly generated according to an i.i.d. Gaussian
distribution. The task relevance parameter ν⋆ was generated

randomly and then used to calculate the parameter w⋆
M+1 for

the target task. The matrices Xm were randomly generated
using an i.i.d. standard Gaussian distribution. We used a noise
model with a mean of zero and variance of 10−6. All results
are averaged over 100 independent trials.

Excess Risk Plots. The plots in Figure 1a, 1b, and 1c
show the plots of the excess risk for the two algorithms by
varying the number of tasks (M ), the rank of Θ⋆, k, and the
dimension d. The results of our study show that as the number
of tasks increases, the excess risk decreases for both algorithms,
as expected. However, our algorithm consistently provides a
significantly lower excess risk than the MoM-based algorithm
and Chen et al.. We varied the rank k and the dimension d
of the data and compared the performances of the algorithms.
As shown in Figures 1b and 1c, our algorithm outperformed
the other by a significant margin. Our algorithm consistently
outperforms the MoM-based algorithm regarding accuracy, as
demonstrated by its low excess risk for all experiments.

Estimation Error. In Figure 2, we present the plot for
estimation error vs. GD iterations. The MoM estimator and
Chen et al. [2] are noniterative methods; hence, the estimation
error is a single line. We notice that, the estimation error for
the parameter matrix for the M tasks Θ⋆ is considerably less
in our proposed estimator. We also notice that the estimation
error with uniform sampling is lower than that of the adaptive
sampling. However, the excess risk is lower for the adaptive
sampling, as shown in Figure 1. This validates the benefit of
adaptive sampling for generalizing to a target task.

V. CONCLUSION AND FUTURE WORK

In this letter, we introduced a novel active-representation
learning algorithm based on an alternating GD and mini-
mization approach. The algorithm is specifically designed
for active multi-task representation learning by considering
the task relevance to enable adaptive sampling. We have
demonstrated the algorithm’s convergence and analyzed the
sample complexity. Additionally, we have evaluated the effec-
tiveness of our approach in comparison with three benchmark
algorithms. As part of future work, we plan to study the
unknown relevance setting and online learning approaches,
including bandit learning and reinforcement learning.



APPENDIX I
INITIAL RESULTS

We present initial lemmas and then prove our main theorem.

Lemma I.1. For any m ∈ [M + 1], with probability at least

1 − 2de
− δ′2nm

3∥xm,n∥2 , it holds that (1 − δ′)nmI ⪯ X⊤
mXm ⪯

(1 + δ′)nmI, where nm denotes the number of rows in Xm.

Proof. Given that X⊤
mXm =

∑nm

n=1 xm,nx
⊤
m,n, where

xm,nx
⊤
m,n ⪰ 0 and λmax(xm,nx

⊤
m,n) ⩽ ∥xm,n∥2. Since

λmin(

nm∑
n=1

E
[
xm,nx

⊤
m,n

]
) = λmax(

nm∑
n=1

E
[
xm,nx

⊤
m,n

]
) = nm,

by applying the Matrix Chernoff inequality, we have with

probability at least 1−de−
δ′2nm

2∥xm,n∥2 , λmin(
∑nm

n=1 xm,nx
⊤
m,n) ⩾

(1 − δ′)nm and with probability at least 1 − de
− δ′2nm

3∥xm,n∥2 ,
λmax(

∑nm

n=1 xm,nx
⊤
m,n) ⩽ (1+ δ′)nm. Applying union bound

completes the proof.

Define PA := A(A⊤A)†A⊤ and P⊥
A = I − IA.

Lemma I.2. Assume that Assumptions II.2 and II.3 hold
and σ2 ⩽ min

{
c∥θ⋆

m∥2

k3κ6 ,
ϵ2∥θ⋆

m∥2

c2κ2

}
. Set η = 0.4

σ⋆
max

2 and

T = Cκ2 log 1
ϵ . If N ⩾ Cκ6µ2(d +M)k(κ2k2 + log 1

ϵ ) and
nm ⩾ Cmax(log d, logM,k) log 1

ϵ , then with probability at

least O(1− δ − d−10 − de
−

δ′2nM+1

3∥xM+1,n∥2 ),
1

nM+1
∥P⊥

XM+1B̂T
XM+1B

⋆W̃ ⋆∥2F

⩽
(1 + δ′)

(1− δ′)
ϵ2µ2kσ⋆

max
2

(
2N(d− k) + 3 log

1

δ

)
where W̃ ⋆ = W ⋆

√
diag([n1, n2, · · · , nM ]).

Proof. Given two matrices A1 and A2 with the same number
of columns that satisfy A⊤

1 A1 ⪰ A⊤
2 A2, for any two matrices

B and B′ with compatible dimensions, from Lemma A.7 from
[1], we have the following inequality

∥P⊥
A1BA1B

′∥2F ⩾ ∥P⊥
A2BA2B

′∥2F .

Using the above result and Lemma I.1, with probability at least

1− 2de
−

δ′2nM+1

3∥xM+1,n∥2 , the following inequalities hold.
1

nM+1
∥P⊥

XM+1B̂T
XM+1B

⋆W̃ ⋆∥2F ⩽ (1 + δ′)∥P⊥
IB̂T

IB⋆W̃ ⋆∥2F

⩽
(1 + δ′)

(1− δ′)

M∑
m=1

∥P⊥
XmB̂T

XmB⋆w⋆
m∥22. (4)

Using the definition of P⊥
XmB̂T

XmB⋆w⋆
m, where B̂T is the

estimate in the T -th GD iteration, we have
M∑

m=1

∥P⊥
XmB̂T

XmB⋆w⋆
m∥22

=
M∑

m=1

∥Xm(B⋆w⋆
m − B̂T (ŵm)T )− (XmB̂T )((XmB̂T )

⊤

(XmB̂T ))
−1(XmB̂T )

⊤Xm(B⋆w⋆
m − B̂T (ŵm)T )∥22 (5)

=
M∑

m=1

∥P⊥
XmB̂T

Xm(B⋆w⋆
m − B̂T (ŵm)T )∥22

⩽

(
M∑

m=1

∥P⊥
XmB̂T

Xm∥2F

)
·

(
M∑

m=1

∥B⋆w⋆
m − B̂T (ŵm)T ∥22

)
(6)

= ∥B⋆W ⋆ − B̂T ŴT ∥2F
M∑

m=1

∥P⊥
XmB̂T

Xm∥2F . (7)

Eq. (5) is derived from adding and sub-
tracting and by using XmB̂T (ŵm)T −
(XmB̂T )((XmB̂T )

⊤(XmB̂T ))
−1(XmB̂T )

⊤XmB̂T (ŵm)T
= XmB̂T (ŵm)T − XmB̂T (ŵm)T = 0. Eq. (6) is
derived from Cauchy-Schwarz inequality. Given that
Xm follows i.i.d. standard Gaussian distribution, it follows that∑M

m=1 ∥P⊥
XmB̂T

Xm∥2F ∼ χ2(
∑M

m=1 nm(d − k)). Applying
the Chernoff bound for chi-square distribution, we have

M∑
m=1

∥P⊥
XmB̂T

Xm∥2F

⩽
M∑

m=1

nm(d− k) + 2

√√√√ M∑
m=1

nm(d− k) log
1

δ
+ 2 log

1

δ
,

with probability at least 1 − δ. Using the inequality√
ab ⩽ a+b

2 , we can determine 2
√∑M

m=1 nm(d− k) log 1
δ ⩽∑M

m=1 nm(d − k) + log 1
δ . Therefore, we conclude that

with probability at least 1 − δ,
∑M

m=1 ∥P⊥
XmB̂T

Xm∥2F ⩽

2
∑M

m=1 nm(d−k)+3 log 1
δ . From Theorem 5.3 in [17], under

the given assumptions and conditions, with probability at least
O(1− d−10), ∥θ̂m,T − θ⋆m∥ ⩽ ϵ∥θ⋆m∥ for all m ∈ [M ]. Then
we have with probability at least O(1− d−10),

∥B̂T ŴT −B⋆W ⋆∥2F ⩽
M∑

m=1

ϵ2∥θ⋆m∥2 ⩽ ϵ2µ2kσ⋆
max

2.

The above inequality uses the fact that B⋆ is a unitary matrix
and Assumption II.3. Hence, by combining these results and
using the union bound, we conclude that with probability at

least O(1− δ − d−10 − de
−

δ′2nM+1

3∥xM+1,n∥2 ), we have

M∑
m=1

∥P⊥
XmB̂T

XmB⋆w⋆
m∥22

⩽ ϵ2µ2kσ⋆
max

2

(
2

M∑
m=1

nm(d− k) + 3 log
1

δ

)
.

Substituting in Eq. (4) completes the proof.

APPENDIX II
PROOF OF THEOREM III.1

From the definition of ER(B̂T , ŵM+1), we have
ER(B̂T , ŵM+1)

=
1

2
ExM+1,n∼pM+1

[(
x⊤
M+1,n(B̂T ŵM+1 −B⋆w⋆

M+1)
)2]



= (1/2)(B̂T ŵM+1 −B⋆w⋆
M+1)

⊤(B̂T ŵM+1 −B⋆w⋆
M+1)

(8)

⩽
1

2(1− δ′)nM+1
∥XM+1(B̂T ŵM+1 −B⋆w⋆

M+1)∥2 (9)

=
1

2(1− δ′)nM+1
∥XM+1B̂T ((XM+1B̂T )

⊤(XM+1B̂T ))
†

(XM+1B̂T )
⊤YM+1 −XM+1B

⋆w⋆
M+1∥2 (10)

=
1

2(1− δ′)nM+1
∥PXM+1B̂T

(XM+1B
⋆w⋆

M+1 + ZM+1)

−XM+1B
⋆w⋆

M+1∥2

=
1

2(1− δ′)nM+1
∥PXM+1B̂T

ZM+1∥2

+
1

2(1− δ′)nM+1
∥P⊥

XM+1B̂T
XM+1B

⋆w⋆
M+1∥2 (11)

=
1

2(1− δ′)nM+1
∥PXM+1B̂T

ZM+1∥2

+
1

2(1− δ′)nM+1
∥P⊥

XM+1B̂T
XM+1B

⋆W̃ ⋆ν̃⋆∥2 (12)

⩽
1

2(1− δ′)nM+1
∥PXM+1B̂T

ZM+1∥2

+
1

2(1− δ′)nM+1
∥P⊥

XM+1B̂T
XM+1B

⋆W̃ ⋆∥2F ∥ν̃⋆∥22

where W̃ ⋆ = W ⋆
√

diag([n1, n2, · · · , nM ]) and ν̃⋆(m) =
ν⋆(m)√

nm
. Eq. (8) is derived from E

[
xM+1,nx

⊤
M+1,n

]
= I . Eq. (9)

is derived from Lemma I.1. Eq. (10) is derived from the least
square estimator solution of the optimality of ŵM+1. Eq. (11)
is derived from P⊥

XM+1B̂T

⊤
PXM+1B̂T

= 0. Eq. (12) is derived

from w⋆
M+1 = W̃ ⋆ν̃⋆. Given that ZM+1 follows i.i.d. Gaussian

distribution with a zero mean and variance σ2, it follows that
1
σ2 ∥PXM+1B̂T

ZM+1∥2 ∼ χ2(k). Applying the Chernoff bound
for chi-square distribution, we have with probability at least
1− δ, ∥PXM+1B̂T

ZM+1∥2 ⩽ σ2(2k+3 log 1
δ ). Following that,

by combining the result obtained from Lemma I.2 along with
applying the union bound, we derive that with probability at

least O(1− δ − d−10 − de
−

δ′2nM+1

3∥xM+1,n∥2 ,

ER(B̂T , ŵM+1) ⩽
σ2(2k + 3 log 1

δ )

2(1− δ′)nM+1
+

(1 + δ′)

2(1− δ′)2
µ2kσ⋆

max
2

ϵ2
(
2N(d− k) + 3 log

1

δ

)
∥ν̃⋆∥22.

Our objective in the remaining analysis is to determine the
upper bound of ∥ν̃⋆∥22. Define ϵ−2 = N

∥ν⋆∥2
2

. Using a technique
similar to Theorem 3.2 in [2], for any γ ∈ [0, 1],

∥ν̃⋆∥22 ⩽
2∥ν⋆∥22

N
((1− γ)∥ν⋆∥0,γ + γM).

By combining these results, we obtain the upper bound as

ER(B̂T , ŵM+1) ⩽
σ2(2k + 3 log 1

δ )

2(1− δ′)nM+1
+

(1 + δ′)

(1− δ′)2
µ2kσ⋆

max
2

ϵ2
(
2(d− k) +

3

N
log

1

δ

)
∥ν⋆∥22s⋆.

For 0 < c < 1, setting target sample size nM+1 ⩾
σ2(2k+3 log 1

δ )

2(1−c)(1−δ′) ϵ
−1 ensures that

σ2(2k + 3 log 1
δ )

2(1− δ′)nM+1
⩽ (1− c)ϵ.

Define t := (1+δ′)
(1−δ′)2µ

2kσ⋆
max

2∥ν⋆∥22s⋆. For C > 1, setting
source sample size N ⩾ 3C

c tϵ log 1
δ results in

N ⩾
3C

c
tϵ log

1

δ
=

3 log 1
δ

2(d− k)
C(

2

c
(d− k)tϵ)

⩾
3 log 1

δ

2(d− k)

2
c (d− k)tϵ

1− 2
c (d− k)tϵ

=
3t log 1

δ

cϵ−1 − 2(d− k)t
(13)

where Eq. (13) is derived from the fact that there exists a
constant C > 1 satisfying the inequality x

1−x ⩽ Cx for 0 <

x < 1. Consequently, (2(d − k) + 3
N log 1

δ )tϵ
2 ⩽ cϵ. Thus,

ER(B̂T , ŵM+1) ⩽ ϵ and completes the proof.
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