

1 **Predictability of the Minimum Sea Ice Extent from winter Fram Strait Ice
2 Area Export: Model vs Observations**

3 Sandrine Trotechaud,^a Bruno Tremblay^{a,b}, James Williams^c, Joy Romanski ^c, Anastasia
4 Romanou^c, Mitchell Bushuk^d, William Merryfield^e, Rym Msadek^f

5 ^a *Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec,
6 Canada*

7 ^b *Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York*

8 ^c *NASA Goddard Institute for Space Studies, Columbia University, New York City, New York*

9 ^d *NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey*

10 ^e *Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change
11 Canada, Victoria, Canada*

12 ^f *Université de Toulouse, CNRS, CERFACS, Toulouse, France*

13 *Corresponding author:* Sandrine Trotechaud, sandrine.trotechaud@mail.mcgill.ca

¹⁴ ABSTRACT: We assess whether the observed seasonal predictability of September sea ice extent
¹⁵ (SIE) arising from Fram Strait ice area export is present in Global Climate Models, namely
¹⁶ the CESM2-LE, GISS-E2.1-G, GFDL FLOR-LE, CNRM-CM6-1, and CanESM5. Results show
¹⁷ distinct periods where winter Fram Strait ice area export anomalies are negatively correlated with
¹⁸ the May sea ice thickness anomalies along the Eurasian coastline, and the following September
¹⁹ Arctic SIE, as in observations. Counter-intuitively, periods where winter Fram Strait ice area
²⁰ export anomalies are positively correlated with the following Sept SIE anomalies are also present
²¹ in several models. This occurs early in the record when the mean Arctic sea ice thickness is large
²² and ice area exported out of the Arctic (or recirculated in the Beaufort Gyre) survives the following
²³ summer melt leading to positive sea ice anomalies in the Greenland and Beaufort seas. Later in the
²⁴ record, when sea ice is thinner, winter Fram Strait ice area export anomalies are correlated with
²⁵ enhanced ridging and convergence of sea ice north of the Canadian Arctic Archipelago, leading to
²⁶ positive SIE anomalies in the late summer in the Lincoln Sea. Finally, there are several periods
²⁷ where the Fram Strait ice area export and coastal divergence are weakly coupled, resulting in
²⁸ no (statistically significant) seasonal predictability of the Sept SIE. In general, we find that the
²⁹ coupling between the Fram Strait ice area export and the Sept SIE is present across models and
³⁰ changes in the statistical relationship as a function of the mean Arctic sea ice thickness state.

31 **1. Introduction**

32 The Arctic has witnessed major changes in recent decades as a result of anthropogenic green-
33 house gas emissions and subsequent polar amplification (Screen and Simmonds 2010; Dai et al.
34 2019). Since the beginning of the satellite era in the late '70s, the September sea ice extent (Sept
35 SIE) has declined by -13% per decade (Fetterer 2017 updated daily), the area covered by multiyear
36 ice (MYI) has decreased by more than 50% and the sea ice thickness has declined by 2m, with a
37 loss of 1.2 m in the '80s and '90s alone (Kwok 2018). These changes have major implications
38 for ocean-atmosphere heat and moisture fluxes, solar radiation absorbed at the surface, and the
39 liquid freshwater storage in the Arctic, potentially affecting deep convection in the Greenland Sea
40 and the global thermohaline circulation (Koenigk et al. 2005; Jahn and Holland 2013). Changes
41 in the sea ice extent can also affect mid-latitude weather through atmospheric teleconnections
42 (Coumou et al. 2018; Osborn 2010). Finally, the changing Arctic sea ice leading to new navigable
43 passages affects tourism, economic and military operations (Stewart et al. 2009; Ebinger and Zam-
44 betakis 2009; Sharp 2011), as well as local ice-dependent and obligate species (Vincent et al. 2011).

45
46 The then record low September sea ice extent of 2007 marked the beginning of a new Arctic,
47 with mainly ice-free conditions in the Chukchi and Beaufort Seas in summer, and increased
48 interest for (sub-)seasonal forecasts of sea ice conditions (Stroeve et al. 2014). Coupled general
49 circulation models with high-quality initialization can make skillful predictions when the Sept
50 SIE is near the long-term linear trend but have difficulty making skillful predictions for anomalous
51 years that fall outside of the linear trend such as in 2007 and 2012 (Stroeve et al. 2014). With the
52 retreat of the sea ice cover, we see early signs of increased interannual variability, particularly
53 in the Pacific sector of the Arctic (Desmarais and Tremblay 2021), making predictions of
54 the Sept SIE more challenging. The inability of models to properly forecast September sea
55 ice conditions for anomalous years (with respect to the linear trend) motivated the Study of
56 Environmental Arctic Change (SEARCH) Sea Ice Outlook project with the objective of document-
57 ing and improving the skill of model forecasts using statistical, numerical and heuristic approaches.

58
59 The thinning of the sea ice has implications for sea ice thermodynamics (Massonnet et al. 2018)
60 and dynamics (Spreen et al. 2011; Tremblay et al. 2015; Kwok and Cunningham 2012), which in

turn impact the skill of seasonal predictions. For instance, Williams et al. (2016) suggest that sea ice thickness at the onset of the melt season is a skillful predictor of the Sept SIE starting in the early '90s after the large export of MYI associated with record positive Arctic Oscillation (AO) indices (Rigor and Wallace 2004; Smedsrød et al. 2017; Spreen et al. 2011; Tremblay et al. 2015; Kwok and Cunningham 2012). Furthermore, Williams et al. (2016) relate May ice thickness anomalies to late winter coastal divergence along the Eurasian coastline that leads to new ice growth that does not have time to reach sufficient thickness to survive the following summer melt (see also Nikolaeva and Sesterikov 1970). This signal is then amplified by the ice-albedo feedback. Through that winter dynamic preconditioning, Williams et al. (2016) find at the pan-Arctic scale that both winter coastal divergence along the Eurasian coastline, and Fram Strait ice area export anomalies – a proxy for coastal divergence anomalies – are both well correlated with the following Sept SIE anomalies (respectively $r = -0.58$ and $r = -0.72$). This link between ice thickness at the onset of the melt season and seasonal predictability was supported by idealized model experiments, in which ice presence in different ice thickness categories led to predictability at different (sub-)seasonal time scales (Chevallier and Salas-Mélia 2012; Msadek et al. 2014; Dirkson et al. 2017; Bushuk and Giannakis 2017; Bonan et al. 2019). Recently, Kim et al. (2021) showed that late-winter coastal divergence leads to seasonal predictability in the Laptev Sea, in line with earlier results from Nikolaeva and Sesterikov (1970); Krumpen et al. (2013); Brunette et al. (2019), as well as the Beaufort and Kara Seas. The fact that the predictability from late winter coastal divergence is similar to that from June reflected shortwave radiation (Zhan and Davies 2017) supports the proposed link between late winter coastal divergence and the thickness anomalies at the onset of the melt season. In the Chukchi and eastern East Siberian Sea, subseasonal predictability of June and July sea ice area was shown to be associated with ocean heat transport anomalies through Bering Strait, with a resurgence of predictability in the fall when ventilation of sub-surface ocean heat takes place (Lenetsky et al. 2021).

In this study, we assess whether GCMs can reproduce the observed predictability of the Sept SIE from Fram Strait ice area export (FSIAE), a proxy for coastal divergence along the Eurasian coastline, in five global climate models: CESM2-LE, NASA GISS-E2.1-G, GFDL FLOR-LE, CNRM-CM6-1, and CanESM5. This link between ice export and ice formation in the ice

factory of the Arctic is an important coupled mode of variability between the atmosphere and the sea ice that is also at play on longer timescales; for instance in the transition to an ice-free Arctic. Failure to capture (or success in capturing) this coupling can highlight the weakness (or strength) in GCMs and guide future model development. We find periods with a significant negative correlation between the Fram Strait ice area export and Sept SIE anomalies in the five models studied as seen in observations, but also periods with a significant positive correlation for a thicker and thinner mean Arctic sea ice thickness state compared with the late 20th century.

98

99 The paper is structured as follows. The GCMs used in this study are described in section 2.
100 The methods, results, and discussion are presented in section 3 and 4 respectively. The main
101 conclusions are summarized in section 5.

102 **2. Model Large Ensembles**

103 *a. CESM2 Large Ensemble (LENS2)*

104 The Community Earth System Model Version 2 Large Ensemble (CESM2-LE) is a 100-member
105 ensemble with a nominal spatial resolution of 1° covering the period 1850 to 2100. The
106 atmospheric component of the model is the Community Atmosphere Model version 6 (CAM6)
107 with a resolution of 1.25° in longitude, 0.9° in latitude, and 32 vertical levels. The Ocean and
108 Ice components are the Parallel Ocean Program Version 2 (POP2) and the CICE Version 5.1.2
109 (CICE5) with a nominal 1° resolution. CICE5 uses the EVP rheology with an elliptical yield curve
110 (ellipse aspect ratio $e = 2$, Hunke 2001), a normal flow rule and an ice thickness distribution with
111 five categories (category limits of 0.0, 0.64, 1.39, 2.47 and 4.57 m, see Table 1). The grid is an
112 Arakawa B-grid with a rotated pole located over Greenland to avoid the singularity over the North
113 Pole (Fig. 1a). The model is run with CMIP6 historical forcing before 2014 and with CMIP6
114 SSP370 forcing scenarios after 2014 except for the aerosol forcing associated with biomass burning
115 that was smoothed using an 11-year running mean filter in 50 of the 100 ensemble members during
116 the 1990-2020 period. The smoothing of biomass burning has a distinct impact on the Arctic sea
117 ice in the 1990-2020 interval with a slower decline of the September sea ice and cooler tropical
118 Pacific (Rodgers et al. 2021; DeRepentigny et al. 2022). Following CESM1-LE, 20 ensemble
119 members are initialized with micro-perturbations in atmospheric temperatures imposed for each

120 start year 1231, 1251, 1281, and 1301 of a pre-industrial simulation for a total of 80 ensemble
121 members. The remaining 20 ensemble members are initialized using macro-perturbations, i.e.,
122 different initial conditions from independent restart files with a 10-year interval in start years
123 ranging between 1001-1191 (Rodgers et al. 2021).

124

125 *b. NASA GISS-E2.1-G*

126 The NASA Goddard Institute for Space Studies ModelE Version 2.1-G (GISS-E2.1-G) is a 10-
127 member ensemble with a nominal resolution of 2° in latitude and 2.5° in longitude covering the
128 period 1850 to 2100. The atmospheric component of the model is the GISS-E2.1 and uses the
129 non-interactive physics version 1 (NINT) with specified ozone and aerosol concentrations where
130 the aerosol indirect effect is parameterized (Kelley et al. 2020; Miller et al. 2021). The ocean
131 component of the model is the GISS Ocean V1 (GO1). The sea ice model uses the standard
132 viscous plastic rheology with an elliptical yield curve ($e = 2$), a normal flow rule, a single ice-
133 thickness category model (ice or open water), and a capping to prevent unrealistic ice build-up north
134 of the Canadian Arctic Archipelago (CAA) (see Table 1) (Hibler 1979). The sea ice component
135 uses the same grid as the atmosphere, i.e., an Arakawa B-grid on a standard spherical grid centered
136 over the North and South Poles (Fig. 1b). The model is run with CMIP6 historical forcing before
137 2014 and CMIP6 SSP370 forcing scenarios after 2014. The ensemble members are initialized
138 from a 451-year pre-industrial control run at 20-year intervals starting from the year 1 (Miller et al.
139 2021).

140 *c. GFDL FLOR-LE*

141 The Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Large
142 Ensemble (FLOR-LE) is a 30-member ensemble covering the period 1921-2100. The atmospheric
143 component is the same as Coupled Model Version 2.5 (CM2.5) and has a nominal horizontal
144 resolution of 0.5° . The ocean and sea ice components are the Modular Ocean Model Version 5
145 (MOM5) and the Sea Ice Simulator Version 1 (SIS1) from the Coupled Model Version 2.1 (CM2.1)
146 with a nominal 1° spatial resolution. The sea ice model uses the EVP rheology with an elliptical
147 yield curve ($e = 2$), a normal flow rule, and an ice thickness distribution with five categories (0.0,

148 0.1, 0.3, 0.7, and 1.1 m) but without redistribution between categories during ridging (See Table 1,
149 Bushuk et al. 2021). The sea ice and ocean components use an Arakawa-B grid on a tri-polar grid
150 with two poles located over Russia and the Canadian Arctic Archipelago (Fig. 1c). The model
151 is run with CMIP5 historical forcing before 2005 and CMIP5 RCP8.5 radiative forcing scenarios
152 after 2005. The ensemble members are initialized from a 1,160-year preindustrial control run at
153 10-year intervals from the simulation years 821–1,111 to ensure different phases of internal climate
154 variability (Bushuk et al. 2020).

155 *d. CNRM-CM6-1*

156 The Centre National de Recherches Météorologiques Climate Model Version 6 (CNRM-CM6-
157 1) jointly developed with the Centre Européen de Recherche et de Formation Avancée en Calcul
158 Scientifique (CERFACS) is a 30-member ensemble with a nominal spatial resolution of 1° covering
159 the period 1850 to 2100. Of the 30 ensemble members, 6 cover the full 1850 to 2100 time period
160 and 24 ensemble members stop in 2039. The atmosphere component of the model is the ARPEGE-
161 Climat Version 6.3 with a Gaussian grid and a nominal resolution of 1.4° at the Equator and 91
162 vertical levels. The ocean component of the model is the Nucleus for European Models of the
163 Ocean (NEMO) Version 3.6 with a nominal 1° resolution. The sea ice component is Gelato 6
164 with the same horizontal grid as NEMO and uses the EVP model with an elliptical yield curve
165 ($e = 2$), a normal flow rule and an ice thickness distribution with five categories (0.0, 0.3, 0.7,
166 1.2 and 2 m, Bouillon et al. 2009, See Table 1). The grid consists of an Arakawa-C grid on a
167 tripolar grid (eOrca1 horizontal grid) with two quasi-isotropic bipolar grids south of 67° rather
168 than the Mercator grid (Fig. 1d). The model is run with CMIP6 historical forcing before 2014 and
169 CMIP6 SSP370 after 2014. The ensemble members are initialized from a 1000-year pre-industrial
170 control simulation with different starting years in different phases of dominant modes of internal
171 variability and with particular attention to the Atlantic multidecadal variability and the Pacific
172 decadal variability (Volodire et al. 2019).

173 *e. CanESM5*

174 The Canadian Earth System Model version 5 (CanESM5) developed by the Canadian Centre for
175 Climate Modelling and Analysis (CCCma) is a 40-member ensemble covering the period 1850 to

Model	P_*	Rheology	Ellipse Ratio	ITD category	Other
CESM2-LE	27.5 kN/m ²	EVP	2	5 (0.0, 0.64, 1.39, 2.47 and 4.57 m)	-
GISS ModelE-G V2.1	27.5 kN/m ²	VP	2	1 (ice, no ice)	Capping of ice thickness to prevent building up along coastlines
GFDL FLOR-LE	27.5 kN/m ²	EVP	2	5 (0.0, 0.1, 0.3, 0.7 and 1.1 m)	No ridging parameterization and no prognostic melt ponds
CNRM-CM6-1	27.5 kN/m ²	EVP	2	5 (0.0, 0.30, 0.7, 1.2 and 2 m)	-
CanESM5	10 kN/m ²	EVP	2	1 (ice, no ice)	-

TABLE 1. Relevant sea ice parameters for the models studied

176 2100. Of the 40 ensemble members, 25 cover the full 1850 to 2100 time period and 15 ensemble
 177 members stop in 2014. The atmosphere component of the model is the Canadian Atmosphere Model
 178 Version 5 (CanAM5) with a spectral resolution of $\sim 2.8^\circ$. The ocean component is a customized
 179 version of NEMO Version 3.4.1 (CanNEMO) where the ocean biochemistry is represented by the
 180 Canadian Model of Ocean Carbon (CMOC) and has a nominal resolution of 1° and the sea ice
 181 component is LIM2. LIM2 uses the EVP model with an elliptical yield curve ($e = 2$), a normal
 182 flow rule, and a single ice thickness category (ice or open water, see Table. 1). The grid consists
 183 of an Arakawa-C grid on a tripolar grid (eORCA1 horizontal grid, Fig. 1e). The model is run
 184 with CMIP6 historical forcing before 2014 and SSP370 forcing scenario after 2014. The ensemble
 185 members are initialized from a 2000-year pre-industrial control simulation with different starting
 186 years chosen at a 50-year interval (Swart et al. 2019).

187 **3. Methods**

188 *a. Sea Ice Extent*

189 The Arctic sea ice extent is defined as the total area of all grid cells with sea ice concentration
 190 (SIC) greater than 15% in the Northern Hemisphere.

191 *b. Fram Strait Ice Area Export*

192 The Fram Strait Ice Area Export (FSIAE) is used in this study as a proxy for coastal divergence
 193 along the Eurasian coastline as their anomalies are significantly correlated in observations ($r =$

194 0.79, Williams et al. 2016). The definition used in this study for the total winter sea ice area export
195 through Fram Strait (FSIAE) is:

$$\text{FSIAE} = \sum_{k=1}^N V_{ice}(k) \cdot SIC(k) \cdot dL(k), \quad (1)$$

196 where N is the total number of grid cells across the Fram Strait, V_{ice} and dL are the meridional
197 sea ice velocity and the length of the grid cell along the transect, SIC is the sea ice concentration
198 and k is a running index (lat or lon) along the Strait (See Fig. 1). The FSIAE is computed for
199 each winter month and summed from November to June. The location of the Fram Strait between
200 models varies by at most 0.675° meridionally (~ 75 km). The results presented below are robust to
201 the exact location of the Strait.

202 *c. Mean Sea Ice Thickness*

203 The May area-averaged sea ice thickness (see in Fig. 4b) is calculated from all grid cells north of
204 85° and with $SIC \geq 15\%$. The 85°N threshold is chosen as a representative Arctic mean excluding
205 coastal regions.

206 *d. Seasonal predictability and modes*

207 We assess the seasonal predictability of the Sept SIE from the winter Fram Strait ice area
208 export using a 20-year moving window correlation between anomalies with respect to their 5-year
209 running mean (Fig. 5). Extending the window over which the anomalies are computed, or using the
210 ensemble model mean as a reference for the anomalies, led to similar time series of the correlation,
211 with only a slight vertical translation difference. The choice of 5 years for the window length
212 used to compute the anomalies was made to study the interannual variability. We consider all
213 periods that are correlated (statistically significant at the 95% level) for at least 10 years – with
214 occasional excursions below the 95% significance level for a few years allowed, not more than
215 approximately a third/fourth of the period’s total length, to increase the sample size. All periods
216 that are significantly correlated and with the same sign correlation are grouped together for each
217 model and referred to in the following as positive and negative modes.

218 *e. Difference maps*

219 We use difference maps of the linearly detrended – over each identified period of significant
220 correlation – May sea ice thickness composites between years with positive and negative anomalies
221 in the linearly detrended FSIAE (1 σ away from the mean) in order to understand the link between
222 the winter FSIAE and the following Sept SIE in transient simulations from different models with
223 different mean climate. For each model, a composite is produced by taking the average over all the
224 periods within a given mode (positive or negative, Fig. 7). The same procedure is repeated for the
225 linearly detrended September SIC difference maps (Fig. 8).

226 **4. Results and Discussion**

227 *a. Seasonality and projected change in SIE and SIT*

228 All models simulate a SIE seasonal cycle, FSIAE, and sea ice thickness field that are in general
229 agreement with observations (see Figs. 2-3). Notable biases in the mean state include a larger
230 sea ice extent by 3-5 million km² in the GISS-E2.1-G model. A positive bias in winter FSIAE
231 is found in all models, except CNRM-CM6-1. This is due, in part, to a too-broad Fram Strait
232 (CESM2-LE) and faster meridional sea ice velocity (GISS-E2.1-G, FLOR-LE, and CanESM5,
233 results not shown). Spatially, the sea ice thickness is in general agreement with the Pan-Arctic Ice
234 Ocean Modeling and Assimilation System (PIOMAS) (Zhang and Rothrock 2003) with proper
235 sea ice thickness gradient between the CAA and the Eurasian coastline and similar thickness
236 levels, except for CNRM-CM6-1 that is considerably thinner (Fig. 3). It is worthy to mention
237 that PIOMAS overestimates thin sea ice and underestimate thick sea ice (Schweiger et al. 2011),
238 suggesting that all models show a generally too thin sea ice pack, except for CanESM5.

239
240 During the observational record, the Sept SIE is mostly within the envelope of internal variability
241 for all models except the GISS-E2.1-G model (Fig. 4). CESM2-LE and CanESM5 reach a
242 seasonally ice-free state – Sept SIE < 1 million km² for 5 consecutive years (as defined by the
243 Intergovernmental Panel on Climate Change ice-free criteria) in the first half of the 21st century.
244 The FLOR-LE and CNRM show a linear decline with a seasonally ice-free Arctic in the second
245 half of the 21st century. The GISS-E2.1-G model does not reach a seasonally ice-free state before
246 2100, likely due to a positive bias in sea ice thickness and SIE in the 20th century. Of particular

Models		Mean length (years)	Frequency (%)	Total Frequency (%)
CESM2-LE	Negative	21.20	13.4	14.7
	Positive	15.74	1.3	
GISS-E2.1-G	Negative	30.51	16.1	22.7
	Positive	16.67	6.6	
FLOR-LE	Negative	29.87	39.6	39.6
CNRM-CM6-1	Negative	25.93	36.7	36.7
CanESM5	Negative	21.38	9.3	10.6
	Positive	16.67	1.3	

251 TABLE 2. Frequency of occurrence of periods with positive and negative correlation between winter FSIAE
 252 and Sept SIE anomalies.

253 interest is the absence of correlation between the projected decline in May SIT (and Sept SIE) and
 254 the mean 20th century May sea ice thickness. For instance, CanESM5 has the fastest decline in its
 255 May SIT (and Sept SIE) despite having the thickest (and the second most extensive sea ice cover)
 256 in its 20th century simulations.

253 *b. Seasonal predictability of the Sept SIE from Winter FSIAE*

254 From a total of 42,546 years of model simulations, the FSIAE is negatively – in line with
 255 recent decades (Williams et al. 2016) –, positively and not correlated with the Sept SIE for 7915,
 256 549, and 34082 years, respectively. Counter-intuitively, we see periods of positive correlation
 257 between winter FSIAE and Sept SIE anomalies where larger winter FSIAE leads to larger
 258 Sept SIE the following September (discussion below, Fig. 5a-b-e). However, note that the
 259 corresponding frequency of occurrence – the amount of years correlated divided by the total
 260 amount of years of simulation – for negative correlations is 19% and positive correlations is 1%.
 261 The models' individual frequency of occurrence range from around 11%-15% for models with an
 262 early seasonally ice-free Arctic (CESM2-LE and CanESM5) to 37%-40% for models reaching a
 263 later ice-free Arctic (GFDL FLOR-LE, CNRM-CM6-1), suggesting a coupling between sea ice
 264 conditions and seasonal predictability skills of the winter FSIAE (see Table 2). Across all models,
 265 the negative mode occurs much more frequently than the positive mode and are generally longer
 266 (see Table 2).

267

268 The positive mode is observed when the sea ice cover is thickest (early 20th century) or thinnest
269 (late 21st century), while the negative mode is mostly present for a mean sea ice thickness state that
270 lies in between those extremes; one exception is the negative mode in the CanESM5 20th century
271 simulations with a thick mean sea ice state (Fig. 6e). The positive and negative modes occur at
272 different times depending on the model due to different mean sea ice thickness states. In thickness
273 space (see Fig. 6), models mostly align, with positive modes present for ice thickness greater than
274 2.5 meters and thinner than 1.5 meters and negative modes for ice thickness ranging in between.
275 Across all models, the negative mode occurs much more frequently than the positive mode.

276 1) NEGATIVE MODE

277 Negative modes are present in all models and are associated with negative anomalies in the May
278 sea ice thickness along the Eurasian coastline (the Arctic ice factory) when positive anomalies
279 in the winter FSIAE are present (Fig. 7a-c-e-f-g). The negative anomalies in the May thickness
280 in turn lead to negative anomalies in the September SIC in the same region, in line with the late
281 winter coastal divergence mechanism proposed by Nikolaeva and Sesterikov (1970); Krumpen
282 et al. (2013); Williams et al. (2016); Brunette et al. (2019) (Fig. 8a-c-e-f-g). Positive anomalies in
283 winter FSIAE are also associated with positive anomalies in the May thickness north of the CAA
284 due to ridging and convergence, and in the Greenland Sea due to larger export of thick sea ice
285 through Fram Strait (Fig. 7a-c-e-f-g). For a mean climate with sea ice thickness in the medium
286 range (1.5–2.5 m; see Fig. 6), the thickness anomalies in the Greenland Sea persist the following
287 September, resulting in positive September SIC anomalies in this region. In terms of pan-Arctic
288 SIE, these anomalies are relatively negligible compared to the reduced Sept SIE along the Eurasian
289 coastline (Fig. 8a-c-e-f-g). Note that in the negative mode of the GISS-E2.1-G, ice appears to be
290 restricted as it moves towards the Fram Strait (see positive/negative anomalies in SIC north/south
291 of the strait, Fig. 8c). This pattern is consistent with the positive anomaly in sea ice thickness in
292 the GISS model, which somewhat reduces the coupling between FSIAE and coastal divergence in
293 the ice factory of the Arctic.

294 2) POSITIVE MODE

295 The positive modes occur either early in the record in models that have a positive bias in sea
296 ice thickness (GISS-E2.1-G and the CanESM5) or late in the record in models with an early

297 transition to a seasonally ice-free Arctic (CESM2-LE and CanESM5, Fig. 4 and 6). There is
298 no documented positive correlation between FSIAE, or coastal divergence, with the following
299 Sept SIE in observations. Early in the modern observational record (80's and 90's), anomalous
300 sea ice conditions in the Greenland and Beaufort seas and have been reported to be negatively
301 correlated with sea ice extent in the Baffin Bay; an east-west seesaw associated with the North
302 Atlantic Oscillation (Wang et al. 1994; Mysak et al. 1996; Deser et al. 2000). In the same period,
303 a large tongue of sea ice extending northeastward in the Greenland Sea (the so-called Odden) was
304 associated with the negative phase of the NAO and larger export of freshwater through the Fram
305 Strait (e.g., late seventies Great Salinity Anomaly, see Rogers and Hung 2008), highlighting a link
306 between the sea ice state and large-scale atmospheric circulation before the current transition to a
307 seasonally ice-free Arctic.

308

309 Early in the record positive anomalies in winter FSIAE in CanESM5 and GISS-E2.1-G leads to
310 positive anomalies in the May sea ice thickness in the Beaufort, Chukchi, and Lincoln seas (Fig.
311 7d,h). In the GISS-E2.1-G model, large winter FSIAE are associated with more recirculation of
312 thick ice in the Beaufort Gyre and also more coastal divergence along the Eurasian coastline (Fig.
313 7d). This recirculation of thicker sea ice in the Beaufort Sea leads to positive SIE anomalies the
314 following summer (Fig. 8d). Larger winter FSIAE also leads to larger export of sea ice through
315 the Fram Strait into the Greenland Sea (Fig. 7d) and positive anomalies in the September sea ice
316 concentration in the Greenland and Barents seas (Fig. 8d). Note that the May sea ice thickness
317 anomalies along the Eurasian coastline result in near-zero anomalies in the September SIC in the
318 GISS model because the mean thickness is larger than a typical summer melt rendering the winter
319 FSIAE – Sept SIE coupling ineffective. By contrast, the negative mode predominates later in the
320 simulation when the sea ice cover is thinner and the northern North Atlantic warms, ice exported
321 through Fram Strait melts in the Greenland Sea and the reduced sea ice extent along the Eurasian
322 coastline dominates (Fig. 8c). In a similar manner, positive anomalies in the winter FSIAE in
323 CanESM5 are associated with positive anomalies in the May sea ice thickness in the Greenland
324 and the Barents Seas and an increased September SIC in the same regions (Fig. 7h-8h). Again, the
325 SIC anomaly signal in the same regions dominates the negative anomaly signal along the Eurasian

326 coastline.

327

328 Later in the record, when the Arctic approaches a seasonal ice-free cover, periods of positive
329 mode are present both in the CESM2-LE and the CanESM5 models, the two first models that
330 reach a seasonal ice-free cover in the first half of the 21st century (Fig. 4a). In the CESM2-LE,
331 large winter FSIAE is associated with ridging north of the Canadian Arctic Archipelago leading
332 to thicker sea ice that is more likely to survive the following summer (Fig. 6a and 8b). In a
333 similar manner, periods are present in CanESM5 positive modes where positive anomalies in the
334 winter FSIAE in CanESM5 lead to positive anomalies in the May sea ice thickness particularly
335 north of Greenland, and a more extensive September SIC anomaly (Fig. 7i-8i). This is akin to the
336 observed convergence of sea ice (also present in the PIOMAS reanalysis) in recent years as the sea
337 ice thins, particularly north of the CAA and Greenland (Bitz et al. 2001; Kwok and Cunningham
338 2012; Zhang et al. 2012). This increased propensity for convergence is due to a thinner ice pack
339 that is more likely to ridge and deform (Thorndike et al. 1975).

340 *c. Discussion*

341 The behavior of the models is in general agreement with the observations considering
342 the length of the observational record and in the measure where we find several periods of
343 negative correlation occurring in all models (see Table 2, Williams et al. 2016). However,
344 the observed coefficient correlation ($r=-0.72$ Williams et al. 2016) is at the edge of what the
345 models simulate (see Fig. 9), suggesting either that the observed coupling between winter
346 FSIAE with the following Sept SIE is unusual in observation, or that the models are biased
347 in a way to reduce this coupling. In addition, the frequency of occurrence of the significantly
348 correlated periods is dependant on the models' sea ice conditions (see Table 2) and also
349 explained by the print of internal variability of the models on the correlation coefficient (see Fig. 9).

350

351 Other than the negative periods identified in the models, the results show a broader range of
352 behavior with FSIAE that can also be positively correlated with the Sept SIE both early and late
353 in the record when a thick and thin sea ice cover is present. Specifically, models with thicker
354 20th century sea ice cover (CanESM5 and GISS-E2.1-G) show occasional periods of positive

355 correlation between FSIAE and SIE. These positive correlations arise due to the persistence of
356 positive ice thickness anomalies in the Greenland Sea and Baffin Bay through the melting season,
357 leading to positive anomalies in late summer SIC in these regions. The models with an early
358 transition to a seasonally ice-free cover (CESM2-LE and CanESM5) show a positive correlation
359 between FSIAE and SIE, which is explained by increased ridging and convergence of sea ice north
360 of the CAA and Greenland which creates localized thickness anomalies in these regions that can
361 survive the summer melt season. Our findings show re-emergence or memory of the system to
362 anomalies in sea ice thickness that re-appears later as sea ice area anomalies, in the present case
363 from the late winter to the late summer, as opposed to from fall to later winter (or from summer to
364 summer) (Blanchard-Wrigglesworth et al. 2011a; Bushuk et al. 2017).

365

366 Past studies have shown the non-stationary aspect of the relationship between coastal divergence
367 and the following Sept SIE, and similarly between the AO and the FSIAE (Williams et al. 2016;
368 Smedsrud et al. 2017; Rigor and Wallace 2004; Jung and Hilmer 2001). Similarly here, we find
369 that the relationship between the winter FSIAE with the following Sept SIE, i.e., the seasonal
370 predictability skill of the winter FSIAE, is non-stationary, and depends on the sea ice regime,
371 influencing both the sign of the correlation and frequency of occurrence of the positive and
372 negative modes within each model (Fig. 6-9). An increase in frequency in the number of periods
373 (and their length) within the positive to the negative modes (see Fig. 6) indicates an increased
374 coupling between FSIAE and Sept SIE as the sea ice thins to moderate sea ice thickness within
375 all models (except for CanESM5) supporting the hypothesis that a thinner sea ice cover is more
376 mobile and hence more responsive to changes in atmospheric forcing (Fig. 6-9) (Rigor and
377 Wallace 2004).

378

379 When the sea ice thins further, models show a loss in predictability during the transition to
380 a seasonal ice cover (Fig. 9), in agreement with past studies that find a decrease in seasonal
381 predictability as the sea ice thins due to increased variability in the sea ice extent in a warming
382 climate (Goosse et al. 2009; Blanchard-Wrigglesworth et al. 2011b; Holland et al. 2011; Tietsche
383 et al. 2013; Cheng et al. 2016). A recent study shows that the seasonal predictability is the
384 outcome of two competing factors in CESM-LE, one that leads to increased skill as the sea ice

385 retreats from coastal regions where variability is large, and another that leads to decreased skill as
386 small errors in thickness leads to large errors in sea ice area melt and hence, on SIE forecast skill
387 (Holland et al. 2019). These two competing factors result in a sweet spot in the early 21st century,
388 with optimal seasonal predictability skill (Holland et al. 2019). Similarly, we find a peak in the
389 seasonal predictability in the thickness domain for each of the models at 2 meters in thickness for
390 all models except CanESM5 (Fig. 6-9b-d-f-h-i).

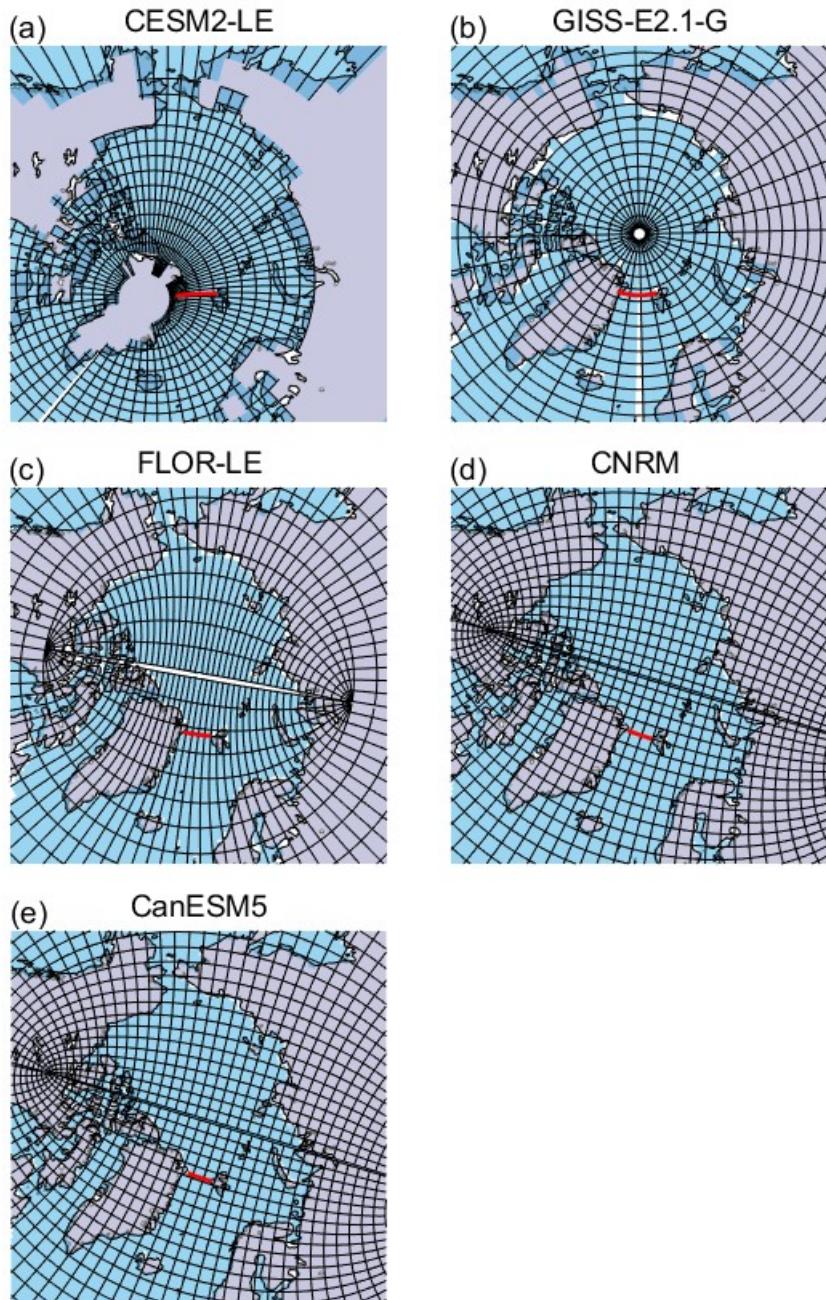
391

392 Furthermore, in contrast with past studies reporting non-stationarity in the relationship between
393 FSIAE and the AO or NAO (Smedsrød et al. 2017), we find a link between FSIAE anomalies and
394 SLP patterns for all sea ice regimes within the significantly correlated periods. Indeed, results
395 show that the winter SLP pattern associated with anomalously low linearly detrended FSIAE has
396 a broad Beaufort Gyre, and years of anomalously high linearly detrended FSIAE have a broader
397 Transpolar drift and a smaller and confined Beaufort Gyre in the western Arctic due to a deeper
398 Icelandic low in the Arctic Ocean (Fig. 10-11). These two patterns are typical of a negative and
399 positive AO mode respectively, highlighting the relationship between AO and winter FSIAE in the
400 GCMs found in observations (Rigor et al. 2002; Kwok 2004; Williams et al. 2016; DeRepentigny
401 et al. 2016). Regardless of the sign of the correlation within the significantly correlated periods,
402 the coupling between the AO with the winter FSIAE lead to similar outcomes of the winter FSIAE
403 on the following May sea ice thickness (see Fig. 7), suggesting similar winter preconditioning
404 of the sea ice throughout the modes of significant correlation, again highlighting rather the
405 impact of the sea ice thickness regime on the summer melt, and hence on the sign of the correlation.

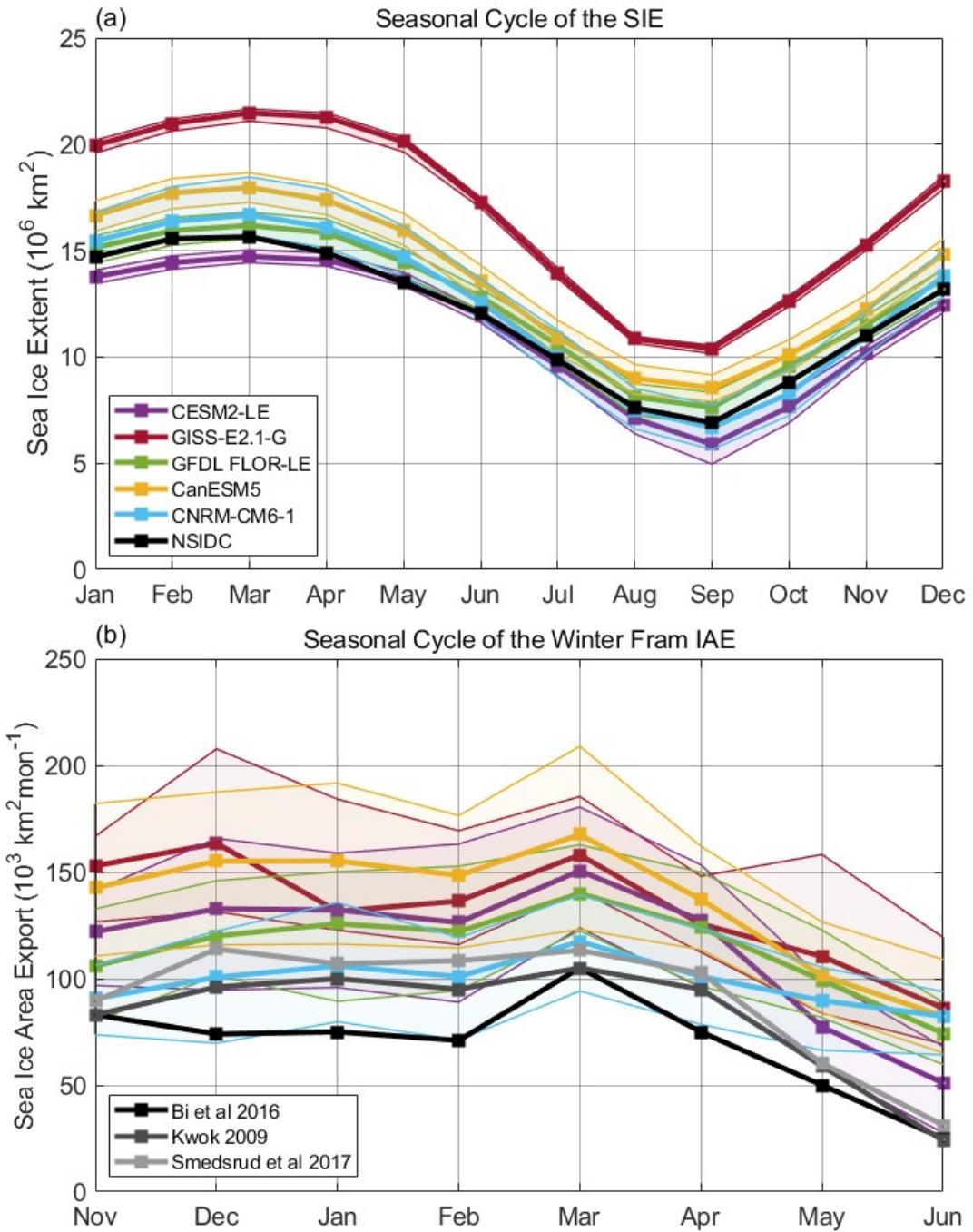
406

407 Finally, the two models (GFDL FLOR-LE and CNRM-CM6-1) with the largest number of sig-
408 nificantly correlated periods (with a frequency of occurrence respectively of 39.6% and 36.7%, see
409 Table 2) are models that are closest to observations (thickness and extent) during the observational
410 record and that reach a seasonal cover in the second half of the century only (Fig 4). In contrast, we
411 have that CESM2-LE and CanESM5 have the lowest frequency with 14.7% and 10.6% respectively
412 presumably due to an early transition to a seasonal ice cover in the first half of the 21st century,
413 as well as a positive bias in sea ice for CanESM5 early in the record. We argue that the temporal
414 changes in positive and negative modes distribution are due to thick or thin sea ice regime (see

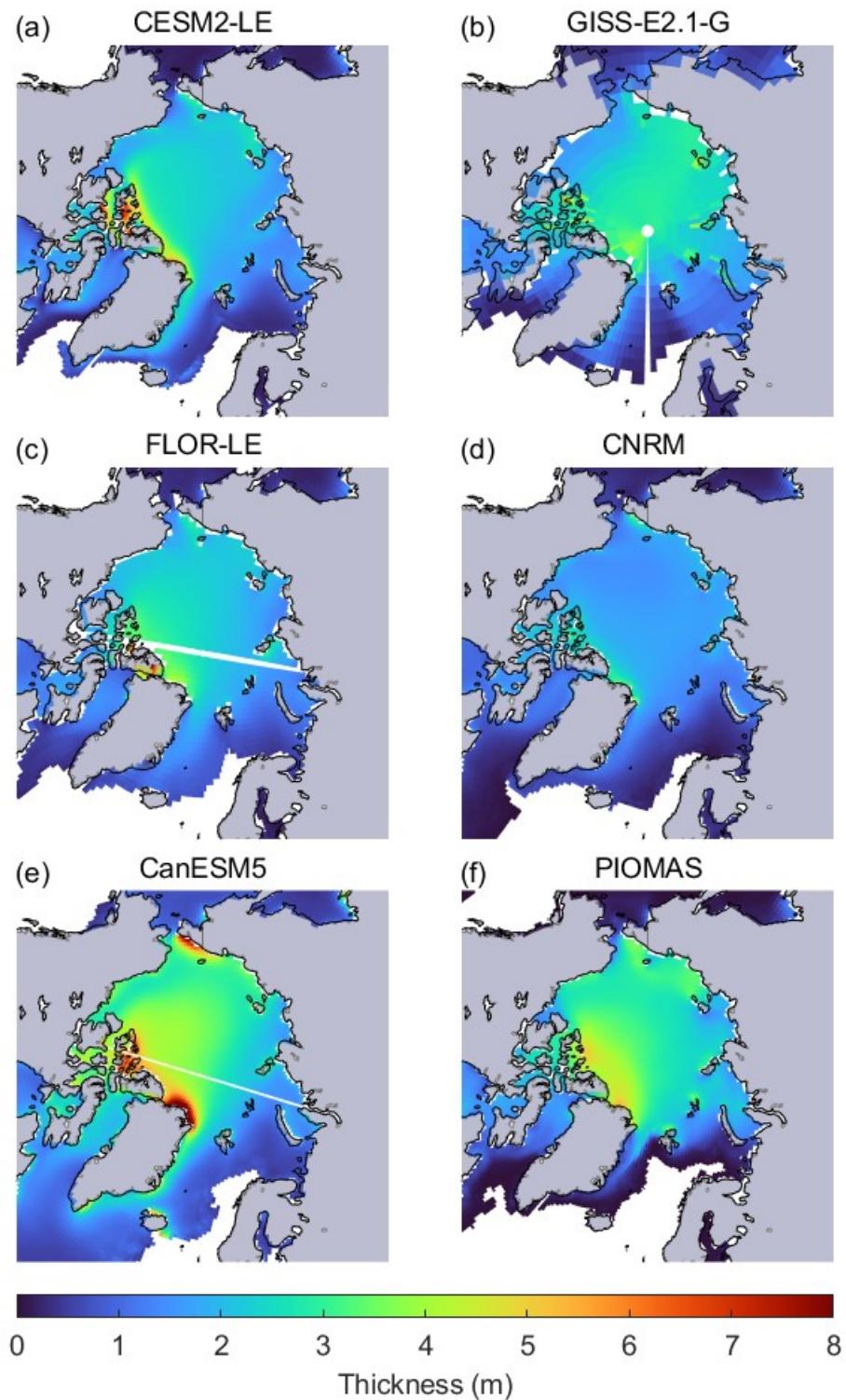
415 Fig. 6) and that the two models with greater frequency (CNRM-CM6-1 and FLOR-LE) are the two
416 models with mid-range thicknesses, corresponding to the peak in predictability (Fig. 6), reported
417 by (Holland et al. 2019).

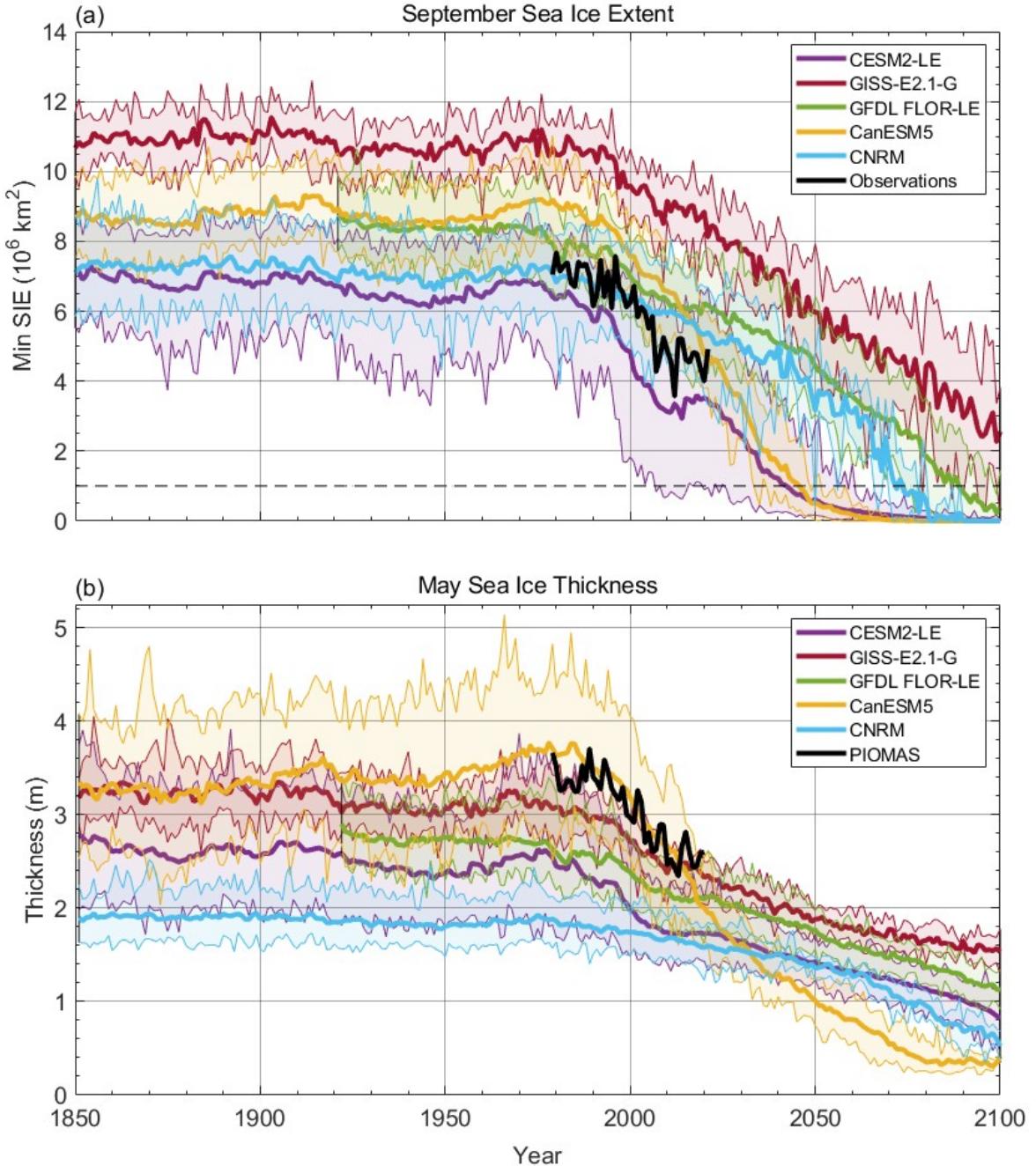

418 5. Conclusion

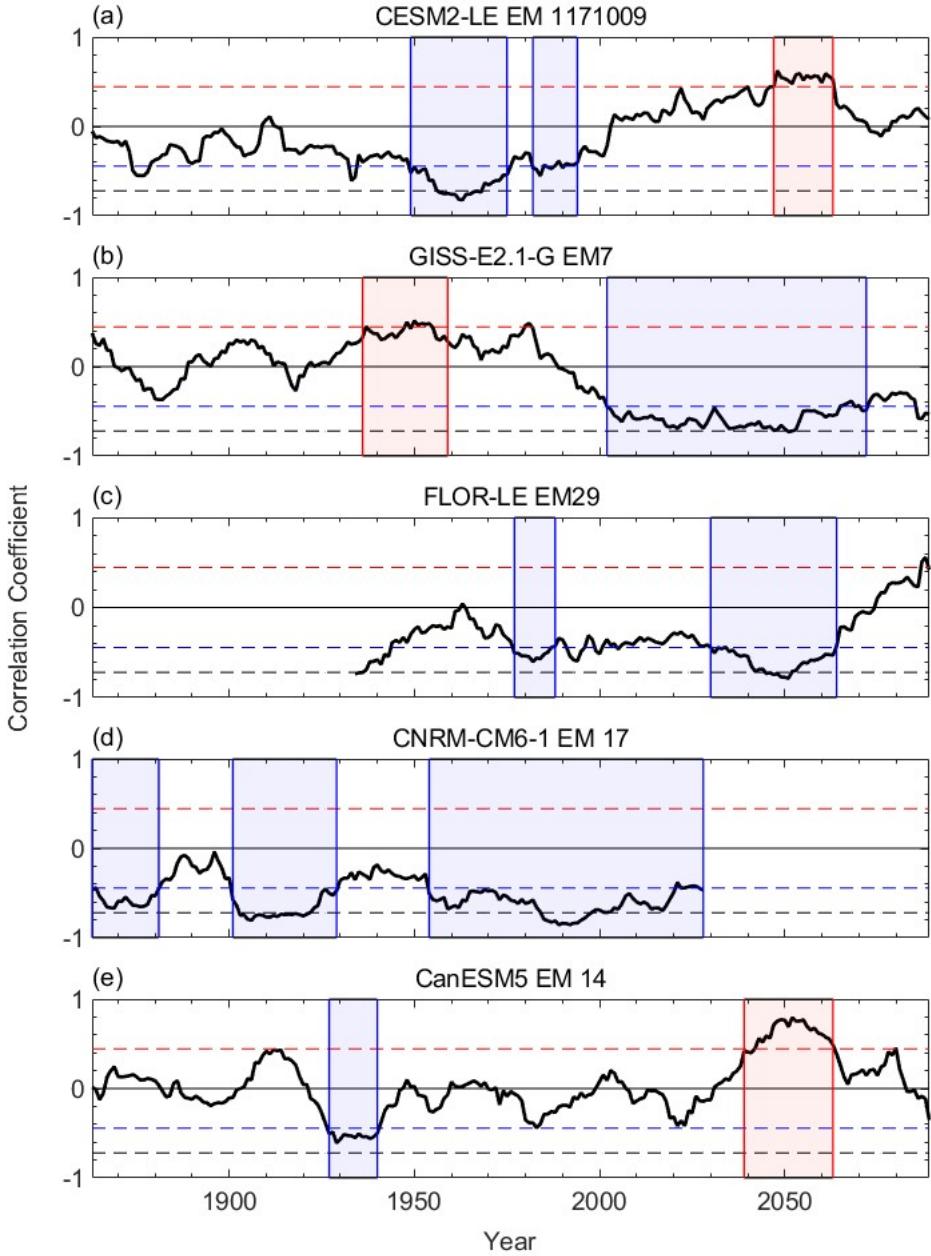
419 Late winter coastal divergence along the Eurasian coastline (referred to as the ice factory of the
420 Arctic) – or the Fram Strait ice export, a proxy for coastal divergence in the ice factory – is a skillful
421 predictor of the Sept SIE in observations (Williams et al. 2016). In this work, we use a 20-year
422 moving window correlation between the FSIAE and the following Sept SIE anomalies to assess
423 whether the observed seasonal predictability is also present in GCMs. To this end, we analyze
424 output diagnostics from 5 GCM large ensembles. Results show that all models studied have some
425 seasonal predictability skill of the Sept SIE from winter FSIAE with larger ice export resulting
426 in lower May SIT along the Eurasian coastline, and hence lower Sept SIE as per observations
427 (Nikolaeva and Sesterikov 1970; Krumpen et al. 2013; Williams et al. 2016; Brunette et al.
428 2019; Kim et al. 2021). Looking at GCMs over longer time scales and many ensemble members
429 highlights new behaviors in the coupling between FSIAE and Sept SIE, namely occasional periods
430 when larger FSIAE leads to larger Sept SIE. This coupling varies in time and appears as periods
431 of positive, negative, or absence of significant correlations. Within the 5 large ensembles, we find
432 7915, 549, and 34082 years with negative, positive, and non-correlated modes between FSIAE and
433 Sept SIE (see Table 2). Interestingly, the sign of the correlation changes through time depending
434 on the sea ice thickness regime in contrast with observations presumably due to limitations in
435 the length of the observational record and hence, of the sea ice thickness regime. Although, it
436 is important to mention that the correlation coefficient can vary substantially between ensemble
437 members with similar sea ice thickness regime due to the importance of internal variability (Fig. 9).

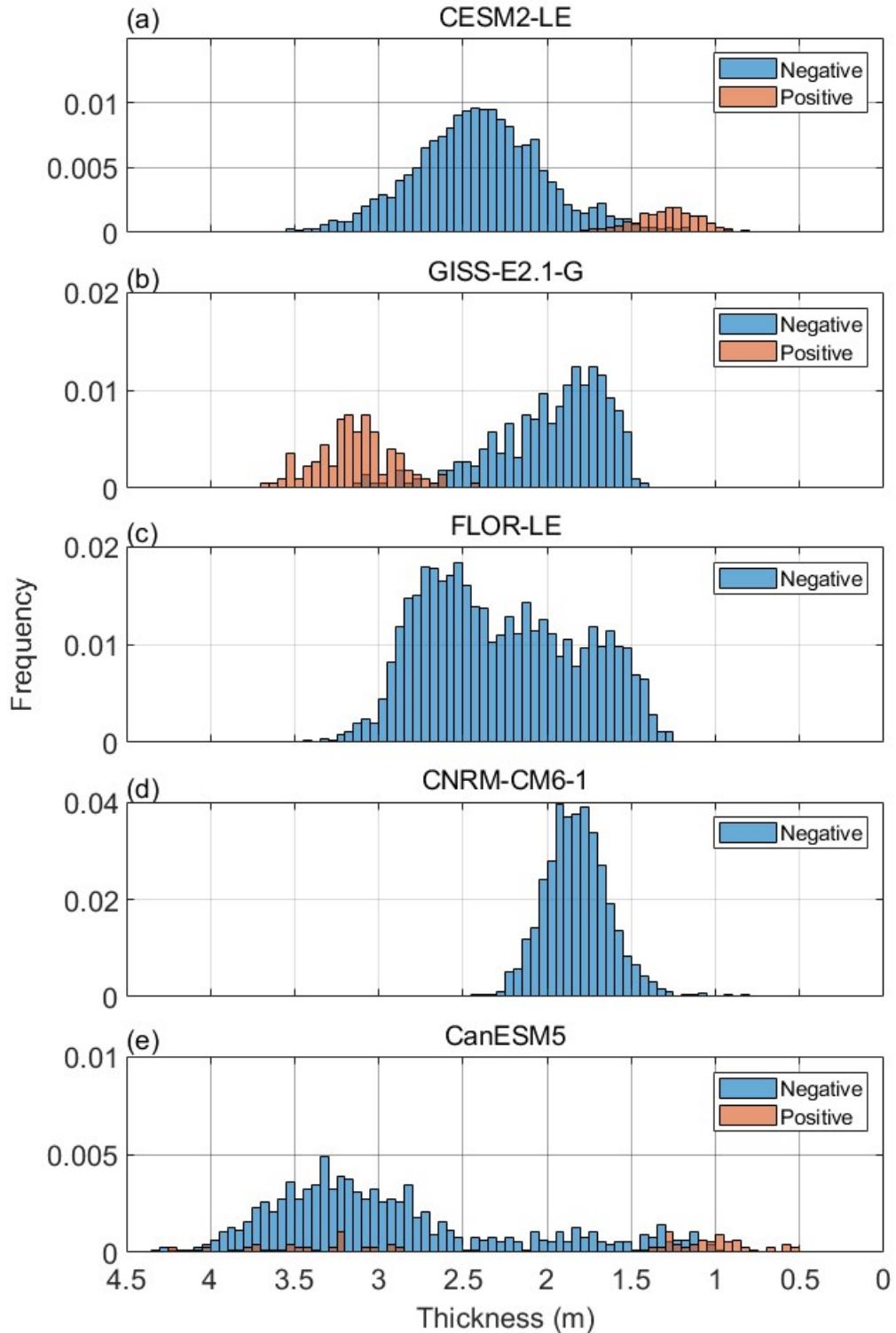

438
439 Results show that for mid-range ice thickness, as in recent decades, a statistically significant
440 negative correlation between the winter FSIAE with the following Sept SIE is linked with coastal
441 divergence and ice thickness anomalies along the Eurasian coastline as hypothesized in an earlier
442 study by Nikolaeva and Sesterikov (1970). On the other end, when sea ice is thicker, positive and
443 significant correlations are occasionally found and associated with the persistence of the sea ice

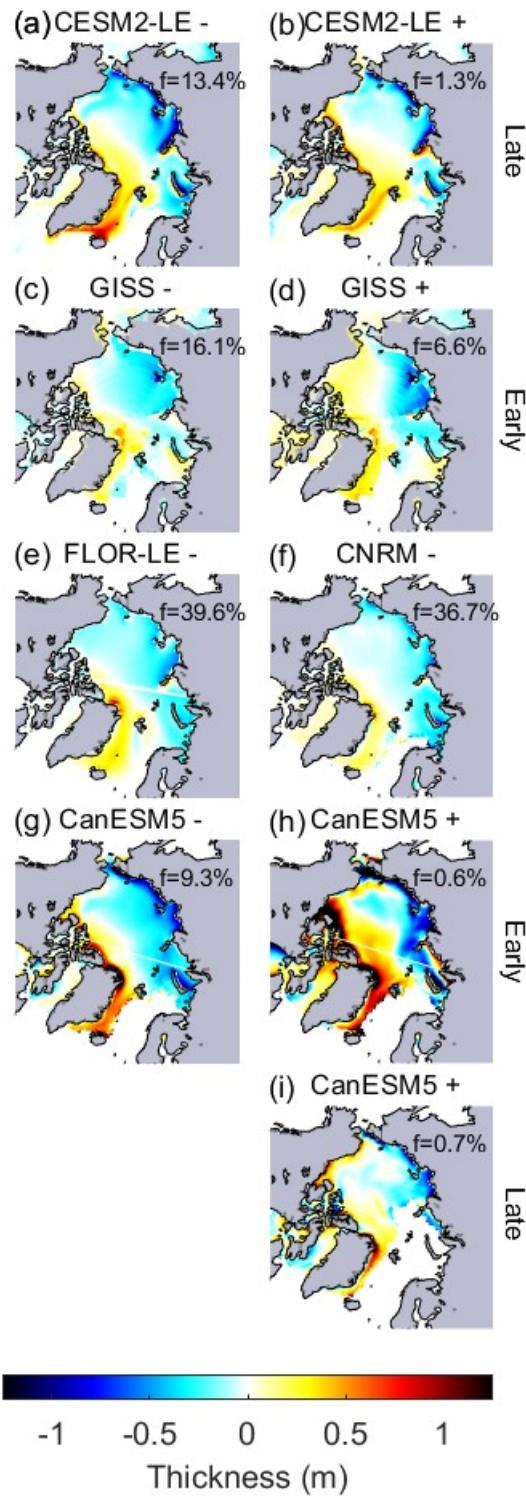
444 in the Greenland Sea or western Beaufort Gyre during the melt season when FSIAE is large and
445 more ice recirculates in the Beaufort Gyre. Near a seasonal ice-free cover, the positive correlation
446 between winter FSIAE and Sept SIE is associated with ridging north of CAA and in the Lincoln
447 Sea which leads to thicker sea ice that survives the melt season in CESM2-LE and CanESM5.
448 Finally, the GISS-E2.1-G suggests a restriction of sea ice by the Fram Strait in its negative mode
449 due to a thick sea ice bias in its mean climate (Fig. 8c and 4a). While the large-scale atmospheric
450 forcing and the winter preconditioning of the sea ice pack associated with the positive and negative
451 mode are nearly identical (Fig. 7), it is rather the response of the sea ice to that atmospheric
452 pattern that changes with time with different sea ice thickness regimes, i.e., thicker sea ice being
453 less mobile and responsive to atmospheric forcing, while thinner sea ice is more responsive. These
454 findings suggest that FSIAE will likely remain an important source of Sept SIE predictability over
455 the coming decades.

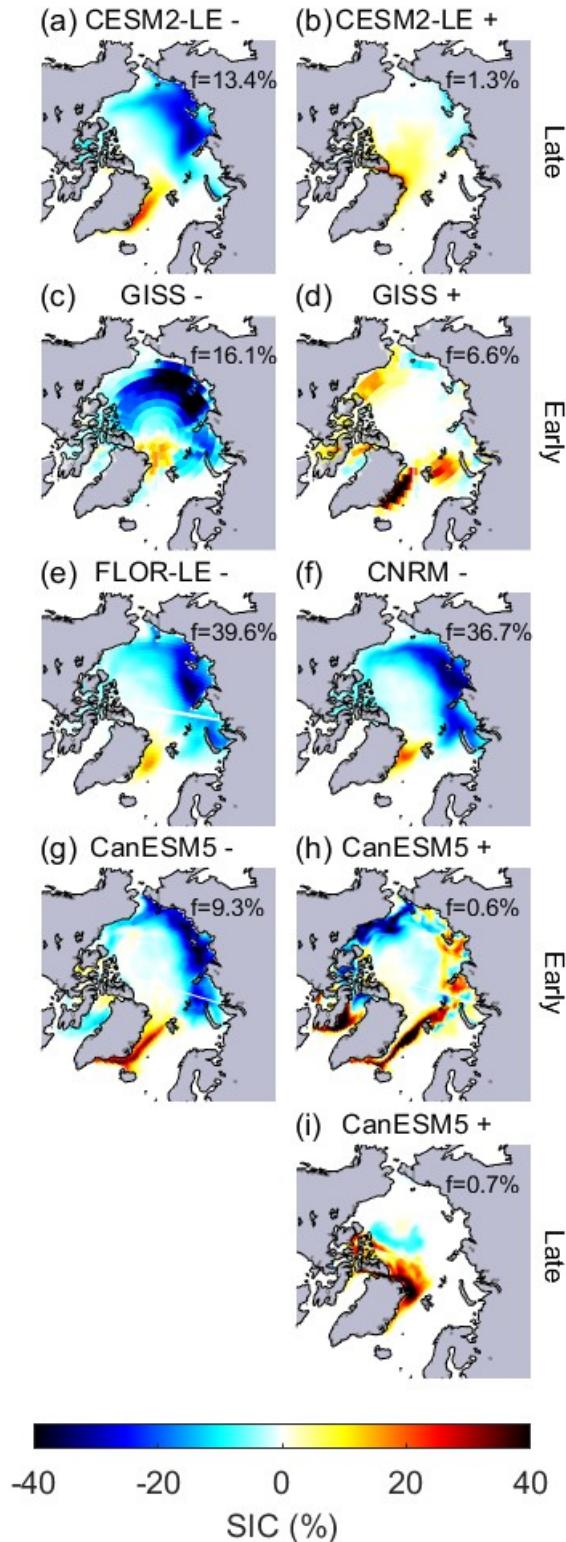

456

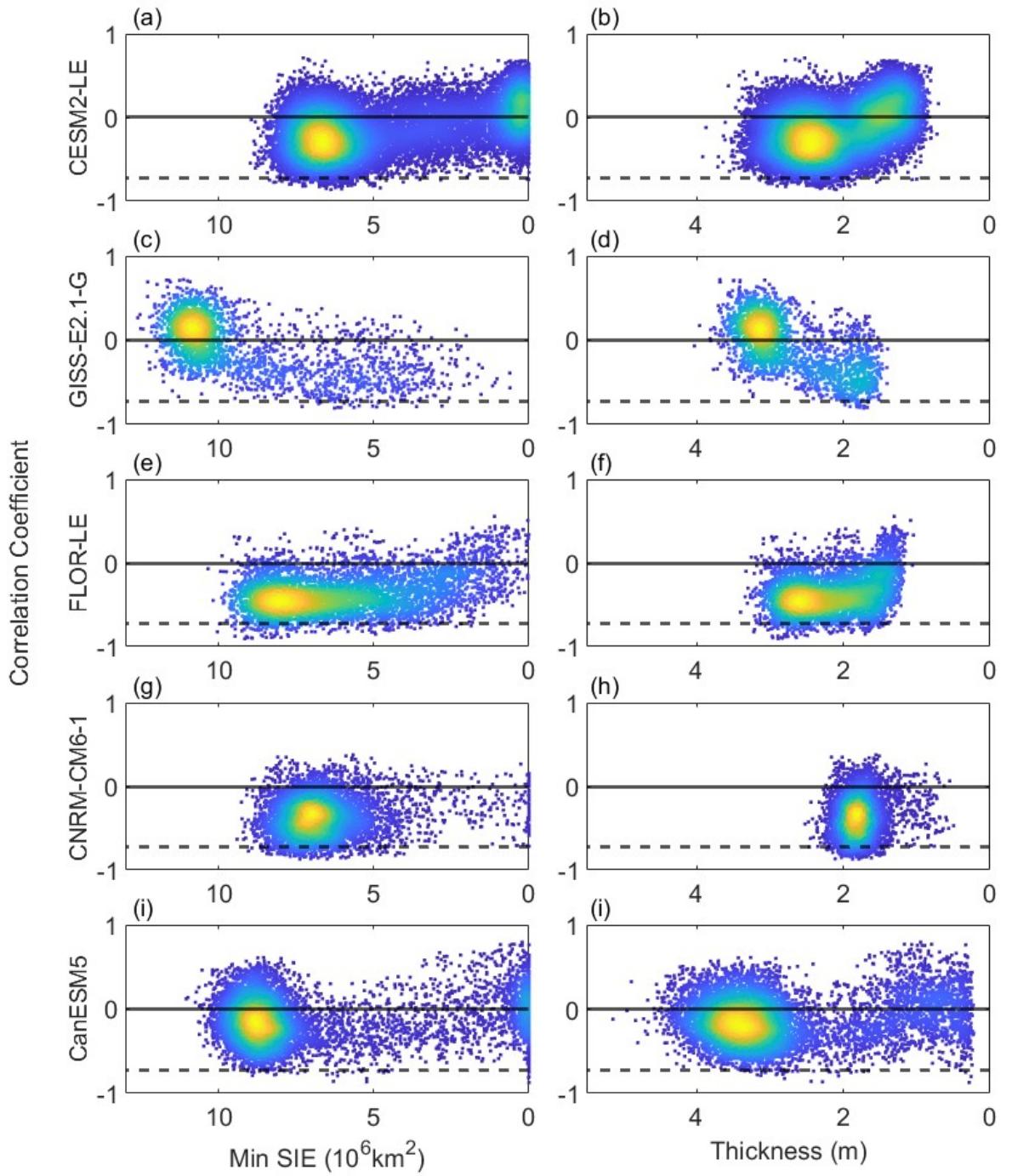

457 FIG. 1. Model domain, grid, and Fram Strait location (red) for (a) CESM2-LE, (b) GISS-E2.1-G, (c) FLOR-LE,
 458 (d) CNRM-CM6-1 and (e) CanESM5. Model grid lines are shown for every four lines of latitude and longitude,
 459 except for GISS-E2.1-G where each line of latitude is shown. The ocean mask is shown as blue shading.

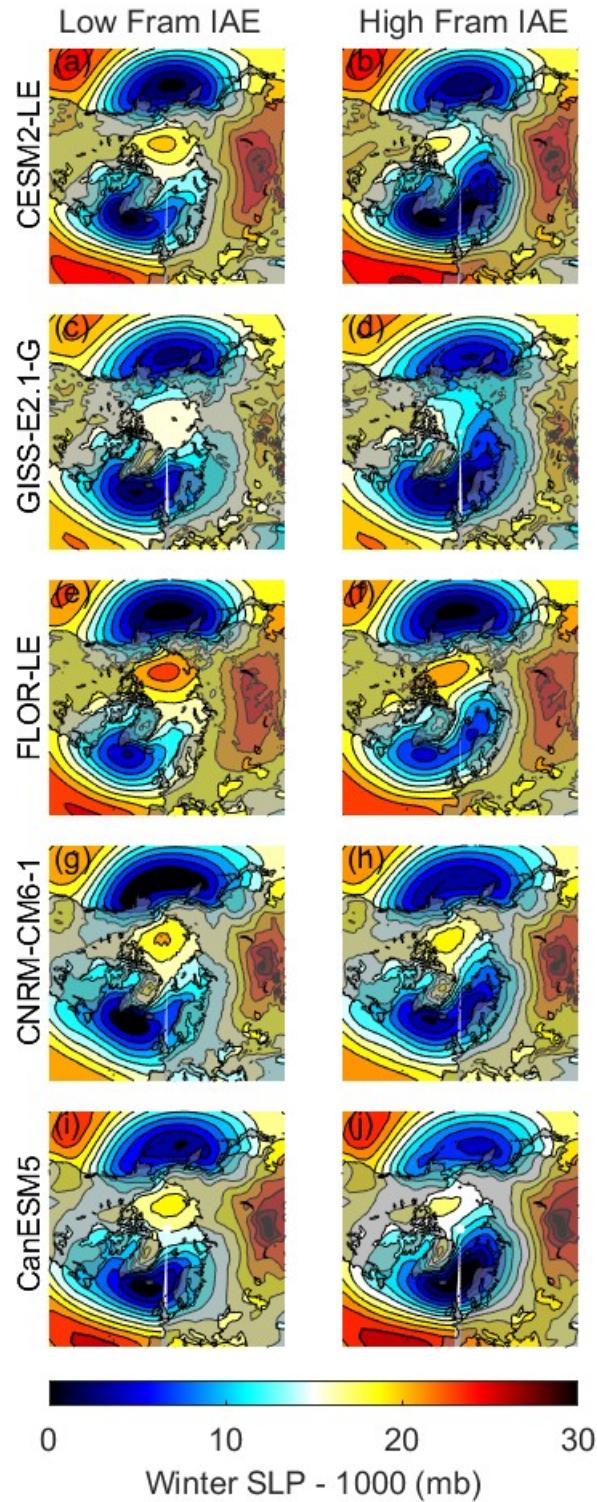

460 FIG. 2. (a) Ensemble Mean (thick lines) and range (shading) of the Sea Ice Extent seasonal cycle averaged over
 461 1980-2000 for GISS-E2.1-G (red), CESM2-LE (purple), GFDL FLOR-LE (green), CanESM5 (yellow), CNRM-
 462 CM6-1 (blue), and observations (black) from NSIDC averaged over 1980-2000 (b) Ensemble Mean Fram Strait
 463 Ice Area Export seasonal cycle averaged over the 1980-2010 for GISS-E2.1-G (red), CESM2-LE (purple), GFDL
 464 FLOR-LE (green), CanESM5 (yellow), CNRM-CM6-1 (blue), and estimates derived from observations (Bi et
 465 al., 2016, 2004-2010, black; Kwok, 2009, 1979-2000, dark grey; Smedsrud et al., 2017, 1935-2014, light grey).

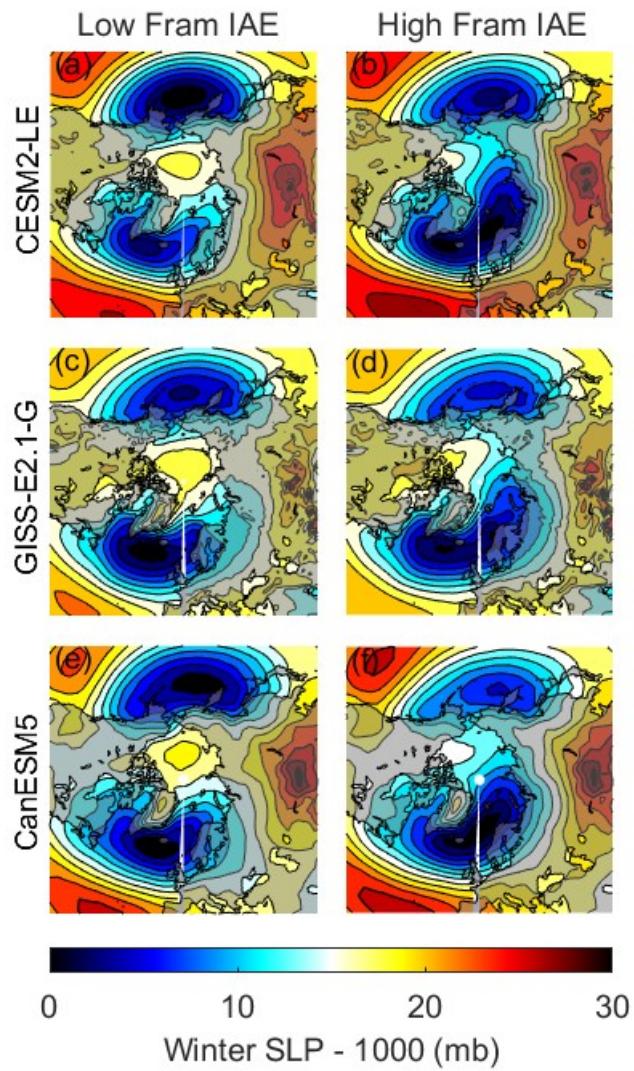

466 FIG. 3. Ensemble Mean spatial May Sea Ice Thickness within the sea ice pack (SIC>15%) averaged over 1980-
 467 2000 for (a) CESM2-LE, (b) GISS-E2.1-G, (c) FLOR-LE, (d) CNRM-CM6-1, (e) CanESM5 and (f) PIOMAS
 468 (Zhang and Rothrock 2003).


469 FIG. 4. (a) Ensemble Mean (thick lines) and range (shading) of the Sept SIE for CESM2-LE (purple), GISS-
 470 E2.1-G (red), GFDL FLOR-LE (green), CanESM5 (yellow), CNRM-CM6-1 (blue) and observed Sept SIE from
 471 passive microwave (NSIDC & NASA, black). The dashed grey line indicates an ice-free Arctic (1 million km^2)
 472 as defined by the Intergovernmental Panel on Climate Change ice-free criteria. (b) Ensemble Mean May Sea
 473 Ice Thickness north of 85N (SIC>15%) for CESM2-LE (purple), GISS-E2.1-G (red), GFDL FLOR-LE (green),
 474 CanESM5 (yellow), CNRM-CM6-1 (blue) and PIOMAS (black).


475 FIG. 5. 20-year sliding window correlation between the Nov-Jun Fram Strait Ice Area Export and the following
 476 September Sea Ice Extent anomalies typical for one ensemble member of the (a) CESM2-LE EM 1171.009, (b)
 477 GISS-E2.1-G EM7, (c) FLOR-LE EM29, (d) CNRM-CM6-1 EM17 and (e) CanESM5 EM14. The dashed lines
 478 (blue and red) represent 95% significance level (p -value = 0.05). The black dashed line represents the correlation
 479 coefficient between the FSIAE and the following Sept. SIE anomalies found in Williams et al. (2016). Shaded
 480 areas indicate periods of at least 10 years that are negatively (blue) and positively (red) correlated ($p < 0.05$).
 481 excursions outside of the threshold for a few years allowed. In the following, we refer to the grouping of periods
 482 between sea ice area export and Sept SIE that are positively (negatively) correlated as positive (negative) mode.


483 FIG. 6. Normalized distribution (by the total number of years per model) of the positive (orange) and negative
 484 mode (blue) as a function of the May mean thickness north of 85°N time period in (a) CESM2-LE, (b) GISS-
 485 E2.1-G, (c) FLOR-LE, (d) CNRM-CM6-1 and (e) CanESM5.


486 FIG. 7. Detrended May sea ice thickness difference between extreme years ($|FSIAE| > \sigma$) of the mean Nov-Jun
 487 FSIAE averaged over all the periods with positive modes in the early 20th century (d,h), the mid 21st century
 488 (b,i) and negative modes for (a) CESM2-LE, (c) the GISS-E2.1-G, (e) FLOR-LE, (f) CNRM and (g) CanESM5.
 489 The frequency of occurrence of the mode is shown in the top-right corner of each map (see Table 2).
 25


490 FIG. 8. Detrended September sea ice concentration difference between extreme years ($|FSIAE| > \sigma$) of the mean
491 Nov-Jun FSIAE averaged over all the periods with positive modes early 20th century (d,h), mid 21st century (b,i)
492 and negative modes for (a) CESM2-LE, (c) the GISS-E2-1-G, (e) FLOR-LE, (f) CNRM and (g) CanESM5. The
26
493 frequency of occurrence of the mode is shown in the top-right corner of each map (see Table 2).

494 FIG. 9. Scatterplot of the correlation coefficient between the Nov-Jun FSIAE and Sept. SIE anomalies (see
 495 Fig. 5) for all ensemble members as a function of the Sept SIE (first column) and the May mean thickness north
 496 of 85°N (second column). The dashed line represents the correlation coefficient between the FSIAE and the
 497 following Sept. SIE anomalies found in Williams et al. (2016)

498 FIG. 10. Nov-Jun mean sea level pressure averaged over extreme years of the Nov-Jun FSIAE ($|\text{FSIAE}| > \sigma$)
499 averaged over all the periods within the negative modes for CESM2-LE (1st row), GISS-E2.1-G (2nd row),
500 FLOR-LE (3rd row), CNRM-CM6-1 (4th row) and CanESM5 (5th row).

501 FIG. 11. Nov-Jun mean sea level pressure averaged over extreme years of the Nov-Jun FSIAE ($|FSIAE| > \sigma$)
 502 averaged over all the periods within the positive modes for CESM2-LE (1st row), GISS-E2.1-G (2nd row) and
 503 CanESM5 (3rd row).

504 *Acknowledgments.*

505 *Data availability statement.*

506 **References**

507 Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distri-
508 bution in a coupled climate model. *Journal of Geophysical Research: Oceans*, **106** (C2), 2441–
509 2463, <https://doi.org/10.1029/1999jc000113>, URL <https://doi.org/10.1029/1999jc000113>.

510 Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011a: Persistence
511 and inherent predictability of arctic sea ice in a GCM ensemble and observations. *Journal of*
512 *Climate*, **24** (1), 231–250, <https://doi.org/10.1175/2010jcli3775.1>, URL <https://doi.org/10.1175/2010jcli3775.1>.

514 Blanchard-Wrigglesworth, E., C. M. Bitz, and M. M. Holland, 2011b: Influence of initial conditions
515 and climate forcing on predicting arctic sea ice. *Geophysical Research Letters*, **38** (18), n/a–n/a,
516 <https://doi.org/10.1029/2011gl048807>, URL <https://doi.org/10.1029/2011gl048807>.

517 Bonan, D. B., M. Bushuk, and M. Winton, 2019: A spring barrier for regional predictions
518 of summer arctic sea ice. *Geophysical Research Letters*, **46** (11), 5937–5947, <https://doi.org/10.1029/2019gl082947>, URL <https://doi.org/10.1029/2019gl082947>.

520 Bouillon, S., M. Á. M. Maqueda, V. Legat, and T. Fichefet, 2009: An elastic–viscous–plastic sea ice
521 model formulated on arakawa b and c grids. *Ocean Modelling*, **27** (3-4), 174–184, <https://doi.org/10.1016/j.ocemod.2009.01.004>, URL <https://doi.org/10.1016/j.ocemod.2009.01.004>.

523 Brunette, C., B. Tremblay, and R. Newton, 2019: Winter coastal divergence as a pre-
524 dictor for the minimum sea ice extent in the laptev sea. *J. Climate*, **32**, <https://doi.org/10.1175/JCLI-D-18-0169.1>.

526 Bushuk, M., and D. Giannakis, 2017: The seasonality and interannual variability of arctic sea ice
527 reemergence. *Journal of Climate*, **30** (12), 4657–4676, <https://doi.org/10.1175/jcli-d-16-0549.1>,
528 URL <https://doi.org/10.1175/jcli-d-16-0549.1>.

529 Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017:
530 Skillful regional prediction of arctic sea ice on seasonal timescales. *Geophysical Research*

531 *Letters*, **44** (10), 4953–4964, <https://doi.org/10.1002/2017gl073155>, URL <https://doi.org/10.1002/2017gl073155>.

532

533 Bushuk, M., M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth, and T. L. Delworth, 2020: A
534 mechanism for the arctic sea ice spring predictability barrier. *Geophysical Research Letters*, **47**,
535 <https://doi.org/10.1029/2020GL088335>.

536 Bushuk, M., and Coauthors, 2021: Seasonal prediction and predictability of regional antarctic sea
537 ice. *Journal of Climate*, 1–68, <https://doi.org/10.1175/jcli-d-20-0965.1>, URL <https://doi.org/10.1175/jcli-d-20-0965.1>.

538

539 Cheng, W., E. Blanchard-Wrigglesworth, C. M. Bitz, C. Ladd, and P. J. Stabeno, 2016: Diagnostic
540 sea ice predictability in the pan-arctic and u.s. arctic regional seas. *Geophysical Research Letters*,
541 **43** (22), <https://doi.org/10.1002/2016gl070735>, URL <https://doi.org/10.1002/2016gl070735>.

542 Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the
543 arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. *Journal
544 of Climate*, **25** (8), 3025–3038, <https://doi.org/10.1175/jcli-d-11-00209.1>, URL <https://doi.org/10.1175/jcli-d-11-00209.1>.

545

546 Coumou, D., G. D. Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of arctic
547 amplification on mid-latitude summer circulation. *Nature Communications*, **9** (1), <https://doi.org/10.1038/s41467-018-05256-8>, URL <https://doi.org/10.1038/s41467-018-05256-8>.

548

549 Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under
550 increasing CO₂. *Nature Communications*, **10** (1), <https://doi.org/10.1038/s41467-018-07954-9>,
551 URL <https://doi.org/10.1038/s41467-018-07954-9>.

552

553 DeRepentigny, P., L. B. Tremblay, R. Newton, and S. Pfirman, 2016: Patterns of sea ice retreat in the
554 transition to a seasonally ice-free arctic. *Journal of Climate*, **29** (19), 6993–7008, <https://doi.org/10.1175/jcli-d-15-0733.1>, URL <https://doi.org/10.1175/jcli-d-15-0733.1>.

555

556 DeRepentigny, P., and Coauthors, 2022: Enhanced simulated early 21st century arctic sea ice loss
557 due to CMIP6 biomass burning emissions. *Science Advances*, **8** (30), <https://doi.org/10.1126/sciadv.abo2405>, URL <https://doi.org/10.1126/sciadv.abo2405>.

558 Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the
559 context of recent atmospheric circulation trends. *Journal of Climate*, **13** (3), 617–
560 633, [https://doi.org/10.1175/1520-0442\(2000\)013<0617:asivit>2.0.co;2](https://doi.org/10.1175/1520-0442(2000)013<0617:asivit>2.0.co;2), URL [https://doi.org/10.1175/1520-0442\(2000\)013<0617:asivit>2.0.co;2](https://doi.org/10.1175/1520-0442(2000)013<0617:asivit>2.0.co;2).

561

562 Desmarais, A., and B. Tremblay, 2021: Assessment of decadal variability in sea ice in the commu-
563 nity earth system model against a long-term regional observational record: implications for the
564 predictability of an ice-free arctic. *Journal of Climate*, <https://doi.org/10.1175/jcli-d-20-0561.1>,
565 URL <https://doi.org/10.1175/jcli-d-20-0561.1>.

566 Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of sea ice thickness initialization
567 on seasonal arctic sea ice predictions. *Journal of Climate*, **30** (3), 1001–1017, <https://doi.org/10.1175/jcli-d-16-0437.1>, URL <https://doi.org/10.1175/jcli-d-16-0437.1>.

568

569 Ebinger, C. K., and E. Zambetakis, 2009: The geopolitics of arctic melt. *International Affairs*,
570 **85** (6), 1215–1232, <https://doi.org/10.1111/j.1468-2346.2009.00858.x>, URL <https://doi.org/10.1111/j.1468-2346.2009.00858.x>.

571

572 Fetterer, F. K. K. M. W. S. M. W. A., 2017 updated daily: Sea ice index, version 3. NSIDC, URL
573 <https://nsidc.org/data/G02135/versions/3>, <https://doi.org/10.7265/N5K072F8>.

574

575 Goosse, H., O. Arzel, C. M. Bitz, A. de Montety, and M. Vancoppenolle, 2009: Increased
576 variability of the arctic summer ice extent in a warmer climate. *Geophysical Research Letters*,
577 **36** (23), <https://doi.org/10.1029/2009gl040546>, URL <https://doi.org/10.1029/2009gl040546>.

578

579 Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. *Journal of Physical Oceanogra-
phy*, **9** (4), 815–846, [https://doi.org/10.1175/1520-0485\(1979\)009<0815:adtsim>2.0.co;2](https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2), URL
[https://doi.org/10.1175/1520-0485\(1979\)009<0815:adtsim>2.0.co;2](https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2).

580

581 Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the
582 rapidly changing arctic environment of the community climate system model, version 3.
583 *Climate Dynamics*, **36** (7–8), 1239–1253, <https://doi.org/10.1007/s00382-010-0792-4>, URL
<https://doi.org/10.1007/s00382-010-0792-4>.

584 Holland, M. M., L. Landrum, D. Bailey, and S. Vavrus, 2019: Changing seasonal predictability
585 of arctic summer sea ice area in a warming climate. *Journal of Climate*, **32** (16), 4963–4979,
586 <https://doi.org/10.1175/jcli-d-19-0034.1>, URL <https://doi.org/10.1175/jcli-d-19-0034.1>.

587 Hunke, E. C., 2001: Viscous–plastic sea ice dynamics with the EVP model: Linearization issues.
588 *Journal of Computational Physics*, **170** (1), 18–38, <https://doi.org/10.1006/jcph.2001.6710>,
589 URL <https://doi.org/10.1006/jcph.2001.6710>.

590 Jahn, A., and M. M. Holland, 2013: Implications of arctic sea ice changes for north atlantic
591 deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations.
592 *Geophysical Research Letters*, **40** (6), 1206–1211, <https://doi.org/10.1002/grl.50183>, URL <https://doi.org/10.1002/grl.50183>.

594 Jung, T., and M. Hilmer, 2001: The link between the north atlantic oscillation and
595 arctic sea ice export through fram strait. *Journal of Climate*, **14** (19), 3932–3943,
596 [https://doi.org/10.1175/1520-0442\(2001\)014<3932:tlbtdna>2.0.co;2](https://doi.org/10.1175/1520-0442(2001)014<3932:tlbtdna>2.0.co;2), URL [https://doi.org/10.1175/1520-0442\(2001\)014<3932:tlbtdna>2.0.co;2](https://doi.org/10.1175/1520-0442(2001)014<3932:tlbtdna>2.0.co;2).

598 Kelley, M., G. A. Schmidt, L. S. Nazarenko, S. E. Bauer, R. Ruedy, and G. L. R. et al., 2020:
599 Giss-e2.1: Configurations and climatology. *Journal of Advances in Modeling Earth Systems*,
600 **12**, <https://doi.org/10.1029/2019MS002025>.

601 Kim, R., B. Tremblay, C. Brunette, and R. Newton, 2021: A regional seasonal forecast model
602 of arctic minimum sea ice extent: Reflected solar radiation vs. late winter coastal divergence.
603 *Journal of Climate*, **1**, <https://doi.org/10.1175/jcli-d-20-0846.1>, URL <https://doi.org/10.1175/jcli-d-20-0846.1>.

605 Koenigk, T., U. Mikolajewicz, H. Haak, and J. Jungclaus, 2005: Variability of fram strait sea
606 ice export: causes, impacts and feedbacks in a coupled climate model. *Climate Dynamics*,
607 **26** (1), 17–34, <https://doi.org/10.1007/s00382-005-0060-1>, URL <https://doi.org/10.1007/s00382-005-0060-1>.

609 Krumpen, T., M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and
610 S. Willmes, 2013: Variability and trends in laptev sea ice outflow between 1992–2011. *The*

611 *Cryosphere*, **7** (1), 349–363, <https://doi.org/10.5194/tc-7-349-2013>, URL <https://doi.org/10.5194/tc-7-349-2013>.

613 Kwok, R., 2004: Fram strait sea ice outflow. *Journal of Geophysical Research*, **109** (C1),
614 <https://doi.org/10.1029/2003jc001785>, URL <https://doi.org/10.1029/2003jc001785>.

615 Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled
616 variability (1958–2018). *Environmental Research Letters*, **13** (10), 105 005, <https://doi.org/10.1088/1748-9326/aae3ec>, URL <https://doi.org/10.1088/1748-9326/aae3ec>.

618 Kwok, R., and G. Cunningham, 2012: Deformation of the arctic ocean ice cover after the 2007
619 record minimum in summer ice extent. *Cold Regions Science and Technology*, **76-77**, 17–23,
620 <https://doi.org/10.1016/j.coldregions.2011.04.003>, URL <https://doi.org/10.1016/j.coldregions.2011.04.003>.

622 Lenetsky, J. E., B. Tremblay, C. Brunette, and G. Meneghelli, 2021: Subseasonal predictability of
623 arctic ocean sea ice conditions: Bering strait and ekman-driven ocean heat transport. *Journal of
624 Climate*, **34** (11), 4449–4462, <https://doi.org/10.1175/jcli-d-20-0544.1>, URL <https://doi.org/10.1175/jcli-d-20-0544.1>.

626 Massonnet, F., M. Vancoppenolle, H. Goosse, D. Docquier, T. Fichefet, and E. Blanchard-
627 Wrigglesworth, 2018: Arctic sea-ice change tied to its mean state through thermodynamic
628 processes. *Nature Climate Change*, **8** (7), 599–603, <https://doi.org/10.1038/s41558-018-0204-z>,
629 URL <https://doi.org/10.1038/s41558-018-0204-z>.

630 Miller, R. L., and Coauthors, 2021: CMIP6 historical simulations (1850–2014) with GISS-e2.1.
631 *Journal of Advances in Modeling Earth Systems*, **13** (1), <https://doi.org/10.1029/2019ms002034>,
632 URL <https://doi.org/10.1029/2019ms002034>.

633 Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014: Importance of initial conditions in
634 seasonal predictions of arctic sea ice extent. *Geophysical Research Letters*, **41** (14), 5208–5215,
635 <https://doi.org/10.1002/2014gl060799>, URL <https://doi.org/10.1002/2014gl060799>.

636 Mysak, L., R. Ingram, J. Wang, and A. van der Baaren, 1996: The anomalous sea-ice extent in
637 hudson bay, baffin bay and the labrador sea during three simultaneous NAO and ENSO episodes.

638 *Atmosphere-Ocean*, **34** (2), 313–343, <https://doi.org/10.1080/07055900.1996.9649567>, URL
639 <https://doi.org/10.1080/07055900.1996.9649567>.

640 Nikolaeva, A. J., and N. P. Sesterikov, 1970: A method of calculation of ice conditions (on the
641 example of the laptev sea). *Ice Forecasting Techniques for the Arctic Seas*, 150–230.

642 Osborn, T. J., 2010: Winter 2009/2010 temperatures and a record-breaking north atlantic oscillation
643 index. *Weather*, **66** (1), 19–21, <https://doi.org/10.1002/wea.660>, URL <https://doi.org/10.1002/wea.660>.

644 Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of arctic sea-ice and summer sea-ice
645 extent. *Geophysical Research Letters*, **31** (9), n/a–n/a, <https://doi.org/10.1029/2004gl019492>,
646 URL <https://doi.org/10.1029/2004gl019492>.

647 Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the arctic oscillation.
648 *Journal of Climate*, **15** (18), 2648–2663, [https://doi.org/10.1175/1520-0442\(2002\)015<2648:rositt>2.0.co;2](https://doi.org/10.1175/1520-0442(2002)015<2648:rositt>2.0.co;2), URL [https://doi.org/10.1175/1520-0442\(2002\)015<2648:rositt>2.0.co;2](https://doi.org/10.1175/1520-0442(2002)015<2648:rositt>2.0.co;2).

649 Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability.
650 *Earth Syst. Dynam.*, **12**, 1393–1411, <https://doi.org/10.5194/esd-12-1393-2021>.

651 Rogers, J. C., and M.-P. Hung, 2008: The odden ice feature of the greenland sea and its association
652 with atmospheric pressure, wind, and surface flux variability from reanalyses. *Geophysical
653 Research Letters*, **35** (8), <https://doi.org/10.1029/2007gl032938>, URL <https://doi.org/10.1029/2007gl032938>.

654 Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in
655 modeled arctic sea ice volume. *Journal of Geophysical Research*, **116**, <https://doi.org/10.1029/2011jc007084>, URL <https://doi.org/10.1029/2011jc007084>.

656 Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic tem-
657 perature amplification. *Nature*, **464** (7293), 1334–1337, <https://doi.org/10.1038/nature09051>,
658 URL <https://doi.org/10.1038/nature09051>.

659 Sharp, T. L., 2011: The implications of ice melt on arctic security. *Defence Studies*, **11** (2), 297–
660 322, <https://doi.org/10.1080/14702436.2011.590318>, URL <https://doi.org/10.1080/14702436.2011.590318>.

666 Smedsrud, L. H., M. H. Halvorsen, J. C. Stroeve, R. Zhang, and K. Kloster, 2017: Fram
667 strait sea ice export variability and september arctic sea ice extent over the last 80 years.
668 *The Cryosphere*, **11** (1), 65–79, <https://doi.org/10.5194/tc-11-65-2017>, URL <https://doi.org/10.5194/tc-11-65-2017>.

669

670 Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trends in arctic sea ice drift and role of wind
671 forcing: 1992-2009. *Geophysical Research Letters*, **38** (19), n/a–n/a, <https://doi.org/10.1029/2011gl048970>, URL <https://doi.org/10.1029/2011gl048970>.

672

673 Stewart, E. J., S. Howell, D. Draper, J. Yackel, and A. Tivy, 2009: Sea ice in canada's arctic:
674 Implications for cruise tourism. *ARCTIC*, **60** (4), <https://doi.org/10.14430/arctic194>, URL <https://doi.org/10.14430/arctic194>.

675

676 Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting
677 september sea ice: Ensemble skill of the SEARCH sea ice outlook 2008-2013. *Geophysical
678 Research Letters*, **41** (7), 2411–2418, <https://doi.org/10.1002/2014gl059388>, URL <https://doi.org/10.1002/2014gl059388>.

679

680 Swart, N. C., and Coauthors, 2019: The canadian earth system model version 5
681 (CanESM5.0.3). *Geoscientific Model Development*, **12** (11), 4823–4873, <https://doi.org/10.5194/gmd-12-4823-2019>.

682

683 Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution
684 of sea ice. *Journal of Geophysical Research*, **80** (33), 4501–4513, <https://doi.org/10.1029/jc080i033p04501>, URL <https://doi.org/10.1029/jc080i033p04501>.

685

686 Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2013: Predictability of large interannual
687 arctic sea-ice anomalies. *Climate Dynamics*, **41** (9-10), 2511–2526, <https://doi.org/10.1007/s00382-013-1698-8>, URL <https://doi.org/10.1007/s00382-013-1698-8>.

688

689 Tremblay, L. B., G. A. Schmidt, S. Pfirman, R. Newton, and P. DeRepentigny, 2015: Is ice-rafted
690 sediment in a north pole marine record evidence for perennial sea-ice cover? *Philosophical
691 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*,
692 **373** (2052), 20140168, <https://doi.org/10.1098/rsta.2014.0168>, URL <https://doi.org/10.1098/rsta.2014.0168>.

693

694 Vincent, W. F., and Coauthors, 2011: Ecological implications of changes in the arctic cryosphere.
695 *AMBIO*, **40** (S1), 87–99, <https://doi.org/10.1007/s13280-011-0218-5>, URL <https://doi.org/10.1007/s13280-011-0218-5>.

696

697 Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-
698 CM6-1. *Journal of Advances in Modeling Earth Systems*, **11** (7), 2177–2213, <https://doi.org/10.1029/2019ms001683>.

699

700 Wang, J., L. A. Mysak, and R. G. Ingram, 1994: Interannual variability of sea-ice cover in
701 hudson bay, baffin bay and the labrador sea. *Atmosphere-Ocean*, **32** (2), 421–447, <https://doi.org/10.1080/07055900.1994.9649505>, URL <https://doi.org/10.1080/07055900.1994.9649505>.

702

703 Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of
704 the minimum september sea-ice extent. *J. Climate*, **29**, 5879–5891, <https://doi.org/10.1175/JCLI-D-15-0515.1>.

705

706 Zhan, Y., and R. Davies, 2017: September arctic sea ice extent indicated by june reflected solar
707 radiation. *Journal of Geophysical Research: Atmospheres*, **122** (4), 2194–2202, <https://doi.org/10.1002/2016jd025819>, URL <https://doi.org/10.1002/2016jd025819>.

708

709 Zhang, J., R. Lindsay, A. Schweiger, and I. Rigor, 2012: Recent changes in the dynamic properties
710 of declining arctic sea ice: A model study. *Geophysical Research Letters*, **39** (20), <https://doi.org/10.1029/2012gl053545>, URL <https://doi.org/10.1029/2012gl053545>.

711

712 Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy
713 distribution model in generalized curvilinear coordinates. *Monthly Weather Review*, **131** (5),
714 845–861, [https://doi.org/10.1175/1520-0493\(2003\)131<0845:mgsiwa>2.0.co;2](https://doi.org/10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.co;2), URL [https://doi.org/10.1175/1520-0493\(2003\)131<0845:mgsiwa>2.0.co;2](https://doi.org/10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.co;2).

715