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ABSTRACT: We assess whether the observed seasonal predictability of September sea ice extent

(SIE) arising from Fram Strait ice area export is present in Global Climate Models, namely

the CESM2-LE, GISS-E2.1-G, GFDL FLOR-LE, CNRM-CM6-1, and CanESM5. Results show

distinct periods where winter Fram Strait ice area export anomalies are negatively correlated with

the May sea ice thickness anomalies along the Eurasian coastline, and the following September

Arctic SIE, as in observations. Counter-intuitively, periods where winter Fram Strait ice area

export anomalies are positively correlated with the following Sept SIE anomalies are also present

in several models. This occurs early in the record when the mean Arctic sea ice thickness is large

and ice area exported out of the Arctic (or recirculated in the Beaufort Gyre) survives the following

summer melt leading to positive sea ice anomalies in the Greenland and Beaufort seas. Later in the

record, when sea ice is thinner, winter Fram Strait ice area export anomalies are correlated with

enhanced ridging and convergence of sea ice north of the Canadian Arctic Archipelago, leading to

positive SIE anomalies in the late summer in the Lincoln Sea. Finally, there are several periods

where the Fram Strait ice area export and coastal divergence are weakly coupled, resulting in

no (statistically significant) seasonal predictability of the Sept SIE. In general, we find that the

coupling between the Fram Strait ice area export and the Sept SIE is present across models and

changes in the statistical relationship as a function of the mean Arctic sea ice thickness state.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2



1. Introduction31

The Arctic has witnessed major changes in recent decades as a result of anthropogenic green-32

house gas emissions and subsequent polar amplification (Screen and Simmonds 2010; Dai et al.33

2019). Since the beginning of the satellite era in the late ’70s, the September sea ice extent (Sept34

SIE) has declined by -13% per decade (Fetterer 2017 updated daily), the area covered by multiyear35

ice (MYI) has decreased by more than 50% and the sea ice thickness has declined by 2m, with a36

loss of 1.2 m in the ’80s and ’90s alone (Kwok 2018). These changes have major implications37

for ocean-atmosphere heat and moisture fluxes, solar radiation absorbed at the surface, and the38

liquid freshwater storage in the Arctic, potentially a�ecting deep convection in the Greenland Sea39

and the global thermohaline circulation (Koenigk et al. 2005; Jahn and Holland 2013). Changes40

in the sea ice extent can also a�ect mid-latitude weather through atmospheric teleconnections41

(Coumou et al. 2018; Osborn 2010). Finally, the changing Arctic sea ice leading to new navigable42

passages a�ects tourism, economic and military operations (Stewart et al. 2009; Ebinger and Zam-43

betakis 2009; Sharp 2011), as well as local ice-dependent and obligate species (Vincent et al. 2011).44

45

The then record low September sea ice extent of 2007 marked the beginning of a new Arctic,46

with mainly ice-free conditions in the Chukchi and Beaufort Seas in summer, and increased47

interest for (sub-)seasonal forecasts of sea ice conditions (Stroeve et al. 2014). Coupled general48

circulation models with high-quality initialization can make skillful predictions when the Sept49

SIE is near the long-term linear trend but have di�culty making skillful predictions for anomalous50

years that fall outside of the linear trend such as in 2007 and 2012 (Stroeve et al. 2014). With the51

retreat of the sea ice cover, we see early signs of increased interannual variability, particularly52

in the Pacific sector of the Arctic (Desmarais and Tremblay 2021), making predictions of53

the Sept SIE more challenging. The inability of models to properly forecast September sea54

ice conditions for anomalous years (with respect to the linear trend) motivated the Study of55

Environmental Arctic Change (SEARCH) Sea Ice Outlook project with the objective of document-56

ing and improving the skill of model forecasts using statistical, numerical and heuristic approaches.57

58

The thinning of the sea ice has implications for sea ice thermodynamics (Massonnet et al. 2018)59

and dynamics (Spreen et al. 2011; Tremblay et al. 2015; Kwok and Cunningham 2012), which in60
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turn impact the skill of seasonal predictions. For instance, Williams et al. (2016) suggest that sea61

ice thickness at the onset of the melt season is a skillful predictor of the Sept SIE starting in the62

early ’90s after the large export of MYI associated with record positive Arctic Oscillation (AO)63

indices (Rigor and Wallace 2004; Smedsrud et al. 2017; Spreen et al. 2011; Tremblay et al. 2015;64

Kwok and Cunningham 2012). Furthermore, Williams et al. (2016) relate May ice thickness65

anomalies to late winter coastal divergence along the Eurasian coastline that leads to new ice66

growth that does not have time to reach su�cient thickness to survive the following summer67

melt (see also Nikolaeva and Sesterikov 1970). This signal is then amplified by the ice-albedo68

feedback. Through that winter dynamic preconditioning, Williams et al. (2016) find at the69

pan-Arctic scale that both winter coastal divergence along the Eurasian coastline, and Fram Strait70

ice area export anomalies – a proxy for coastal divergence anomalies – are both well correlated71

with the following Sept SIE anomalies (respectively r = -0.58 and r = -0.72). This link between ice72

thickness at the onset of the melt season and seasonal predictability was supported by idealized73

model experiments, in which ice presence in di�erent ice thickness categories led to predictability74

at di�erent (sub-)seasonal time scales (Chevallier and Salas-Mélia 2012; Msadek et al. 2014;75

Dirkson et al. 2017; Bushuk and Giannakis 2017; Bonan et al. 2019). Recently, Kim et al.76

(2021) showed that late-winter coastal divergence leads to seasonal predictability in the Laptev77

Sea, in line with earlier results from Nikolaeva and Sesterikov (1970); Krumpen et al. (2013);78

Brunette et al. (2019), as well as the Beaufort and Kara Seas. The fact that the predictability from79

late winter coastal divergence is similar to that from June reflected shortwave radiation (Zhan80

and Davies 2017) supports the proposed link between late winter coastal divergence and the81

thickness anomalies at the onset of the melt season. In the Chukchi and eastern East Siberian Sea,82

subseasonal predictability of June and July sea ice area was shown to be associated with ocean83

heat transport anomalies through Bering Strait, with a resurgence of predictability in the fall when84

ventilation of sub-surface ocean heat takes place (Lenetsky et al. 2021).85

86

In this study, we assess whether GCMs can reproduce the observed predictability of the Sept87

SIE from Fram Strait ice area export (FSIAE), a proxy for coastal divergence along the Eurasian88

coastline, in five global climate models: CESM2-LE, NASA GISS-E2.1-G, GFDL FLOR-LE,89

CNRM-CM6-1, and CanESM5. This link between ice export and ice formation in the ice90
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factory of the Arctic is an important coupled mode of variability between the atmosphere and91

the sea ice that is also at play on longer timescales; for instance in the transition to an ice-free92

Arctic. Failure to capture (or success in capturing) this coupling can highlight the weakness93

(or strength) in GCMs and guide future model development. We find periods with a significant94

negative correlation between the Fram Strait ice area export and Sept SIE anomalies in the five95

models studied as seen in observations, but also periods with a significant positive correla-96

tion for a thicker and thinner mean Arctic sea ice thickness state compared with the late 20th century.97

98

The paper is structured as follows. The GCMs used in this study are described in section 2.99

The methods, results, and discussion are presented in section 3 and 4 respectively. The main100

conclusions are summarized in section 5.101

2. Model Large Ensembles102

a. CESM2 Large Ensemble (LENS2)103

The Community Earth System Model Version 2 Large Ensemble (CESM2-LE) is a 100-member104

ensemble with a nominal spatial resolution of 1° covering the period 1850 to 2100. The105

atmospheric component of the model is the Community Atmosphere Model version 6 (CAM6)106

with a resolution of 1.25° in longitude, 0.9° in latitude, and 32 vertical levels. The Ocean and107

Ice components are the Parallel Ocean Program Version 2 (POP2) and the CICE Version 5.1.2108

(CICE5) with a nominal 1° resolution. CICE5 uses the EVP rheology with an elliptical yield curve109

(ellipse aspect ratio e = 2, Hunke 2001), a normal flow rule and an ice thickness distribution with110

five categories (category limits of 0.0, 0.64, 1.39, 2.47 and 4.57 m, see Table 1). The grid is an111

Arakawa B-grid with a rotated pole located over Greenland to avoid the singularity over the North112

Pole (Fig. 1a). The model is run with CMIP6 historical forcing before 2014 and with CMIP6113

SSP370 forcing scenarios after 2014 except for the aerosol forcing associated with biomass burning114

that was smoothed using an 11-year running mean filter in 50 of the 100 ensemble members during115

the 1990-2020 period. The smoothing of biomass burning has a distinct impact on the Arctic sea116

ice in the 1990-2020 interval with a slower decline of the September sea ice and cooler tropical117

Pacific (Rodgers et al. 2021; DeRepentigny et al. 2022). Following CESM1-LE, 20 ensemble118

members are initialized with micro-perturbations in atmospheric temperatures imposed for each119
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start year 1231, 1251, 1281, and 1301 of a pre-industrial simulation for a total of 80 ensemble120

members. The remaining 20 ensemble members are initialized using macro-perturbations, i.e.,121

di�erent initial conditions from independent restart files with a 10-year interval in start years122

ranging between 1001-1191 (Rodgers et al. 2021).123

124

b. NASA GISS-E2.1-G125

The NASA Goddard Institute for Space Studies ModelE Version 2.1-G (GISS-E2.1-G) is a 10-126

member ensemble with a nominal resolution of 2° in latitude and 2.5° in longitude covering the127

period 1850 to 2100. The atmospheric component of the model is the GISS-E2.1 and uses the128

non-interactive physics version 1 (NINT) with specified ozone and aerosol concentrations where129

the aerosol indirect e�ect is parameterized (Kelley et al. 2020; Miller et al. 2021). The ocean130

component of the model is the GISS Ocean V1 (GO1). The sea ice model uses the standard131

viscous plastic rheology with an elliptical yield curve (e = 2), a normal flow rule, a single ice-132

thickness category model (ice or open water), and a capping to prevent unrealistic ice build-up north133

of the Canadian Arctic Archipelago (CAA) (see Table 1) (Hibler 1979). The sea ice component134

uses the same grid as the atmosphere, i.e., an Arakawa B-grid on a standard spherical grid centered135

over the North and South Poles (Fig. 1b). The model is run with CMIP6 historical forcing before136

2014 and CMIP6 SSP370 forcing scenarios after 2014. The ensemble members are initialized137

from a 451-year pre-industrial control run at 20-year intervals starting from the year 1 (Miller et al.138

2021).139

c. GFDL FLOR-LE140

The Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Large141

Ensemble (FLOR-LE) is a 30-member ensemble covering the period 1921-2100. The atmospheric142

component is the same as Coupled Model Version 2.5 (CM2.5) and has a nominal horizontal143

resolution of 0.5°. The ocean and sea ice components are the Modular Ocean Model Version 5144

(MOM5) and the Sea Ice Simulator Version 1 (SIS1) from the Coupled Model Version 2.1 (CM2.1)145

with a nominal 1° spatial resolution. The sea ice model uses the EVP rheology with an elliptical146

yield curve (e = 2), a normal flow rule, and an ice thickness distribution with five categories (0.0,147
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0.1, 0.3, 0.7, and 1.1 m) but without redistribution between categories during ridging (See Table 1,148

Bushuk et al. 2021). The sea ice and ocean components use an Arakawa-B grid on a tri-polar grid149

with two poles located over Russia and the Canadian Arctic Archipelago (Fig. 1c). The model150

is run with CMIP5 historical forcing before 2005 and CMIP5 RCP8.5 radiative forcing scenarios151

after 2005. The ensemble members are initialized from a 1,160-year preindustrial control run at152

10-year intervals from the simulation years 821–1,111 to ensure di�erent phases of internal climate153

variability (Bushuk et al. 2020).154

d. CNRM-CM6-1155

The Centre National de Recherches Météorologiques Climate Model Version 6 (CNRM-CM6-156

1) jointly developed with the Centre Européen de Recherche et de Formation Avancée en Calcul157

Scientifique (CERFACS) is a 30-member ensemble with a nominal spatial resolution of 1° covering158

the period 1850 to 2100. Of the 30 ensemble members, 6 cover the full 1850 to 2100 time period159

and 24 ensemble members stop in 2039. The atmosphere component of the model is the ARPEGE-160

Climat Version 6.3 with a Gaussian grid and a nominal resolution of 1.4° at the Equator and 91161

vertical levels. The ocean component of the model is the Nucleus for European Models of the162

Ocean (NEMO) Version 3.6 with a nominal 1° resolution. The sea ice component is Gelato 6163

with the same horizontal grid as NEMO and uses the EVP model with an elliptical yield curve164

(e = 2), a normal flow rule and an ice thickness distribution with five categories (0.0, 0.3, 0.7,165

1.2 and 2 m, Bouillon et al. 2009, See Table 1). The grid consists of an Arakawa-C grid on a166

tripolar grid (eOrca1 horizontal grid) with two quasi-isotropic bipolar grids south of 67° rather167

than the Mercator grid (Fig. 1d). The model is run with CMIP6 historical forcing before 2014 and168

CMIP6 SSP370 after 2014. The ensemble members are initialized from a 1000-year pre-industrial169

control simulation with di�erent starting years in di�erent phases of dominant modes of internal170

variability and with particular attention to the Atlantic multidecadal variability and the Pacific171

decadal variability (Voldoire et al. 2019).172

e. CanESM5173

The Canadian Earth System Model version 5 (CanESM5) developed by the Canadian Centre for174

Climate Modelling and Analysis (CCCma) is a 40-member ensemble covering the period 1850 to175
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CESM2-LE 27.5 kN/m2 EVP 2 5 (0.0, 0.64, 1.39,
2.47 and 4.57 m)

-

GISS ModelE-G
V2.1

27.5 kN/m2 VP 2 1 (ice, no ice) Capping of ice thickness to
prevent building up along
coastlines

GFDL FLOR-LE 27.5 kN/m2 EVP 2 5 (0.0, 0.1, 0.3,
0.7 and 1.1 m)

No ridging parameteriza-
tion and no prognostic melt
ponds

CNRM-CM6-1 27.5 kN/m2 EVP 2 5 (0.0, 0.30, 0.7,
1.2 and 2 m)

-

CanESM5 10 kN/m2 EVP 2 1 (ice, no ice) -

T���� 1. Relevant sea ice parameters for the models studied

2100. Of the 40 ensemble members, 25 cover the full 1850 to 2100 time period and 15 ensemble176

members stop in 2014. The atmosphere component of the model is the Canadian Atmosphere Model177

Version 5 (CanAM5) with a spectral resolution of ⇠ 2.8°. The ocean component is a customized178

version of NEMO Version 3.4.1 (CanNEMO) where the ocean biochemistry is represented by the179

Canadian Model of Ocean Carbon (CMOC) and has a nominal resolution of 1° and the sea ice180

component is LIM2. LIM2 uses the EVP model with an elliptical yield curve (e = 2), a normal181

flow rule, and a single ice thickness category (ice or open water, see Table. 1). The grid consists182

of an Arakawa-C grid on a tripolar grid (eORCA1 horizontal grid, Fig. 1e). The model is run183

with CMIP6 historical forcing before 2014 and SSP370 forcing scenario after 2014. The ensemble184

members are initialized from a 2000-year pre-industrial control simulation with di�erent starting185

years chosen at a 50-year interval (Swart et al. 2019).186

3. Methods187

a. Sea Ice Extent188

The Arctic sea ice extent is defined as the total area of all grid cells with sea ice concentration189

(SIC) greater than 15% in the Northern Hemisphere.190

b. Fram Strait Ice Area Export191

The Fram Strait Ice Area Export (FSIAE) is used in this study as a proxy for coastal divergence192

along the Eurasian coastline as their anomalies are significantly correlated in observations (r =193
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0.79, Williams et al. 2016). The definition used in this study for the total winter sea ice area export194

through Fram Strait (FSIAE) is:195

FSIAE =
#’
:=1

+824 (:) · (�⇠ (:) · 3! (:), (1)

where # is the total number of grid cells across the Fram Strait, +824 and 3! are the meridional196

sea ice velocity and the length of the grid cell along the transect, (�⇠ is the sea ice concentration197

and : is a running index (lat or lon) along the Strait (See Fig. 1). The FSIAE is computed for198

each winter month and summed from November to June. The location of the Fram Strait between199

models varies by at most 0.675° meridionally (⇠75 km). The results presented below are robust to200

the exact location of the Strait.201

c. Mean Sea Ice Thickness202

The May area-averaged sea ice thickness (see in Fig. 4b) is calculated from all grid cells north of203

85° and with (�⇠ � 15%. The 85°N threshold is chosen as a representative Arctic mean excluding204

coastal regions.205

d. Seasonal predictability and modes206

We assess the seasonal predictability of the Sept SIE from the winter Fram Strait ice area207

export using a 20-year moving window correlation between anomalies with respect to their 5-year208

running mean (Fig. 5). Extending the window over which the anomalies are computed, or using the209

ensemble model mean as a reference for the anomalies, led to similar time series of the correlation,210

with only a slight vertical translation di�erence. The choice of 5 years for the window length211

used to compute the anomalies was made to study the interannual variability. We consider all212

periods that are correlated (statistically significant at the 95% level) for at least 10 years – with213

occasional excursions below the 95% significance level for a few years allowed, not more than214

approximately a third/fourth of the period’s total length, to increase the sample size. All periods215

that are significantly correlated and with the same sign correlation are grouped together for each216

model and referred to in the following as positive and negative modes.217
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e. Di�erence maps218

We use di�erence maps of the linearly detrended – over each identified period of significant219

correlation – May sea ice thickness composites between years with positive and negative anomalies220

in the linearly detrended FSIAE ( 1 f away from the mean) in order to understand the link between221

the winter FSIAE and the following Sept SIE in transient simulations from di�erent models with222

di�erent mean climate. For each model, a composite is produced by taking the average over all the223

periods within a given mode (positive or negative, Fig. 7). The same procedure is repeated for the224

linearly detrended September SIC di�erence maps (Fig. 8).225

4. Results and Discussion226

a. Seasonality and projected change in SIE and SIT227

All models simulate a SIE seasonal cycle, FSIAE, and sea ice thickness field that are in general228

agreement with observations (see Figs. 2-3). Notable biases in the mean state include a larger229

sea ice extent by 3-5 million km2 in the GISS-E2.1-G model. A positive bias in winter FSIAE230

is found in all models, except CNRM-CM6-1. This is due, in part, to a too-broad Fram Strait231

(CESM2-LE) and faster meridional sea ice velocity (GISS-E2.1-G, FLOR-LE, and CanESM5,232

results not shown). Spatially, the sea ice thickness is in general agreement with the Pan-Arctic Ice233

Ocean Modeling and Assimilation System (PIOMAS) (Zhang and Rothrock 2003) with proper234

sea ice thickness gradient between the CAA and the Eurasian coastline and similar thickness235

levels, except for CNRM-CM6-1 that is considerably thinner (Fig. 3). It is worthy to mention236

that PIOMAS overestimates thin sea ice and underestimate thick sea ice(Schweiger et al. 2011),237

suggesting that all models show a generally too thin sea ice pack, except for CanESM5.238

239

During the observational record, the Sept SIE is mostly within the envelope of internal variability240

for all models except the GISS-E2.1-G model (Fig. 4). CESM2-LE and CanESM5 reach a241

seasonally ice-free state – Sept SIE < 1 million km2 for 5 consecutive years (as defined by the242

Intergovernmental Panel on Climate Change ice-free criteria) in the first half of the 21st century.243

The FLOR-LE and CNRM show a linear decline with a seasonally ice-free Arctic in the second244

half of the 21st century. The GISS-E2.1-G model does not reach a seasonally ice-free state before245

2100, likely due to a positive bias in sea ice thickness and SIE in the 20th century. Of particular246
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Models Mean length (years) Frequency (%) Total Frequency (%)

CESM2-LE
Negative 21.20 13.4

14.7
Positive 15.74 1.3

GISS-E2.1-G
Negative 30.51 16.1

22.7
Positive 16.67 6.6

FLOR-LE Negative 29.87 39.6 39.6

CNRM-CM6-1 Negative 25.93 36.7 36.7

CanESM5 Negative 21.38 9.3
10.6

Positive 16.67 1.3

T���� 2. Frequency of occurrence of periods with positive and negative correlation between winter FSIAE

and Sept SIE anomalies.

251

252

interest is the absence of correlation between the projected decline in May SIT (and Sept SIE) and247

the mean 20th century May sea ice thickness. For instance, CanESM5 has the fastest decline in its248

May SIT (and Sept SIE) despite having the thickest (and the second most extensive sea ice cover)249

in its 20th century simulations.250

b. Seasonal predictability of the Sept SIE from Winter FSIAE253

From a total of 42,546 years of model simulations, the FSIAE is negatively – in line with254

recent decades (Williams et al. 2016) –, positively and not correlated with the Sept SIE for 7915,255

549, and 34082 years, respectively. Counter-intuitively, we see periods of positive correlation256

between winter FSIAE and Sept SIE anomalies where larger winter FSIAE leads to larger257

Sept SIE the following September (discussion below, Fig. 5a-b-e). However, note that the258

corresponding frequency of occurrence – the amount of years correlated divided by the total259

amount of years of simulation – for negative correlations is 19% and positive correlations is 1%.260

The models’ individual frequency of occurrence range from around 11%-15% for models with an261

early seasonally ice-free Arctic (CESM2-LE and CanESM5) to 37%-40% for models reaching a262

later ice-free Arctic (GFDL FLOR-LE, CNRM-CM6-1), suggesting a coupling between sea ice263

conditions and seasonal predictability skills of the winter FSIAE (see Table 2). Across all models,264

the negative mode occurs much more frequently than the positive mode and are generally longer265

(see Table 2).266

267
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The positive mode is observed when the sea ice cover is thickest (early 20th century) or thinnest268

(late 21st century), while the negative mode is mostly present for a mean sea ice thickness state that269

lies in between those extremes; one exception is the negative mode in the CanESM5 20th century270

simulations with a thick mean sea ice state (Fig. 6e). The positive and negative modes occur at271

di�erent times depending on the model due to di�erent mean sea ice thickness states. In thickness272

space (see Fig. 6), models mostly align, with positive modes present for ice thickness greater than273

2.5 meters and thinner than 1.5 meters and negative modes for ice thickness ranging in between.274

Across all models, the negative mode occurs much more frequently than the positive mode.275

1) N������� ����276

Negative modes are present in all models and are associated with negative anomalies in the May277

sea ice thickness along the Eurasian coastline (the Arctic ice factory) when positive anomalies278

in the winter FSIAE are present (Fig. 7a-c-e-f-g). The negative anomalies in the May thickness279

in turn lead to negative anomalies in the September SIC in the same region, in line with the late280

winter coastal divergence mechanism proposed by Nikolaeva and Sesterikov (1970); Krumpen281

et al. (2013); Williams et al. (2016); Brunette et al. (2019) (Fig. 8a-c-e-f-g). Positive anomalies in282

winter FSIAE are also associated with positive anomalies in the May thickness north of the CAA283

due to ridging and convergence, and in the Greenland Sea due to larger export of thick sea ice284

through Fram Strait (Fig. 7a-c-e-f-g). For a mean climate with sea ice thickness in the medium285

range (1.5–2.5 m; see Fig. 6), the thickness anomalies in the Greenland Sea persist the following286

September, resulting in positive September SIC anomalies in this region. In terms of pan-Arctic287

SIE, these anomalies are relatively negligible compared to the reduced Sept SIE along the Eurasian288

coastline (Fig. 8a-c-e-f-g). Note that in the negative mode of the GISS-E2.1-G, ice appears to be289

restricted as it moves towards the Fram Strait (see positive/negative anomalies in SIC north/south290

of the strait, Fig. 8c). This pattern is consistent with the positive anomaly in sea ice thickness in291

the GISS model, which somewhat reduces the coupling between FSIAE and coastal divergence in292

the ice factory of the Arctic.293

2) P������� ����294

The positive modes occur either early in the record in models that have a positive bias in sea295

ice thickness (GISS-E2.1-G and the CanESM5) or late in the record in models with an early296
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transition to a seasonally ice-free Arctic (CESM2-LE and CanESM5, Fig. 4 and 6). There is297

no documented positive correlation between FSIAE, or coastal divergence, with the following298

Sept SIE in observations. Early in the modern observational record (80’s and 90’s), anomalous299

sea ice conditions in the Greenland and Beaufort seas and have been reported to be negatively300

correlated with sea ice extent in the Ba�n Bay; an east-west seesaw associated with the North301

Atlantic Oscillation (Wang et al. 1994; Mysak et al. 1996; Deser et al. 2000). In the same period,302

a large tongue of sea ice extending northeastward in the Greenland Sea (the so-called Odden) was303

associated with the negative phase of the NAO and larger export of freshwater through the Fram304

Strait (e.g., late seventies Great Salinity Anomaly, see Rogers and Hung 2008), highlighting a link305

between the sea ice state and large-scale atmospheric circulation before the current transition to a306

seasonally ice-free Arctic.307

308

Early in the record positive anomalies in winter FSIAE in CanESM5 and GISS-E2.1-G leads to309

positive anomalies in the May sea ice thickness in the Beaufort, Chukchi, and Lincoln seas (Fig.310

7d,h). In the GISS-E2.1-G model, large winter FSIAE are associated with more recirculation of311

thick ice in the Beaufort Gyre and also more coastal divergence along the Eurasian coastline (Fig.312

7d). This recirculation of thicker sea ice in the Beaufort Sea leads to positive SIE anomalies the313

following summer (Fig. 8d). Larger winter FSIAE also leads to larger export of sea ice through314

the Fram Strait into the Greenland Sea (Fig. 7d) and positive anomalies in the September sea ice315

concentration in the Greenland and Barents seas (Fig. 8d). Note that the May sea ice thickness316

anomalies along the Eurasian coastline result in near-zero anomalies in the September SIC in the317

GISS model because the mean thickness is larger than a typical summer melt rendering the winter318

FSIAE – Sept SIE coupling ine�ective. By contrast, the negative mode predominates later in the319

simulation when the sea ice cover is thinner and the northern North Atlantic warms, ice exported320

through Fram Strait melts in the Greenland Sea and the reduced sea ice extent along the Eurasian321

coastline dominates (Fig. 8c). In a similar manner, positive anomalies in the winter FSIAE in322

CanESM5 are associated with positive anomalies in the May sea ice thickness in the Greenland323

and the Barents Seas and an increased September SIC in the same regions (Fig. 7h-8h). Again, the324

SIC anomaly signal in the same regions dominates the negative anomaly signal along the Eurasian325
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coastline.326

327

Later in the record, when the Arctic approaches a seasonal ice-free cover, periods of positive328

mode are present both in the CESM2-LE and the CanESM5 models, the two first models that329

reach a seasonal ice-free cover in the first half of the 21st century (Fig. 4a). In the CESM2-LE,330

large winter FSIAE is associated with ridging north of the Canadian Arctic Archipelago leading331

to thicker sea ice that is more likely to survive the following summer (Fig. 6a and 8b). In a332

similar manner, periods are present in CanESM5 positive modes where positive anomalies in the333

winter FSIAE in CanESM5 lead to positive anomalies in the May sea ice thickness particularly334

north of Greenland, and a more extensive September SIC anomaly (Fig. 7i-8i). This is akin to the335

observed convergence of sea ice (also present in the PIOMAS reanalysis) in recent years as the sea336

ice thins, particularly north of the CAA and Greenland (Bitz et al. 2001; Kwok and Cunningham337

2012; Zhang et al. 2012). This increased propensity for convergence is due to a thinner ice pack338

that is more likely to ridge and deform (Thorndike et al. 1975).339

c. Discussion340

The behavior of the models is in general agreement with the observations considering341

the length of the observational record and in the measure where we find several periods of342

negative correlation occurring in all models (see Table 2, Williams et al. 2016). However,343

the observed coe�cient correlation (r=-0.72 Williams et al. 2016) is at the edge of what the344

models simulate (see Fig. 9), suggesting either that the observed coupling between winter345

FSIAE with the following Sept SIE is unusual in observation, or that the models are bias346

in a way to reduce this coupling. In addition, the frequency of occurrence of the signifi-347

cantly correlated periods is dependant on the models’ sea ice conditions (see Table 2) and also348

explained by the print of internal variability of the models on the correlation coe�cient (see Fig. 9).349

350

Other than the negative periods identified in the models, the results show a broader range of351

behavior with FSIAE that can also be positively correlated with the Sept SIE both early and late352

in the record when a thick and thin sea ice cover is present. Specifically, models with thicker353

20th century sea ice cover (CanESM5 and GISS-E2.1-G) show occasional periods of positive354
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correlation between FSIAE and SIE. These positive correlations arise due to the persistence of355

positive ice thickness anomalies in the Greenland Sea and Ba�n Bay through the melting season,356

leading to positive anomalies in late summer SIC in these regions. The models with an early357

transition to a seasonally ice-free cover (CESM2-LE and CanESM5) show a positive correlation358

between FSIAE and SIE, which is explained by increased ridging and convergence of sea ice north359

of the CAA and Greenland which creates localized thickness anomalies in these regions that can360

survive the summer melt season. Our findings show re-emergence or memory of the system to361

anomalies in sea ice thickness that re-appears later as sea ice area anomalies, in the present case362

from the late winter to the late summer, as opposed to from fall to later winter (or from summer to363

summer) (Blanchard-Wrigglesworth et al. 2011a; Bushuk et al. 2017).364

365

Past studies have shown the non-stationary aspect of the relationship between coastal divergence366

and the following Sept SIE, and similarly between the AO and the FSIAE (Williams et al. 2016;367

Smedsrud et al. 2017; Rigor and Wallace 2004; Jung and Hilmer 2001). Similarly here, we find368

that the relationship between the winter FSIAE with the following Sept SIE, i.e., the seasonal369

predictability skill of the winter FSIAE, is non-stationary, and depends on the sea ice regime,370

influencing both the sign of the correlation and frequency of occurrence of the positive and371

negative modes within each model (Fig. 6-9). An increase in frequency in the number of periods372

(and their length) within the positive to the negative modes (see Fig. 6) indicates an increased373

coupling between FSIAE and Sept SIE as the sea ice thins to moderate sea ice thickness within374

all models (except for CanESM5) supporting the hypothesis that a thinner sea ice cover is more375

mobile and hence more responsive to changes in atmospheric forcing (Fig. 6-9) (Rigor and376

Wallace 2004).377

378

When the sea ice thins further, models show a loss in predictability during the transition to379

a seasonal ice cover (Fig. 9), in agreement with past studies that find a decrease in seasonal380

predictability as the sea ice thins due to increased variability in the sea ice extent in a warming381

climate (Goosse et al. 2009; Blanchard-Wrigglesworth et al. 2011b; Holland et al. 2011; Tietsche382

et al. 2013; Cheng et al. 2016). A recent study shows that the seasonal predictability is the383

outcome of two competing factors in CESM-LE, one that leads to increased skill as the sea ice384
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retreats from coastal regions where variability is large, and another that leads to decreased skill as385

small errors in thickness leads to large errors in sea ice area melt and hence, on SIE forecast skill386

(Holland et al. 2019). These two competing factors result in a sweet spot in the early 21st century,387

with optimal seasonal predictability skill (Holland et al. 2019). Similarly, we find a peak in the388

seasonal predictability in the thickness domain for each of the models at 2 meters in thickness for389

all models except CanESM5 (Fig. 6-9b-d-f-h-i).390

391

Furthermore, in contrast with past studies reporting non-stationarity in the relationship between392

FSIAE and the AO or NAO (Smedsrud et al. 2017), we find a link between FSIAE anomalies and393

SLP patterns for all sea ice regimes within the significantly correlated periods. Indeed, results394

show that the winter SLP pattern associated with anomalously low linearly detrended FSIAE has395

a broad Beaufort Gyre, and years of anomalously high linearly detrended FSIAE have a broader396

Transpolar drift and a smaller and confined Beaufort Gyre in the western Arctic due to a deeper397

Icelandic low in the Arctic Ocean (Fig. 10-11). These two patterns are typical of a negative and398

positive AO mode respectively, highlighting the relationship between AO and winter FSIAE in the399

GCMs found in observations (Rigor et al. 2002; Kwok 2004; Williams et al. 2016; DeRepentigny400

et al. 2016). Regardless of the sign of the correlation within the significantly correlated periods,401

the coupling between the AO with the winter FSIAE lead to similar outcomes of the winter FSIAE402

on the following May sea ice thickness (see Fig. 7), suggesting similar winter precondition-403

ing of the sea ice throughout the modes of significant correlation, again highlighting rather the404

impact of the sea ice thickness regime on the summer melt, and hence on the sign of the correlation.405

406

Finally, the two models (GFDL FLOR-LE and CNRM-CM6-1) with the largest number of sig-407

nificantly correlated periods (with a frequency of occurrence respectively of 39.6% and 36.7%, see408

Table 2) are models that are closest to observations (thickness and extent) during the observational409

record and that reach a seasonal cover in the second half of the century only (Fig 4). In contrast, we410

have that CESM2-LE and CanESM5 have the lowest frequency with 14.7% and 10.6% respectively411

presumably due to an early transition to a seasonal ice cover in the first half of the 21st century,412

as well as a positive bias in sea ice for CanESM5 early in the record. We argue that the temporal413

changes in positive and negative modes distribution are due to thick or thin sea ice regime (see414
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Fig. 6) and that the two models with greater frequency (CNRM-CM6-1 and FLOR-LE) are the two415

models with mid-range thicknesses, corresponding to the peak in predictability (Fig. 6), reported416

by (Holland et al. 2019).417

5. Conclusion418

Late winter coastal divergence along the Eurasian coastline (referred to as the ice factory of the419

Arctic) – or the Fram Strait ice export, a proxy for coastal divergence in the ice factory – is a skillful420

predictor of the Sept SIE in observations (Williams et al. 2016). In this work, we use a 20-year421

moving window correlation between the FSIAE and the following Sept SIE anomalies to assess422

whether the observed seasonal predictability is also present in GCMs. To this end, we analyze423

output diagnostics from 5 GCM large ensembles. Results show that all models studied have some424

seasonal predictability skill of the Sept SIE from winter FSIAE with larger ice export resulting425

in lower May SIT along the Eurasian coastline, and hence lower Sept SIE as per observations426

(Nikolaeva and Sesterikov 1970; Krumpen et al. 2013; Williams et al. 2016; Brunette et al.427

2019; Kim et al. 2021). Looking at GCMs over longer time scales and many ensemble members428

highlights new behaviors in the coupling between FSIAE and Sept SIE, namely occasional periods429

when larger FSIAE leads to larger Sept SIE. This coupling varies in time and appears as periods430

of positive, negative, or absence of significant correlations. Within the 5 large ensembles, we find431

7915, 549, and 34082 years with negative, positive, and non-correlated modes between FSIAE and432

Sept SIE (see Table 2). Interestingly, the sign of the correlation changes through time depending433

on the sea ice thickness regime in contrast with observations presumably due to limitations in434

the length of the observational record and hence, of the sea ice thickness regime. Although, it435

is important to mention that the correlation coe�cient can vary substantially between ensemble436

members with similar sea ice thickness regime due to the importance of internal variability (Fig. 9).437

438

Results show that for mid-range ice thickness, as in recent decades, a statistically significant439

negative correlation between the winter FSIAE with the following Sept SIE is linked with coastal440

divergence and ice thickness anomalies along the Eurasian coastline as hypothesized in an earlier441

study by Nikolaeva and Sesterikov (1970). On the other end, when sea ice is thicker, positive and442

significant correlations are occasionally found and associated with the persistence of the sea ice443
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in the Greenland Sea or western Beaufort Gyre during the melt season when FSIAE is large and444

more ice recirculates in the Beaufort Gyre. Near a seasonal ice-free cover, the positive correlation445

between winter FSIAE and Sept SIE is associated with ridging north of CAA and in the Lincoln446

Sea which leads to thicker sea ice that survives the melt season in CESM2-LE and CanESM5.447

Finally, the GISS-E2.1-G suggests a restriction of sea ice by the Fram Strait in its negative mode448

due to a thick sea ice bias in its mean climate (Fig. 8c and 4a). While the large-scale atmospheric449

forcing and the winter preconditioning of the sea ice pack associated with the positive and negative450

mode are nearly identical (Fig. 7), it is rather the response of the sea ice to that atmospheric451

pattern that changes with time with di�erent sea ice thickness regimes, i.e., thicker sea ice being452

less mobile and responsive to atmospheric forcing, while thinner sea ice is more responsive. These453

findings suggest that FSIAE will likely remain an important source of Sept SIE predictability over454

the coming decades.455

456
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F��. 1. Model domain, grid, and Fram Strait location (red) for (a) CESM2-LE, (b) GISS-E2.1-G, (c) FLOR-LE,

(d) CNRM-CM6-1 and (e) CanESM5. Model grid lines are shown for every four lines of latitude and longitude,

except for GISS-E2.1-G where each line of latitude is shown. The ocean mask is shown as blue shading.
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F��. 2. (a) Ensemble Mean (thick lines) and range (shading) of the Sea Ice Extent seasonal cycle averaged over

1980-2000 for GISS-E2.1-G (red), CESM2-LE (purple), GFDL FLOR-LE (green), CanESM5 (yellow), CNRM-

CM6-1 (blue), and observations (black) from NSIDC averaged over 1980-2000 (b) Ensemble Mean Fram Strait

Ice Area Export seasonal cycle averaged over the 1980-2010 for GISS-E2.1-G (red), CESM2-LE (purple), GFDL

FLOR-LE (green), CanESM5 (yellow), CNRM-CM6-1 (blue), and estimates derived from observations (Bi et

al., 2016, 2004-2010, black; Kwok, 2009, 1979-2000, dark grey; Smedsrud et al., 2017, 1935-2014, light grey).
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F��. 3. Ensemble Mean spatial May Sea Ice Thickness within the sea ice pack (SIC>15%) averaged over 1980-

2000 for (a) CESM2-LE, (b) GISS-E2.1-G, (c) FLOR-LE, (d) CNRM-CM6-1, (e) CanESM5 and (f) PIOMAS

(Zhang and Rothrock 2003).
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F��. 4. (a) Ensemble Mean (thick lines) and range (shading) of the Sept SIE for CESM2-LE (purple), GISS-

E2.1-G (red), GFDL FLOR-LE (green), CanESM5 (yellow), CNRM-CM6-1 (blue) and observed Sept SIE from

passive microwave (NSIDC & NASA, black). The dashed grey line indicates an ice-free Arctic (1 million km2)

as defined by the Intergovernmental Panel on Climate Change ice-free criteria. (b) Ensemble Mean May Sea

Ice Thickness north of 85N (SIC>15%) for CESM2-LE (purple), GISS-E2.1-G (red), GFDL FLOR-LE (green),

CanESM5 (yellow), CNRM-CM6-1 (blue) and PIOMAS (black).
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F��. 5. 20-year sliding window correlation between the Nov-Jun Fram Strait Ice Area Export and the following

September Sea Ice Extent anomalies typical for one ensemble member of the (a) CESM2-LE EM 1171.009, (b)

GISS-E2.1-G EM7, (c) FLOR-LE EM29, (d) CNRM-CM6-1 EM17 and (e) CanESM5 EM14. The dashed lines

(blue and red) represent 95% significance level (p-value = 0.05). The black dashed line represents the correlation

coe�cient between the FSIAE and the following Sept. SIE anomalies found in Williams et al. (2016). Shaded

areas indicate periods of at least 10 years that are negatively (blue) and positively (red) correlated (p<0.05)

excursions outside of the threshold for a few years allowed. In the following, we refer to the grouping of periods

between sea ice area export and Sept SIE that are positively (negatively) correlated as positive (negative) mode.
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F��. 6. Normalized distribution (by the total number of years per model) of the positive (orange) and negative

mode (blue) as a function of the May mean thickness north of 85°N time period in (a) CESM2-LE, (b) GISS-

E2.1-G, (c) FLOR-LE, (d) CNRM-CM6-1 and (e) CanESM5.
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F��. 7. Detrended May sea ice thickness di�erence between extreme years (|FSIAE|> f) of the mean Nov-Jun

FSIAE averaged over all the periods with positive modes in the early 20th century (d,h), the mid 21st century

(b,i) and negative modes for (a) CESM2-LE, (c) the GISS-E2.1-G, (e) FLOR-LE, (f) CNRM and (g) CanESM5.

The frequency of occurrence of the mode is shown in the top-right corner of each map (see Table 2).
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F��. 8. Detrended September sea ice concentration di�erence between extreme years (|FSIAE|> f) of the mean

Nov-Jun FSIAE averaged over all the periods with positive modes early 20th century (d,h), mid 21st century (b,i)

and negative modes for (a) CESM2-LE, (c) the GISS-E2.1-G, (e) FLOR-LE, (f) CNRM and (g) CanESM5. The

frequency of occurrence of the mode is shown in the top-right corner of each map (see Table 2).
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F��. 9. Scatterplot of the correlation coe�cient between the Nov-Jun FSIAE and Sept. SIE anomalies (see

Fig. 5) for all ensemble members as a function of the Sept SIE (first column) and the May mean thickness north

of 85°N (second column). The dashed line represents the correlation coe�cient between the FSIAE and the

following Sept. SIE anomalies found in Williams et al. (2016)
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F��. 10. Nov-Jun mean sea level pressure averaged over extreme years of the Nov-Jun FSIAE (|FSIAE|> f)

averaged over all the periods within the negative modes for CESM2-LE (1st row), GISS-E2.1-G (2nd row),

FLOR-LE (3rd row), CNRM-CM6-1 (4th row) and CanESM5 (5th row).
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F��. 11. Nov-Jun mean sea level pressure averaged over extreme years of the Nov-Jun FSIAE (|FSIAE|> f)

averaged over all the periods within the positive modes for CESM2-LE (1st row), GISS-E2.1-G (2nd row) and

CanESM5 (3rd row).
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