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A B S T R A C T

The charge distribution within a hollow conducting cylinder with zero-thickness walls is calculated from the
minimum potential energy (𝑈) consideration. The surface charge density consists of a diverging term (Jackson,
1975) and a sum of Legendre polynomials with the coefficients determined from the minimum 𝑈 approach.
The sum converges. This allows to express the capacitance in closed form. It is in agreement with Butler (1980).
We present electric field lines inside and outside of the cylinder. An electric field pattern can be studied in
detail. Most of the numerical analysis is done for the conducting cylinder of the length equal to ten radii. The
surface charge density near the edges diverges; and in the middle, it is twenty five percent less than that of
a uniformly distributed charge. The self-energy of the conducting cylinder is about 5 percent lower than that
of uniformly distributed surface charge.
1. Introduction

Landau and Lifshitz [1] found the electric field of charged conduct-
ing oblate and prolate ellipsoids of rotation. Recently, the half-sphere
capacitance has been solved [2]. The analysis of equally distributed
charges of various finite but not whole surfaces can be found in the
literature [3,4]. It is interesting that the one-dimensional problem of
finding equilibrium charge distribution on a finite straight wire has not
been solved so far [5–7]. The study of a hollow conducting cylinder
of zero thickness, as it is depicted in Fig. 1, can clarify the charge on
the wire problem. Conducting cylinders have attracted vast attention
from scientists and various important results have been published in
a variety of studies. Bruno and Brauder [8] used the finite element
analysis to calculate the scattering of electromagnetic waves from an
infinite as well as from a finite conducting cylinder. Current carrying
truncated cylindrical regions and their resulting electrical and magnetic
properties have been investigated numerically and it has been found
that the results depend significantly on the length of the cylindrical
target [9]. Effects of point charges near an infinite conducting cylinder
ave been evaluated using the Green’s function method. It has been
hown that the net force on the point charge goes to zero as the
adius of the cylinder approaches zero, regardless of the distance of
he external point charge to the conducting line [10]. Sharstein [11]
looked at the electrostatic problem of a hollow, conducting tube of a
finite length held at a constant potential. In another study, Weinheimer
[12] looked into the charge induced by a point charge on conducting
ylinder. The location of the point charge was varied and numerical
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results were presented. In addition to electromagnetic properties, Buikis
and Kalis [13] also investigated the force and temperature distribution
in a finite cylinder.

In [14], the charge on conducting cylinder was found from the
constant voltage 𝑉0 on the surface of the cylinder, in the form of an
infinite sum of terms with singularities on the edges. Earlier works on
this approach are reviewed in [15]. The main advances were made
by Kapitsa et al. [16], Vainshteyn [17], Lebedev and Skalskaya [18],
and Butler [19]. The idea was to write an electric potential on the
surface as an integral which is decomposed into a Fourier series. The
resulting charge density, 𝜎, is a sum of the orthogonal functions along
with corresponding coefficients. Each function contains 1

√

1− 2𝑧
𝐿

, where

𝐿 is the length and 𝑧 is the position along the axis of the cylinder (see
Fig. 1). The charge density as well as the electric field magnitude near
the edges of the cylinder diverge as 1

√

𝑑
, where 𝑑 is the distance from

the edge. The highly fluctuating polynomials in the sum provide that
the condition for electric potential to be constant is met for 𝑁 = 3, that
is with four terms, 𝑛 = 0, 1, 2, and 3, with precision of the order of a
fraction of a percent. Higher precision can be achieved by the increase
of 𝑁 to 6, but dealing with larger 𝑁s brings additional numerical
instabilities. This is why a smaller 𝑁 is preferable. The sum can be
adjusted slightly by applying the least squares method instead of the
orthogonality method, where only a few first terms are kept in the sum.
On the other hand, a few first terms with adjusted coefficients provide
the best agreement with the restrained condition in the least squares
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Fig. 1. The view of hollow conducting cylinder of zero thickness.
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ethod. Verolino [14] sum adjusted in this way still demonstrates a
elatively large deviation from 𝑉0 on the cylinder. One may think that
the much earlier approach proposed by Maxwell [20], in searching the
charge density distribution as a sum of finite polynomials, can lead to
better results. But it cannot work if the resulting distribution is actually
singular on the edge [21]. We propose using Legendre polynomials
along with the Jackson [21] term in order to construct the surface
charge density on the hollow cylinder of radius 𝑎 and length 𝐿. This
ill open the way to considering a full cylinder and approaching the
imit 𝑎∕𝐿 → 0, corresponding to the straight wire. We use a cylindrical
oordinate system 𝑟, 𝜑, 𝑧. Here, 𝑧 is the axis of symmetry of the
ylinder. The origin is in the middle of the cylinder, at 𝑧 = 0 and 𝑟 = 0.
ts radius is 𝑎. We treat a cylinder with zero thickness. The cylinder
as a length, 𝐿, without a base nor top, as shown in Fig. 1. Because
f cylindrical symmetry, the charge density is a function of only the
osition along the cylinder. The natural next step here is to separate
he infinite and finite parts in the function to be found, that is one part
f the surface charge density 𝜎 will contain 1

√

1−
(

2𝑧
𝐿

)2
and another one

is the sum of finite orthogonal polynomials with their coefficients. This
is the novelty of our approach

The least squares method usually means to minimize the deviation
from the theoretical or postulated value. But it can also be used to
find the minimum potential energy state. Hitherto, all efforts have
been applied to solving the constant voltage problem, but no one has
attempted to consider a minimum potential self-energy before.

In this work, we choose to expand the finite part of the charge
distribution 𝜎(𝑧) in Legendre polynomials so as to provide the minimum
self-energy. Details are given in Appendix. The result is that for a
specific ratio of the radius of the cylinder to its length equal to 0.1,
the deviation is comparable to that of the 𝑉 = 𝑉0 approach, with the
same number of coefficients. It should be noted that for the minimum
self-energy 𝑈 state, the condition 𝑉 = 𝑉0 is met in the natural way.
This exact and compact solution for 𝜎, and hence for electric potential
and electric field opens the way to detailed electric field analysis, inside
and outside of the cylinder, closer to the edges. We note that the voltage
with a larger number in the sum for the charge density approaches a
closed form, which can be identified and used for the calculation of
capacitance. This paper is organized in the following manner. Section 2
describes the 𝑈 = 𝑈min method, while specific calculation details are
moved to Appendix. Section 3 outlines the results in terms of 𝜎, 𝑉 ,
capacitance 𝐶, and self-energy 𝑈 . Special attention is paid to the value
of 𝜎 in the midpoint of the axis of the cylinder for a different 𝜉 = 𝑎

𝐿 .
There are only two coefficients which contribute to the total charge,
one near 1

√

1−𝜇2
, where 𝜇 = 2𝑧

𝐿 and one near the Legendre polynomial

0(𝜇) = 𝑃0

(

2𝑧
𝐿

)

= 1. The ratio between the two and how it depends on
is analyzed as well. The electric field components, contour-plots of
ts magnitude, and the field-lines are depicted as well. The closed form
f capacitance is presented in Section 4. Conclusions are provided in
ection 5.
2

2. Model

Total electrostatic potential energy of a charge distribution is given
by

𝑈 = 1
2
𝑘∫𝑄 ∫𝑄′

d𝑄 d𝑄′

|𝒓 − 𝒓′|
. (1)

Here, 𝑘 is the Coulomb constant, 𝒓 is the position of the incremental
charge d𝑄, while 𝒓′ is the position of d𝑄′.

The integration is over the surfaces 𝐴 and 𝐴′, of surface charge
densities 𝜎(𝑧) and 𝜎(𝑧′). Since the cylinder has a zero thickness, the
surfaces 𝐴 and 𝐴′ are identical. The cylinder is of length 𝐿 and radius
𝑎. Eq. (1) extends into

𝑈 = 1
2
𝑘𝑎2 ∫

𝐿
2

− 𝐿
2
∫

𝐿
2

− 𝐿
2
∫

2𝜋

0 ∫

2𝜋

0

𝜎(𝑧) 𝜎(𝑧′) d𝜑′ d𝜑 d𝑧′ d𝑧
|𝒓 − 𝒓′|

, (2)

where

|

|

𝒓 − 𝒓′|
|

=
√

(𝑧 − 𝑧′)2 + 2𝑎2 [1 − cos(𝜑 − 𝜑′)]

=
√

(𝑧 − 𝑧′)2 + 4𝑎2 sin2
𝜑 − 𝜑′

2
. (3)

The surface charge density is assumed in the following form,

𝜎(𝑧) = 𝑄𝑠
2𝜋𝑎𝐿

⎡

⎢

⎢

⎢

⎢

⎣

1
√

1 −
(

2𝑧
𝐿

)2
+

𝑁
∑

𝑛=0
𝑐𝑛𝑃2𝑛

( 2𝑧
𝐿

)

⎤

⎥

⎥

⎥

⎥

⎦

, −𝐿
2

≤ 𝑧 ≤ 𝐿
2
. (4)

he scaling factor 𝑠 is applied in order to keep the total charge 𝑄 the
ame. Here, 𝑃2𝑛 = 𝑃 0

2𝑛 are the Legendre polynomials of the first kind and
order 2𝑛, 𝑐𝑛 are the coefficients to be found. Introducing new variables
𝜇 = 2𝑧

𝐿 , 𝜂 = 𝜑
2 , 𝜌 = 𝑟

𝑎 , and a parameter 𝜉 = 𝑎
𝐿 , 𝜎 and 𝑈 become

𝜎(𝜇) = 𝜎
( 1
2
𝐿𝜇

)

= 𝑄𝑠
2𝜋𝜉𝐿2

[

1
√

1 − 𝜇2
+

𝑁
∑

𝑛=0
𝑐𝑛𝑃2𝑛(𝜇)

]

, (5)

𝑈 = 𝑘 𝜉2𝐿3
∫

1

−1 ∫

1

−1 ∫

𝜋

0 ∫

𝜋

0

𝜎(𝜇) 𝜎(𝜇′) d𝜂′ d𝜂 d𝜇′ d𝜇
√

(𝜇 − 𝜇′)2 + 16𝜉2 sin2(𝜂 − 𝜂′)
. (6)

ntegration over 𝜂 and 𝜂′ can be performed analytically, and we can
rite

= 𝑘 𝜉2𝐿3
∫

1

−1 ∫

1

−1
𝜎(𝜇) 𝜎(𝜇′)𝐺(𝜇, 𝜇′) d𝜇′ d𝜇 (7)

here 𝐺 is

(𝜇, 𝜇′) =
2𝜋𝐾

(

− 16𝜉2

(𝜇−𝜇′)2

)

|𝜇 − 𝜇′
|

. (8)

𝐾 is the complete elliptic integral of the first kind.
The total charge 𝑄 is given by

𝑄 = ∫

𝐿
2

𝐿 ∫

2𝜋
𝜎(𝑧) 𝑎 d𝜑 d𝑧 = 𝜉𝐿2

∫

1

∫

𝜋
𝜎(𝜇) d𝜂 d𝜇 (9)
− 2 0 −1 0
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Fig. 2. The dependence of the charge density on 𝜇 = 2𝑧∕𝐿. The level 1 corresponds to uniform distribution 𝜎0 of the charge, 𝜎0 = 𝑄∕(2𝜋𝑎𝐿).
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and must be constant. It follows that

𝑠 = 2
2𝑐0 + 𝜋

. (10)

o we have for 𝑈

= 𝑘𝑄2

𝜋2𝐿(2𝑐0 + 𝜋)2 ∫

1

−1 ∫

1

−1

[

1
√

1 − 𝜇2
+

𝑁
∑

𝑛=0
𝑐𝑛𝑃2𝑛(𝜇)

]

×

[

1
√

1 − 𝜇′2
+

𝑁
∑

𝑛=0
𝑐𝑛𝑃2𝑛(𝜇′)

]

𝐺(𝜇, 𝜇′) d𝜇′ d𝜇. (11)

The minimum 𝑈 condition is used for finding the coefficients 𝑐𝑛. Their
etermination is described in Appendix.

. Results

The model presented in Section 2 can be used with any value of 𝜉.
umerical results will be shown here for 𝜉 = 0.1. The charge density 𝜎
s found to be:

𝜎 = 𝑄
2𝜋𝑎𝐿

(

0.0877936𝜇6 − 0.201515𝜇4 − 0.102569𝜇2 + 0.206151

+0.544819
√

1 − 𝜇2

)

. (12)

The 𝜎 is shown in Fig. 2.
The self-energy given by Eq. (11) is

𝑈 = 79.606 𝑘 𝑄2

4𝜋2𝐿
, (13)

hile for the uniformly distributed charge from Eq. (6) by setting
𝜎 = 𝑄

2𝜋𝜉𝐿 would be

𝑈 = 83.621 𝑘 𝑄2

4𝜋2𝐿
. (14)

he difference is about 5 percent.
The electrical potential is given by

(𝐫) = 𝑘∫𝑄′

d𝑄′

|𝐫 − 𝐫′|
(15)

where 𝐫 is a general point in space and 𝐫′ is a point on the cylinder, so
that

|

|

𝐫 − 𝐫′|
|

= 𝐿
2

√

(𝜇 − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2(𝜂 − 𝜂′) (16)

nd

(𝜌, 𝜇) = 2𝑘𝑄
3

𝜋𝐿(2𝑐0 + 𝜋)
× ∫

𝜋

0 ∫

1

−1

1
√

1−𝜇′2
+
∑𝑁

𝑛=0 𝑐𝑛𝑃2𝑛(𝜇′)

√

(𝜇 − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2 𝜂′
d𝜇′ d𝜂′.

(17)

does not depend on 𝜂 due to symmetry. It remains constant along
he cylinder with good accuracy, which can be seen in Fig. 3.
Dependence of self-energy on 𝜉 is depicted in Fig. 4, along with the

apacitance 𝐶.
For the same total charge, the capacitance is inversely proportional

o 𝑈 . There is an approximation for 𝐶 in the limit 𝜉 → 0 [20]:

= 𝐿
2 𝑘

1

ln
(

2
𝜉

)

− 1
.

The approximation nearly coincides with our results for 𝜉 < 0.1 which is
demonstrated in Fig. 4. The capacitance obtained with the new solution
is in good agreement with Lekner [15].

The electric field components are calculated from 𝐄 = −∇𝑉 . Be-
cause of symmetry, only 𝐸𝜌 and 𝐸𝜇 are non-zero components here:

𝐸𝜌 = − 1
ℎ𝜌

𝜕𝑉
𝜕𝜌

, 𝐸𝜂 = 0, 𝐸𝜇 = − 1
ℎ𝜇

𝜕𝑉
𝜕𝜇

. (18)

The Lamé coefficients of our coordinate system 𝜌, 𝜂, and 𝜇 are used,
ℎ𝜌 = 𝑎, ℎ𝜂 = 2𝑎𝜌, and ℎ𝜇 = 𝐿∕2.

Explicit formulas for the electric field components are

𝐸𝜌 =
8𝜉𝑘𝑄

𝜋𝐿2(2𝑐0 + 𝜋)

× ∫

𝜋

0 ∫

1

−1

(𝜌 − 1 + 2 sin2 𝜂′)

[

1
√

1−𝜇′2
+
∑𝑁

𝑛=0 𝑐𝑛𝑃2𝑛(𝜇′)

]

[

(𝜇 − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2 𝜂′
]3∕2

d𝜇′ d𝜂′,

(19)

𝜇 = 4𝑘𝑄
𝜋𝐿2(2𝑐0 + 𝜋)

× ∫

𝜋

0 ∫

1

−1

(𝜇 − 𝜇′)

[

1
√

1−𝜇′2
+
∑𝑁

𝑛=0 𝑐𝑛𝑃2𝑛(𝜇′)

]

[

(𝜇 − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2 𝜂′
]3∕2

d𝜇′ d𝜂′. (20)

he electric field component profiles are shown in Figs. 5–7.
We show in Fig. 8 that the coefficient 𝑐0 is close to zero for large
and gradually increases with a decreasing 𝜉. It was found that the
urface charge density at 𝑧 = 0 demonstrates a similar dependence on
𝜉.
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U

𝛼

Fig. 3. Dependence of the electrical potential 𝑉 (red line) at the cylinder and beyond on 𝜇 = 2𝑧∕𝐿. that is 𝑟 = 𝑎 = 𝜉𝐿. The value 1 corresponds to the average value (𝑉avg) of 𝑉
at the cylinder. The dashed line shows the profile of V for the uniformly distributed charge.
Fig. 4. Dependence of the electrical potential energy 𝑈 (red line) and capacitance 𝐶 (green line) on 𝜉. They are drawn relatively to their values at 𝜉 = 0.1. The dashed blue line
depicts Maxwell’s approximate capacitance formula for very small values of 𝜉. The blue asterisks represent the Lekner [15] values. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
T

4

c
b

The equipotential contours of electric potential are shown in Fig. 9,
while those of the electric field magnitude in Fig. 10.

It is possible to plot field lines in the 𝑥𝑧 plane using Euler potentials
(Romashets and Vandas, 2011), because of axial symmetry. There are
two benefits of using Euler potentials for the field lines. The first is to
avoid numerical errors which may happen in field line tracing. Second,
the field lines density is calibrated by the flux and one can see the
increase and decrease of the electric field magnitude from the lines
density. The electrical field in the region not occupied by the charges,
that is where ∇⋅𝐄 = 0, inside and outside of the cylinder, is represented
as

𝐄 = ∇𝛼 × ∇𝛽, (21)

where 𝛼 and 𝛽 are the Euler potentials [22]. We can set 𝛽 = 𝜂. Then 𝛼
is determined using Eq. (21), from which it follows that

𝐸𝜌 = − 1
ℎ𝜇ℎ𝜂

𝜕𝛼
𝜕𝜇

⇒ 𝛼 = −∫ ℎ𝜇ℎ𝜂𝐸𝜌 d𝜇. (22)

sing Eq. (22), we have

(𝜌, 𝜇) = −
8𝜉2𝑘𝑄𝜌
4

𝜋(2𝑐0 + 𝜋)
× ∫

𝜇

0 ∫

1

−1 ∫

𝜋

0

(𝜌 − 1 + 2 sin2 𝜂′)

[

1
√

1−𝜇′2
+
∑𝑁

𝑛=0 𝑐𝑛𝑃2𝑛(𝜇′)

]

[

(𝜇′′ − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2 𝜂′
]3∕2

d𝜂′ d𝜇′ d𝜇′′.

(23)

he integration over 𝜇′ and 𝜇′′ can be done analytically.
In the plane 𝑥𝑧 (i.e., 𝜂 = 0 and 𝜋

2 ), the field lines are contour lines of
𝛼 = const. This method of drawing 𝛼 contour lines is more reliable than
tracing the lines with Eq. (22), because it avoids possible numerical
errors.

The integration over 𝜇′′ yields (see the Eq. (24) in Box I).
The electric field lines are shown in Fig. 11 as contour lines of 𝛼.

. Capacitance

Analysis of electric potential 𝑉0 on the cylinders with the same
harge 𝑄 and different 𝜉 = 𝑎

𝐿 leads to a dependence on 𝜉, which can
e described in terms of a function 𝑓 ,

𝑉 = 𝑘𝑄 𝑓 (𝜁 ), (25)
0 𝜋𝐿
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t

Fig. 5. Dependence of the 𝑧-component of the electric field (red line, in ad-hoc units) along the axis of the cylinder. The dashed line shows the same for the uniformly distributed
harge. The cylinder occupies the interval ⟨−5, 5⟩ in the plot.
Fig. 6. Dependence of the 𝑥-component of the electric field (red line) along the line perpendicular to the axis of the cylinder, which passes through the origin (ad-hoc units but
he same as in Fig. 5). The dashed line shows the same for the uniformly distributed charge. The cylinder occupies the interval ⟨−1, 1⟩ in the plot.
𝛼 =
8𝑘𝜉2𝑄

𝜋2 + 2𝜋𝑐0 ∫

1

−1 ∫

𝜋

0

(𝜇′ − 𝜇)𝜌(𝜌 − 1 + 2 sin2 𝜂′)

[

1
√

1−𝜇′2
+
∑

𝑐𝑛𝑃2𝑛(𝜇′)

]

d𝜂′ d𝜇′

[

𝜉2(𝜌 − 1)2 + 4𝜉2𝜌 sin2 𝜂′
]

√

(𝜇 − 𝜇′)2 + 4𝜉2(𝜌 − 1)2 + 16𝜉2𝜌 sin2 𝜂′
. (24)

Box I.
5
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l

Fig. 7. Dependence of (a) the 𝑥-component and (b) the 𝑧-component of the electric field (red lines) along the line 𝑥 = 𝑎 (ad-hoc units but the same as in Figs. 5–6). The dashed
ine shows the same for the uniformly distributed charge. The cylinder occupies the interval ⟨−5, 5⟩ in the plots.
Fig. 8. Dependence of the charge density at 𝑧 = 0 (blue line) and the coefficient 𝑐0 (red line) on 𝜉. For the charge density, the level 1 corresponds to the uniform charge
distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝐶 = 𝜋𝐿
𝑘

1
0.0205 tanh(8.1−3𝜁)+0.0205

(

0.0000153554|𝜁−6.5|4.2+0.009
)1.3 + 3.05607(𝜁 − 0.955856){tanh[3(𝜁 − 2.7)] + 1}

, (27)

Box II.
where 𝜁 = ln 2
𝜉 . The function is depicted in Fig. 12.

It is given by

𝑓 =
0.0205 tanh(8.1 − 3𝜁 ) + 0.0205

(

0.0000153554|𝜁 − 6.5|4.2 + 0.009
)1.3

+ 3.05607(𝜁 − 0.955856){tanh[3(𝜁 − 2.7)] + 1}. (26)

The capacitance in closed form is found to be (see the Eq. (27) in
Box II) and it provides a good agreement with the model, for small and
large 𝜉.

5. Conclusions

A solution of the surface charge density distribution of a finite
length, radius, and zero-thickness conducting cylinder is found. It is
used for the calculation of self-energy, electric potential and field, and
6

capacitance in a closed form. The least squares method was applied in
order to find the minimum potential energy state. Basic functions were
the Jackson [21] term and Legendre polynomials of even power. The
results show that the charge density provides a constant voltage on the
cylinder.
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Fig. 9. Contour lines 𝑉 , calculated using Eq. (17), in the 𝑥𝑧 plane. They are scaled
y 𝑉avg, the same as in Fig. 3. The red lines show the extension of the cylinder. They
ollow the contour line labeled by 1. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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ppendix

Eq. (11) is symbolically rewritten into the form

= 𝑘𝑄2

𝜋2𝐿

𝑐20𝐼00 + 2𝑐0
(

∑𝑁
𝑛=1 𝑐𝑛𝐼0𝑛 + 𝐼0

)

+
∑𝑁

𝑛=1
∑𝑁

𝑚=1 𝑐𝑛𝑐𝑚𝐼𝑛𝑚 + 2
∑𝑁

𝑛=1 𝑐𝑛𝐼𝑛 + 𝐼

(2𝑐0 + 𝜋)2

(A.1)

where

𝐼𝑛𝑚 =
1 1

𝑃2𝑛(𝜇)𝑃2𝑚(𝜇′)𝐺(𝜇, 𝜇′) d𝜇′ d𝜇, (A.2)
7

∫−1 ∫−1
Fig. 10. Contour plot of electric field magnitude 𝐸, calculated using Eqs. (19)–(20), in
the 𝑥𝑧 plane. 𝐸 is plotted in ad-hoc units but the same as in Figs. 5–7. The extension
of the cylinder is shown by thicker black lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

𝐼𝑛 = ∫

1

−1 ∫

1

−1

𝑃2𝑛(𝜇)𝐺(𝜇, 𝜇′)
√

1 − 𝜇2
d𝜇′ d𝜇, (A.3)

𝐼 = ∫

1

−1 ∫

1

−1

𝐺(𝜇, 𝜇′) d𝜇′ d𝜇
√

(1 − 𝜇2)(1 − 𝜇′2)
. (A.4)

It holds 𝐼𝑛𝑚 = 𝐼𝑚𝑛 because the integrand is symmetric with respect to
𝜇 and 𝜇′.

For 𝑈 to be a minimum, it must hold

𝜕𝑈
𝜕𝑐𝑛

= 0, 𝑛 = 0,… , 𝑁. (A.5)
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s

E

E

Fig. 11. Electric field lines drawn as 𝛼 contour lines. The extension of the cylinder is
hown by thicker black lines.

q. (A.5) yields for 𝑛 = 0

𝑐0 =
2
∑𝑁

𝑛=1
∑𝑁

𝑚=1 𝑐𝑛𝑐𝑚𝐼𝑛𝑚 + 4
∑𝑁

𝑛=1 𝑐𝑛𝐼𝑛 + 2𝐼 − 𝜋
∑𝑁

𝑛=1 𝑐𝑛𝐼0𝑛 − 𝜋𝐼0
𝜋𝐼00 − 2

∑𝑁
𝑛=1 𝑐𝑛𝐼0𝑛 − 2𝐼0

,

(A.6)
8

Fig. 12. The 𝑓 from Eq. (25) as a function of ln (2∕𝜉). Blue line – formula, red –
calculations from self-energy. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

and for 𝑛 > 0
𝑁
∑

𝑚=1
𝑐𝑚𝐼𝑛𝑚 = −𝐼0𝑛𝑐0 − 𝐼𝑛. (A.7)

The coefficients are determined by an iteration. With known 𝑐𝑛, 𝑛 > 0,
q. (A.6) provides 𝑐0 (in the beginning we set 𝑐𝑛 = 0 for 𝑛 > 0). This 𝑐0
is substituted into Eq. (A.7) which then represents a system of linear
equations for the remaining 𝑐𝑛. These 𝑐𝑛 are used in Eq. (A.6) and
the procedure repeats until a prescribed precision of the coefficients
is achieved. We get the following set of coefficients: 𝑐0 = 0.264676,
𝑐1 = −0.260131, 𝑐2 = −0.0343165, 𝑐3 = 0.0111614.
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