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ABSTRACT With recent advancements in the telecommunication industry and the deployment of 5G
networks, radio propagation modeling is considered a fundamental task in planning and optimization.
Accurate and efficient models of radio propagation enable the estimation of Path Loss (PL) or Received
Signal Strength (RSS), which is used in a variety of practical applications including the construction
of radio coverage maps and localization. Traditional PL models use fundamental physics laws and
regression-based models, which can be guided with measurements. In general, these methods have small
computational complexity and have been highly successful in attaining accurate models for settings with
trivial environmental complexity (e.g., clear weather or no clutter). However, attaining high accuracy in
radio propagation modeling at complex settings (e.g., an urban setting with many buildings and obstacles)
has required ray tracing, which computationally complex. Recently, the wireless community has been
studying Machine Learning (ML)-based modeling algorithms to find a middle-ground. ML algorithms have
become faster to execute and, more importantly, more radio data measurements have become available
with the increased deployment of wireless devices. In this survey, we explore the recent advancements in
the use of ML for modeling and predicting radio coverage and PL.

INDEX TERMS Path Loss; Machine Learning; Radio Propagation; Wireless Channel Modeling; Neural
Networks
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I. Introduction
In radio communication, a wireless signal is transmitted from
a Transmitter (Tx) to a Receiver (Rx) via unguided free
space. When a signal is propagating in free space, during the
transmission it can undergo attenuation caused by reflection,
absorption, and refraction. This loss in signal strength during
propagation is referred to as PL, and understanding this
loss in radio signals has attracted a lot of attention over
several decades of wireless research as it enables many
practical applications such as localization, radio engineering,
and cellular system optimization. In general, the PL is
measured in decibels (dB) and defined as the difference in
the transmitted signal strength to the RSS.

Apart from free space, loss in signal strength can also be
caused by terrain type, clutter height, the type of environ-
ment (urban, rural and suburban), the nature of propagation
medium, the number and height of buildings which the
signal needs to penetrate, the antennas’ radiation pattern,
type of antenna used, and the location of antennas to name
a few. PL calculation is useful for link budget calculation,
coverage prediction, system performance optimization, and
selecting the location for a Base Station (BS). Measuring PL
in the location of interest is always an expensive and time-
consuming process. To avoid such measurement costs, the
calculation of PL is called ‘PL prediction’ and it enables
prediction of how much power is to be received at the
Rx end, i.e., RSS prediction, which is typically the main
goal of radio propagation models. Several PL prediction
techniques are developed, including closed-form models us-
ing fundamental physics laws without actual measurements,
fitting closed-form models to measured data, and purely
empirical models. Radio propagation models are used to
calculate PL in different environmental settings. Traditional
radio propagation models are formulated based on two ways:
(i) Empirical models and (ii) Deterministic models.

Empirical models are based on the measured data and
averaged losses, which enables the computation of the re-
ceived signal level in each propagation medium. Empirical
models use the relationship between PL and environmental
parameters for modeling and are computationally efficient in
many cases. Though results produced by the empirical mod-
els are not very accurate as they take only a few environmen-
tal parameters for the calculation. Numerous commercially
available prediction tools are based on these models such as
the Lee model [1], the Okumura-Hata model [2] for urban
and suburban environments, the Walfish ilkegami model [3]
for the dense urban environment, which is specifically useful
in a microcellular system where antennas are deployed lower
than building’s height.

Deterministic models are also called geometric models
which estimate signal power directly from the path profile.
Deterministic models use detailed environmental information
such as 3D maps, satellite images, terrain information, and
antenna type. Ray tracing is one of the most common deter-
ministic methods used for both indoor and urban scenarios
[4]. The theory of these models is computed by numerically
solving Maxwell’s equation and it obeys the physical laws
of wave propagation [5]. As deterministic models consider
more parameters for calculation, results produced by them
are considered more reliable than empirical models. How-
ever, they are more computationally expensive than empirical
models as they require more time and power to compute. In
general, deterministic models are used for short propagation
paths as the accuracy of the PL prediction becomes more
dependent on the environmental details (e.g., multipath or
shadowing effects) for shorter paths.

A. ML-based vs. Traditional PL Models
Increased deployment of wireless devices generates more
data about radio propagation behavior. It has become rel-
atively easier to measure radio signals in different scenarios.
The availability of such diverse data and the increase in ML
computation efficiency enable ML-based radio models to be
more accurate [6], which has increased the amount of such
ML-based models in the community. In parallel, more wire-
less device deployment has increased the contention for radio
spectrum resources and it has also increased interference. It
has become expected that radio signals are generated more
intelligently so that interference is minimized [7], [8]. This
too has increased the efforts to use ML-based models in radio
transmissions. For instance, DARPA’s Spectrum Challenge
[9] encourages wireless transceivers to figure out how to
share highly contentious radio frequencies if no regulation
is imposed [10]. Such initiatives have motivated researchers
to build radio systems where propagation is inferred using
advanced ML-based techniques [11]–[14].

PL prediction using ML models involve four high-level
stages, as illustrated in Fig. 1. First and foremost is to
collect a diverse set of data from various environments and
identify relevant features from raw data to represent the radio
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FIGURE 1. ML-based PL Prediction Procedure

environment effectively. Second is to select an ML method
that fits well to the setting and frequencies being targeted.
Commonly used ML methods for PL prediction are Random
Forest (RF), Support Vector Regression (SVR), K-Nearest
Neighbors (KNN), Neural Network (NN), Decision Tree
(DT), and Convolutional Neural Network (CNN). Then, ML-
based models are trained and validated over data collected
in different environments. Finally, the models are evaluated
and their hyperparameters are tuned using common error
calculation methods.

ML-based PL models offer a new opportunity to bet-
ter capture radio propagation, but they also face several
challenges. Table 1 summarizes key differences between
traditional and ML-based PL models. Traditional PL models
mainly rely on mathematical formulations derived from
physical principles as well as limited empirical measure-
ments. On the other hand, ML-based approaches leverage
empirical data to model PL [15]. While traditional PL mod-
els offer simplicity and computational efficiency, ML-based
models’ major advantage is their ability to achieve high ac-
curacy in complex environments. In terms of computational
complexity, both traditional and ML-based approaches have
their own strengths and weaknesses.

B. Surveys of ML in Wireless Modeling
Surveys on radio propagation and coverage date back to
several decades ago. A comprehensive survey of radio prop-
agation models is done by Phillips et al. [16] who examine
various PL prediction methods, including theoretical, em-
pirical, ray-optical, and measurement-based approaches. The
survey captures fundamentals of propagation modeling under
various settings. Focusing again on fundamentals, Hrovat
et al. [17] reviews advancements in tunnel radio propa-
gation modeling, focusing on numerical methods, waveg-
uide approaches, ray tracing, and two-slope PL models,
and evaluates them based on complexity and environmen-

TABLE 1. ML-based vs. Traditional PL Models

ML-based Models Traditional Models
Learn complex relationships be-
tween various input features and
PL from datasets

Rely on environment and propa-
gation characteristics such as dis-
tance, frequency, antenna height,
and terrain type

Automated feature selection Manually selected features

Can adapt to diverse and complex
environments or changes in the
environment

Often based on specific assump-
tions and may require manual
calibration to capture environ-
mental changes and diversity

Require labelled data for training Rely on mathematical equations

Computational complexity de-
creases with less learning capa-
bility

Computational complexity in-
creases with more accuracy

tal information required. Recently, Diago-Mosquera et al.
[18] have offered a review of indoor radio propagation
characteristics in terms of PL mechanisms and fading and
shadowing effects, and have introduced a new channel model
taxonomy emphasizing the need for accurate modeling in
small cells. The survey compares empirical, physical, and
hybrid modeling methods – which we also utilize in some
of our sub-taxonomy of the ML-based radio propagation
modeling literature. Similarly, Al-Saman et al. [19] have
recently reviewed mmWave channel measurement studies in
indoor environments, focusing on measurement techniques,
PL models, and delay spread for frequencies from 28 to
100 GHz. These surveys focus on traditional (e.g., physics-
and/or regression-based) models and do not cover the recent
ML-based propagation modeling literature.

As the use of ML has increased in the field, there have
been several recent surveys on using ML in radio propagation
and wireless channel modeling. Chiroma et al. [20] and
Mladenovic et al. [21] survey Deep Learning (DL) methods
for developing radio propagation models. These surveys
focus on DL and do not cover traditional regression-based
methods. In their invited articles, Huang et al. survey ML
methods for antenna and channel optimization [22] and
inference of application-specific scenarios from the outcome
of the radio propagation model [23]. These surveys offer a
high-level taxonomy of the existing literature on ML use for
wireless modeling and do not delve into how ML methods
are applied to certain problems. Seretis and Sarris [24] also
survey DL methods for radio modeling and present a case
study of using an Artificial Neural Network (ANN) to predict
RSS through a straight circular-shaped tunnel. The survey
also does not cover the legacy methods and only offer a
high-level taxonomy of ML in radio modeling. Aldossari and
Chen [25] survey legacy as well as reinforcement learning
methods on radio wireless channel modeling, but do not
cover recent data-driven DL methods that emerged in the
last few years.
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These prior surveys have made excellent coverage on
various aspects of radio propagation and wireless channel
modeling using ML. However, a comprehensive survey that
covers traditional regression-based methods and the recent
DL methods is lacking. With this survey, we aim to fill
this gap by making a taxonomy of the most recent ML
studies in radio modeling, discuss their pros and cons with
respect to the legacy methods as well as among them,
and delve into how some of the recent ML methods are
applied to various radio propagation modeling problems.
Another major difference of our survey is that it offers
tutorialistic content both on radio propagation fundamentals
and ML methods used for radio propagation modeling. This
tutorialistic content is appropriate for researchers new to the
area of propagation modeling.

In a similar direction, there have been a number of surveys
on indoor localization methods. Liu et al. [26] reviews
indoor positioning systems, focusing on triangulation, scene
analysis, proximity, and location fingerprinting. Zafari et
al. [27] conducts a detailed survey of indoor localization
techniques such as Angle of Arrival (AOA), Time of Arrival
(TOA), Time Difference of Arrival (TDOA), and examines
various technologies including Wi-Fi, Radio Frequency Iden-
tification (RFID), Ultra-wideband (UWB), and Bluetooth.
The survey investigates these systems based on energy
efficiency, availability, cost, range, latency, scalability, and
accuracy, and identifies challenges in achieving accurate
indoor localization. In response to increased use of ML
for indoor positioning, Roy and Chowdhury [28] reviews
recent ML advancements for indoor localization, covering
methods from traditional algorithms to DL. The survey
discusses challenges with dynamic data, improvements from
techniques like Extreme Learning Machine (ELM) and NN,
and addresses benchmarking issues. Nessa et al. [29] reviews
ML techniques for enhancing indoor positioning systems
in terms of accuracy and reliability. Their survey covers
both supervised and unsupervised ML methods and their
integration with various technologies, and contrasts them
with traditional algorithms. Though these surveys on indoor
localization relate to our survey, we focus on RSS prediction
in indoor settings and do not cover indoor positioning
literature.

C. Survey Organization and Taxonomy
In this paper, we survey recent advances in ML-based PL
prediction in wireless radio systems. We outline key metrics
and parameters used for mapping the PL prediction problem
to an ML framework. We systematically cover ML methods
using regression and DL, and discuss their key pros and
cons for the PL prediction problem. With a focus on RSS
prediction, we elaborate on various applications of ML-
based PL prediction in outdoor and indoor settings. We
also briefly discuss future opportunities and challenges in
this direction of research. This survey does not introduce
new propagation models but offers a new reading of ML-

based radio propagation models. We scope the survey to
sub-6 GHz bands to make a comprehensive coverage of all
key propagation models applicable in these frequencies in a
single paper.

We categorize the ML-based radio propagation models in
terms of their use of regression (Section IV.B) or neural
networks (Section IV.C), as shown in (Figure 6). With a
focus on the type of data being used, we taxonomize the
ML-based radio propagation models based on what type
of data they use: ray tracing only (Table 5), measured
data only (Table 7), and ray tracing and measured data
together (Table 6). We also categorize these models in
terms of their applicability to frequency bands and urban
or suburban settings. We structure the discussion of ML-
based RSS prediction approaches in terms of model-based
prediction, data-driven prediction, and hybrid models, as
shown in Figure 16. Following this structure, we elaborate on
the outdoor and indoor RSS prediction methods separately.

The rest of this paper is organized as follows: First,
Section II offers a tutorial of fundamentals of radio prop-
agation modeling by covering the commonly used models
in the literature. Readers knowledgeable in radio propa-
gation modeling may skip this section. Then, in Section
III, we discuss the types of raw radio data used for radio
propagation modeling and how these raw data is processed
(including feature selection and construction) for use in ML
algorithms. In Section IV, we describe how ML algorithms
view the problem of radio propagation modeling and give
an overview of the ML algorithms, by categorizing them
into regression-based and DL-based algorithms, used in the
radio propagation modeling literature. Section V offers a
new taxonomy of ML-based methods by defining model-
based, data-driven, and hybrid methods for RSS prediction.
Following this taxonomy, Sections VI and VII cover the
studies about RSS prediction in outdoor and indoor settings,
respectively. A difference in Section VII is that it presents
a detailed discussion on how RSS predictions in indoor
environments are used for building maps of radio coverage.
Section VIII offers a discussion of open research problems
in radio propagation modeling. Finally, we summarize the
paper in Section IX and discuss possible future work.

II. Radio Propagation Fundamentals
Radio propagation models help to predict how waves prop-
agate through different environments and they are an es-
sential tool for network planning and optimization in the
telecommunications industry, helping engineers and planners
estimate signal strength, coverage, and interference in var-
ious propagation environments. We, next, discuss some of
the commonly used radio propagation models.

A. Free-Space Path Loss (FSPL)
FSPL model is used to determine the attenuation of a signal
as it travels through free space without any obstacles in its
Line-of-Sight (LOS). FSPL formula is derived from Friis
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equation [30], [31]:

Pr

Pt
= DtDr

(
λ

4π

)2

d−ρ (1)

where Pt is the signal power at the Tx, Pr is the received
signal power at the Rx, Dt and Dr are the degree to which
the radiation emitted is concentrated in a single direction of
the Tx and Rx respectively, λ is the signal wavelength, d
is the distance in meters between the Tx and Rx antennas,
and ρ is the Path Loss Exponent (PLE). PL is commonly
expressed in dB as:

L=10 log(Pt/Pr) (2)
=20 log(4π) + 10ρ log d− 20 log λ− 10 log(DtDr). (3)

PL increases exponentially with the distance between the
Tx and the Rx and the value of ρ expresses how fast this
increase is. ρ can vary between 2 and 4, depending on how
lossy the environment is. ρ is 2 for free space; and hence,
the FSPL can be expressed in dB as:

LFSPL=20 log(4πd)− 20 log λ− 10 log(DtDr). (4)

By assuming speed of light for the radio signal propagation,
the above wavelength-based loss model can conveniently be
expressed in terms of frequency as:

LFSPL = 20 log(df)− 10 log(DtDr)− 147.56, (5)

where f is the frequency in Hz. The directivity values
provide a good handle in terms of incorporating the hetero-
geneity of the Tx and Rx antennas. For isotropic antennas,
directivity is 1. Though specifics depend on how the antenna
is designed, a commonly used expression for directivity is

2
1−cos(θ/2) for a conical antenna beam where θ is the half-
power beamwidth.

Higher directivity means that more of the signal power is
transmitted or received in comparison to an omni-directional
antenna. Usually, this implies that the antenna can Tx or Rx
over longer distances. Hence, the directivity of the antennas
is expressed as part of their gain in dB. Let Gt = 10 logDt

and Gr = 10 logDr be the gains of the Tx and Rx antennas,
respectively. We can, then, revise (5) as:

LFSPL = 20 log(df)−Gt −Gr − 147.56. (6)

FSPL is applicable only in far field, i.e., when d >> λ
and is a simple model for estimating PL in obstacle-free
environments. However, a major limitation of this model is
that it does not account for obstacles. Therefore, it cannot
be applied to many real-world environmental conditions,
limiting its practical applicability.

B. Two-Ray Ground Reflection (TRGR) Model
The TRGR model considers both the direct path and ground
reflection path between Tx and Rx, as illustrated in Fig.
2. This model is particularly useful with environments with
clear LOS and the distance to the ground is small. Further,
it applies to the scenarios with the reflective ground surface.

The model calculates the PL by using the following formula
[32]

LTwoRay =
Pr

Pt
=

Gh2
Bh

2
R

d4
, (7)

where G is the antenna gain [32], hB is the height of the
Tx, and hR is the height of the Rx. This PL model can be
expressed in dB as:

LTwoRay = 40 log d− 10 logG− 20 log(hBhR). (8)

The main capability of this model is to capture the impact
of the signal reflecting from the ground while keeping the
model simplistic, similar to the FSPL model. The model is
applicable to all frequencies, however, it is more accurate for
lower frequencies where ground reflection is more promi-
nent.

Direct ray

Ground-reflected ray

Transmitter Receiver

FIGURE 2. TRGR model

C. Okumura-Hata Model
Okumura-Hata Model is one of the widely used empirical
radio propagation models. It models the PL by using the
logarithmic form f +h log10 d, where f and h are functions
expressing the signal frequency and the antenna heights, and
d is the distance between the Tx and Rx antennas. This
is a quite useful form as it enables simple mathematical
manipulations of the channel model. It is commonly used for
frequency bands between 150 MHz and 1.5 GHz. It considers
frequency, BS antenna height, and the distance between the
Tx and Rx for calculating PL. The model calculates the
median PL in dB by using the following formulas, for urban
and suburban environments [33], [34]:

LUrban
OH = 69.55 + 26.16 log f − 13.82 log hB

−Cm + [44.9− 6.55 log hB ] log d, (9)

LSuburban
OH = LUrban

OH − 2

(
log

f

28

)2

− 5.4 (10)

where f is the frequency in MHz, and Cm is a constant
offset in dB.

The Okumura-Hata model is more suitable for the calcu-
lation of PL in urban and suburban areas. The model lacks
accuracy in rural environments and mountain areas and also
has frequency limitations such as the assumption of static
antenna height and omnidirectional antennas.
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D. COST 231
COST 231 [3] is the extension of the Hata model devel-
oped by European Cooperation in the Field of Scientific
and Technical Research (COST) specifically for European
markets. The COST 231 model is particularly effective in
the frequency range of 500 MHz to 2 GHz, making it
especially well-suited for applications such as GSM1800 in
urban environments. COST 231 model calculates PL in dB
by using the formula [35], [36]:

LCost231 = 46.3 + 33.9 log f − 13.82 log hB − a(hR) +

(44.9− 6.55 log hB) log d+ C (11)

C is the constant, C=0 for medium cities and suburban areas,
C=3 for metropolitan areas. a(hR) is the mobile station
antenna height correction factor as described in the Hata
Model for urban areas.

E. Walfisch-Ikegami Model
Walfisch-Ikegami model is useful in calculating PL in urban
and suburban environments. It takes into account street orien-
tation, building heights, street width, frequency of operation,
and antenna heights for greater accuracy. For LOS settings,
the model [37] is expressed as

LLOS
WI = 42.6 + 26 log d+ 20 log f. (12)

For Non-Line-of-Sight (NLOS) settings, the model combines
several loss components:

LNLOS
WI =

{
LFS + Lrts + Lms, L0 + Lrts + Lms > 0

0, LFS + Lrts + Lms ≤ 0
(13)

where LFS represents free-space loss, Lrts is rooftop-to-
street diffraction and scatter loss, and Lms is the loss due
the multi-screen diffraction [38]. These transmission losses
are given by

LFS = 32.4 + 20 log d+ 20 log f, (14)
Lrts = −16.9− 10 logw + 10 log f + 20 log∆hroof

+Lori, and (15)
Lms = Lbsh + ka + kd log d+ kf log f + 9 log b, (16)

where w is the width of the roads in meters, b is the building
separation distance in meters, d is the distance in km, and
∆hroof = hroof − hm. As shown in Fig. 3, hm and hroof are,
respectively, the height (in meters) of the mobile and the
roof height of the building that reflects the signal. Lbsh is
the shadowing gain and it is calculated as

Lbsh =

{
−18 log(1 + ∆hbase), hbase > hroof

0, hbase ≤ hroof
(17)

where ∆hbase = hbase − hroof. The factor ka signifies the
additional PL encountered by BS antennas when situated
below the rooftops of nearby buildings and it is represented
as

ka =


54, hbase > hroof

54 + 0.8∆hbase, d ≥ 0.5 and hroof ≤ hbase

54 + 0.8d∆hbase
0.5 , d < 0.5 and hroof < hbase.

(18)

hbase

b w

hroof
hm

hroof

hbase

d
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FIGURE 3. Walfisch-Ikegami model parameters
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FIGURE 4. Walfisch-Ikegami model’s street orientation parameter

The parameters kd and kf respectively govern the relation-
ship between multi-screen diffraction loss and distance, and
radio frequency. They are calculated as follows:

kd =

{
18− 15

(
∆hbase
hroof

)
, hbase ≤ hroof

18, hbase > hroof

(19)

kf = −4 +

0.7
(

f
925 − 1

)
, medium-size city or suburb

1.5
(

f
925 − 1

)
, metropolitan center.

(20)
Lori is the orientation factor that captures the loss due to
street orientation with respect to the BS, as shown in Fig. 4.
It is represented as

Lori =


−10 + 0.354ϕ, 0◦ ≤ ϕ < 35◦

2.5 + 0.075(ϕ− 35◦), 35◦ ≤ ϕ < 55◦

4.0− 0.114(ϕ− 55◦), 55◦ ≤ ϕ < 90◦.

(21)

The Walfisch-Ikegami model is considered to be highly
accurate for urban environments as it captures even the street
orientation. Since the model focuses on capturing an urban
environment’s geometry, it boils down to the FSPL model
when such components do not exist in the environment, and
hence, performs poorly for rural environments. It is compu-
tationally complex as it considers environment’s geometry
to calculate the Lrts and Lms components. Due to its high
computation requirements, it has limited use in real-time
applications.

F. Lee Model
Lee model is one of the most accurate models and it is
designed for microcellular environments. Lee PL model
is used to model a flat terrain and operates around 900
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MHz. It accounts for both outdoor and indoor propagation
characteristics, and can be used for various terrains like
urban, suburban, and open areas. The Lee model calculates
the PL by using the following formula [39]–[43]:

Pr = Pr0 − γ log

(
r

r0

)
+Geffh(he)− L−Af + α (22)

where Pr is the received power, Pr0 received power at the
intercept point r0 in dBm, γ is the PL slope, r is the distance
between Tx and the Rx in kilometers, r0 is the distance
between the Tx and the intercept point in kilometers, α is a
factor of antenna heights, he is the effective antenna height,
Geff(he) is gain from effective antenna height, L is actual
antenna height at the Tx, and Af is the maximum effective
antenna height.

G. Egli Model
The Egli model was developed by John Egli in 1957. It
is a terrain-dependent model, mainly developed for forest
environments. It takes into consideration trees and uneven
terrain. This prediction model is applicable in the frequency
range of 40-900 MHz and with a distance range of less than
60 km. The Egli model has limited applicability outside
forest areas. The median PL in dB according to the Egli
model [44]–[46] is

LEgli = 117 + 40 log d+ 20 log f − 20 log(hB − hR). (23)

H. ITU-R P.1546 Model
ITU-R P.1546 Model was developed by the International
Telecommunication Union (ITU). It is suitable for predicting
PL in rural, urban and suburban environments. ITU-R P.1546
model is useful for outdoor short-range propagation with
the frequency range from 30 MHz to 4,000 MHz [47].
This model takes into account crucial factors such as the
effective height of the transmitting antenna, corrections
based on the receiving antenna height, and adjustments
related to the Terrain Clearance Angle (TCA) [48], [49].
TCA correction may be added to increase the prediction
accuracy, enabling consideration of obstacles close to the Rx
site. This correction is determined by the TCA in degrees,
expressed as the difference between the measured TCA
and the reference TCA. The model takes into account the
angular differences of the positions of the Tx and the Rx
and considers field strengths of different paths the signal can
take. These considerations contribute to a comprehensive and
accurate prediction of the radio wave propagation in diverse
outdoor scenarios.

I. Log-Distance Path Loss (LDPL)
LDPL is an extension of the FSPL model. It considers the
shadowing effect that can be caused by objects in dense
environments such as buildings. So, it is useful to estimate
PL for a wide range of environments mainly for urban or
densely populated locales, traversing significant distances

within buildings. LDPL calculates PL in decibel by using
the following formula [32], [50]:

LLDPL = PL0 + 10ρ log10
d

d0
+X (24)

where d0 is the reference distance, PL0 is the PL at the
reference distance d0, ρ is the PLE, X is a zero-mean
Gaussian distributed variable. LDPL has limited applicability
with rural and hilly terrain regions but accuracy can be
improved with certain modifications [51].

III. Radio Data Preparation for ML
Collecting data, representing real scenarios, and preparing
it by removing irrelevant parts are important steps in ML-
based modelling since a large amount of data is needed to
train the ML models. Data preparation starts with raw data
collection, data preprocessing and feature extraction. Then,
these data are used for training and performance evaluation
(testing) for the ML methods.

A. Raw Radio Data
Radio measurement plays a key role in RSS prediction and
radio map construction. RSS field measurements can be
gathered in a few different ways. The most used methods
are data collection through measurement and simulation.
Data collected through physical measurement typically in-
cludes various signal measurements such as location, RSS,
frequency, and phase. We give a brief description of the
common radio data gathering methods below:
Fixed-point Method: The fixed-point method requires setting
reference points in the entire survey location. RSS and
coordinates are recorded for each reference point. Skilled
workers and special types of equipment are required to
collect data. This process is expensive since it requires a
lot of manpower and time to create the database.
Walking Method: Instead of using reference points, land-
marks and predesigned pathways are used for position
reference in the walking method. Surveyors first label the
landmark for the position reference and walk at a constant
speed in the predesignated path. [52], for example, used a
robotic vacuum cleaner to move in predesigned pathways to
collect data and construct a radio map.
Drive Test: Drive test involves physically driving on a des-
ignated route while measuring various network parameters
to evaluate coverage, signal strength, quality, and other
network performance metrics. Drive tests provide valuable
insights into the real-world performance of wireless net-
works and help network operators optimize their systems
for better coverage, quality, and user experience. One of
the major downsides of the conventional drive test is its
high operational expenditure. To overcome this challenge the
3rd Generation Partnership Project (3GPP) community have
come up with the solution named Minimization of Drive
Tests (MDT) in their Release 10 (Rel-10) [53]. MDT enables
operators to monitor network performance in real time,
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detect issues promptly, and optimize measurement coverage
more comprehensively. It enables operation, administration
and maintenance to collect radio measurements and location
information from User Equipment (UE) even when it is idle.
This minimizes the need for manual drive tests, reducing
costs and improving efficiency. Later in 3GPP Release 11,
MDT is enhanced to provide the complete view of network
performance [54].
Crowdsourcing: In the crowdsourcing method, the data set is
built with the help of a large group of people. There are sev-
eral publicly available crowdsourcing databases. OpenCellID
[55] and OpenBmap [56] are a few of them. Volunteers
install apps on their mobile phones and the app collects
the signal quality information when the user travels. The
crowdsourced data collection method holds its advantages
as well as disadvantages. Crowd-sourced data is very cost-
effective and less time-consuming. It collects raw signal mea-
surements and this information is considered more reliable
than coverage maps provided by the service provider. Also,
it provides information about the serving BS locations. A
key challenge is the difficulty in differentiating indoor vs.
outdoor measurements. Indoor data is more sensitive less
reliable than outdoor data as the coverage map changes even
for changes made in wall decorations and furniture etc. So,
periodic updates of the radio frequency coverage map are
required to maintain the quality. Further, this data collection
method depends on volunteers and devising a sustainable
framework to regularly update the radio data is challenging
due to the need to incentivize volunteers.
Simulation: Simulated data collection is another way of col-
lecting data, where network topology is generated with ray
tracing software. A few of the commonly used simulations
are Wireless Insite SignalPro® by EDX Wireless, Inc. [57],
[58], WinProp software (Altair HyperworksTM) [59], and
Remcom Wireless Insite [60]. Different types of ray tracing
methods and algorithms are used to generate data based on
the need. In general, raw data consist of information such
as location, height, azimuth, tilt, Tx power, frequency, and
antenna type of the BS.

Obtaining clean measurements are crucial in radio prop-
agation modelling. To achieve clean measurements, re-
searchers have used data preprocessing strategies (to be
detailed next). De-noising, averaging or smoothing algo-
rithms are employed to remove random fluctuations [61],
and data labelling [62], [63] and cross-validation [64], [65]
are performed by identifying and discarding unreliable mea-
surements. Standard measurements such as Reference Sig-
nal Strength Indicator (RSSI) or Reference Signal Strength
Power (RSSP) are commonly utilized, especially in the
crowdsourcing method. RSSI and RSSP can vary in their
interpretation and may not always account for interference.
Interference, whether from nearby devices or environmental
factors, can significantly impact the accuracy of measure-
ments. Techniques like signal filtering can effectively miti-
gate the interference effects [66]. Indeed, ML algorithms can

understand patterns in the collected data, enabling them to
adapt and compensate for interference dynamically [67].

B. Data Preprocessing
Data preprocessing is considered one of the important steps
in data processing since raw data has a lot of redundancies
and errors. Cleaning the raw data at this stage can be
quite complicated and may require the use of ML, e.g., the
authors of [68] used manual marking of the data and the NN
toolbox of MATLAB for data preprocessing. In general, data
preprocessing consists of the following major tasks: Data
cleaning, dimensionality reduction, scaling, data griddling
and data partitioning.

Data cleaning [63] is used to improve the quality of
data by removing missing values, duplicates, and irrelevant
data. Dimensionality reduction is used to omit the less
important dimensions of data which in turn reduces the
complexity of data. Data augmentation is used to increase
the size of the training dataset by generating new samples
through various modifications applied to the existing data.
For example, in [64], Synthetic Minority Over-Sampling
Technique for Regression with Gaussian Noise (SMOGN)
is used to address the issue of imbalanced datasets in
regression problems. It creates synthetic samples for the
minority class by interpolating between existing minority
samples. Additionally, it introduces Gaussian noise to both
minority and majority samples to enhance the diversity of
the dataset. Scaling data is used to normalize the data to
similar or same ranges. Data griddling technique is a two-
fold process, that maps all UE measurements into unique
spatial bins to handle positioning errors in the measurements,
and then averages the measurements inside each spatial bin
to offset random noise from RSS. For example in [63], they
use the data griddling method to average out the values
based on data characteristics. Data partitioning is splitting
the data into groups and processing them based on their
characteristics. A common approach is to group data based
on the Euclidean distances, e.g., between the sample location
and the BS location [69].

C. Feature Extraction
Feature extraction helps in preparing input data by identi-
fying the most relevant information from the raw data and
transforming it into a format suitable for the ML algorithm.
Input parameters obtained from the raw data can be classified
as system-dependent parameters and environment-dependent
parameters.

System-dependent parameters refer to the physical prop-
erties of the transmission system, including the carrier
frequency, transmit power, antenna height and orientation,
and Rx sensitivity. These parameters affect the propagation
mechanism and can have a significant impact on PL predic-
tion.

Environment-dependent parameters are related to the phys-
ical characteristics of the propagation environment, such
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TABLE 2. Common Parameters for ML-Based Radio Propagation Modeling

Parameters System or Envi-
ronment

Unit

Tx Power System Watts
Height of Tx System Meters
Height of Rx System Meters
Distance System Meters
Angle of Tx System Degrees
Angle of Rx System Degrees
Antenna tilt System Degrees
Antenna directivity loss System Decibels
Antenna gain System Decibels
Bandwidth System Hz
Horizontal angle System Degrees
Vertical angle System Degrees
Antenna loss System Decibels
RSS data System Decibels
Vertical diffraction Environment Meters
Horizontal diffraction Environment Meters
First Diffraction Point Environment Meters
Last Diffraction Point Environment Meters
Coordinates Environment N/A
Line-of-Sight (LoS) angle Environment Degrees
Terrain database Environment N/A
Terrain clearance angle Environment Degrees
Terrain map Environment Meters
Coordinates Environment N/A
Building map Environment N/A
Street widths Environment Meters
Building heights Environment Meters
Building separation distance Environment Meters
Number of Building Penetrations Environment N/A
Indoor Distance Environment Meters
Outdoor Distance Environment Meters
Receiver Clutter Type Environment N/A
Path visibility Environment N/A
Vegetation type and density Environment N/A
Temperature Environment Celsius
Humidity Environment Percentage
Precipitation Environment Millimeters

as the terrain, building conditions, and vegetation. These
parameters can important particularly in urban and suburban
environments where multipath reflections and diffractions
are prevalent. Environmental information can be obtained
from 3D digital maps or topographic databases. The weather
conditions, including temperature, humidity, and precipita-
tion, are also considered environment-dependent parameters.
The propagation environment holds its importance in making
design choices of ML-based propagation modeling regard-
ing what input features need to be used. Classification of
parameters and their units are shown in Table 2. Recent
studies in ML-based propagation modeling for PL prediction
explored different types of environmental settings such as

TABLE 3. Importance of Environmental Parameters for ML-based Propaga-

tion Modeling

Environmental
Parameters

Urban Suburban Rural Indoor

Building Con-
ditions

Yes Yes Yes No

Vegetation
Conditions

Yes Yes Yes No

Temperature No No No Yes

Humidity No No No Yes

Precipitation No No No No

LOS

Diffraction 
Point

NLO
S

Angular 
separation

Distance from BS to UE

FIGURE 5. Features in radio propagation

urban [57]–[60], [63]–[65], [70]–[86], suburban [58], [60],
[70], [71], [77], [83], [87], rural [88], [89], and indoor [68],
[74], [90]. Table 3 indicates which environmental parameters
are important based on the propagation environment.

D. Feature Selection and Construction
Many input features can be extracted from raw radio data,
and selecting the best set of features can notably reduce the
complexity of ML-based radio propagation modeling [91]–
[94]. Generally speaking, there is a well-established trade-
off in this selection, i.e., considering a greater number of
features leads to an increase in the model accuracy but also
an increase in the complexity of the model. The predictive
power of each feature is not equal. Hence, the goal should
be selecting the features which contribute most to learning
accuracy. Features are selected based on the design needs
and the type of ML algorithm used for modeling. The few
most important features selected in the ML-based radio
propagation modeling are propagation distance, angular
separation, LOS state, carrier frequency, Tx power, indoor
distance, outdoor distance, clutter type, building penetration
diffraction point, and antenna optimization. Some of these
important features are illustrated in Fig. 5.

• Propagation distance refers to the distance between
the Tx and the Rx, a crucial factor that influences
the signal’s strength and quality. As the propagation
distance increases, the signal strength decreases due to
factors like interference, scattering, and attenuation that
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impact the signal’s ability to maintain its strength and
quality over long distances.

• Angular separation refers to the angle between the
angular bore height to the direction of the LOS path to
the Rx. Both horizontal and vertical angular separation
are considered in the modeling. The horizontal angular
separation represents the angle between the LOS path
and the horizontal plane, while the vertical angular
separation represents the angle between the LOS path
and the vertical plane. Angular separation plays an
important role in determining PL and signal strength,
especially in the presence of obstacles.

• LOS state refers to a clear and unobstructed path
between the Tx and Rx antennas. Knowing whether
or not a signal is LOS or NLOS plays a vital role in
determining the channel state and the best use of the
channel [95], [96], particularly in the emerging super-6
GHz bands [97], [98].

• Carrier frequency refers to the frequency of the elec-
tromagnetic wave used to transmit information.

• Tx power is the power level at which the Tx is radiating
or emitting electromagnetic waves.

• Indoor/outdoor distance refers to the direct path be-
tween the Tx and Rx antennas. The indoor distance
is the path that passes through buildings or other
structures, while the outdoor distance is the path that is
in the open air.

• Clutter type refers to the type of obstacles that can
affect the signal path. Common clutter types include
open areas, dense buildings, sparse buildings, trees,
and water bodies. The clutter type plays a significant
role in designing [99] and optimizing [100] wireless
communication systems.

• Building penetration refers to the number of buildings
penetrated by the signal in its direct path between the
Tx and Rx.

• Diffraction point refers to the horizontal distance from
the Tx to the first point of diffraction in the propagation
path between a Tx and Rx.

• Antenna optimization plays a crucial role in determin-
ing RSS in wireless communication systems. Choos-
ing the right antenna type, height, gain, polarization,
placement, are essential factors in optimizing RSS for
reliable communication.

Feature construction is the immediate next step after
feature selection. It aims to construct a new feature based
on the features obtained from the input data and can be
performed through different strategies. Finding a new way
of constructing new features can change the performance
of the ML algorithm significantly. The literature includes a
variety of feature construction methods for radio propagation
modeling. In [101], mathematical transformations are first
applied to the coordinate values of Tx and Rx. This leads
to the extraction of several features such as the horizontal
distance between Tx and Rx, elevation angle, distance across

the buildings, and clutter types. In [57], input features were
used to construct the mean value of building height, the
standard deviation of building height, the normalized mean
value of building distance, the normalized standard deviation
of building distance, and building density. In [87], the height
ratio of the Tx to Rx antenna feature is constructed. In
[76], Tx antenna directivity loss and Tx antenna gain were
calculated from the input features. Beyond these innovative
heuristics, strategies to build self-learning algorithms are also
used for feature construction. In [72], a fully connected
Feedforward Neural Network (FNN) is used to learn and
construct input features. In [102], different objects in the
direct path, and the type of object are constructed from
the input features. In [63], clutter type, number of building
penetrations and indoor distance in each clutter type, and
outdoor distance in each clutter type are constructed.

IV. Modeling Algorithms
ML-based techniques hold value in PL propagation modeling
due to their higher accuracy and lower complexity rate.
The performance of the propagation model mainly depends
on the type of ML algorithm used in the modeling along
with the amount of input data used for training as well as
feature selection. Since propagation modeling is considered
a regression problem, mostly supervised ML techniques are
used to address the problem. In supervised learning, the
algorithm aims to establish a relationship (mapping) between
input data to the output. Considering input data as a and b as
a corresponding label, the algorithm learns from this labelled
dataset to understand the relationship between a and b. We
can represent this relationship in functional form:

B = f(A, θ) (25)

where A is the input data vector such as transmitted beam’s
power, Rx sensitivity, antenna height, and terrain features; B
is RSS (i.e., the output label); f() is the mapping function
that the ML algorithm learns during training; and θ is
the set of tunable parameters for the modeling function
f(). Supervised learning approximates mapping function f()
from the given dataset containing input-output pairs (a, b).
Once the model is trained, it can then predict RSS values
from any new input a′. The training process in supervised
learning aims to minimize the difference between predicted
output b′ to the actual output b using a cost function C()
and adjusting the parameters, θ, of the model. The goal of
the supervised learning can be expressed as

argmin
θ

C(b′, b) (26)

where C(b′, b) is the cost function that measures the differ-
ence between the predicted label b′ and the actual label b. In
its simplest form C() can be just the difference of the two
output labels, i.e., C(b′, b) = |b′ − b|. However, more com-
plex and customized cost functions can be devised, e.g., a
weighted sum of differences of various output metrics/labels
such as RSS and AOA.
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Algorithms

Regression-based 
Modeling

Neural Network-
based Modeling

K-Nearest 
Neighbors (KNN)

Decision Tree (DT)

Ensemble Trees

Support Vector 
Regression (SVR)

Feedforward Neural 
Network (FNN)

Convolutional 
Neural Network 

(CNN)

Deep Neural 
Network (DNN)

Generative 
Adversarial 

Network (GAN)

FIGURE 6. ML models used for radio propagation modeling

In general, a more complex ML model, with large training
data gives better accuracy and a simple ML-based model
performs tasks more quickly. A better model is considered to
give better performance in less complex models with limited
data sets. In the rest of this section, we discuss ML-based
propagation modeling methods in terms of two dimensions:
(1) Their requirements and types of input data and (2) the
use of NNs in their methods (Figure 6).

A. Input Data Types and Requirements
Based on the type of data used for training we can classify
ML-based propagation modeling methods into the ones using
ray tracing, measured data, or a combination of ray tracing
and measured data. Ray tracing-based models depend on the
data generated from ray tracing software, which computes
individual rays’ propagation paths, accounting for interac-
tions such as reflection, diffraction, and scattering. The data
generated by the software consists of coordinates of ray
paths, signal strengths, time taken to travel, and reception
angle. Ray tracing-based models offer detailed insights into
propagation mechanisms but may be computationally in-
tensive and require accurate environmental data. Measured
data-based models use the data measured in real world
environments. They rely on a statistical analysis of measured
data to derive PL. Training involves collecting significant
measurement data in different environmental settings and
analyzing it to develop models. The models that involve
both ray tracing software and measured data obtain data
from both the ray tracing software as well as measurements
from real world scenarios. These integrated models aim
to leverage the strengths of both approaches to improve
prediction accuracy across various scenarios. Tables 5-7
show the comprehensive overview of papers we surveyed

TABLE 4. Input Requirements of ML-based Modeling Methods

ML
Method

Selection
of
Features

Order of
Features

Functional
Form

Environ-
mental
Data

R
eg

re
ss

io
n-

ba
se

d Linear Re-
gression

R NR R NR

Decision
Tree

R R R NR

Ensemble
Trees

R R R NR

KNN R NR R NR
SVR R NR R NR

N
N

-b
as

ed

CNN NR NR NR R
DNN NR NR NR NR
FNN NR NR NR NR
GAN NR NR NR R

R: Required, NR: Not Required

in terms of the type of data used for training, also marked
with key features used for modelling, ML algorithms and
training method. Understanding these components is crucial
for designing accurate and reliable predicting models.

In terms of the input data required by ML-based mod-
eling methods, there may be four types of requirements: 1)
Selection of features, indicating which independent variables
are necessary for the ML method, 2) Order of features,
which is a rank ordered list of the features, 3) Functional
form, which is a functional form that uses the features
as parameters to determine the outcome of the PL model,
and 4) Environmental data, that gives information about the
environment of the radio propagation. Table 4 summarizes
the input data requirements of the ML-based PL modeling
methods. Regression-based methods require the selection of
features and at least one functional form while the NN-
based methods do not require these input data. Further, tree-
based regression methods require the order of features as
well. While NN-based methods do not suffer from requiring
feature selection or a particular functional form between
the independent and dependent variables, some of them
(e.g., CNN and GAN) may require environmental data to
be available as input.

B. Regression-based Modeling
Regression-based models are the simplest form of ML
models for radio propagation characterization. The approach
feeds input data into a model with a pre-configured structure
between the dependent d and independent variables of the
radio propagation d′. A dependent variable is known as the
response variable and the independent variable is known as
the predictor variable. Considering unknown function to be
mapped as g, we can represent the relationship as

g : d → d′.

The training of the model involves minimizing the error
in the capability of the independent variables to predict
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TABLE 5. ML-based Propagation Models: Using Ray Tracing Data∗

Papers Frequency Environment Features Modelling algorithm Training methodSystem Dependent Environment Dependent
[72] Unspecified Urban Distance, Angle of Tx Building map DNN 90% Training and 10%

Validation
[73] 2.4 GHz Urban Distance, Height of Tx, Height

of Rx
LOS angle, Terrain elevation Random Forest and

KNN
84% Training and 16%
Validation

[65] 2.1 GHz Urban Height of Tx Coordinates KNN, SVR,
Random Forest and
AdaBoost

5-fold cross-validation

[60] 811 MHz and
2,630 MHz

Urban, Subur-
ban

Distance, Height of Tx, Height
of Rx

Terrain elevation, Terrain
databases

DNN 75% Training and 25%
Validation

[59] 2.3 GHz Urban Distance, Frequency, Height of
Tx, Height of Rx

LOS angle, Coordinates SVR, Random For-
est, KNN

k-fold cross-validation

[78] 900 MHz and
1.8 GHz

Urban Distance LOS angle, Building heights Random Forest,
ANN

80% training and 20%
Validation

[80] 900 MHz Urban Distance, Height of Tx LOS angle ANN (MLP) 80% training and 20%
Validation

[81] 28 GHz Urban Frequency, Height of Tx Vertical diffraction, Horizontal
diffraction

CNN 70% training, 15% valida-
tion, and 15% test

[64] 3.5 GHz Urban Distance, Frequency, Height of
Tx

Coordinates Tree-based predic-
tion models (Ran-
dom Forest, ensem-
ble)

k-fold cross-validation

[58] 900 MHz Urban, Subur-
ban

Terrain database, Terrain map GAN 90% Training and 10%
Validation

[79] Unspecified Urban Height of Tx, Height of Rx,
Distance

ANN (MLP) Combination of DE ap-
proach and the Levenberg-
Marquardt for training

[82] Unspecified Urban Terrain database ANN (KGNN)

[103]
900 MHz Height of Tx, Height of Rx Terrain database ANN (MLP) Training and Validation

[85] Unspecified Urban Building heights, Building
widths, Street widths

ANN (MLP) Training and Validation

[104]
Unspecified Urban Distance, Angle of Tx, Angle of

Rx
Coordinates, Terrain elevation GLM, KNN, MLP

and DNN
3-fold cross-validation

∗ Data generated from ray tracing software for model training and validation

TABLE 6. ML-Based Propagation Models: Using Both Ray Tracing and Measured Data∗

Papers Frequency Environment Features Modelling algorithm Training methodSystem Dependent Environment Dependent

[105]
800 MHz Urban Frequency, Angle of Tx, An-

gle of Rx, Antenna tilt, An-
tenna gain, Bandwidth

Coordinates DNN, Unets

[106]
Unspecified Urban Distance, Height of Tx,

Height of Rx
Coordinates, Building map CNN, UNET, Radio UNET,

UNET with Strided Convo-
lutions and Inception

Training and Val-
idation

[107]
Unspecified Urban Height of Tx, Heigh of Rx,

Tx power, Antenna gain, Fre-
quency

Random Forest

[77] 3.5 and 28
GHz, 3.7 and
26 GHz

Urban, Subur-
ban

Distance, Frequency SVR, Random Forest 10-fold cross val-
idation

∗Ray tracing software for modelling, and measured data for validation

the dependent variables. During this depreciation, the co-
efficients in the pre-configured structure are tuned, which
is essentially the training of the model. In most cases of
PL modeling, this pre-configured structure includes several
log functions preceded with scalar coefficients, as in (4) for
FSPL and (8) for TRGR. This sum of logs structure of the
PL model function g arises from the dB unit for the PL
and conveniently serves the regression-based ML methods as
they simply try to learn the coefficients. Though learning PL
in dB works well for regression-based methods, NN-based
modeling does not necessitate such pre-configured structure
and can work with any input features and output metrics as
we will later discuss in Section IV.C.

As the baseline, Linear Regression describes the associ-
ation between the dependent and independent variables as
a linear relationship, e.g., as a polynomial of an arbitrary

degree. Linear regression cannot fully model most real-
world phenomena as they involve non-linear and mutually
dependent features [63]. All dynamics of radio propagation,
too, cannot be properly modeled with linear relationships
as some features of the radio propagation environment are
heavily correlated.

Regression-based ML algorithms are used in radio propa-
gation modeling due to their ability to handle different types
of data [70], [99], [112], [113] and the automatic selection
of relevant features from a large set of input variables [104],
[114]–[118]. Moreover, they are effective in solving complex
non-linear relationships between environmental variables and
signal propagation. They are the most suitable in scenarios
where the radio environment is interpretable and/or simple.
In particular, when there is limited data for training DL mod-
els, the regression-based ML methods are the best alternative.
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TABLE 7. ML-based Propagation Models: Using Measured Data

Papers Frequency Environment Features Modelling algorithm Training methodSystem Dependent Environment Dependent
[74] 2,021.4 MHz Urban Frequency, Height of Tx, Height of

Rx, Angle of Tx, Angle of Rx, Ver-
tical angle

Coordinates ANN (BPNN) 80% Training and
20% Test

[88] 881.52 MHz Rural Distance, Height of Tx, Height of Rx Terrain clearance angle, Terrain
database, Vegetation type and
density

ANN Training and Vali-
dation

[75] Unspecified Urban Distance, Angle of Tx, Angle of Rx LOS angle 3D-CNN
[89] 3.7 GHz Rural Distance, Height of Tx, Height of Rx Path visibility, Coordinates SVR, Random For-

est, ANN, B-kNN
Training and Vali-
dation

[76] 2.1 GHz Urban Distance, Height of Tx, Angle of Tx,
Antenna tilt, Antenna directivity loss,
Antenna gain, Tx power, Angle of Rx

CNN, FNN 90% Training and
10% Validation

[68] 1,800 MHz Urban, Subur-
ban, Rural

Distance, Height of Tx, Height of
Rx, Antenna gain, Antenna loss, RSS
data

Terrain map, Coordinates ANN-BP and ELM 50% training and
50% Validation

[87] 450 MHz, and
1.45 and 2.3
GHz

Suburban Distance, Frequency, Height of Tx,
Height of Rx,

ANN, GPR 5-fold cross valida-
tion

[83] 1,890 MHz Urban, Subur-
ban

Distance, Height of Tx, Height of Rx, Street width, Building height, Build-
ing separation distance

ANN (MLP) (gen-
eralized RBF-NN)

Training and Vali-
dation

[86] 853.71 MHz. Urban Distance, Horizontal angle, Vertical
angle, Antenna loss

Terrain elevation, Coordinates SVR Cross-Validation

[63] 2.1 GHz Urban Distance, Horizontal Angle, Vertical
Angle

LoS angle, First Diffraction Point,
Last Diffraction Point, Number of
Building Penetrations, Indoor Dis-
tance, Outdoor Distance, Receiver
Clutter Type,

Decision Tree,
KNN, Linear
Regression, MLP

[57] Unspecified Urban Building map GLM, KNN, MLP
and DNN.

3-fold cross valida-
tion

[83] 1,890 MHz Urban, Subur-
ban

Distance Street widths, Building heights ANN (MLP)
(generalized RBF-
NN for path loss
prediction)

Training and Vali-
dation

[84] 1,140 MHz Urban Antenna tilt, Antenna gain, Angle
of Tx, Angle of Rx, Frequency, Tx
power

Coordinates ANN (MLP) Training and Vali-
dation

[69] Unspecified Urban, Subur-
ban

Distance, Angle of Tx, Angle of Rx,
RSS data

Coordinates ANN (MLP) 50% Training and
50% Validation

[108]
Unspecified Urban, Subur-

ban
Number of building penetrations DNN Mini-batch training

[109]
2.1 GHz Urban, Subur-

ban
Distance, Frequency, Height of Tx,
Height of Rx, Antenna gain, Angle
of Tx, Angle of Rx,

Coordinates DNN (ConvNet) 80% Training and
20% Validation

[110]
Unspecified Urban Building map, Coordinates DNN (Radio

UNET)
80% Training and
20% Validation

[111]
Unspecified Urban, Subur-

ban
Distance, Frequency, Height of Tx,
Height of Rx, Antenna tilt

LOS angle SVM, RT, ET, LR,
ANN, and GPR

10-fold cross vali-
dation

Next, we cover the most established regression-based radio
modeling methods.

1) K-Nearest Neighbors (KNN)
KNN is a non-parametric algorithm used for solving clas-
sification and regression problems, where K represents the
number of nearest neighbors considered for making predic-
tions. First, we need to train the model with a measured
dataset with corresponding variables/features such as the
ones in Table 2. Once the model gets trained with a measured
dataset, it can be used to predict the PL for new input
variables or queries by finding the K nearest data points
in the training set to the new input variables and taking the
mean of their corresponding PL values. This is illustrated in
Fig. 7. KNN methods are very transparent and explainable
approaches. In general, the more variables/features they use
the less explainable they are. But, since they require a certain
set of variables to be defined before training, the outcome

is explained by the significance of the match between the
input query’s values and the trained features. A study [59]
predicts PL in an urban environment for cellular networks
with the help of ML methods, including SVR, RF and
KNN algorithms, and compares them with COST-Walfisch-
Ikegami (CWI) empirical model [119]. Results show that ML
algorithms used in the survey performed better than CWI
providing much lower statistical errors. While comparing
performance between the ML algorithms, KNN performed
better in terms of preciseness of the PL predictions.

2) Decision Tree (DT)
DT is a versatile tree-based algorithm, with a flow chart-like
structure that can be used for PL prediction modeling. It can
be constructed by selecting relevant features that affect PL
and recursively splitting the data into more homogeneous
subsets until the predicted PL values are represented by the
leaf nodes of the DT. An example DT for radio propagation
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data set

New entry has been classified
X1
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X2 X2

FIGURE 7. K-Nearest Neighbors (KNN)

modeling is shown in Fig. 8. [63] uses a DT algorithm
for PL prediction, where the tree is derived from a set of
independent variables and training data, and the leaf nodes
represent the predicted PL values for the corresponding
subset of data. The study shows that the DT algorithm
predicts PL with good accuracy, as long as the features
used in constructing the tree are relevant and the tree is
not overfitting the training data. A nice characteristic of DT
methods is their full explainability. To form a DT, one has
to determine which feature is more important than others.
For the model in Fig. 8, for example, distance is a more
important feature than frequency. Yet, this clarity comes at a
cost of being unable to learn models in settings for which we
do not have a clear idea of which feature is more important.

Propagation 
Distance 

Distance < 100 
meters 

Distance < 100 
meters, 
Frequency < 2 
GHz

Distance < 100 
meters, 
Frequency >= 2 
GHz

Distance >= 100 
meters

Distance >= 100 
meters, 
Frequency < 1 
GHz

Distance >= 100 
meters, 
Frequency >= 1 
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FIGURE 8. Decision Trees

3) Ensemble Trees
The principle behind the ensemble tree is a group of weak
learners combined to gather to form a strong learner. In
comparison to DT, ensemble trees are less explainable but
offer more flexibility in exploring the possibilities of feature
importance. They allow combining various feature impor-
tance possibilities, learned by weak learners, into a common
model. Depending on how these weak learners are combined,
there are a few different techniques in ensemble learning, the
most common among them are Bagging, RF, and Boosting.
The bagging technique is used to reduce the variance of the
DT. The illustration for the bagging technique is shown in
Fig. 9. [89] is one of the best examples using the bagging
technique.

RF is one of the commonly used ML methods which
employs a DT and applies a bootstrap aggregation for the
selection of training samples as an ensemble member and

training on these members. Unlike traditional DTs, RF intro-
duces a random selection of features in the training process.
The final result is obtained by averaging the predictions of
all the ensemble members. A study [73], performed on air-
to-air scenarios, based on RF and KNN builds prediction
models and evaluates them by using the data generated by
ray-tracing software and compares them with the Stanford
University Interim [120] and CWI [119] models. The re-
sults show that ML-based models perform better than the
empirical models, and further that, RF has better prediction
performance. Moreover, RF has considerable advantages in
handling a large number of input features and sorting the
important features. Also, it is easy to implement and can do
parallel computing.

Initial Dataset Bootstrap Samples Aggregated Model Bagged Model

FIGURE 9. Ensemble Trees: Bagging technique

Boosting models mainly focus on reducing bias, often
have low variance [121], and cannot be done in paral-
lel without introducing approximations [122]. In baseline
Boosting technique, trees are built one-by-one by fitting a
simple model of data and summed sequentially. At each
step, the model’s net error is analyzed and the eventual
aim of Boosting is to solve for net error from the prior

Dataset Model Correctly Classified 
Samples

Misclassified 
Samples

FIGURE 10. Ensemble Trees: Boosting technique
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FIGURE 11. Ensemble Trees: AdaBoost

tree. The illustration for the boosting technique is shown
in Fig. 10. Adaptive Boosting (AdaBoost) is one of the
examples of ensemble trees that uses the Boosting technique.
An example of AdaBoost is shown in Fig. 11. [65] studies
modeling methodology on predicting PL from a flying BS in
an urban environment using different ML methods such as
KNN, SVR, RF and AdaBoost. Results show that AdaBoost
has better accuracy in prediction. Extreme Gradient Boosting
(XGBoost) [64], [123] is another Boosting technique used
for radio propagation modeling. XGBoost starts with the
simple DT and grows sequentially to correct mistakes from
the previous ones. Each new tree focuses on the incorrect
prediction from the previous tree, and the sequential growth
of the tree continues until it reaches error-free results.
XGBoost works by combining DT and gradient boosting.
XGBoost’s ability to handle large datasets, feature identi-
fication (to aid in optimizing signal coverage) and model
interpretability make it well-suited for radio propagation
modeling added that XGBoost is known for its execution
speed and model performance.

4) SVR
SVR is a powerful statistical technique commonly used for
regression analysis. It is an extension of the popular Support
Vector Machine (SVM) algorithm and is particularly well-
suited to solving complex nonlinear regression problems.
SVR, in essence, is a more advanced version of KNN. As
illustrated in Fig. 12, SVR categorizes training data to classes
by finding the best hyper-planes that maximally separate
the classes with the maximal margin. Hence, in addition to
minimizing the classification error (typically defined as the
sum of distances of data-points from the centers of their
classes) just like KNN, SVR also attempts to maximize the
difference between classes. Similar to KNN, SVR is also a
transparent method as the variables have to be defined before
training. However, they are computationally more complex.

In the context of radio propagation modeling, the SVR
algorithm has been widely used for modeling PL in various

studies [59], [65], [77], [89], [124]. In [74], [89], the authors
choose to use SVR with the Gaussian kernel function since
it is more suitable for small feature dimensions and lack
of prior knowledge. Further, the Gaussian kernel function
allows for the mapping of input data from a low-dimensional
space to a high-dimensional space using non-linear func-
tions. This, combined with the ability of SVR to search for
an optimal hyperplane in the high-dimensional feature space
that maximally separates the samples, makes it a particularly
useful tool for solving such problems.

Hy
per

 

pla
ne

De
cis
ion
 

bo
un
da
ry

De
cis
ion
 

bo
un
da
ry

- Support Vector

Margin

X1

X2

FIGURE 12. Support Vector Regression

C. Neural Network (NN)-based modeling
When the relationship between the independent and depen-
dent variables is not expressible in (closed form) functional
forms or is heavily dependent on the specific setting, the
regression-based learning can only attain approximations of
the actual relationship. Typically, NNs are used in such
cases to better capture the model [125]. NNs are structured
like the human brain, consisting of nodes, called artificial
neurons. These nodes are connected via links, each of which
has a weight. Similar to the tuning of the coefficients in
regression-based models, an ANN gathers knowledge from
samples through the training process and tune the weights
to minimize the error in their predictive capability. Once
training is complete, ANNs are then used to make predictions
based on the weights learned obtained during training. This
approach can be applied to any possible set of input and
output variables of a model, which offers a great flexibility.
Further, if a larger network of neurons is utilized in between
the input and output variables, the ANN can learn better
and attain higher modeling accuracy. Yet, this flexibility
and accuracy in modeling comes at the cost of being less
explainable. Adding more neurons to the ANN makes the
learned patterns less transparent.

A simple ANN consists of the input layer, hidden layers,
and output layer. Data is given in the form of input to
each node. The input data to each node is multiplied with
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FIGURE 13. Three-layer FNN

a random weight and then passed through a bias, where a
transfer function is applied. Finally, an activation function is
applied before being given to the output. Various transfer
and activation functions are used for modeling purposes.
In general, more hidden layers in ANN offer deeper learn-
ing capability, hence the name Deep Learning (DL). In
this survey, we discuss the DL approaches that are most
commonly used for propagation modeling: FNNs, CNNs,
Deep Neural Networks (DNNs), and Generative Adversarial
Network (GAN).

1) Feedforward Neural Network (FNN)
FNNs are composed of multiple layers of neurons where
each neuron in a layer receives inputs only from the pre-
vious layer and sends outputs only to the next layer in
the network. The data in these networks flow only in one
direction, from the input layer to the output layer, without
any feedback loops. As illustrated in Fig. 13, FNNs utilize
linear operations of weights and biases at each layer. In
addition to regular weights on each link between neurons,
FNNs use biases at each neuron to gain more flexibility.
These biases are also tuned during learning. The use of
FNN for PL prediction in rural macrocell environments is
investigated in [88] with the ANN inputs such as antenna-
separation distance, transmitting antenna height, TCA, land
usage, vegetation type, and vegetation density. Terrain pa-
rameters are derived from a Digital Elevation Model and
while vegetation type and density are obtained from mea-
surement datasets. Transmitting antenna height, TCA, and
land usage/vegetation information are identified as the most
significant parameters. The study analyzes different ANN
sizes and incorporates faster training algorithms to reduce
training time while maintaining accuracy. The results show
that ANN models outperform other common PL models,
such as Recommendation ITU-R P.1546 and Okumura-Hata
[126], of similar complexity.

FNNs offer unique strengths over other ML methods in
the context of radio propagation modeling, including non-
linearity, feature learning, generalization, scalability, and par-
allel processing. In radio propagation modeling, FNNs excel
at learning hierarchical representations of features through
their hidden layers. One of the key advantages of FNNs

is their ability to perform feature learning. This enables
FNNs to extract meaningful and discriminative representa-
tions from the input data, capturing the essential factors that
influence radio wave propagation.

MLP belongs to the FNN class. All layers of an MLP
are fully connected and there are no connections between
neurons within the same layer. MLPs are used for pre-
dicting PL in urban environments. In [79], the approach
involves providing detailed yet small information about
the propagation environment to the ANN. Two different
ANN design cases are presented and trained using a hybrid
Differential Evolution-Levenberg Marquardt method, which
is found to be more efficient than the classical Levenberg
Marquardt algorithm in terms of weight optimization. The
approach demonstrates satisfactory accuracy compared to
the ray-tracing model. In a more specific outdoor setting
[68], a single-hidden-layer MLP, Artificial Neural Network
Backpropagation (ANN-BP) with a maximum of 50 hidden
neurons, is employed using the normalized distance between
the base and mobile stations as input. The models are trained
with 50 different models trained 20 times each [127]. The
ELM models have an architecture similar to ANN-BP, but
with random input weights and biases generated based on a
learning algorithm. In an ELM study [128], four different
activation functions (sigmoid, sine, triangular basis, and
radial basis) are investigated and the output weights are
calculated using the Moore-Penrose pseudo-inverse matrix.
The study evaluates the performance of empirical, ANN-BP,
and ELM models for PL predictions in outdoor propagation
environments. ELM models are found to be 140 times faster
to train than ANN-BP models and produce the lowest Root-
Mean-Square Error (RMSE). ELM models also show good
generalization ability when tested with new input data.

Again for an urban setting, the study in [80] aims to
synthesize ANNs that accurately predict PL with minimal
input data using an MLP architecture with one hidden layer
of 10 nodes and a linear activation function for output. They
are trained using input-output data vectors and evaluated with
mean absolute error, RMSE, and mean absolute percentage
error. ANNs using both site-specific and LOS data trained
for restricted coverage areas show higher accuracy.

When site-specific information is available MLPs show
notably better performance since it becomes possible to
utilize ray-tracing in addition to ML. [87] proposes a method
for PL prediction in wireless sensor networks using a
combination of dimensionality reduction, ANN-MLP, and
Gaussian Process. This method results in a more generalized
model with lower training time and better PL prediction ac-
curacy than conventional models. Furthermore, the proposed
method is highly reliable for site-specific wireless sensor
network design. The proposed approach in [87] utilizes a
simplified ray-tracing tool and two ANNs to predict radio
propagation for indoor and outdoor scenarios. The design
aims to achieve similar prediction accuracy to more complex
methods but with reduced computational load. Accurate
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predictions depend on the selection of training sets based
on either dominant path types or a route-oriented strategy.
Results demonstrate errors below 7dB, although the model
has limitations in predicting sharp variations between con-
secutive points.

The performance of MLP-ANNs and RF in predicting PL
are compared in [78] for two Narrowband-Internet-of-Things
frequency bands at 900 MHz and 1,800 MHz. The results
indicate that both methods performed similarly well across
three different input data types. But, the study highlights
that the quality of the input data is critical in predicting
PL through ML approaches. It is also found that LOS
information is more important than street scene information
in cases where the Tx is situated above building rooftops,
but using both types of information led to even better results.

MLP has its unique strengths such as flexibility and being
able to handle non-linear propagation effects and multi-
dimensional data. MLPs can effectively model these relation-
ships and capture the intricate dependencies between these
dimensions. By considering the non-linear interactions of
different parameters, MLPs can capture the complexities of
radio wave propagation more effectively than linear models.

2) Convolutional Neural Network (CNN)
CNN is a type of ANN primarily used in image processing
and object detection tasks. It is designed to take an input
image and extract relevant features from it, which are then
used to make predictions about the image. A typical CNN is
comprised of two main parts: the feature extraction and the
classification. The feature extraction part consists of multiple
hidden layers responsible for identifying features from the
input image. An activation function is applied after each con-
volutional layer, introducing non-linearity into the network
and enabling it to learn more complex representations of the
input data. Some of the common activation functions used in
radio propagation modeling are described in Table 8. A fully
connected layer in the classification part is responsible for
identifying and classifying images. The output of the feature
extraction part is flattened and passed into one or more fully
connected layers, which output a probability distribution for
the object classes. The class with the highest probability is
then predicted for the input image.

A study was made to predict radio wave propagation
[76] with a single image. The authors employ a CNN with
four convolutional layers and two pooling layers in their
CNN architecture to extract relevant features. The resulting
feature values, combined with Tx and Rx parameters, are
flattened and input into a fully connected NN for additional
processing. The approach is illustrated in Fig. 14. The
flattened feature values and input parameters are then used
to train an FNN, which proved to be effective for regression-
based prediction. The authors aim to leverage the strengths
of both CNNs and FNNs to optimize feature extraction
and achieve accurate predictions of radio propagation. By

TABLE 8. Activation functions

Activation Function Description
Linear No transformation, produce the same value as

input value

Sigmoid Maps the input value to a value between 0
and 1

Sinc Maps the input value to between -1 and 1,
resembling a sinusoidal wave with amplitude
fading as the input goes to +/-∞

Cosine Maps the input value to between -1 to 1

Triangular Basis Produces isosceles triangular shaped waves
with height 1 and base 2

Radial Basis Bell curve shaped function that assigns higher
values to inputs closer to the center and lower
values to distant inputs

tanh Maps the input value to between -1 and 1

ReLU Sets negative input values to 0, Leaves posi-
tive value

Leaky ReLU Similar to ReLU, but it allows a small nega-
tive slope for negative values

PReLU Parametric ReLU has ability to choose best
slope in the negative region

ELU (Exponential
Linear Unit)

Similar to Leaky ReLU, but uses an exponen-
tial function for negative input values (smooth
curve)

Softmax Maps the input value to between 0 and 1

Output

Feature Extraction Classification Probabilistic distribution

Input Convolution Pooling

Fully Connected

FIGURE 14. Convolutional Neural Network (CNN)

utilizing multiple convolutional and pooling layers, CNN
extracts increasingly complex features from the input data.

The model in [60] combines both regular NNs and CNNs
to process satellite images and engineered features. The
architecture has two NNs and one CNN. The CNN is used to
analyze the satellite images while NN1 manages positional
locators and engineered features. A middle layer is added
to combine the outputs from the CNN and NN1. NN2 is
then sequentially added with an activation function, such
as Rectified Linear Unit (ReLU), to enable latent features
to be a function of weighted positional locators and image
features. Finally, NN2 is connected to the output to predict
the received power of mobile communication systems. The
model inputs include local coordinates, satellite images,
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and a PL model, and use a ReLU activation function to
extract features. The results show that the DNN model
improves PL prediction at unseen locations by ≈1 dB for
811 MHz and ≈4.7 dB for 2,630 MHz when compared
to traditional modeling techniques such as ray-tracing and
empirical models.

Research has been conducted to leverage CNNs to predict
the distribution of PL directly from 2D satellite images
without any additional data [71]. A CNN with multiple
convolutional layers [129] is used for feature learning and
VGG-16 [130] for predicting PL distribution. This approach
enables real-time inference without the need for a 3D model
of the area and utilizes transfer learning and fine-tuning
with a pre-trained VGG-16 network. The network outputs
are mapped to probabilities using softmax and optimized
using the cross-entropy loss function. The results of the study
indicate accurate PL distribution prediction for different
communication frequencies and Tx heights, making this
approach particularly advantageous when the dataset size is
limited.

CNN is preferred over other ML techniques due to its
unique advantages in learning spatial features and its ca-
pability to capture environment-dependent features. More
importantly, when capturing spatiotemporal environmental
features, CNNs can do well with less data [131]. Since radio
propagation modeling typically involves data scarcity, CNNs
offer better solutions as they can produce efficient results
with a small set of data and can effectively extract important
features such as the frequency with the help of convolutional
layers.

3) Deep Neural Network (DNN)
DNN is a type of ANN that includes multiple hidden
layers between the input and output layers. Compared to
a traditional ANN, a DNN’s additional deeper layers allow
it to perform more complex tasks. However, due to the
increased number of layers, DNNs are more susceptible
to overfitting. Regularization methods, such as dropout or
L2 regularization [132], [133], should be applied to reduce
the risk of overfitting. DNNs excel in capturing complex
non-linear relationships and performs well even with sparse
training data, with lower prediction errors compared to other
algorithms such as Linear Regression, KNN, and DT. Fur-
ther, they exhibit [63] a 25% increase in prediction accuracy
compared to empirical propagation models and a 12-fold
decrease in prediction time compared to ray tracing-based
commercial tools.

A data-driven, DNN-based PL model, named the Ubiq-
uitous Satellite-Aided Radio Propagation (USARP) model
[70], was developed to enhance the geographical generaliza-
tion capabilities of empirical PL models. USARP uses satel-
lite images to make PL predictions. DNN-based ResNet50s
are used as a feature extractor for processing the input im-
ages. ResNet50 is trained using Bootstrap Your Own Latent

[134] with extensive satellite images using self-supervised
learning to extract information from ROI-filtered satellite
images. Three Single-Layer Perceptrons, where each layer
includes batch normalization, and a non-linear activation
(e.g., PReLU) are used to make a prediction. The results
show that USARP attains an RMSE of 12.34 dB which is
1 dB lower than linear regression, 3 dB and 2 dB lower
than the SVR and the RF-based models. Extended studies
are made to check the performance of USARP in multiple
radio environments, and the results show that it achieves
a higher prediction accuracy than linear regression models.
Also, satellite-based inputs improve the RMSE of the PL
predictions by more than 3 dB on the validation dataset, and
around 1 dB in the generalization dataset when comparing
with [135].

For an urban propagation environment, a DNN using 3D
map of a city is studied for PL modeling [57]. The proposed
model combines LOS and non-LOS propagation scenarios
considering the path profile, Tx height, and distance between
the Tx and Rx as input data. The model architecture includes
an input layer of length Q+2 (where Q is cell radius), three
hidden layers, and an output layer with one neuron predicting
PL. The results show that DNN model outperforms tradi-
tional ML models such as the alpha–beta–gamma and close-
in [136] models due to its ability to learn complex nonlinear
relationships and perform well with sparse training data.

DNN is preferred over other ML algorithms due to its
unique strengths such as flexibility and the advantage of
capturing non-local dependencies. DNNs can handle vari-
ous types of input data beyond spatial information. Radio
propagation often involves analyzing time-varying signals
and sequences of events. DNNs can effectively capture
temporal dynamics and hence are well-suited for sequential
and temporal modeling of radio propagation.

4) Generative Adversarial Network (GAN)
GANs are DL-based generative models. A GAN consists
of two components: a generator and a discriminator. The
goal of the generator is to generate synthetic data based on
topology modeling and the goal of the discriminator is to
learn from the synthetically generated data. GAN models
learn much more quickly than CNN models. [58] uses a
GAN technique to predict PL from satellite images. The
generator consists of a U-shaped Encoder-Decoder Network
(UNET) structure with skip connections to allow deeper
architectures as shown in Fig. 15. Patch discriminator [137]
is used to decide whether the output of the generator is true
or false. The study finds that height map images provide
more informative results than satellite images and that a
GAN model can estimate PL values in real-time, provid-
ing an alternative to computationally complex ray-tracing
simulations. The authors suggest increasing the dataset size
for further improvements, indicating the need for further
research in this area.
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FIGURE 15. GAN architecture

GAN is known for its high-quality generations. The adver-
sarial training framework of GANs encourages the generator
to produce samples that are indistinguishable from real data.
This makes GANs particularly effective in radio propaga-
tion modeling. GANs learn the underlying data distribution
directly from the training data. Instead of explicitly modeling
the probability distribution, GANs implicitly capture the
patterns and features of the training data. This allows GANs
to generate new samples that follow the same distribution
as the training data, enabling them to generate diverse
and novel samples. While GANs offer unique advantages,
they also come with challenges such as training instability,
mode collapse, and evaluation metrics. GANs require careful
hyperparameter tuning, architectural design, and advanced
training techniques to achieve optimal performance.

V. ML-based RSS Prediction Methods
Measuring RSS has been of high interest as it has direct
ramifications for cellular network providers’ business goals.
Cellular providers regularly measure their RSS maps and
advertise them to illustrate the quality of their service. Yet, it
has also been a challenge to verify the providers’ claims and
make independent predictions of RSS from the service being
provided to the users. Further, provisioning seamless wireless
connectivity indoors requires a thorough understanding of
the RSS across the building in question. Beyond connectivity,
accurate indoor localization depends on the prediction accu-
racy of PL models. Based on the prediction methodology, we
can classify RSS prediction approaches into three categories
as shown in Figure 16, namely model-based, data-driven, or
hybrid prediction methods.

Model-based prediction uses mathematical models and
physical system information to make the prediction. Model-
based approaches depend on physical models and data mea-
surements, such as an Radio Environment Map (REM), to
forecast environmental characteristics, offering cost-effective
and swift prediction capabilities. These approaches also
provide researchers with the chance to investigate diverse
scenarios and extend predictions beyond available measured
data. However, the accuracy of model-based predictions
hinges on the quality of the underlying models and the input
parameters employed.

In data-driven prediction, some of the measured data is
given as input to train the model. The trained model is
expected to have the capability of predicting the environ-

mental features and physical propagation characteristics of
the environment. Based on the model learned from measured
data as well as signal processing approaches, PL can be
predicted in non-measured locations. Data-driven prediction
relies on real-world measured data to make predictions so
it is considered more reliable. With sufficient training, data-
driven models can easily adapt to the change in network con-
ditions. Also, they can handle the complexity of interactions
in intricate wireless networks while considering other factors
that influence performance. While data-driven approaches
offer these advantages, their challenges are dependence on
data quality and sufficient training scenarios, and the risk of
overfitting.

The hybrid model utilizes physics-based prediction models
and measured data to formulate predictions. Depending on
the specific requirements, various physics-based prediction
models are employed as baseline. Hybrid models combine
the strengths of both model-based prediction and data-driven
prediction methodologies which in turn gives more accurate,
adaptive, and cost-effective solutions than both models indi-
vidually. Their key benefit is to correct errors in the measured
data by using insights from the physics-based models.

In the next two sections, we survey the literature on RSS
prediction for outdoors and indoors scenarios in the three
categories.

VI. RSS Prediction in Outdoor Environments
A. Model-based Prediction
Based on how radio signals propagated in the environment
and how they are affected by various factors, and how they
can be predicted, the model-based approaches for outdoors
can be classified into Propagation Models, REMs, PLE
Models, and Terrain Profiling Models. We will next cover
these types of model-based prediction approaches and the
recent ML literature pertaining to them.

1) Propagation Models
Early propagation models give mathematical expressions for
how the radio signals travel through the atmosphere and
interact with the environment. Among the most success-
ful propagation models for outdoor environments are the
Okumura-Hata and LDPL. The Okumura-Hata model [2] has
been a significant step in simplifying the prediction of PL in
urban and suburban areas. It has been used as a benchmark
for subsequent models and has greatly contributed to the
planning of wireless communication networks. For long
ranges, as applicable to lower radio frequencies, the LDPL
[138] is a widely used empirical propagation model. LDPL is
based on the logarithmic relationship between the distance
travelled by the signal and its received power. It provides
a quick and practical way to estimate signal strength over
moderate to long distances in open areas.

To estimate signal strength, ML-based approaches [57],
[63] complement empirical and ray tracing-based models,
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FIGURE 16. ML-based approaches to RSS prediction

incorporating both measured data and environmental infor-
mation into a model of the environment. This model of
the environment is fed to the ML algorithm along with
various system features. This modern solution enhances the
accuracy of signal strength predictions by utilizing intelligent
predictors derived from these data sources. This ML-based
approach is particularly valuable in environments where
mathematical models become impractical to capture geomet-
rical complexities such as in urban settings. To make more
realistic predictions, [63], for example, utilizes measured
data, BS information, and geographical data from three dis-
tinct datasets: Digital Terrain Model (DTM), Digital Height
Model, and Digital Land Use Map. These measurements
of the environment and fundamental physics laws (e.g.,
attenuation through a particular clutter type) are used to
form predictors that can strongly model the environment.
This requires judicially identifying critical components for
the environment model to be effective. After this step, using
both the environmental model and system properties, the
prediction is accomplished using various ML algorithms,
such as Linear Regression, KNN, DT, and DNN. The study
assesses the performance of these algorithms, particularly
focusing on the capability of DNNs to capture intricate
channel characteristics.

In large urban environments, the importance of synthetic
data becomes more pronounced for the radio propoagation
model. [106] discusses the effectiveness of CNN and UNET
models for radio signal prediction in such settings. The study
uses the Wireless Insite ray-tracing software to generate the
synthetic data for modeling, and compares the effectiveness
of the model by using the RadioMapSeer dataset against
Levie et al.’s [110] findings. [58] is another example of
a model-based prediction method. This study uses satellite
images in addition to the data generated from the InSite
software [139] as input. It utilizes the PlaceMaker [140]
extension for Google SketchUp4 [141] to obtain the 3D
models along with the satellite images. From the 3D model,
the height map image is extracted. Then 3D models are
imported and merged with the InSite ray-tracing simulation
environment. Using the ray-tracing results, excess PL values
at the Rxs are calculated. PL values are treated on the grid
of Rxs as an image which enables the utilization of image

synthesis methods for PL prediction. Finally, a GAN-based
technique is used to produce a PL image. Since the networks
can produce real-time inference, this technique proves to be
a viable alternative to ray tracing simulations, which have
high computational complexity.

2) Radio Environment Maps REMs
An REM is a spatial database that stores information about
the radio environment. REM consists of information such as
signal strengths, interference levels, spectrum usage, antenna
data, terrain data, and building and infrastructure data. REMs
play a crucial role in predicting signal behavior based on
real-world data. They utilize empirical values from mea-
surements and offer data for the most realistic model-based
prediction discourse.

ML techniques are heavily used for building and uti-
lizing REMs. In [76], along with measured data obtained
from Tokyo metropolitan area in the 2.1 GHz band, aerial
photographs and building map images are used for radio
propagation prediction. The study focuses on enhancement
of predictive accuracy by incorporating building map images
into ML. In particular, the proposed ML methodology em-
ploys a CNN-FNN model where the CNN extracts spatial
features from the building map and the FNN incorporates
them with system parameters to forecast received signal
power. The outcomes of the investigation reveal that the
proposed ML methodology consistently achieves superior
predictive accuracy when compared with conventional tech-
niques, even with a single image.

In a similar vein, enlarging the REM-based RSS prediction
to a city level requires more capable approaches. [110] uti-
lizes the Dominant Path Model [142] method and Intelligent
Ray Tracing [143] to generate simulation, RadioMapSeer
[144] dataset and city maps from OpenStreetMap [145]
(Ankara, Berlin, Glasgow, Ljubljana, London, and Tel Aviv)
as inputs to build an REM. The study proposes to use UNETs
[146] for REM estimation. Two versions of RadioUNet are
designed, one with no input measurements (RadioUNetC)
and the other with input measurements (RadioUNetS). Ra-
dioUNetC uses only Tx location, PL measurements, and city
map as its input (geometry of the environmental features
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are extracted). This method is categorized as a model-based
simulation as a model is learned from training data. In that
way, it does not have a physically interpretable formulation
and its execution time (for the trained network) is much
faster than existing model-based tools. RadioUNetS uses
some measurements of the PL as one of its inputs along
with the inputs given to RadioUNetC. So, this model can be
categorized as a model-based fitting method.

Incorporating terrain and building occlusion effects into
the REM-based prediction requires meticulous design of en-
vironmental parameters in the ML model. In an experimental
study, [101] chooses four RSS-related features from readily
available geographic data: 1) Horizontal distance between
the antenna and receive terminal, 2) Elevation angle from
receive terminal to the antenna, 3) Distances across different
clutter types, and 4) Distance across buildings. Existing
ML-based RSS models such as MLP, RF, XGBoost, and
LightGBM (i.e., an improved version of XGBoost) [147]
are testified with the reliable drive test data obtained from
the outdoor scenario at 3.5 GHz for a 5G network in an
urban environment. The results show high accuracy in RSS
prediction with an efficient and extensible design.

3) PLE Models
PLE models are very commonly used mathematical rep-
resentations to express the reduction in a radio signal’s
strength. The PLE model predicts that the radio signal’s
power decreases exponentially as it travels over a distance.
Depending on various factors in the radio environment, the
PLE can be different and time-varying. Hence, estimating
PLE for a specific radio environment has been the focal point
in this type of radio propagation modeling.

ML-based techniques have proved to be useful for improv-
ing the accuracy of PLE estimation. For long-range or omni-
directional radio propagation models, DL-based methods are
successful in estimating the PLE. For example, [148] utilizes
CNNs to estimate the PLE by directly analyzing 2D satellite
images. When the radio signal operates at short ranges or
is heavily directional, more granular datasets or rigorous
capturing of the 3D environment becomes important. In
[1], the authors introduce an algorithm that leverages DL
techniques to predict the PLE for outdoor millimeter-wave
band channels. This algorithm incorporates a 3D radio ray
tracing tool to generate comprehensive wireless channel data,
which is subsequently used to train an NN. By directly
learning from the data, the algorithm obviates the necessity
for manual feature extraction. The NN is trained on diverse
channel data from various environments, ensuring its ability
to generalize across different scenarios. The study identifies
optimal hyperparameters that enhance prediction precision,
and importantly, the algorithm’s performance remains con-
sistent regardless of the number of or distance between
buildings in the environment, highlighting its robustness.

4) Terrain Profiling Models
Analyzing the impact of the surrounding terrain on signal
propagation has been a critical component for modeling radio
propagation, particularly in short ranges or urban settings.
However, given the massive terrain data, such analyses can
be prohibitive in terms of computational complexity, for
which ML-based approaches can be quite useful in develop-
ing a terrain profile. [108] introduces an innovative approach
that integrates DL techniques with top-view geographical
images. By using DL, the model gains the ability to discern
complex patterns and relationships within the data. The
geographical images serve as a source of terrain profiling
data, allowing the model to implicitly learn the impact of
terrain on signal propagation. As a result, it offers a more
holistic and accurate understanding of how signal strength
behaves in various environments.

Most terrain profiling studies in radio propagation mod-
eling involved 3D maps or satellite image data. [105] uses
DNN for modeling where 3D maps are given as input and the
accuracy of the model is verified using the dataset generated
by the wireless ray-tracing software for different environ-
mental settings. Similarly, [57] uses SVR, RF, and KNN
algorithms to predict PL. Training and testing are carried out
from simulated results considering the LTE network utilizing
a DTM.

For more scalability, some studies have focused on pre-
dicting a terrain’s field strength from small samples of
map or imagery data. The end goal of these approaches
is still to make RSS prediction once such field strengths
are modeled. For instance, [149] designs a DL-based model
that uses smaller samples of geographical information and
satellite data. The proposed model consists of two pre-trained
network models, ResNet18 [150] and NN, to optimize the
parameters to be learned. The output from ResNet18 and NN
are then concatenated with another NN model. Performance
comparison with an existing CNN-based model [135] shows
that the proposed model can predict field strength even with
a small amount of data.

B. Data-driven Prediction
Based on the type of ML algorithm used to make predictions,
data-driven RSS prediction methods for outdoors can be
regression-based or DL-based, which we will delve into next.

1) Regression-based Prediction
Most regression-based studies have used RF approach for
predicting the Reference Signal Received Power (RSRP).
[102] shows that the RF-based predictor significantly im-
proves the tradeoff between prediction error and the number
of measurements needed. In particular, the proposed frame-
work can predict RSRP with 80% less measurement and
with the same accuracy on real-world datasets under different
scenarios of radio deployment, e.g., small and dense, large,
and sparser.
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Augmenting the ML approach with a physical propa-
gation model has proved to be useful in attaining better
RSRP prediction. [107] chooses the RF algorithm due to
its ability to operate with smaller data requirements and
offer improved organization. The proposed model leverages
geographical information of the selected area alongside ray
tracing software to extract multi-path information, which,
along with measured data, is utilized for training the model
and predicting RSRP. Notably, this approach employs a
physical approach to calculate RSRP. When a new location
is introduced, the ray tracing software generates multi-path
information, which is then used by the predictor to estimate
RSRP. The proposed physical propagation model, rooted
in measured data and multi-path information, is considered
more accurate than the ray tracing model and requires fewer
data compared to an RF-based approach, all while achieving
superior performance.

In a more lightweight approach, [151] aims to find the
location details of the cell towers by using RSS measure-
ments from a crowd-sourced dataset. The framework uses
the dataset to build the RSS fingerprint database, and uses
a weighted K-means clustering algorithm to predict the
locations of cell towers from crowd-sourced data. The trade-
off between the light computational complexity of data-
driven regression approaches as in [151] and the accuracy
of RSS prediction is an open research direction that requires
further exploration.

2) DL-based Prediction
Empowering the DL-based methods with real data enables
notable improvement in RSS prediction. Datasets for these
methods come from various sources ranging from very
high-level measurements (e.g., satellite images) to detailed
UE-based measurement campaigns. Utilization of satellite
images offers a scalable method to prepare datasets. [70]
introduces an approach to estimate signal strength through
the satellite data presented as a GeoTIFF file [152]. The
technique incorporates mixed urban and suburban settings,
strategically employed for self-supervised learning to achieve
robust representations of the radio environment. To attain
supervised learning, the study collects drive test data from
23 BSs, operating at 2.6 GHz. This dataset encompasses
essential information like coordinates, RSRP, and Physical
Cell Identity, which are utilized for both model training
and evaluation. Performance evaluation is carried out with
different ML models leveraging satellite imagery alongside
DNN algorithms offer a prospect to amplify the geographic
generalization of data-driven RSS models. Using a small
dataset, [104] performs a comparative study of different
ML models, including regression-based as well as DL-based
models. The results show that DNN models perform better
than the others even with limited data.

Using datasets from UE-based measurement campaigns
significantly improves the accuracy of RSS prediction. A

mobility handover prediction framework [125] has been
proposed to assist handover decision-making. It uses NNs
for signal strength prediction and handling uncertainty of
the estimation. The model is trained with the RSRP sam-
ples from real-world drive tests. Later, subsequent handover
probabilities to each cell are derived. In a comparative study,
[111] evaluates the performance of different ML algorithms
to develop an RSS prediction model for mobile networks.
Gaussian Process Regression (GPR) is compared against
other ML algorithms. Data is collected from a measurement
campaign conducted in the location which contains 5G NR
network deployment. Cloud RF planning tool is utilized in
this study, that integrates 3D buildings information from
OpenStreetMap and clutter data with 10 m resolution. Show-
ing the additional benefit of using real measurements, the
results show that the GPR model is the most accurate model
for signal strength prediction.

Integrating UE-based measurements with satellite imagery
data can further improve the prediction accuracy. In [109],
drive test data along with satellite map and cellular configu-
ration are used to form a multimodal model. DNN is used for
modeling and training data is obtained from measurements
taken in the Cairo and Giza regions. Transfer learning is
used to leverage the parallel training processes and converge
to the optimum weights that achieve the best predictions.

C. Hybrid Model
CWI models [3] are well suited to make a prediction in
urban and suburban regions since they account for both
diffraction and reflection effects, and also consider antenna
heights. [153] is a good example for CWI-based hybrid
models, where PL data from the CWI model and measured
data are given as input to train an ANN. A correction-
based ANN model is used to the calculate error in predicting
PL. The prediction error is, then, considered for predicting
the actual PL values. Experimental results show that the
proposed model outperformed the data-driven model [154]
as well as other CWI models on similar setups.

The ITU has widely recognized and accepted models that
are comprehensive in capturing various propagation scenar-
ios. These models, such as ITU-R.526’s Cascade Knife Edge
[155] and Delta-Bullington models [156], are good at incor-
porating spatial data and are widely used to provide general
coverage estimates. Combining these physics-based models
with data-driven learning capabilities of ANNs has proven
to significantly improve the signal strength predictions in
various environments [84]. In [107], the authors develop a
data-assisted physical propagation modeling framework that
uses multipath information from ray tracing simulations and
real-world measurement data. The model outperforms an RF-
based model under a non-uniformly partitioned dataset even
with a small dataset. In another study, Adaptive Knowledge-
Guided Neural Network (KGNN) propagation model is
proposed to make efficient use of the knowledge database
from the Hata model [2] to train a low-complexity ANN.
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Experimental results show that the KGNN model offers the
least RMSE and convergence time when compared with the
high complexity ANN-based models [157].

The LDPL model is one of the simpler models to obtain
quick results with limited data. It can be customized to
fit specific environments by adjusting the PLE. [102] is
one of the examples of a hybrid model that utilizes the
LDPL physics-based model as the baseline. The authors
make an extensive study on data-driven prediction using an
RF-based predictor and conduct experiments to validate the
results. The study show that the RF-based predictor performs
well in places which has enough data to make predictions,
but in the places with less data, the model under-performs
compared to an LDPL-KNN model [158], [159]. To improve
the prediction accuracy in the areas with less data, a hybrid
model is introduced. Both data-driven RF-based predictor
and LDPL-KNN are combined by using Stacking regression
[160]. Experimental results show that the proposed RF-based
predictor requires 80% less data than the state-of-the-art
data-driven predictors [158], [161] for the same prediction
accuracy.

VII. RSS Prediction in Indoor Environments
Attaining accurate RSS prediction indoors has been a major
area of research. Being able to accurately localize indoors
can be life-saving during an emergency. Yet, due to the diffi-
culty of indoor RSS prediction caused by signal blockage or
excessive multi-path effects, traditional positioning systems
such as GPS struggle to attain accurate enough location
predictions [162]. Hence, most practical indoor positioning
systems rely on additional sources of information such as
Wi-Fi [163], [164], RFID devices [165], ZigBee [166], [167],
visible light [168], acoustics [169], UWB [170], Bluetooth
[171] and even magnetic fields to triangulate positions [172],
[173].

Developing accurate indoor models often involves collect-
ing data within the building, which also involves collecting
the building’s structural plan and selecting the positions to
place sensors to collect data. Inferring indoor positions based
on these sensors can be done by predicting TOA [174],
[175], TDOA [176], AOA [177], Channel State Information
[178] or RSS [179]. In this survey, we focus on research
papers using RSS measurements for estimating approximate
distances of deployed sensor nodes. ML algorithms can then
be used to analyze this data and create models that reflect
the physics of indoor environments.

A. Model-based Prediction
In the model-based prediction method, PL models and geo-
graphical data are used to predict RSS and construct a radio
map. PL models can be used for indoor localization using
RSS data and ML methods by leveraging the relationships
between RSS values and the physical distances between
devices and Access Points (APs) or beacons. Most of the

model-based approaches utilize regression-based prediction
with the aim of fast outcome.

Consideration of multi-path effects play a crucial role
in model-based RSS prediction in indoor settings. [180]
presents a framework for constructing a radio map for
indoor localization using the Multiple Path Loss Model (M-
PLM). M-PLM reduces positioning errors by employing an
interpolation-based smoothing of the wireless signal fluc-
tuations and inherent noise from the signal paths. Then,
KNN algorithm is used to predict indoor locations. The
proposed M-PLM approach attains 44% more accuracy than
conventional interpolation techniques, including single PL
models, inverse distance weighting, and Kriging. [181] pro-
poses an indoor positioning system based on PL modeling
for a multi-floor environment. The radio map is constructed
from the samples selected on the floor and the floor number
is localized in the online phase by searching the radio map.
The mobile device location is then estimated by using the
PL model. In an effort to utilize the knowledge about the
indoor environment, [182] constructs radio maps based on a
multi-wall PL model along with the features of the indoor
environment. Similarly, the authors use the KNN algorithm
to verify the accuracy of the indoor positioning system.

Model-based prediction presents an advanced strategy
for indoor RSS prediction and localization, showcasing the
potential to provide improved accuracy, flexibility, and in-
tricacy. This approach proves particularly valuable in sce-
narios where achieving precision and comprehending the
fundamental physical mechanisms play a pivotal role in the
success of the application.

B. Data-driven Prediction
For indoors, data-driven RSS prediction heavily relies on
datasets that have an accurate representation of the environ-
ment. This is because the eventual radio propagation model is
significantly impacted by the geometry and physical features
of the indoor environment. To attain such datasets, finger-
printing is used. Fingerprinting involves creating a repository
of RSS measurements (a.k.a. fingerprints) collected from
precise indoor locations. Utilizing measured RSS values
from surveyed sites enables generation of a baseline radio
map. The fingerprinting measurements embody traits like
resolution and accuracy. Resolution pertains to distinguishing
signals based on their unique attributes, while accuracy
hinges on Signal-to-Noise Ratio and signal waveform prop-
erties. Notably, measurements are singular and fingerprint-
ing doesn’t consider post-measurement changes, e.g., décor
shifts, furniture repositioning, or foot traffic alterations.

Fingerprinting often pairs with ML techniques like KNN
or classification algorithms for enhanced predictions. Inline
with this, [183] and [184] explore efficient methods for con-
structing radio maps through crowd-sourced data, aimed at
reducing time and manpower requirements. Crowd-sourced
databases and trajectory-matching algorithms are used to
avoid tedious and time-consuming data collection. Indoor
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FIGURE 17. Framework of the indoor location algorithm

map processing methods are used to extract the information
from the map. Depth-first traversal method is used to extract
all possible routes. The trajectory optimization is used to
limit the starting and ending points to reduce matching
errors. Then, a shape context algorithm is used for matching
candidate routes to the optimized trajectories. A radio map
is eventually generated from the fingerprint database.

In the realm of indoor RSS-based localization, data-
driven prediction presents the benefit of adjusting to real-
world scenarios, adeptly managing intricate environments,
and harnessing the power of ML for precise and responsive
forecasts. This approach tackles the constraints posed by
purely model-based or theoretical methods, thereby enhanc-
ing the efficacy of indoor localization systems. We, next,
delve into regression-based and DL-based efforts in data-
driven indoor RSS prediction.

1) Regression-Based Prediction
Regression-based models are helpful for RSS prediction
in indoor environments due to their ability to model the
relationship between independent variables (factors affect-
ing signal strength) and the dependent variable, i.e., RSS.
[185] is a good example of using SVR-based prediction to
achieve higher positioning accuracy in indoor localization.
The framework of the indoor location algorithm using SVR
is shown in 17. To handle complex indoor environmental
conditions such as obstruction and changes in node commu-
nication range, data filtering rules and K-times continuous
measurement method are introduced.

Conversely, tree-based algorithms such as DT, RF, and
Gradient Boosting excel in capturing complex relationships,
handling noisy data, and balancing accuracy and inter-
pretability. When applied to data-driven RSS prediction in
indoor environments, they can significantly contribute to
more accurate positioning and navigation. A comparison
study is made on DT-based indoor positioning techniques
[186]. The study focuses on comparing the typical DT and
Gradient Boosted Tree algorithms. The experimental results
demonstrate that the Gradient Boosted algorithm outper-
forms the typical DT. [187] introduces a new adaptation
of the RF technique for indoor localization, leveraging RSS
data from various Wi-Fi sources. It evaluates two localization
models: one employs a basic RF approach, while the other

fuses individual models crafted for specific APs within the
network, using the same RF framework.

Clustering algorithms enhance data-driven RSS prediction
in indoor environments by segmenting the data into mean-
ingful clusters, adapting to changes, handling outliers, and
enabling more accurate and efficient predictive modeling.
[188] proposes the Strongest Access Point information-based
clustering algorithm for its ability to accurately represent
signal coverage areas within indoor environments. By incor-
porating real-time signal strength data and considering the
most influential APs, this approach enhances the accuracy
of indoor positioning, making it a suitable choice for the
proposed Wi-Fi RSS fingerprint positioning method.

2) Neural Network (NN) Approaches
NN-based RSS prediction approaches are well suited for
indoors due to their ability to learn complex patterns, capture
non-linear relationships, and adapt to varying conditions.
Research work has been carried out to find the best indoor
localization technique using RSS data without using the radio
PL model or comparing the radio maps [189]. To improve
location accuracy, the authors use a multi-layer NN system
to integrate RSS signals and network-boosting techniques.
The experimental results show higher location accuracy
when compared with Maximum Likelihood Estimator [190],
Generalized Regression NN [191], and fingerprinting meth-
ods [192]. Another example is [193], which uses a deep
Gaussian process model for radio map construction and
indoor localization from the sparse training data. The model
architecture consists of two stages: An offline training stage
and an online estimation stage. In the offline training stage,
a measurement database collected from the university hall is
utilized. The offline training stage is a twofold process. First,
to find the relationship between RSS samples and location,
a deep Gaussian process model is used. Next, the Bayesian
training method is used to optimize model parameters and
construct a radio map. The online localization stage consists
of unknown location RSS data. A Bayesian fusion location
estimation algorithm is utilized to estimate location.

C. Hybrid model
Indoor RSS prediction benefits from hybrid models that
amalgamate the advantages of empirical data-driven and
physics-based model-driven methodologies, resulting in im-
proved precision, flexibility, and resilience. These hybrid
models prove especially advantageous in situations demand-
ing a comprehensive and dependable prediction framework
to bolster indoor localization and its associated applications.

1) Model-Data Fusion
The most common hybrid method is model-data fusion,
which aims to capitalize on the advantages of both model-
based and data-driven approaches using various merging
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methods. An effective example of this is to use interpola-
tion. [194] proposes fast radio map construction by using
an adaptive PL model interpolation. RSS fingerprints are
obtained from crowd-sourced data with sparse AP data
(only 15% of APs). To calculate RSS, the PL model for
sparsely distributed APs is built by using the least squares
algorithm. Parameters obtained from PL calculation such as
random noise, RSS loss and threshold restraint are taken into
consideration to calculate RSS and construct a radio map.

When the measurement data is annotated or limited,
the model-data fusion method can be more sophisticated.
[195] addresses the challenge of constructing an accurate
Power Spectral Density map from the limited distributed
measurements collected from crowd-sourced data. The study
blends the advantages of model-based techniques, utilizing
mathematical models for accuracy, and data-driven methods,
capitalizing on real-world measurements for adaptability.

In a similar approach, [196] utilizes crowd-sourced data
to construct the radio map. The study addresses challenges
associated with the crowd-sourced measurement database,
such as inaccurate sample annotation, unequal sample di-
mensionality, measurement device diversity, and nonuni-
form spatial distribution. To mitigate these challenges, the
study employs four distinct algorithms. A grid fingerprint
is established to demarcate the area, and for grids with
sufficient samples, a density-based clustering algorithm is
introduced to eliminate outliers. To select vital signals, a
threshold-based selection approach is adopted. For grids
with limited samples, a fingerprint interpolation algorithm is
used to create device-specific fingerprints. Further enhancing
the process, a device calibration algorithm is introduced
to derive a unified grid fingerprint from different device-
specific fingerprints. Finally, an improved nearest-neighbour
algorithm is presented for refined online positioning.

An effective fusion method is to dynamically switch be-
tween different prediction models based on contextual infor-
mation [197], such as device mobility, environment changes,
or available signal sources. [198] presents a self-calibrating
and self-adaptive localization method for a Wi-Fi network.
FSPL and ITU models are used as propagation models
for simulation. Localization is carried out in three stages:
data acquisition, PL modeling, and propagation simulation.
Data is acquired by sending periodic queries to the Wi-Fi
router from a server. LDPL model is used for propagation
parameter estimation. Finally, ITU indoor propagation model
is used for propagation simulation.

2) Manifold Alignment
A frugal hybrid approach is the manifold alignment method
which utilizes both the model-based and data-driven methods
in parallel and combines the predictions from them. This
approach uses mathematical rules and learns from real-world
data patterns. For example, in [199], instead of building
a complete fingerprinted map of the indoor environment,

simultaneous construction of radio maps from localized RSS
information is proposed. A manifold alignment scheme is
used to transfer knowledge from the source dataset to the
destination dataset by learning the underlying relationship
between source and destination datasets in a low dimensional
space. Radio map construction involves an offline deploy-
ment phase and an online localization phase. In the proposed
scheme, the algorithm collects the environmental information
and builds the grid point system on the floor plan to build
the coordinates. Deployment load is reduced since it removes
the need to know the positions of APs.

VIII. Challenges and Open Research
Even though radio propagation modeling and RSS prediction
are heavily studied topics, many research challenges remain
and several major open research directions persist. We, next,
discuss some of the notable open research areas in this space.

• More and Diverse Measurements. One of the biggest
challenges in RSS prediction is data collection. Manual
data collection is an expensive and time-consuming
process. Proper planning and expertise are needed to
collect data to fit the specific requirements. Outdoor
data collection requires lots of driving through selected
paths to collect the desirable quantity of data. Consid-
ering the importance of environmentally dependent fea-
tures in the studies, data should be collected in different
seasons and weather conditions. This will make the data
collection process quite lengthy and challenging. More
research is needed to study how environmental variables
affect RSS prediction. An alternate option to data
collection is using publicly available crowdsourced data
collected from the websites such as OpenCellID [55]
and OpenBmap [56]. Obtaining a considerable quantity
with a wide variety of features is quite challenging in
both indoor as well as outdoor environments. The most
common problems with crowdsourced data are a lack
of volunteers in the planned survey area and a lack of
data from private areas. Scalable and low-cost methods
of radio data collection are very much needed as studies
clearly showed that more real data measurements make
RSS predictions more accurate.

• Better Models for Indoor Settings. Multipath effects
are major challenges in indoor RSS prediction. Due to
multipath effects, obtaining a single LOS signal and
estimating the distance between the Tx and the Rx is
challenging. To tackle these issues, we need to utilize
complex signal processing techniques that can identify
the LOS signal and minimize the effects of multipath
signals. To assist with better indoor localization, more
research work is needed in effective multipath reduction
and noise suppressing algorithms. Further, considera-
tion of physical properties of an indoor environment is
needed when building a PL model. For exact accuracy,
this requires development of a specific model for every
indoor environment separately, which is too costly.

VOLUME , 25



:

A challenge is to build models that can be used as
a baseline for various common indoor settings. For
example, ML-based models can be trained for a typical
office, living room, conference room.

• Efficient Solutions with Sparse Data. Given the
difficulties in collecting radio data, there is always
a need for more accurate and efficient models for
radio propagation. More research is required to find
efficient ways to obtain better accuracy with missing or
sparse data. Fundamental insights into the boundaries
on radio propagation model accuracy, particularly on
the emerging super-6 GHz spectrum technologies, are
much needed. Answers to questions such as “What
is the maximum error on the RSS prediction for a
mmWave link?” will be crucial to our understanding
of the limits of what is possible with sparse data.

• Privacy-Preserving Data Sharing. Indoor data col-
lection requires lots of walking on the desired path.
To get a complete set of data, the data collector may
require accessing all the areas (including private places)
in the building or organization. Complying with pri-
vacy regulations and obtaining proper permission from
the building authorities are quite challenging. More
research is needed on privacy-preserving radio data
measurements and sharing.

• Data Integration to Improve Accuracy. To reduce
the need for more radio data collection, techniques that
utilize non-radio sources are needed. Integrating mea-
sured data with satellite image/geographic information
systems is a complex process. But, one can achieve
better accuracy while integrating different forms of data
[74], [200], [201]. More research is needed to reduce
complexity of these integrative methods and improvise
learning as part of the integration.

• Real-Time Data Processing in Indoor and Urban
Settings. The indoor scenarios as well as some urban
settings are volatile when compared to other settings.
Changes in the furniture set, movement of a parked
vehicle, adding decors in the walls, or walking traffic
patterns may cause changes in the radio data. These
changes require the radio measurement datasets and
RSS predictions based on those datasets to be updated
in a timely manner. Solutions that can swiftly handle
these dynamics in the indoor settings are needed. More
research is needed to study how indoor changes affect
the radio propagation model and develop RSS predic-
tion mechanisms that adapt to real-time changes.

• Comprehensive DL Models. Many of the available
ML algorithms are not specifically tailored for RSS pre-
diction. Finding and capturing complex relationships,
limited data availability, and model complexity and
scalability are notable challenges in using existing ML
algorithms for PL modeling. There are a few studies
[70], [105], [106], [109], [110], we already reviewed
above, that used novel DL architectures specifically for

RSS prediction. Developing comprehensive DL archi-
tectures, for RSS prediction modeling, which can effec-
tively capture both system- and environment-dependent
features from the input data would be a better solution
for future readiness.

• Transfer Learning. A major challenge that comes
with RSS prediction is the lack of data availability.
Transferring knowledge learned from one scenario to
another different scenario will be an efficient way to
improve model performance but, at the same time, it
is challenging. There is a need for better capturing
of which scenarios are similar to each other so that
radio data from measured scenarios can be utilized for
learning the models for a new scenario. Exploring trans-
fer learning would be a worthy research direction to
improve the scalability of RSS prediction by reducing
the need for data measurements.

• Automated Hyperparameter Tuning. Hyperparameter
setting plays a crucial role in the performance of the
ML models. Though we choose the better algorithm to
make PL prediction, the performance of the ML algo-
rithm is decided based on the hyperparameter setting.
For instance, the hyperparameter setting includes the
number of neighbours in the KNN algorithm, the size
of the tree and depth of the tree in tree-based modeling,
and regularization coefficients and type kernel function
in SVR-based modeling. Further, in ANN-based mod-
eling, the number of hidden layers and the number of
neurons in each layer decide the performance of the
algorithm. In RSS prediction, tuning hyperparameters
is one of the challenging areas to work on. Exploring
efficient automated hyperparameter settings is one of
the open areas to research.

• ML-Integrated Models. Integrating ML models with
empirical radio models improves the accuracy and
generalization in RSS prediction since it combines
the fundamental principles of empirical modeling and
the data-driven capability of ML models. Integrating
ML models with empirical models is quite challenging
because those two models might have different data
requirements. For example, empirical models might
rely on some specific measurements that might not
perfectly align with the data need for ML models.
Further, as summarized in Figure 16, how to reconcile
environmental features with the ML model needs to be
investigated. ML model can naturally learn the envi-
ronmental feature but those insights may conflict with
the physical features of the environment due to errors
in signal measurements. Weeding out the measurement
errors while keeping the influence of the critical envi-
ronmental features is balancing act. Capturing complex
environmental relationships and leveraging data-driven
insights are a few of the open research areas that come
with ML integration.
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IX. Summary
We surveyed the application of ML in PL modeling and
RSS prediction both in outdoor and indoor scenarios. We
outlined different types of raw radio data used as parameters
for radio propagation modeling. We made a detailed analysis
of the PL modeling procedure using ML algorithms. A
comprehensive review of various models and methodologies
demonstrated that ML algorithms can efficiently predict PL
with higher accuracy compared to traditional methods. Our
survey provides valuable insights into the current state of
ML-based RSS prediction, offering guidance for researchers
and practitioners in the field. Summarizing the insights from
the survey, we also offered several new and existing direc-
tions of research that will be needed for radio propagation
modeling.

We discussed RSS prediction methodologies for both out-
door and indoor scenarios. Throughout our survey, it became
evident that the success of ML-based PL prediction heavily
depends on several factors such as the size and quality of the
dataset, the choice of features, and the appropriate selection
of the ML algorithm. By leveraging the power of ML
in radio propagation modeling, more efficient and reliable
wireless communication networks will be possible in the
future. While various models have shown promising results,
there is no one-size-fits-all approach, and researchers should
carefully consider the specific characteristics of their wireless
environment when choosing the most suitable prediction
method.

We focused on the sub-6 GHz bands in this survey.
Due to increased recent activity in super-6 GHz bands,
a sizable literature is forming on channel sounding and
propagation modeling in mid-band (also known as FR3) (≈7-
24 GHz), mmWave (≈30-300 GHz), Terahertz (≈0.1-100
GHz), and optical (≈300 GHz - 3,000 THz) bands. These
bands have distinct characteristics in terms of the types of
attenuation they experience, the range they can reach, and
the antenna designs they entertain. A major impediment has
been that empirical studies of these bands are limited. Upper
mid-band, for example, has recently become available for
civilian access and the measurement studies of these bands
in open literature are very few, providing little opportunity
to use ML-based modeling on them. Similarly, mmWave
and Terahertz bands have recently gotten the attention of
the wireless community and the antenna systems to access
them have not been widely available, limiting the possibility
of channel sounding or PL measurement experiments. Once
more empirical literature on these emerging frequency bands
become available, a survey focusing on the propagation
models and the use of ML for propagation modeling on them
will be a worthy effort.

Finally, the influence of antenna parameters on the channel
performance is a worthy topic for another survey. In terms of
radio propagation modeling, antenna parameters are captured
by gain or directivity of the antennas involved. In this paper,
we explained how antenna directivity relates to typical gain

parameters of a radio propagation model. However, survey-
ing the influence of antennas on channel performance would
be a worthy future work. There are many different types of
antennas even in the sub-6 GHz frequencies. Investigation
of antenna parameters and their interaction with attained
channel performance would be enlightening.
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