
1.  Introduction
The Euler potentials are utilized in recent years for studying waves and related properties of solar atmos-
phere. Terradas and Neukirch (2023) proposed a magnetostatic model of active region using Euler potentials. 
Osano (2018) showed that Euler potentials may play an important role in studying the evolution of magnetic 
fields, in application to solar dynamo. Sweet  (1950), Sakurai (1979), and Figura and Macek  (2013) found 
that Euler potentials can describe the magnetic motion of magnetic field lines during reconnection processes. 
Brandenburg (2010) noticed that in numerical magnetohydrodynamic simulations with Euler potentials, pres-
ence of an artificial diffusion term leads to decaying solution, while the same simulation with a vector potential 
permits dynamo action. Kotarba et al. (2009) observed that the magnetic helicity vanishes in the Euler potentials 
representation in their modeling. Rosswog and Price  (2007) assumed that the Euler potentials evolution with 
time should be determined by the magnetic diffusivity. Dolag and Stasyszyn (2009) performed several tests and 
concluded that Euler potentials can be superior for the magnetic field because of the difficulty in preserving the 
solenoidality condition. Webb et al.  (2010) studied Alfven waves with Euler potentials and depicted the field 
lines in the waves.

Stern  (1967) developed a technique for numerical determination of the Euler potentials contour lines on the 
spherical surface. The approach was the utilization of the equity

𝐵𝐵𝑟𝑟 𝑙𝑙𝛼𝛼 𝑙𝑙𝛽𝛽 sin 𝛾𝛾 = Δ𝛼𝛼 Δ𝛽𝛽𝛽� (1)

Abstract  Finding the magnetic flux mapping in the ionosphere is very important. It would not only divide 
the surface into the elements with the same flux, but also indicate locations of conjugated points. It is important 
for studies of field aligned currents and bouncing of energetic charged particles and their precipitation. The 
existing methods involve numerical magnetic field lines tracing in the entire volume of the magnetosphere or 
numerical integration along assumed contour lines of the Euler potentials on the surface of the ionosphere. 
It is possible to determine the mapping with these methods near the magnetic equator, but not on middle 
latitudes and near and inside the polar caps. Our approach is to search for the Euler potentials as a sum of basic 
functions with their coefficients. Each basic function is a product of a sine or cosine of longitude multiplied by 
m and the Legendre polynomial of the colatitude angle cosine and of the order n. Maxima of m and n in this 
calculation were set to 13. The difference between the radial component from the cross product of the Euler 
potentials gradients and from International Geomagnetic Reference Field is less than 0.01 percent. We discuss 
the possibility of using orthogonal coordinates defined on the sphere's surface, which remain finite functions 
of θ and φ everywhere except for the vicinities of the North and South poles. The issues with numerical errors 
accumulated on long tracing are avoided when using this approach.

Plain Language Summary  Finding the magnetic flux mapping in the ionosphere is very important. 
It would not only divide the surface into the elements with the number of the magnetic field lines, but also 
will enable us to see the exit and entry points of the same field line. It is important for studies of field aligned 
currents and bouncing of energetic charged particles and their precipitation in spectacular Polar Lights events. 
The existing methods involve long lasting integrations along model magnetic field lines in the entire volume 
occupied by the magnetic field. These methods cannot find the location of entry-exit points of the field lines 
reliably because of numerical errors accumulated on these very long calculations. Our approach is to search for 
the Euler potentials as a sum of basic functions with their coefficients.
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along the isolines of α and β. Magnetic flux through a given element of the mesh equals to the product of α and 
β increments. Here, Br is the radial component of the magnetic field, while lα and lβ are the sides of the paral-
lelogram shaped mesh element on the surface corresponding to the contourlines α, α + Δα, β, and β + Δβ. The 
contourlines are not necessarily orthogonal and make an angle γ. One of the Euler potentials should have an 
extremum, minimum or maximum, on the line Br = 0, a magnetic equator. In 2D and 2.5D (when all three compo-
nents of the magnetic field are present but they depend only on two coordinates) problems, the Euler potentials 
can be found easily. The ultimate task is to determine the magnetic field lines in the volume, as well as electric 
current streamlines and charged particle trajectories. For example, in a cylindrical symmetry, a linear force-free 
magnetic field has the same filed lines as the current streamlines. But the cylindrically symmetric non-linear 
force-free magnetic field will have different magnetic field lines and current streamlines. In 3D problems, the 
finding of Euler potentials seems to be an impossible task. Two scalar functions, each depending on all three 
coordinates are to be found. This is why many instead of solving the problem of finding the Euler potentials for 
a given magnetic field configuration, one assumes that the Euler potentials are of pre-determined form, and then 
the magnetic field is

𝐁𝐁 = ∇𝛼𝛼 × ∇𝛽𝛽𝛽� (2)

In fact, the problem of finding of Euler potentials for a given magnetic field can be solved. The fact that the 
Euler potentials are not unique is a key here. The first potential, α, could be chosen as any smooth function of 
Br in the volume, provided that at any sphere it reaches a minimum or maximum on the line where the radial 
component of the magnetic field is zero. Second Euler potential then can be found by various methods, for 
example, the least squares one, by selection of the coefficients near the basic functions in the volume. Another 
numerical method of α − β determination was developed by Peymirat and Fontaine (1999), and used for the T87 
Tsyganenko model (Tsyganenko, 1987). It requires field line tracing through the entire magnetosphere, which can 
accumulate numerical errors. Zaharia (2008) used pre-determined Euler potentials for setting flux coordinates in 
numerical iterative procedure for studies of Tsyganenko T96 model magnetosphere (Tsyganenko & Stern, 1996). 
Dungey (1963) proposed a simple model of α for combined dipole and induced by the magnetopause currents 
magnetic fields, while β was the same as for a dipole, β = φ, the longitudinal angle in dipole reference system. 
Schulz and Chen (2008) introduced a generalization into the model by assuming the Dungey parameter b to be a 
function of the longitudinal angle. This enabled an analysis of the ring current and phenomena associated with 
it. Goertz (1976) used his analytical α and β for combined magnetic dipole field and one induced by equatorial 
current sheet on Jupiter. Khurana (1997) adopted the Goertz (1976) approach and proposed a modification taking 
into account the complicated realistic shape of Jupiter's current sheet and the current distribution on it.

The Euler potentials for two parallel and antiparallel current-carrying wires in the homogeneous ambient 
magnetic field were found in Romashets and Vandas  (2011). The magnetic field and Euler potentials of two 
parallel and antiparallel current sheets in homogeneous ambient magnetic field, with uniform and non-uniform 
distribution of currents on sheets of zero thickness were studied in Romashets and Vandas (2012) and Vandas 
and Romashets  (2016). The current sheets of finite thickness in the ambient magnetic field, and combined 
magnetic field with the Euler potentials were determined in Vandas and Romashets (2014). The Euler poten-
tials for the Earth's dipole magnetic field, field-aligned currents, and the ring current were found in Romashets 
and Vandas  (2020). The Dungey (Dungey,  1963) term was added into the consideration in Romashets and 
Vandas (2022).

2.  Method
We look for the Euler potentials on the sphere of radius a, the two scalar functions of colatitude and longitude, 
α(θ, φ) and β(θ, φ). The Equation 1 used in Stern (1967) with infinitesimally small steps along the α and β direc-
tions is equivalent to the Equation 2, which simplifies now to:

�� =
1

�2 sin �

(

��
��

��
��

− ��
��

��
��

)

.� (3)

Here,

𝐵𝐵𝑟𝑟 = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (4)
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is the radial component of the International Geomagnetic Reference Field (IGRF) (Alken et al., 2021), the link is 
https://www.ncei.noaa.gov/products/international-geomagnetic-reference-field, with a scalar potential

� = �
13
∑

�=1

�
∑

�=0

(�
�

)�+1
��
� (cos �)(��� cos�� + ℎ�� sin��).� (5)

Here, 𝐴𝐴 𝐴𝐴𝑚𝑚
𝑛𝑛  are Schmidt normalized associated Legendre functions. The IGRF coefficients are hnm and gnm, while 

a = 6371.2 km is the Earth's radius. The angles θ and φ are in the geocentric coordinate system (Russell, 1971). 
The first Euler potential is chosen as

𝛼𝛼 = 𝑎𝑎2
√

4.5𝐵𝐵2

0
− 𝐵𝐵2

𝑟𝑟 .� (6)

Here, B0 = 35,000 nT is the average magnetic field magnitude on the Earth's surface. The contour lines of this 
potential are shown in top panel of Figure 1. It reaches its maximum on the magnetic equator line, where Br = 0. 
The second Euler potential is searched as a sum of basic functions on the spherical surface,

� =
�
∑

�=0

�
∑

�=0

�����(cos �) cos�� +
�
∑

�=0

�
∑

�=1

�����(cos �) sin�� =
�
∑

�=1

����.� (7)

This Euler potential is in units of the magnetic flux, nT km 2. The term for n = 0, m = 0, c00 is replaced by c00 φ, 
to avoid a constant with zero gradient. The coefficients ei in Equation 7 are determined by using the least squares 
method, with the matrix elements

��� =

�

∫
0

2�

∫
0

(

��
��

���
��

− ��
��

���
��

)(

��
��

���
��

− ��
��

���
��

)

d� d�
�2 sin �

.� (8)

The right hand side vector's elements are

𝑅𝑅𝑖𝑖 = −

𝜋𝜋

∫
0

2𝜋𝜋

∫
0

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕

)

d𝜃𝜃 d𝜑𝜑𝜑� (9)

3.  Results
The solution of the least squares method linear system of equations was obtained and used for the calculation of 
the radial component of the magnetic field. The radial component calculated from α and β and one from IGRF 
are practically the same. The contour lines of the calculated β are shown in bottom panel of Figure 1. Very close 
to the Br = 0 line, the contour lines of α and β are almost parallel, that is their gradients aligned, which leads 
to very small cross product of the two gradients, which provides a small calculated radial component. Further 
away from the magnetic equator, the gradients are not aligned. The IGRF Br component is shown in top panel of 
Figure 2, while one calculated with the model α and β is depicted in middle panel of Figure 2. The difference is 
very small, as one can see in bottom panel of Figure 2, where the percentage difference between IGRF and Euler 
potential representation is given.

4.  Conclusions and Discussion
The exact Euler potential mapping method is presented and used for the ionosphere with IGRF magnetic field. 
The location of conjugated points can be determined with any prescribed accuracy. The results can be used for 
modeling of field–aligned currents and shell currents in the ionosphere. The basic functions in Equation 7 enable 
us to fit the radial component with mapped α and β very well. The assumptions on the specific nature of the Euler 
potentials which were used: one of the Euler potentials should have an extremum on the line Br = 0. No other 
assumptions are needed. The second Euler potential is found by selection of the coefficients near the basic func-
tions. The meaning of the basic functions is that they form a basis, that is any function of θ and φ on the sphere 
can be constructed with these functions. The alternative here is to use specific arguments and build the Euler 
potentials with them, as described below. It was shown in Romashets and Vandas (2011) that the Euler potentials 

https://www.ncei.noaa.gov/products/international-geomagnetic-reference-field
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α and β expressed in terms of orthogonal magnetic coordinates μ and η can be very useful for describing various 
magnetic fields. We use this idea for IGRF mapping in the ionosphere. On the sphere r = a, two scalar functions 
α(θ, φ) and β(θ, φ), which satisfy

𝐵𝐵𝑟𝑟𝐞̂𝐞𝐫𝐫 = ∇𝛼𝛼 × ∇𝛽𝛽� (10)

are to be found. The Equation 10 is equivalent to the condition that the flux through a single element of the mesh 
is a product of increments along α and β

|Δ𝛼𝛼Δ𝛽𝛽| = |𝐵𝐵𝑟𝑟 𝐥𝐥𝛼𝛼 × 𝐥𝐥𝛽𝛽 |,� (11)

which is used in numerical identifications of α = const and β = const isolines. The mesh element is a parallel-
ogram with the sides lα and lβ. It is convenient to deal with two orthogonal functions of the same magnitude of 

Figure 1.  Contourlines of the Euler potentials (top panel) α and (bottom panel) β as functions of longitude φ and latitude 𝐴𝐴 𝐴𝐴 = 𝜃𝜃 −
𝜋𝜋

2
 .
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Figure 2.  International Geomagnetic Reference Field (IGRF) radial component Br near the center of the map (top panel), the 
calculated with α and β radial component Br (middle panel), and the percentage difference between the model and IGRF Br 
(bottom panel) as functions of longitude φ and latitude 𝐴𝐴 𝐴𝐴 = 𝜃𝜃 −

𝜋𝜋

2
 .
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the gradient. We are looking for two sums of correspondingly orthogonal functions, and the gradients of two 
functions perpendicular to each other and equal in magnitude. In other words,

𝛼𝛼 =

𝑁𝑁
∑

𝑖𝑖=1

𝑐𝑐𝑖𝑖[𝑓𝑓 (𝜃𝜃𝜃 𝜃𝜃)]
𝑖𝑖
, 𝛽𝛽 =

𝑁𝑁
∑

𝑖𝑖=1

𝑑𝑑𝑖𝑖[𝑔𝑔(𝜃𝜃𝜃 𝜃𝜃)]
𝑖𝑖� (12)

with

|∇𝑓𝑓 × ∇𝑔𝑔| = (∇𝑓𝑓 )
2
.� (13)

Each function in the sums is

𝑓𝑓 = 𝑢𝑢(𝜃𝜃)𝑣𝑣(𝜑𝜑), 𝑔𝑔 = 𝑡𝑡(𝜃𝜃)𝑠𝑠(𝜑𝜑).� (14)

The pair of conditions from Romashets and Vandas (2011) reads

��
��

= 1
sin �

��
��

, 1
sin �

��
��

= −
��
��

.� (15)

It is equivalent to

�′ � sin � = � �′, � �′ = −�′ � sin �.� (16)

For the functions of θ, we have

�′ sin �
�

= �1,
�

�′ sin �
= −�2.� (17)

Here, k1 and k2 are constants to apply separation of variables method. Isolating u from the second equation in 
Equation 17 and taking its derivative, we can substitute it into the first equation and obtain an equation for t:

�1� + �2�′ cos � sin � + �2�′′sin2 � = 0.� (18)

We can look for t as a function of cos θ, and Equation 18 becomes

�1� − 2�2�′ cos �sin2 � + �2�′′sin4 � = 0.� (19)

The solutions are

� = cos

(

1
2

√

�1

�2
ln1 − cos �
1 + cos �

− �1

)

, � = sin

(

1
2

√

�1

�2
ln1 − cos �
1 + cos �

− �1

)

.� (20)

For the functions of φ, one can get similar to Equation 17 system:

𝑠𝑠′

𝑣𝑣
= 𝑘𝑘1, −

𝑠𝑠

𝑣𝑣′
= −𝑘𝑘2.� (21)

Omitting the details, the v and s are

𝑣𝑣 = cosh

√

𝑘𝑘1

𝑘𝑘2

(𝜑𝜑 − 𝜑𝜑2), 𝑠𝑠 = sinh

√

𝑘𝑘1

𝑘𝑘2

(𝜑𝜑 − 𝜑𝜑2).� (22)

We can introduce a new constant 𝐴𝐴 𝐴𝐴 =
1

𝑖𝑖

√

𝑘𝑘1

𝑘𝑘2
 . Here, i is an imaginary unit. Then the general form of f and g is

� = cosh
(�
2
ln1 − cos �
1 + cos �

− �1

)

cos � (� − �2)� (23)

and
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� = sinh
(�
2
ln1 − cos �
1 + cos �

− �1

)

sin � (� − �2).� (24)

The typical contourlines of the orthogonal coordinates Equations 23 and 24 are shown in Figure 3, with k = 0.2, 
ϕ1  =  0.5, and ϕ2  =  1.9. In this alternative approach, one Euler potential is constructed from the condition 
mentioned above, and the second potential should then actually satisfy Equation 10. The alternative approach 
described here has an advantage that the variables are orthogonal and together with r can form a system of coordi-
nates. On the other hand, Equations 23 and 24 are not finite at the poles, θ = 0 and θ = π, while the basic functions 
in Equation 7 are. This former observation can be reformulated that the alternative pair of Euler potentials can be 
determined with the coordinates f and g very precisely on any region of the sphere except for the vicinities of the 
poles. In order to compute α, we choose the non-linear parameters in a way that the linear coefficients c1, c2, and 
c3 can be then easily selected for the left part of Equation 12 to be very close to 𝐴𝐴 𝐴𝐴2

𝑟𝑟 𝑎𝑎
2
∕𝐵𝐵0 . That means, N is 3, and 

the minimum variance simplifies to three equations

Figure 3.  Typical contours of coordinates f in Equation 23 (top panel) and g in Equation 24 (bottom panel) as functions of 
longitude φ and latitude 𝐴𝐴 𝐴𝐴 = 𝜃𝜃 −

𝜋𝜋

2
 .
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𝜃𝜃2
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0
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If the solution of Equation 25,

𝛼𝛼 = 𝑐𝑐1𝑓𝑓 + 𝑐𝑐2𝑓𝑓
2 + 𝑐𝑐3𝑓𝑓

3,� (26)

does not fit Bra 2/B0 well, then the non-linear free parameters k, ϕ1, and ϕ2 are adjusted, with non-linear methods. 
Once the fit is good, then N is increased, so the match is exact. The second Euler potential, β, is constructed first 
with only three terms, for which the minimum variance linear system is

�2

∫
�1

�2

∫
�1

(

�1 + 2�2� + 3�3�2)(∇� )4
(

��
��

)2

sin � d� d� = ±

�2

∫
�1

�2

∫
�1

��
��
��

(∇� )2 sin � d� d�,

�2

∫
�1

�2

∫
�1

(

2��1 + 4�2�2 + 6�3�3)(∇� )4
(

��
��

)2

sin � d� d� = ±

�2

∫
�1

�2

∫
�1

2� ��
��
��

(∇� )2 sin � d� d�,

�2

∫
�1

�2

∫
�1

(

3�2�1 + 6�2�3 + 9�3�4)(∇� )4
(

��
��

)2

sin � d� d� = ±

�2

∫
�1

�2

∫
�1

3�2 ��
��
��

(∇� )2 sin � d� d�.

�

The free parameters cannot be adjusted at this step. If the agreement between the original radial component 
of the magnetic field and that calculated with the Euler potentials is not good, then more coefficients are 
added, in order to reach the match. The meaning of ± in the equations above is that two sets of the coeffi-
cients d1, d2, and d3 are found separately for the region where Br is positive and where it is negative. When 
determining the positive region, the integrand on both sides of the equation is zero when Br < 0 and vice 
versa. The β potential on the positive region contains the coefficients from that region, and the positive 
one—from the positive region. The good agreement between the calculated and actual Br is the criterion 
for choosing the method with which the Euler coefficients will be found. One with orthogonal contourlines 
seems to be more natural but it is more complicated. The α − β mapping enables locating of entry and exit 
points of the magnetic field lines into and out of the ionosphere but not the line itself between the two points. 
The problem of finding the magnetic field lines in the magnetosphere will be solved in the future, by apply-
ing a similar approach. The first Euler potential, α, is a function of 𝐴𝐴 𝐴𝐴2

𝑟𝑟  , and β will be determined from the 
integrations of the basic functions in the volume and solving corresponding matrix equation. For spherically 
symmetric model magnetospheric magnetic field, when β can be chosen as β = −φ, this problem was solved 
in Romashets and Vandas (2022).

The purpose of this study was to find an alpha-beta mapping of the IGRF. It was noticed that the method is appli-
cable to any magnetic field, one induced by the currents inside the sphere, outside of it, and on it. The changes 
of the mapping caused for example, by increased ring current can be observed. This will be done in a separate 
future work.

Data Availability Statement
Data on IGRF coefficients is available through Alken et al. (2021).
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