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Abstract Finding the magnetic flux mapping in the ionosphere is very important. It would not only divide
the surface into the elements with the same flux, but also indicate locations of conjugated points. It is important
for studies of field aligned currents and bouncing of energetic charged particles and their precipitation. The
existing methods involve numerical magnetic field lines tracing in the entire volume of the magnetosphere or
numerical integration along assumed contour lines of the Euler potentials on the surface of the ionosphere.

It is possible to determine the mapping with these methods near the magnetic equator, but not on middle
latitudes and near and inside the polar caps. Our approach is to search for the Euler potentials as a sum of basic
functions with their coefficients. Each basic function is a product of a sine or cosine of longitude multiplied by
m and the Legendre polynomial of the colatitude angle cosine and of the order n. Maxima of m and # in this
calculation were set to 13. The difference between the radial component from the cross product of the Euler
potentials gradients and from International Geomagnetic Reference Field is less than 0.01 percent. We discuss
the possibility of using orthogonal coordinates defined on the sphere's surface, which remain finite functions
of @ and ¢ everywhere except for the vicinities of the North and South poles. The issues with numerical errors
accumulated on long tracing are avoided when using this approach.

Plain Language Summary Finding the magnetic flux mapping in the ionosphere is very important.
It would not only divide the surface into the elements with the number of the magnetic field lines, but also

will enable us to see the exit and entry points of the same field line. It is important for studies of field aligned
currents and bouncing of energetic charged particles and their precipitation in spectacular Polar Lights events.
The existing methods involve long lasting integrations along model magnetic field lines in the entire volume
occupied by the magnetic field. These methods cannot find the location of entry-exit points of the field lines
reliably because of numerical errors accumulated on these very long calculations. Our approach is to search for
the Euler potentials as a sum of basic functions with their coefficients.

1. Introduction

The Euler potentials are utilized in recent years for studying waves and related properties of solar atmos-
phere. Terradas and Neukirch (2023) proposed a magnetostatic model of active region using Euler potentials.
Osano (2018) showed that Euler potentials may play an important role in studying the evolution of magnetic
fields, in application to solar dynamo. Sweet (1950), Sakurai (1979), and Figura and Macek (2013) found
that Euler potentials can describe the magnetic motion of magnetic field lines during reconnection processes.
Brandenburg (2010) noticed that in numerical magnetohydrodynamic simulations with Euler potentials, pres-
ence of an artificial diffusion term leads to decaying solution, while the same simulation with a vector potential
permits dynamo action. Kotarba et al. (2009) observed that the magnetic helicity vanishes in the Euler potentials
representation in their modeling. Rosswog and Price (2007) assumed that the Euler potentials evolution with
time should be determined by the magnetic diffusivity. Dolag and Stasyszyn (2009) performed several tests and
concluded that Euler potentials can be superior for the magnetic field because of the difficulty in preserving the
solenoidality condition. Webb et al. (2010) studied Alfven waves with Euler potentials and depicted the field
lines in the waves.

Stern (1967) developed a technique for numerical determination of the Euler potentials contour lines on the
spherical surface. The approach was the utilization of the equity
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along the isolines of a and . Magnetic flux through a given element of the mesh equals to the product of a and
p increments. Here, B, is the radial component of the magnetic field, while /, and I, are the sides of the paral-
lelogram shaped mesh element on the surface corresponding to the contourlines a, @ + Aa, f, and  + Ap. The
contourlines are not necessarily orthogonal and make an angle y. One of the Euler potentials should have an
extremum, minimum or maximum, on the line B, = 0, a magnetic equator. In 2D and 2.5D (when all three compo-
nents of the magnetic field are present but they depend only on two coordinates) problems, the Euler potentials
can be found easily. The ultimate task is to determine the magnetic field lines in the volume, as well as electric
current streamlines and charged particle trajectories. For example, in a cylindrical symmetry, a linear force-free
magnetic field has the same filed lines as the current streamlines. But the cylindrically symmetric non-linear
force-free magnetic field will have different magnetic field lines and current streamlines. In 3D problems, the
finding of Euler potentials seems to be an impossible task. Two scalar functions, each depending on all three
coordinates are to be found. This is why many instead of solving the problem of finding the Euler potentials for
a given magnetic field configuration, one assumes that the Euler potentials are of pre-determined form, and then
the magnetic field is

B = Va x V. @

In fact, the problem of finding of Euler potentials for a given magnetic field can be solved. The fact that the
Euler potentials are not unique is a key here. The first potential, a, could be chosen as any smooth function of
B, in the volume, provided that at any sphere it reaches a minimum or maximum on the line where the radial
component of the magnetic field is zero. Second Euler potential then can be found by various methods, for
example, the least squares one, by selection of the coefficients near the basic functions in the volume. Another
numerical method of a — f determination was developed by Peymirat and Fontaine (1999), and used for the T87
Tsyganenko model (Tsyganenko, 1987). It requires field line tracing through the entire magnetosphere, which can
accumulate numerical errors. Zaharia (2008) used pre-determined Euler potentials for setting flux coordinates in
numerical iterative procedure for studies of Tsyganenko T96 model magnetosphere (Tsyganenko & Stern, 1996).
Dungey (1963) proposed a simple model of a for combined dipole and induced by the magnetopause currents
magnetic fields, while § was the same as for a dipole, f = ¢, the longitudinal angle in dipole reference system.
Schulz and Chen (2008) introduced a generalization into the model by assuming the Dungey parameter b to be a
function of the longitudinal angle. This enabled an analysis of the ring current and phenomena associated with
it. Goertz (1976) used his analytical @ and § for combined magnetic dipole field and one induced by equatorial
current sheet on Jupiter. Khurana (1997) adopted the Goertz (1976) approach and proposed a modification taking
into account the complicated realistic shape of Jupiter's current sheet and the current distribution on it.

The Euler potentials for two parallel and antiparallel current-carrying wires in the homogeneous ambient
magnetic field were found in Romashets and Vandas (2011). The magnetic field and Euler potentials of two
parallel and antiparallel current sheets in homogeneous ambient magnetic field, with uniform and non-uniform
distribution of currents on sheets of zero thickness were studied in Romashets and Vandas (2012) and Vandas
and Romashets (2016). The current sheets of finite thickness in the ambient magnetic field, and combined
magnetic field with the Euler potentials were determined in Vandas and Romashets (2014). The Euler poten-
tials for the Earth's dipole magnetic field, field-aligned currents, and the ring current were found in Romashets
and Vandas (2020). The Dungey (Dungey, 1963) term was added into the consideration in Romashets and
Vandas (2022).

2. Method

We look for the Euler potentials on the sphere of radius a, the two scalar functions of colatitude and longitude,
a(0, @) and B(0, ¢). The Equation 1 used in Stern (1967) with infinitesimally small steps along the a and $ direc-
tions is equivalent to the Equation 2, which simplifies now to:

-1 oa 0f _ oa 98 3)
a?sin@\ 00 dp Jdpadb )’
Here,
Vv
B =-22
or @)
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is the radial component of the International Geomagnetic Reference Field (IGRF) (Alken et al., 2021), the link is
https://www.ncei.noaa.gov/products/international-geomagnetic-reference-field, with a scalar potential

n n+l
=a Zl 20 ( ) P} (cos 0)(gum cos m@p + hyy sin me). 5)

Here, P;" are Schmidt normalized associated Legendre functions. The IGRF coefficients are &, and g,,, while

nm

a = 6371.2 km is the Earth's radius. The angles 8 and ¢ are in the geocentric coordinate system (Russell, 1971).

a=a*\/4.5B — B (6)

Here, B, = 35,000 nT is the average magnetic field magnitude on the Earth's surface. The contour lines of this

The first Euler potential is chosen as

potential are shown in top panel of Figure 1. It reaches its maximum on the magnetic equator line, where B, = 0.
The second Euler potential is searched as a sum of basic functions on the spherical surface,

N M
ﬂ:ZZc P(cos&)cosm(p+2de,,P(cosG)smm(p Zeﬁ, (@)

n=0 m=0 n=0 m=1

This Euler potential is in units of the magnetic flux, nT km2. The term for n = 0, m = 0, ¢y 1s replaced by ¢, @,
to avoid a constant with zero gradient. The coefficients e, in Equation 7 are determined by using the least squares
method, with the matrix elements

n 2z

M, // 0a O _ 0a 94\ (a0 _ 0a 06\ 40 dp ®
Y 00 0p 0@ 00 )\ 00 0p O 00 ) a® sin@’

Riz_//("_"%_a_“%%ad(p. ©)
00 0p 9 00

3. Results

The solution of the least squares method linear system of equations was obtained and used for the calculation of
the radial component of the magnetic field. The radial component calculated from a and f and one from IGRF
are practically the same. The contour lines of the calculated f are shown in bottom panel of Figure 1. Very close
to the B, = 0 line, the contour lines of a and # are almost parallel, that is their gradients aligned, which leads
to very small cross product of the two gradients, which provides a small calculated radial component. Further
away from the magnetic equator, the gradients are not aligned. The IGRF B, component is shown in top panel of
Figure 2, while one calculated with the model « and f is depicted in middle panel of Figure 2. The difference is
very small, as one can see in bottom panel of Figure 2, where the percentage difference between IGRF and Euler
potential representation is given.

4. Conclusions and Discussion

The exact Euler potential mapping method is presented and used for the ionosphere with IGRF magnetic field.
The location of conjugated points can be determined with any prescribed accuracy. The results can be used for
modeling of field—aligned currents and shell currents in the ionosphere. The basic functions in Equation 7 enable
us to fit the radial component with mapped « and f very well. The assumptions on the specific nature of the Euler
potentials which were used: one of the Euler potentials should have an extremum on the line B, = 0. No other
assumptions are needed. The second Euler potential is found by selection of the coefficients near the basic func-
tions. The meaning of the basic functions is that they form a basis, that is any function of € and ¢ on the sphere
can be constructed with these functions. The alternative here is to use specific arguments and build the Euler
potentials with them, as described below. It was shown in Romashets and Vandas (2011) that the Euler potentials
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Figure 1. Contourlines of the Euler potentials (top panel) a and (bottom panel) f as functions of longitude ¢ and latitude 1 = 6 — g

a and S expressed in terms of orthogonal magnetic coordinates y and # can be very useful for describing various
magnetic fields. We use this idea for IGRF mapping in the ionosphere. On the sphere r = a, two scalar functions
a(0, ) and f(6, @), which satisty

Bé, =VaxVp (10)

are to be found. The Equation 10 is equivalent to the condition that the flux through a single element of the mesh
is a product of increments along a and

[Aa AB| = | B/l X 1g], (11)

which is used in numerical identifications of @ = const and f# = const isolines. The mesh element is a parallel-
ogram with the sides /, and [,. It is convenient to deal with two orthogonal functions of the same magnitude of
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Figure 2. International Geomagnetic Reference Field (IGRF) radial component B, near the center of the map (top panel), the
calculated with & and f radial component B, (middle panel), and the percentage difference between the model and IGRF B,

(bottom panel) as functions of longitude ¢ and latitude A = § — g
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the gradient. We are looking for two sums of correspondingly orthogonal functions, and the gradients of two
functions perpendicular to each other and equal in magnitude. In other words,

N N
a= Y alf@0.01, p=7) dig® )] (12)
i=1 i=1
with
IV x Vgl = (Vf). (13)
Each function in the sums is
[ =u@®uv(@), g=10)s) (14)

The pair of conditions from Romashets and Vandas (2011) reads

of _ 1 dg 1 of _ g

00  sinfdg  sinfdp 00 as
It is equivalent to
Wovsin@=ts", uv'=-tssinb. (16)
For the functions of 8, we have
u' sin @ u
- =k, — = —k,. 17
' t' sin @ : an

Here, k, and k, are constants to apply separation of variables method. Isolating u from the second equation in
Equation 17 and taking its derivative, we can substitute it into the first equation and obtain an equation for 7:

kit + kot cos 6 sin6 + kot sin® 6 = 0. (18)
We can look for 7 as a function of cos 8, and Equation 18 becomes
kit — 2kt cos Osin® 0 + kot"sin* 6 = 0. 19)

The solutions are

1 ki, 1—cos@ . 1 ki, 1—cos@
t=cos| L4/ M l=c080 ) —gin( Ly /K l=cosO )
°°S<2 k14 cosd ¢‘> " Sm<2 ko 1+cosO ¢'> (20

For the functions of ¢, one can get similar to Equation 17 system:
S ok, =L =k @1
v

Omitting the details, the v and s are

v = cosh ky (¢ — @2), s =sinhy/ k (p — @2). (22)
k> ka

We can introduce a new constant k = * , / Z—‘ Here, i is an imaginary unit. Then the general form of fand g is
! 2

k, 1—cosf
Spn==0Y

J = cos 2 1+cosé

- ¢ ) cos k(@ — ¢2) (23)

and
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Figure 3. Typical contours of coordinates f'in Equation 23 (top panel) and g in Equation 24 (bottom panel) as functions of
longitude ¢ and latitude 1 = 6 — g

g= sinh(kln1 —cosf

Sy $1) sink (@ = ¢). 24)

The typical contourlines of the orthogonal coordinates Equations 23 and 24 are shown in Figure 3, with k = 0.2,
¢, = 0.5, and ¢, = 1.9. In this alternative approach, one Euler potential is constructed from the condition
mentioned above, and the second potential should then actually satisfy Equation 10. The alternative approach
described here has an advantage that the variables are orthogonal and together with r can form a system of coordi-
nates. On the other hand, Equations 23 and 24 are not finite at the poles, @ = 0 and 6 = z, while the basic functions
in Equation 7 are. This former observation can be reformulated that the alternative pair of Euler potentials can be
determined with the coordinates f and g very precisely on any region of the sphere except for the vicinities of the
poles. In order to compute a, we choose the non-linear parameters in a way that the linear coefficients c,, c,, and
¢, can be then easily selected for the left part of Equation 12 to be very close to Ba?/ By. That means, N is 3, and
the minimum variance simplifies to three equations
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0 ¢ 0 ¢ )
//(clf2+czf3+C3f4)sin0d9d(p= /f% sin 6.d6 do,

01 @) 0y @) 0

0 @ 0 ¢ )

//(c,f3 +of* +e3f?)sin 0dodgp = //ﬁ % sin 6 d0 dg, (25)
0y @) 0, @1 0

02 @2 0y @2 )

//(c;f4 +af’ +Cgf6) sin 0d0de = //f3 % sin 6 d6 de.

01 @ 0 o1 0

If the solution of Equation 25,
a=af+af+af, (26)

does not fit Braz/B0 well, then the non-linear free parameters k, ¢, and ¢, are adjusted, with non-linear methods.
Once the fit is good, then N is increased, so the match is exact. The second Euler potential, j, is constructed first
with only three terms, for which the minimum variance linear system is

0, @ 2 0y ¢
//(d1 +2d2g+3d3g2)(Vf)4<g—;> sineded(p=¢//3,(?—jj(Vf)2 sin 6 d@ de,

0 ¢ 0 ¢

0, @ ) 0 @
//(2gd1 +4d2g2+6d3g3)(Vf)4<g—;> sinf do de = J_r//2g3,3—;(Vf)2 sin 0 d@ dep,

01 @ 0 o

0 5 0,
//(3g2d1 +6dag’ +9d3g4)(Vf)4<g—;> sinf do dp = i//3g2 B, g—jﬁ(w)z sin 0 d9 dg.

0y @ 01 @

The free parameters cannot be adjusted at this step. If the agreement between the original radial component
of the magnetic field and that calculated with the Euler potentials is not good, then more coefficients are
added, in order to reach the match. The meaning of + in the equations above is that two sets of the coeffi-
cients d,, d,, and d, are found separately for the region where B, is positive and where it is negative. When
determining the positive region, the integrand on both sides of the equation is zero when B, < 0 and vice
versa. The f potential on the positive region contains the coefficients from that region, and the positive
one—from the positive region. The good agreement between the calculated and actual B, is the criterion
for choosing the method with which the Euler coefficients will be found. One with orthogonal contourlines
seems to be more natural but it is more complicated. The @ —  mapping enables locating of entry and exit
points of the magnetic field lines into and out of the ionosphere but not the line itself between the two points.
The problem of finding the magnetic field lines in the magnetosphere will be solved in the future, by apply-
ing a similar approach. The first Euler potential, a, is a function of B2, and  will be determined from the
integrations of the basic functions in the volume and solving corresponding matrix equation. For spherically
symmetric model magnetospheric magnetic field, when f can be chosen as = —¢, this problem was solved
in Romashets and Vandas (2022).

The purpose of this study was to find an alpha-beta mapping of the IGRF. It was noticed that the method is appli-
cable to any magnetic field, one induced by the currents inside the sphere, outside of it, and on it. The changes
of the mapping caused for example, by increased ring current can be observed. This will be done in a separate
future work.

Data Availability Statement
Data on IGRF coefficients is available through Alken et al. (2021).
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