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First lattice QCD calculations of 𝑥-dependent GPD have been performed in the (symmetric) Breit
frame, where the momentum transfer is evenly divided between the initial and final hadron states.
However, employing the asymmetric frame, we are able to obtain proton GPDs for multiple
momentum transfers in a computationally efficient setup. In these proceedings, we focus on
the helicity twist-2 GPD at zero skewness that gives access to the 𝐻 GPD. We will cover the
implementation of the asymmetric frame, its comparison to the Breit frame, and the dependence
of the GPD on the squared four-momentum transfer, −𝑡. The calculation is performed on an
𝑁 𝑓 = 2 + 1 + 1 ensemble of twisted mass fermions with a clover improvement. The mass of the
pion for this ensemble is roughly 260 MeV.
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1. Introduction

One of the most studied quantities for understanding the structure of strongly interacting
particles is parton distribution functions (PDFs). Processes to measure PDFs include inclusive
deep-inelastic lepton-nucleon scattering. The PDFs are one-dimensional objects, as they depend on
the parton momentum fraction 𝑥, while the initial and final hadron states are identical. An extension
of PDFs are the generalized parton distributions (GPDs), which also depend on 𝑥, but have an
additional variable, the momentum transfer squared between the intial and final hadron states, −𝑡.
In addition, they depend on the so-called longitudinal momentum transfer, defined through the
(skewness) parameter variable, 𝜉.

Accessing GPDs experimentally can be done through processes such as deeply virtual Compton
scattering (DVCS) [1, 2], deeply virtual meson production (DVMP) [3], as well as other processes
with more complicated final states (such as in Ref. [4]). Processes such as DVCS and DVMP are
extremely difficult to extract information from, and there has been a small number of experimental
data sets compared to PDFs. Thus, conducting first principle calculations on the lattice is valuable.
However, GPDs being defined on the light-cone make lattice QCD calculations difficult, except their
first few Mellin moments. Novel methods, such as the quasi- and pseudo-distribution methods [5–
8], use matrix elements for boosted hadrons with non-local operators, and then apply a matching
formalism to relate to the light-cone distributions and their 𝑥-dependence.

One of the difficulties with lattice QCD is that calculations are computationally expensive
and a large number of statistics is needed. Traditionally, calculations of GPDs in lattice QCD
are performed in the symmetric (Breit) frame [9–11], which requires a new calculation for every
value of the momentum transfer, ®Δ. Recently, a new Lorentz invariant parametrization of the GPDs
and quasi-GPDs has been proposed in Ref. [12], which is applicable in any frame. This enables
a computationally efficient scheme of the calculations, since all the momentum transfer can be
attributed to either initial or final state only, ®𝑝𝑖, 𝑓 = 𝑃3𝑧− ®Δ. This method allows us to cover a larger
range of −𝑡 within the same computational cost. In these proceedings, we apply this methodology
for the helicity GPDs at zero skewness, obtaining 𝐻 GPD. The complete calculation is presented
in Ref. [13]. We employ the quasi-GPDs method, in which the Large Momentum Effective Theory
(LaMET) is used to match the lattice data to the physical quantities.

2. Methodology

GPDs are defined on the light-cone, and when studying the helicity case, we utilize the Dirac
structure Γ = 𝛾+𝛾5. On the light-cone, the axial matrix elements give two twist-2 GPDs, 𝐻 and 𝐸 ,
are defined in position space according to Eq. (1).

𝐹 [𝛾+𝛾5 ] (𝑧−,Δ, 𝑃) = 𝑢̄(𝑝 𝑓 , 𝜆
′)
[
𝛾+𝛾5𝐻 (𝑧−, 𝜉, 𝑡) + Δ+𝛾5

2𝑚
𝐸 (𝑧−, 𝜉, 𝑡)

]
𝑢(𝑝𝑖 , 𝜆) . (1)

It should be noted that 𝛾+ is a linear combination of 𝛾0 and 𝛾3. When moving to the Euclidean defini-
tion of quasi-GPDs, we replace + → 3, which is free from finite mixing under renormalization [14].
In position space, we are finally left with Eq. (2).

𝐹 [𝛾3𝛾5 ] (𝑧3,Δ, 𝑃) = 𝑢̄(𝑝 𝑓 , 𝜆
′)
[
𝛾3𝛾5H̃3(𝑧3, 𝜉, 𝑡; 𝑃3) + Δ3𝛾5

2𝑚
Ẽ3(𝑧3, 𝜉, 𝑡; 𝑃3)

]
𝑢(𝑝𝑖 , 𝜆) . (2)
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Looking at Eq. (2), there are a few things to note. At zero-skewness, the right-hand side coefficient
of Ẽ3 is zero, and the latter drops out of the matrix element.

In the new parametrization, the matrix elements are related to eight Lorentz invariant ampli-
tudes, 𝐴̃𝑖 (𝑧 · 𝑃, 𝑧 · Δ, 𝑧2,Δ2) [13], that is

𝐹𝜇 (𝑧, 𝑃,Δ) = 𝑢̄(𝑝 𝑓 , 𝜆
′)
[
𝑖𝜖 𝜇𝑃𝑧Δ

𝑚
𝐴1 + 𝛾𝜇𝛾5𝐴2 + 𝛾5

(
𝑃𝜇

𝑚
𝐴3 + 𝑚𝑧𝜇𝐴4 +

Δ𝜇

𝑚
𝐴5

)
+ 𝑚/𝑧𝛾5

(
𝑃𝜇

𝑚
𝐴6 + 𝑚𝑧𝜇𝐴7 +

Δ𝜇

𝑚
𝐴8

)]
𝑢(𝑝𝑖 , 𝜆) , (3)

where 𝜖 𝜇𝑃𝑧Δ = 𝜖 𝜇𝛼𝛽𝛾𝑃𝛼𝑧𝛽Δ𝛾 , 𝑃𝜇 =
𝑝𝑖+𝑝 𝑓

2 → 𝑃, and Δ𝜇 = 𝑝 𝑓 − 𝑝𝑖 → Δ. In order to obtain the
matrix elements, we also consider the standard unpolarized and three polarized parity projectors;
Γ0 = 1

4 (1 + 𝛾0) for unpolarized or Γ𝜅 = 𝑖
4 (1 + 𝛾0)𝛾5𝛾𝜅 , 𝜅 = 1, 2, 3. The complete expressions

for the matrix elements for all projectors can be found in Ref. [13]. These are renormalized
non-perturbatively in an RI-type scheme as described in the aforementioned paper. Using all the
independent matrix elements, one can disentangle the amplitudes and obtain H̃3 by comparing
Eq. (3) and Eq. (2), leading to

H̃3(𝐴𝑖; 𝑧) = 𝐴2 + 𝑃3𝑧𝐴6 − 𝑚2𝑧2𝐴7 (4)

As discussed in Ref. [13], the definition of the quasi-GPDs, e.g., H̃3, is not unique, which motivated
the development of an alternative definition that is also Lorentz invariant,

H̃ = 𝐴2 + 𝑃3𝑧𝐴6 . (5)

In our kinematic setup, we obtain data for the ± directions of 𝑃3, ®Δ that lead to the same −𝑡 value.
We increase the statistics by using the symmetry properties of the Lorentz-invariant amplitudes
under 𝑧 → −𝑧, 𝑃 → −𝑃, and Δ → −Δ. We note that the matrix elements in the asymmetric frame
do not have definite symmetry properties.

One of the challenges in the calculation is related to the reconstruction of the 𝑥 dependence
using a small number of discrete lattice data. To this end, we employ the Backus-Gilbert (BG)
method [15] and we test the influence of 𝑧𝑚𝑎𝑥 in the final GPDs. The 𝑥 dependence reconstruction
is followed by the matching formalism, in which we use the one-loop formula at zero skewness that
is in a variant of RI (/𝑝) [16, 17].

𝑞(𝑥) =
∫ +∞

−∞
𝑑𝑦 𝑓1

(
Γ, 𝑦, 𝜉 = 0,

𝑝𝑧

𝜇

)
+
𝑞(𝑦) , (6)

𝑓1

(
Γ, 𝑦, 𝜉 = 0,

𝑝𝑧

𝜇

)
=
𝛼𝑠𝐶𝐹

2𝜋


𝑦2+1
𝑥−1 ln

(
𝑦

𝑦−1

)
− 1 𝑦 < 0 ,

1+𝑦2

1−𝑦

[
ln 4𝑦 (1−𝑦) (𝑝𝑧 )2

𝜇2 − 1
]
− 2𝑦 + 3 0 < 𝑦 < 1 ,

− 𝑦2+1
𝑦−1 ln

(
𝑦

𝑦−1

)
+ 1 𝑦 > 1 .

(7)

In Eq. (6), 𝑞(𝑥) is the light-cone GPD, 𝑞(𝑦) is the quasi-GPD in momentum space, and
𝑓1(Γ, 𝑦, 𝜉 = 0, 𝑝𝑧

𝜇
)+ is the one-loop matching kernel as described by Eq. (7).
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3. Lattice Calculations

Our calculations are conducted on a lattice of dimensions 323 × 64 with a lattice spacing of
𝑎 = 0.0934 fm, corresponding to 𝐿 ≈ 3 fm. We use an 𝑁 𝑓 = 2 + 1 + 1 ensemble with twisted-mass
fermions with a clover term and Iwasaki-improved gluons corresponding to 𝑚𝜋 = 260 MeV. The
ensemble we used has been generated by the Extended Twisted Mass Collaboration (ETMC) [18, 19].

The ingredients calculated on the lattice are two-point and three-point correlation functions.
In order to produce results that have a good overlap with momentum-boosted proton states and
suppress gauge noise, we use momentum smearing. In the symmetric frame, this is done for all
different values of the momentum transfer. However, in the asymmetric frame where we group
similar momentum transfers, e.g (Δ𝑥 , 0, 0), we have chosen to optimize ®Δ = (±2, 0, 0). The statistics
obtained for the two-point and three-point correlation functions at each kinematic setup is shown
in Table 1. The purpose of the symmetric frame calculation is to show that the numerical results
respec the frame independence of the amplitudes, 𝐴𝑖 .

frame 𝑃3 [GeV] 𝚫 [ 2𝜋
𝐿
] −𝑡 [GeV2] 𝜉 𝑁ME 𝑁confs 𝑁src 𝑁tot

N/A ±1.25 (0,0,0) 0 0 2 329 16 10528

symm ±0.83 (±2,0,0), (0,±2,0) 0.69 0 8 67 8 4288
symm ±1.25 (±2,0,0), (0,±2,0) 0.69 0 8 249 8 15936
symm ±1.67 (±2,0,0), (0,±2,0) 0.69 0 8 294 32 75264
symm ±1.25 (±2,±2, 0) 1.38 0 16 224 8 28672
symm ±1.25 (±4,0,0), (0,±4,0) 2.77 0 8 329 32 84224

asymm ±1.25 (±1,0,0), (0,±1,0) 0.17 0 8 269 8 17216
asymm ±1.25 (±1,±1, 0) 0.34 0 16 195 8 24960
asymm ±1.25 (±2,0,0), (0,±2,0) 0.65 0 8 269 8 17216
asymm ±1.25 (±1,±2,0), (±2,±1,0) 0.81 0 16 195 8 24960
asymm ±1.25 (±2,±2,0) 1.24 0 16 195 8 24960
asymm ±1.25 (±3,0,0), (0,±3,0) 1.38 0 8 269 8 17216
asymm ±1.25 (±1,±3,0), (±3,±1,0) 1.52 0 16 195 8 24960
asymm ±1.25 (±4,0,0), (0,±4,0) 2.29 0 8 269 8 17216

Table 1: Statistics are shown for both frames with different momenta boosts and transfers, all with zero-
skewness. The momentum unit 2𝜋/𝐿 is 0.417 GeV. 𝑁ME, 𝑁confs, 𝑁src and 𝑁total are the number of matrix
elements, configurations, source positions per configuration and total statistics, respectively.

The three-point functions are calculated for operators containing a Wilson line in the direction
of the momentum boost, 𝑧. At each value of the length of the Wilson line, 𝑧, we utilize the ratio

𝑅𝜇 (Γ𝜅 , 𝑧, 𝑝 𝑓 , 𝑝𝑖; 𝑡𝑠 , 𝜏) =
𝐶

3pt
𝜇 (Γ𝜅 , 𝑧, 𝑝 𝑓 , 𝑝𝑖; 𝑡𝑠 , 𝜏)
𝐶2pt (Γ0, 𝑝 𝑓 ; 𝑡𝑠)

√︄
𝐶2pt (Γ0, 𝑝𝑖 , 𝑡𝑠 − 𝜏)𝐶2pt (Γ0, 𝑝 𝑓 , 𝜏)𝐶2pt (Γ0, 𝑝 𝑓 , 𝑡𝑠)
𝐶2pt (Γ0, 𝑝 𝑓 , 𝑡𝑠 − 𝜏)𝐶2pt (Γ0, 𝑝𝑖 , 𝜏)𝐶2pt (Γ0, 𝑝𝑖 , 𝑡𝑠)

(8)
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to extract the ground-state contribution of the matrix elements by a single-state fit. In this work,
we use a source-sink time separation of 𝑡𝑠 = 10𝑎. In Eq. (8), 𝜏 is the insertion time.

4. Results

We first present the bare matrix elements using Eq. (8) in the symmetric (“s”) and asymmetric
frame (“a”). One of the dominant contributions in terms of signal is Π𝑠/𝑎

3 (Γ3), which corresponds
to the operator 𝛾3𝛾5 using the polarized parity projector in the direction of the boost; this is shown in
Fig. (1) for −𝑡𝑠 = 0.69 GeV2 and −𝑡𝑎 = 0.65 GeV2 . As mentioned previously, the matrix elements
calculated in the symmetric frame have definite symmetry properties, which does not hold in the
asymmetric frame. Nevertheless, we find similarities between the asymmetric matrix elements in
the eight kinematic setups leading to the same −𝑡, implying that the asymmetries are small.
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Figure 1: Bare matrix element Π3 (Γ3) in the symmetric (left) and asymmetric frame (right), for |𝑃3 | = 1.25
GeV and −𝑡𝑠 = 0.69 GeV2 (−𝑡𝑎 = 0.65 GeV2) for the symmetric (asymmetric) frame. The top (bottom)
panel corresponds to the real (imaginary) part. The notation in the legend is {𝑃3, ®Δ} in units of 2𝜋/𝐿.

After calculating the matrix elements, we are able to apply the decomposition into the ampli-
tudes. For the same values of −𝑡, we expect from theory that the amplitudes match. Here, we use
periodic boundary conditions and, therefore, 𝑡𝑎 and 𝑡𝑠 cannot be matched exactly, but have ∼ 5%
difference for the values presented in Fig. 1. However, this is very small and we anticipate that
it does not have an impact on the comparison given the statistical uncertainties. In Fig. 2, we
compare the amplitudes with the largest signal, 𝐴2 and 𝐴5, in the two frames. We find that, within
uncertainties, the values of the amplitudes do not depend on the frame that has been used in the
calculation. The remaining amplitudes can be found in Ref. [13].

The next step of the work is the reconstruction of the 𝑥 dependence via a Fourier transform,
or another reconstruction method. As mentioned previously, we apply the Backus-Gilbert recon-
struction in order to minimize the impact of functional dependence. We test different values of

5
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Figure 2: Comparison of bare values of 𝐴2 and 𝐴5 in the symmetric (filled symbols) and asymmetric (open
symbols) frame. The real (imaginary) part is shown in the left (right) column. The data correspond to
|𝑃3 | = 1.25 GeV and −𝑡 = 0.69 GeV2 (−𝑡 = 0.65 GeV2) for the symmetric (asymmetric) frame.

𝑧𝑚𝑎𝑥 as inputs into the reconstruction and look for stability. In Fig. 3, we demonstrate our findings
for both definitions of the 𝐻-GPD. There are two kind of conclusions: (a) for each quasi-GPD, a
consistency between all 𝑧𝑚𝑎𝑥 values of to 𝑥 = 0.7, and for 𝑧𝑚𝑎𝑥 = 11𝑎 and 13𝑎 can be seen; (b) the
two definitions are numerically very similar. In this work we use 𝑧𝑚𝑎𝑥 = 11𝑎 as a final value.
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Figure 3: The 𝑥-dependent quasi-GPD H̃3 (left) and H̃ (right) for −𝑡𝑎 = 0.65 GeV2 and |𝑃3 | = 1.25 GeV
using Backus-Gilbert with 𝑧max = 9𝑎, 11𝑎, 13𝑎.

Upon having the quasi-GPD in momentum space, we must now relate them to the light-cone
GPDs using the LaMET matching formalism. We use the one-loop kernel at zero-skewness shown
in Eqs. (6) - (7). The matching is applied to all values of −𝑡 presented in Table 1, and the results
are presented in Fig. 4. In particular, we plot eleven different values of −𝑡 ∈ [0.17, 2.77] GeV2

at the MS scheme of 2 GeV. Both the standard definition, 𝐻3, and the alternative definition, 𝐻, are
shown. It should be noted that, given the value of the momentum boost, |𝑃3 | = 1.25 GeV, the GPDs
extracted at −𝑡 above ∼ 1 GeV2 suffer from enhanced higher-twist contaminations. Nevertheless,
they are included in this study as they are obtained at no additional computational cost.
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Figure 4: The momentum-transfer squared dependence of the light-cone GPD 𝐻3 (left) and 𝐻 (right) at
|𝑃3 | = 1.25 GeV. Results are given in the MS scheme at 2 GeV.

5. Summary

In these proceedings, we present a lattice calculation of the twist-2 axial vector 𝐻 GPD for
the proton at zero skewness; the 𝐸 GPD is not accessible in this case due to a vanishing kinematic
coefficient. Calculations presented here were performed on an 𝑁 𝑓 = 2 + 1 + 1 ensemble with a
clover term and twisted mass fermions. The pion mass for this ensemble is 260 MeV and the lattice
spacing is 𝑎 = 0.0934 fm and dimensions 323 × 64. We applied the quasi-GPD approach as laid out
in the Large-Momentum Effective theory (LaMET). We explore two definitions of the quasi-GPDs,
one which is the standard definition 𝛾3𝛾5 and another Lorentz invariant version. We find that both
definitions lead to numerically compatible results in the kinematic setups used in this work. The
lattice data are renormalized using an RI-type prescription, and we employ the Backus-Gilbert
approach to extract the 𝑥−dependence of the quasi-GPDs. For the matching to the light-cone GPDs,
we use a one-loop matching from the RI to the MS at a scale of 2 GeV. In this analysis, we compared
the numerical values of the Lorentz invariant amplitudes, 𝐴𝑖 obtained in the symmetric and an
asymmetric frame, where we demonstrated agreement for similar values of −𝑡. Finally, we present
the twist-2 axial vector GPD, 𝐻 for eleven different values of −𝑡. The results of this work can be
used to parametrize the −𝑡 dependence of the GPDs. The work can also be extended to nonzero
skewness, as the framework of Ref. [13] supports any kinematic setup for the momentum transfer.
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