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1. Introduction

Distribution functions of partonic content are key quantities for decoding hadron structure and
are categorized in parton distribution functions (PDFs), generalized parton distributions (GPDs),
and transverse-momentum-dependent distributions (TMDs). All these distribution functions are
classified according to their twist, that is the order of a 1/Q-expansion they appear in (Q: hard scale
of physical process). The leading ones are the twist-2 contributions, while twist-3 is sub-leading.
While the latter have been studied very little, they are important for a number of reasons [1]. Thus,
they cannot be disregarded, and this work makes an effort to provide information on the twist-3
axial GPDs for the proton, which are interesting in their own right besides assisting in refining the
extraction of the twist-2 counterparts. For example, some twist-3 GPDs are related to the orbital
angular momentum of quarks, and some provide information about the transverse force acting on a
quark in a polarized nucleon.

Direct calculations of GPDs in lattice QCD are not possible due to their light-cone definition.
However, the development of modern approaches for accessing GPDs in momentum (x) space
has been initiated in recent years. In this study, we employ the quasi-distributions method [2],
which utilizes matrix elements with momentum-boosted hadrons coupled to non-local operators
containing a straight Wilson line connecting the spatially separated fields. These matrix elements
are functions of the length of the Wilson line, z, and can be Fourier transformed in momentum
space resulting the quasi-GPDs. Finally, the lattice data are connected to the light-cone GPDs
through the framework of Large-Momentum Effective Theory (LaMET) [3]. Extensive reviews of
the quasi-distribution approach, along with other methods for obtaining x-dependent distribution
functions, can be found in Refs. [4-8].

In the current work, we utilize our experience on the twist-3 proton PDFs, e(x), gr(x) and
hp (x) [9-12], as well as lattice calculations of twist-2 GPDs conducted by members of our group
and collaborators [13, 14], to extract the chiral-even twist-3 axial GPDs. This calculation is
quite challenging both computationally and theoretically due to increased gauge noise (momentum
boost, momentum transfer, non-local operators), the cost (increased number of matrix elements and
number of GPDs, choice of frame), and the enhancement of systematic uncertainties (finite-volume
and discretization effects, non-uniqueness of quasi-GPDs definition).

All the above considerations are a significant motivation for exploring lattice-QCD calculations
of twist-3 GPDs, a task that is highly demanding but holds tremendous promise for providing
valuable insights into these quantities.

2. Theoretical and Computational Setup

Due to space limitations, here we provide a brief summary of the theory and methodology.
More details, including the definition of twist-3 GPDs, as well as the parametrization of the matrix
elements, can be found in Ref. [1]. To access twist-3 axial GPDs, the relevant operator contains
a Dirac structure of y/7ys, where j is perpendicular to the momentum boost, that is, j = 1,2. At
the twist-3 level, there are four GPDs. Here, we use a basis for the parametrization that follows
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Ref. [15]. Written in coordinate space for the quasi-GPDs (finite momentum boost), one obtains

(pf7 ) Al )’5

F[7j75] ,A;P3
(AP = e | Mg,

Fg,5, (66 6P +y1ysFg,q (5,61 P)

+Af”5 5 (P +ielA, Z—F (. &5P) u(pi, ), (1)

where Fx denotes quasi-GPDs. The twist-2 GPDs H and E also enter the decomposition along
with the purely twist-3 ones, G; (i = 1,2,3,4). We note that the forward limit of the matrix
element gives the combination Fz A+G, = 8T the 2-parton twist-3 PDF that we calculated in Ref. [9].
Different parameterizations for twist-3 light-cone GPDs are available in the literature [16, 17]; see
also Ref. [18] where the relations between several definitions can be found.

Exploitation of the symmetry properties of GPDs in position space is of practical value in
this calculation, as we can increase statistics by appropriately combining data at the same |Ps3|,
|z|, and —¢. We find that the real part satisfies (~}1(—P3) = +(~;1(P3), 52(—P3) = +(~}2(P3),
G3(-P3) = —=G3(P%), and G4(—-P3) = +G4(P3) (H(-P3) = +H(P?) and E(-P%) = +E(P%)).
Also, G1(=2°) = +G1(2%), G2(=2) = +G2(2?), G3(=2%) = =G3(2%), and Gy(=2°) = +Gu(2)
(H(-7%) = +H (13) and E (- —73) = +E(2%)). From the combination of hermiticity and time-reversal
we find that Gl, Gz, and G4 exhibit even behavior under ¢ — —¢ (H and E are even [19]), while G3
exhibits odd behavior. Finally, from the requirement of a well-defined forward limit for the matrix
elements, it can be shown that 63 should exhibit at least linear scaling with respect to ¢ and without
apole at ¢ = 0. This is very impactful, as in our £ = 0 calculation, we expect that G is zero.

Here, we use the LaMET approach, which is based on matrix elements of non-local fermion
operators where the fermion fields are spatially separated in the Z direction. The momentum boost
is in the same direction as the Wilson line, P5. Here, we calculate off-forward matrix elements with
the direction of the momentum transfer perpendicular to P3, A = (A, Ay, 0), corresponds to zero
skewness, & = 0. For the twist-3 axial GPDs, we construct the matrix elements

hj(Tis 2. P s Pis ) = Zy,ys (2 ) NP (2) ¥ s W(, 0 (0)IN(py))y, j=12. (2

The calculation is performed in the symmetric frame corresponding to j 5 = P+ % and p; = P- %.
We note that a novel method to extract twist-2 GPDs from any kinematic frame via a Lorentz-
covariant decomposition has been proposed [20, 21]. The GPDs depend on the 4-vector momentum
transfer squared, —t = A? - (Ef - E;)?, where E; and E r are the energies of the initial and final

state (E;/r = m? + ﬁlz/ f)‘ Zy,ys indicates the renormalization function for the operators and is

calculated non-perturbatively [1] using the momentum source method [22, 23] in the modified MS
(MM_S) scheme [24] at a scale of 2 GeV. Note that the matched (light-cone) GPDs are be converted
to the standard MS scheme at 2 GeV through the matching formalism. The parity projector, Ty,

entering /; is chosen to be the unpolarized and three polarized cases defined as I'y = i (i + 0

Iy =1 (i + yo) iy ¥k, with k = 1, 2, 3. Thus, we obtain four independent matrix elements that
can disentangle the four twist-3 GPDs through

hj= CTr[FK (_lzlf:m) Flyjvs] (M) ] , (3)

2m
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where #1771 is the [- - - ] component of Eq. (1) written in Euclidean space. The kinematic factor
C in the symmetric frame at zero skewness reads C = 15(2+me (E;=Ef=E).

The position-space quasi-GPDs, Fx(z), are transformed in momentum space, Fx(x), defined
through a Fourier transform. The lattice discretization and periodicity lead to a small set of
values for z in the range [0, L/2] (L: spatial extent of lattice). This so-called inverse problem
in the reconstruction of the x-dependence does not have a unique solution. Here, we use the
model-independent Backus-Gilbert reconstruction method [25], which we implement according to
Ref. [26]. The quasi-GPDs are connected to their light-cone counterparts through the matching
formalism. The matching kernel, Cy, is calculated order by order in perturbation theory and, at
one-loop for zero skewness, reads
m* AéCD
P2’ p2° 2p2
P; P5 x*P3

1
FMMS (3 4 Py ) = / 22 CMMS VS (— L) G¥S(y,1,p) + O )

BVIRRELS y yP3

At & =0, Cx is expected to coincide with its forward limit [27] given in Ref. [10]. Cx is the same
for H + Go, E+ G1, G3, and G4 because they are extracted from the same operator.

In this calculation, we use one ensemble of two Ny = 2+ 1 + 1 twisted mass fermions with a
cover term [28], where the mass of the light quarks has been tuned to produce a pion mass of 260
MeV. The lattice spacing is @ ~ 0.093 fm, and the lattice volume is 323 x 64 (L ~ 3 fm).

The construction of the matrix element 4; combines the proton two-point and three-point
correlation functions. For the latter, we use the sequential method that requires fixing the source-
sink time separation, ¢, but allows one to obtain the matrix element for any operator at a very small
additional computational cost. In this work, we choose ¢, = 10a to control statistical uncertainties
and focus on the u — d isovector flavor combination. Thus, the disconnected contribution of u — d is
safely neglected. h; denotes the ground-state contribution of an appropriate ratio between the 2pt-
and 3pt- functions that cancels the time dependence of the exponentials introduced by the non-zero
momentum transfer between the initial and final states, as well as the overlap from the interpolating
fields. The ground-state matrix elements are obtained from a plateau fit with respect to operator
insertion time in a region of convergence, indicated by IT/(I",).

We calculate h; for a class of momenta of the form A= (2¢,0,0), A = (0, +¢,0), and
A= (xq,+q,0) leading to —¢ = 0, 0.69, 1.38, 2.76 GeV>. These are combined with +P3; =
0.83, 1.25, 1.67 GeV. Overall, the various combinations of = momenta lead to a factor of eight
more statistics. An additional factor of two in the number of matrix elements comes from averaging
the matrix elements /#; and h;. A large number of statistics is required for the high values of P3 and
—t, and here we use O(10%) — O(10°) measurements. The exact statistics can be found in Ref. [1].

3. Results

In Fig. 1, we show some representative matrix elements for A=+22 (2,0,0) plus permutations
and P3 = +1.25 GeV (-t = 0.69 GeV?). The data correspond to i/ projected by I';, while
the momentum transfer in the j direction is zero. The matrix elements have definite symmetry
properties for the various +P3, +z, and +A cases. As can be seen, the real part is fully symmetric,
while the imaginary part is symmetric in +A, but anti-symmetric in P - z. We note that the matrix
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element related to G5 is compatible with zero, a conclusion that holds for all values of —f we explore
here. This behavior is due to the zero skewness calculation (see, e.g., Eq. (6)).
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Figure 1: Real (left) and imaginary (right) parts of the matrix elements I1/(T;) for all kinematic cases
corresponding to A; = O at —¢ = 0.69 GeV? and | P3| = 1.25 GeV. The data are indicated by {j, P3, A}, where
P3 =43, and A = (£2,0,0), (0,+2,0). The momenta are given in units of ZT”

Using all 1ndependent matrix elements we decompose the quasi-GPDs in position space, Fx(z)
where X = H+G», E + G, G3, G4. We examine the P3 and —t dependence independently on the
numerically dominant GPDs F e and Fz Gy The former can be found in Ref. [1] for —¢ = 0.69
GeV?, for which have P3 = 0. 83 1.25, 1.67 GeV. For Fg 15,0 Ve find a mild P3 dependence, while
a more noticeable P3 dependence is observed in Fg, & - The dependence of Fx on the momentum
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Figure 2: Real (left) and imaginary (right) parts of F__ G (top) and F e (bottom) at P3 = 1.25 GeV and
—t =0.69, 1.38, 2.76 GeV2. All kinematically equivalent cases have been averaged. The errors correspond
to the statistical uncertainties.

transfer is shown in Fig. 2, where the momentum boost is fixed to |P3| = 1.25 GeV. We find a
smooth —¢ behavior and, in particular, a decrease in the magnitude of Fx as —f increases. Another
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general finding is that F' e is noisier than Fj; 16y A8 well as larger in magnitude. This is expected
from the behavior of the axial, G 4, and induced pseudoscalar, G p, form factors [29], which are
related to the above-mentioned quantities through the generalization of Burkhardt-Cottingham sum

rules [15, 30] and the zero norm of (~},~,which also holds for quasi-GPDs.

1 1 1
/dxﬁ(x,f,t):GA(t),/ de(x,f,t)sz(t),/ dxGi(x,&,1) =0, i=1-4, (5)
—1 -1 -1

Finally, the noise increase becomes more prominent for the large values of —z, even though there
is a good signal for all cases and a hierarchy among the various momentum transfers, where the
quasi-GPDs are decaying towards zero as —t increases. The difference between —t = 0.69 GeV?
and — = 1.38 GeV? is very small for the imaginary part of both F [+G, and Fgz Gy
As mentioned previously, F Gs is zero for & = 0, which is consistent with the generalization of

the Efremov-Leader-Teryaev sum rules [31]

/dxx63 = %GE(t). (6)

F54,

Sachs form factor G,

is found to be small but not negligible, as depicted by the sum rule connecting it to the electric

1
/ dxx Ga(x,&,1) = }LGE. (7)
-1

Due to space limitation, we will only show the light-cone G4 below.

The quasi-GPDs in position space are used to reconstruct the x-dependence of the light-cone
GPDs, for which we use the Backus-Gilbert method on each Fx and then apply the matching kernel
to obtain the light-cone GPDs as a function of x. Since we perform the calculation at zero skewness,
it is anticipated that the matching formalism of GPDs is the same as for PDFs [27]. Thus, we use
the results of Ref. [10], which correspond to the forward limit of the twist-3 axial GPDs, g7. A
dedicated analytic calculation for the twist-3 case is required to prove this argument, which we leave
as future work. In this presentation, we neglect G3, which was found to be zero. We have examined
the dependence of the quasi-GPDs on the maximum value of z that enters the Backus-Gilbert
reconstruction, with zmax = 9a, 11a, 13a. We consistently find that zy,x = 11a is optimal for all
cases, and we include a systematic error equal to one-half of the difference of the results between
Zmax = 9a and zmax = 13a to reflect the uncertainty in the choice of zyax-

The P3-dependence of the final matched (light-cone) GPDs has been explored and is presented
in Ref. [1] for — = 0.69 GeV2. We find that both H+ 52 and E + G 1 have mild P; dependence
in the region x € [0,0.4]. We observe some differences in the region x € [0.5,0.7], while the
above-mentioned GPDs at different P3 values converge to the same function in the large x region.
Regarding G4, the P3 behavior is very similar for the —1 < x < 0.4 region. For larger values of
x, some differences are observed. Nevertheless, the convergence in P3 is satisfactory within the
reported uncertainties.

Fig. 3 shows the —¢ dependence of H + G, and E + G, for the available values of —t =
0.69, 1.38, 2.76 GeV2. As —t increases, the GPDs decrease in value for the region x € [0, 0.8].
On the contrary, the large-x reglon is not very sensitive to —t. Also, the —¢ dependence is more
prominent in E+G, compared to H + G,. This could be an indication of the pion pole expected in
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Figure 3: H+ 52 (left) and E+G | (right) and P3 = 1.25 GeV for various values of —. Results are given
in the MS scheme at a scale of 2 GeV. The bands correspond to the statistical errors and the systematic
uncertainty due to the x-dependent reconstruction.

E [32] which requires further investigation, including data at nonzero skewness. The —¢ dependence
of G4 is shown in Fig. 4 and has similar behavior as H+ Gz and E + G1

! |
OA__ = -
o 1
_2<
i —t=0.69 GeV?
-3 i =138 GeV?
! e —1=2.77 GeV?
41 . | . i
-1.0 -0.5 0.0 0.5 1.0
X

Figure 4: C~}4 at P3 = 1.25 GeV for various values of —¢. Results are given in the MS scheme at a scale of
2 GeV. The bands correspond to the statistical errors and the systematic uncertainty due to the x-dependent
reconstruction.

Another aspect of this work is to isolate G by combining our results on H + G, from the
twist-3 (y;ys) calculation and H from the twist-2 (y3ys) calculation. We extracted both quantities
on the same configurations and kinematical setup, which makes it possible to isolate G». The —t
dependence is shown in the left panel of Fig. 5, which appears to be non-monotonic. Also, it is
observed that G, becomes negative in the intermediate positive x region We anticipate that this
behavior is not unphysical as the norm of both the quasi and hght cone G, should vanish, indicating
that negative regions must exist. It is interesting to compare H+ G», H, and G,. These quantltles
are shown in the right panel of Fig. 5 at —¢ = 0.69 GeV?. The difference between H+G,and H is
large, which leads to a sizeable Gs.

A similar analysis of extracting G, is only possible at nonzero skewness because E has a
vanishing kinematic factor at ¢ = 0 in the parametrization of the twist-2 matrix element y37ys. This
gives a high value of the twist-3 calculation, as it provides information on E through its twist-3
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Figure 5: Left: G, at P3 = 1.25 GeV and various —¢. Results are given in the MS scheme at a scale of 2
GeV. Right: Comparison of ﬁ, H+ 52, and 52 at —t = 0.69 GeV2. Results are given in the MS scheme
at a scale of 2 GeV. All bands correspond to the statistical errors and the systematic uncertainty due to the
x-dependent reconstruction.

counterpart, E+G 1. In addition, one can also extract the Mellin moments of E directly from the
twist-3 data using the sum rule of Eq. (5) combined with the fact that the integral of G is zero (see,
Eq. (5)).

A number of consistency checks have been performed, which include the local limit of twist-3
GPDs, their norms, and the P3 independence of the norms. The outcome is very encouraging,
but further investigation is needed to provide quantitative results, e.g., the Mellin moments. More
detailed discussion can be found in Ref. [1].

4. Summary

In this study, we present results on the axial twist-3 GPDs, H+ 52, E+G 1 53, and 54. We
employ the quasi-distributions method, allowing access to the x-dependence of GPDs, necessitating
the evaluation of matrix elements of nonlocal operators and momentum-boosted hadrons. Our
approach employs the axial-vector operator with spatial indices perpendicular to the boost direction,
corresponding to the twist-3 counterpart of the helicity GPD.

The computations are performed in the symmetric frame, which is computationally intensive
and requires separate calculations for each momentum transfer value, —¢. We obtain results at zero
skewness and for three values, —t = 0.69, 1.38, and 2.76 GeV? at momentum boost P3 = 1.25 GeV.
Convergence checks in P3 at — = 0.69 GeV? are performed for three values, namely P3 = 0.83,
1.25, and 1.67 GeV.

Our analysis employs the unpolarized and three polarized parity projectors, yielding four
independent matrix elements that successfully disentangle the four twist-3 GPDs. Notably, H+G»
and E+G 1 exhibit a robust signal for all P3 and —¢ values. In contrast, 54 is smaller in magnitude
with a higher relative error. Gs is compatible with zero due to the calculation at zero skewness.

An additional component of the calculation is the extraction of G by combining H + G, with
the twist-2 H GPD. This analysis reveals intriguing features, such as negative values for G, at the
intermediate range of x, justified by the expectation of a zero norm for Gs.
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Despite the increased noise-to-signal ratios for the matrix elements of operators y;ys and y,ys
compared to the twist-2 case y37ys, our results demonstrate that a momentum boost of Pz = 1.25
GeV is adequate for matching lattice data to light-cone GPDs. We highlight that this marks the first
lattice QCD calculation of twist-3 GPDs, and therefore, there are sources of systematic uncertainties
to be addressed, such as excited states effects, uncertainties related to the momentum boost, and
the mixing between two-parton and three-parton correlators. Our future work will address some of
these systematics and also explore the Wandzura-Wilczek approximation intricacies. In addition to
the study of the axial twist-3 GPDs, we will also extend our calculations to other cases, that is, the
scalar, vector, and tensor twist-3 GPDs.
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