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ABSTRACT
Table search aims to answer a query with a ranked list of tables.
Unfortunately, current test corpora have focused mostly on needle-
in-the-haystack tasks, where only a few tables are expected to
exactly match the query intent. Instead, table search tasks often
arise in response to the need for retrieving new datasets or augment-
ing existing ones, e.g., for data augmentation within data science or
machine learning pipelines. Existing table repositories and bench-
marks are limited in their ability to test retrieval methods for table
search tasks. Thus, to close this gap, we introduce a novel dataset for
query-by-example Semantic Table Search. This novel dataset con-
sists of two snapshots of the large-scale Wikipedia tables collection
from 2013 and 2019 with two important additions: (1) a page and
topic aware ground truth relevance judgment and (2) a large-scale
DBpedia entity linking annotation. Moreover, we generate a novel
set of entity-centric queries that allows testing existing methods
under a novel search scenario: semantic exploratory search. The
resulting resource consists of 9,296 novel queries, 610,553 query-
table relevance annotations, and 238,038 entity-linked tables from
the 2013 snapshot. Similarly, on the 2019 snapshot, the resource
consists of 2,560 queries, 958,214 relevance annotations, and 457,714
total tables. This makes our resource the largest annotated table-
search corpus to date (97 times more queries and 956 times more
annotated tables than any existing benchmark). We perform a user
study among domain experts and prove that these annotators agree
with the automatically generated relevance annotations. As a re-
sult, we can re-evaluate some basic assumptions behind existing
table search approaches identifying their shortcomings along with
promising novel research directions.
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1 INTRODUCTION
Tables are one of the most usedmodels for organizing data in almost
any domain [1, 5, 10]. Numerous approaches have been proposed
to retrieve tables within large tabular data corpora, i.e., the table
search task [36, 38]. This includes Web tables, such as Wikipedia
tables [2], tabular data represented within data lakes, and Open
Data repositories [28].

There are two common variants of table search: the �rst ex-
pects the information need to be expressed as a keyword query, and
the second accepts an existing query table, i.e., “query-by-example-
table” [38] (or QbE for short). For keyword queries, the expec-
tation is that a user will consider the �rst few (highest ranked)
answers, analogous to Web page search. QbE is instead often re-
quired by users who need to identify new datasets or to expand an
initial dataset they have at hand, i.e., example-based exploratory
search [25, 38]. Hence, in the latter case, the search engine may
retrieve a larger set of tables (all qualifying tables), which could be
relevant even when their content does not exactly overlap with the
content of the query. For example, in dataset augmentation, it is
important to identify all tables that can provide additional features
or samples that do not appear in the query table [27, 38].

Therefore, the relevance of a candidate table extends beyond
simple content matching and requires an understanding of the
semantics of the query table [15, 25, 36, 38]. This task is referred to
as Semantic Table Search (STS) [25, 36]. Thus, in some proposals, an
STS engine can also exploit a reference knowledge graph (KG) to
enable entity-centric similarity measurements of KG entities which
thereby allows to rank tables by semantic relevance [4, 12, 13, 19].

Example 1.1. Consider a betting company analyzing baseball
teams and lead players to cross-reference their performance. Given
some baseball teams of interest, an initial query table would contain
some players from two teams of interest, as in Figure 1. A data
scientist within the betting company then executes this query in
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(with 2 to 3 orders of magnitude more queries and tables than other
existing datasets).

In this paper, we �rst present a more in-depth analysis of the use
cases for our dataset (Section 2), and then we discuss the limitations
of existing benchmarks (Section 3). Furthermore, we describe how
we built our test collection (Section 4). Finally, we evaluate our
test collection over two baselines designed to exploit the seman-
tic annotations present in our dataset and discuss new promising
research directions (Sections 5). We consider how our dataset can
shed more light into the successes and failures of semantic table
search methods sparking new insights that may help to advance
this important �eld. We conclude our paper in Section 6.

2 TASK DEFINITION
In semantic table search (STS), the task is to rank a set of top-: tables
in a corpus given an input query [36, 38]. The task that this resource
aims to benchmark is example-driven top-: semantic ranking. This
means that input queries are given as small tables containing in-
formation of interest organized in rows and columns. For example,
if a user wants to �nd tables describing baseball players, teams,
games, and statistics, the user can pose a table query containing
example baseball players and teams, such as in Figure 1. Therefore,
the ranking of tables is based not only on exact matches between
the query table and the corpus tables, but also on the semantic
similarities between entities. This necessitates access to semantic
information which can be achieved by referencing entities in KGs.

A KG is a directed labeled graph ⌧=hN , E, _i, where nodes N
consist of entities, concepts, and their attributes and edges E are
labeled relationships between nodes. The nodes and edges are usu-
ally annotated with literals L by a mapping function _ : N[E 7!L.
Given a reference KG, tables can be ranked based on the semantic
similarity of entities within tables. For example, the entities Mitch
Stetter and Micah Hoffpauir are not exact matches but have a
high semantic similarity when considering their set of entity types,
their attributes, or the distance from each other in the KG.

We can now de�ne STS as follows:

P������ 1 (S������� T���� S�����). Given a table corpus ⇠
and a table query & as input, both with mappings to entities from a
knowledge graph⌧ , the Semantic Table Search task requires extracting
from ⇠ a top-: ranked list of tables that are semantically relevant to
& according to a semantic relevance scoring function S��R��⌧ (&,) ).

Therefore, the answer to an STS example query table & consists
of a top-: ranking of tables from the corpus ⇠ . The query table
can be seen as a set of tuples. For this ranking to be e�ective, each
entity mention < in a table ) 2 ⇠ is linked to a corresponding
entity 4 2 ⌧ , where ⌧ is an instance of a reference KG. This entity
linking can be de�ned as the mapping function �:" 7!N , where"
is the set of entity mentions across ⇠ and & . Note that the entity
links in tables also allow our dataset to be used to benchmark the
performance of entity linkers.

Moreover, there are also parallels between our semantic table
search and document search. Standard document search frame-
works, such as those based on BM25 like Lucene, can be extended
with semantic weighing of query terms [30]. In this type of semantic

document search, however, only documents containing exact match-
ing are retrievable. Alternatively, another option is to identify the
concepts in the query and in the documents and then compute the
concept overlap to rank documents [11]. Also in this case, the search
paradigm tries to identify documents containing exact matches of
the keywords or entities present in the query.

3 LIMITATIONS OF EXISTING BENCHMARKS
Table searchmethods tackle a variety of problems, such as discovery
of joinable tables [40, 41], unionable tables [29], related tables [4, 33],
and augmentation search based on textual matches [35, 38]. In this
section, we survey existing methods and existing datasets to test
these methods. Our analysis reveals that, while recent work [15, 38]
has highlighted the need for semantic table search, existingmethods
disregarded the importance of semantic information provided by
KGs, as they focus on exact attribute/value overlap and use only
taxonomic KG relationships or metadata. Other methods focus on
matching tables to text queries relying on textual features in tables.
Thus, existing test collections are not su�cient to fully evaluate new
solutions for the challenging task of semantic table search.

3.1 Information Retrieval Methods
In IR, there exists a wide array of approaches designed for table
search and augmentation explicitly designed for Web tables [37] that
focus on matching the content of a table to a text query, e.g., key-
word queries describing the topics of interest. Thus, the relevance
score for a table is often based on table context (e.g., text in the same
web page, headings, captions), table content (i.e., overlaps among
cell values [40, 41]), and sometimes also on semantic relatedness
based on the taxonomy of column names [24]. Recently, the task
of ad-hoc table search [35, 37, 38] has also been considered, where
the provided query can be a small Web table or a subset of it. In
this case, the table query is treated as a complex text object, and
text embedding methods are used to estimate relevance. In practice,
they represent queries and tables in multiple vector spaces (both
discrete sparse and continuous dense vector representations) that
they refer to as semantic but are based on textual features only, while
completely ignoring actual semantic information provided by either
ontologies or KGs. Moreover, their performance is evaluated on a
needle-in-the-haystack setting, where a very speci�c user intent
is provided and a narrow list (less than 5) of relevant tables exists.
Furthermore, these methods always assume a strong presence of
textual information, which can be absent in many real cases.

Therefore, we �nd an important gap, highlighting the need to
test a new task where the query is an example of the data of interest,
and the goal is to �nd data that is semantically relevant but also
substantially extend or provide context to the query.

3.2 Data Management Methods
The database literature has also seen a lot of interest in the task of
table search. Existing approaches focused on Web tables [5] and
identi�ed two types of related tables [33]: (1) Entity Complement,
where two tables are the result of two di�erent sets of selection
predicates on the same source table, these two tables are hence
unionable; and (2) Schema Complement, where two tables are the
result of two distinct project operations on the same source table,
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Table 1: Characteristics of related test datasets. Type of tables: (Wt) Wikipedia Web tables, (P) tables from other Web pages, or
(O) Open Data; if it links to an open KG; the number (# Q) of queries contained, the number of ground truth (# GT) relevance
annotations for each query; Average size of the annotated tables; if it supports Query-by-Example (QbE).

Dataset Type KG # Q # Tables # GT Avg Size QbE
WikiTables [2] Wt (4) - 1,652,771 - 10.9 -
WDC-EN [22] P+Wt (4) - 50,820,165 - 5.5 -
GitTables [16] O (4) - 871,411 - 136.8 -
NTCIR-16 [17] O 7 96 93,367 2,030 *115,586.5 7
SemSearch [36] Wt (4) 60 2,932 3,120 15.4 7
SemSearch’21 [38] Wt (4) 50 2,932 2,855 26.3 (4)
WTR [6] P+Wt (4) 60 6,629 6,949 6.1 7
STSD WT’13 (ours) Wt 4 9,296 238,038 640,467 25.1 4
STSD WT’19 (ours) Wt 4 2,560 457,714 958,214 24.9 4

these two tables are hence joinable. This distinction uses entity-
centric de�nitions, i.e., they assume a source table describing some
set of entities (products, countries, customers), and thus relevance
is determined by their ability to share exact values in a speci�c
column (for joining them) or they feature the same set of attributes
(for their union) [4, 7, 13].

More recently QbE approaches for joinability [40, 41] and union-
ability [29] that are not entity-centric have been developed to ex-
ploit approximate value overlap along with KGs and natural lan-
guage models. The use of these technologies allows for the extrac-
tion of semantic similarities of attributes. These have also been
generalized to consider relationship semantics and table semantics
using large language models [12, 19].

Di�erent works on table search [23, 29, 42] also use some taxo-
nomic information (e.g., WebIsA and Freebase types) as reference
knowledge to determine if two sets of entities come from the same
set, or when attributes with di�erent names are equivalent. Yet,
they do not fully exploit semantic resources, i.e., KGs. In particular,
a KG contains not only taxonomic information (instance, type, and
subclass relations), but it also contains attributes and inter-entity
relationship information that can help to determine relatedness in
a broader sense. Other approaches for related table search exploit
instead meta-data derived by static analysis of the usage of speci�c
tables in di�erent programs (e.g., python notebooks) [39]. Kumar et
al. [21] proposed a set of rules to determine if avoiding performing
a join would be safe in a relational context, while in Shah et al. [34]
the rules of Kumar et al. [21] are applied to high-capacity classi�ers
to test their validity. Other approaches to augmentation return a set
of related tables [4] where a relatedness search in data lakes is per-
formed, that identi�es joins between tables containing overlapping
sets of entities [7, 13].

A framework called ARDA [7] has been proposed to also evalu-
ate the quality of the information obtained through augmentation.
ARDA works as a two-step algorithm. Firstly, it searches for join-
able tables and then prunes out irrelevant features using feature
selection algorithms. In particular, given a speci�c predictive model,
it takes as input a dataset and a data repository and outputs an
augmented dataset such that training the predictive model on this
augmented dataset results in improved performance. Thus, these
approaches mostly exploit value overlaps and co-occurrences while

using taxonomies and natural language models to extract semantic
similarities of attributes for schema alignment.

Linking tables to KGs also allows the consideration of non-taxonomic
relationships to estimate the relatedness of two tables. Therefore, a
benchmark dataset for the STS task should allow the testing of se-
mantic relatedness of generic tables in a data lake as required in
exploratory use cases. Yet, existing datasets do not o�er ground
truth relevance judgments for such pairs of tables.

Therefore, our proposed STSD corpus supports the study of
methods that match relatedness beyond the concepts of joinable and
unionable tables, since tables can be relevant even when they do not
share any part of their data, e.g., none of the ground truth tables in
Figure 1 are joinable or unionable with the query table.

3.3 Existing Test Collections
Multiple table collections have been proposed to test di�erent in-
formation retrieval and data management use cases. In Table 1, we
present their statistics, including the type of data they contain and
whether they provide ground truth relevance that can be useful to
test table search solutions. Some are large Web table collections
that are designed to test entity linking approaches, where entities
are usually linked directly to Wikipedia pages or a selected set
of DBpedia entities. This is the case of the WikiTables [2] dataset
and the tables extracted from the English WebDataCorpus (WDC-
EN) [22]. The more recent GitTables [16] are extracted from tabular
data published on GitHub, but is not linked to entities, instead some
columns are linked to entity types or relationships. Overall, these
datasets contain a large number of tables but no queries and no
ground truth relevance judgments. Moreover, their entity-linking
annotation is generally sparse, incomplete, and/or outdated.

Other datasets have been speci�cally designed for information
retrieval tasks. This is the case of the NTCIR-16 [17], the Sem-
Search [36], and the WTR [6] datasets. Yet, for these datasets, rele-
vance judgments are limited to keyword queries and queries are
not linked to entities. Moreover, the relevance judgments have been
obtained through human annotation. For this reason, while they
are derived from a large set of tables (e.g., 3M for WTR), the ac-
tual annotated tables and relevance judgments are limited to a few
thousand (6,629 in WTR), and the tables that are actually annotated
are usually small. Moreover, almost all of them do not support the
QbE use case, i.e., when the input is a portion of a table instead
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of a keyword query [6, 17, 36]. That is, users were not tasked to
provide a relevance judgment of a table compared to another table
as QbE requires. Furthermore, the entity linking in these tables
is very sparse (we estimate that in WTR more than half of the ta-
bles have less than 10 entities while in our STSD corpus, all tables
have at least 10). Therefore, most of the semantic information in
WTR comes from table headers and captions. Recently, the work
of SemSearch has been expanded to also include some tables as
queries (SemSearch’21 [38]). However, this dataset is not suitable
for training and testing advanced methods for the STS task, as its
queries are not linked to KG entities. Furthermore, only 50 queries
and few ground truth tables were annotated. These query tables
have an average entity coverage of only 25.4%, i.e., an average of
29.3 entities per table among an average of 116.2 query table cells.

Another important limitation of WTR, SemSearch, and Sem-
Search’21 is thatmany queries have few or no answer tablesmarked as
relevant. On average, 80.1% of the annotated tables in SemSearch’21
have been marked as irrelevant (i.e., assigned a ground truth score
of 0). For keyword queries in SemSearch, this number is 72.1% and
67.9% in WTR. Finally, both SemSearch [36] and WTR [6] dataset an-
notations have been extracted through a biased pooling mechanism,
which used the original keyword queries with BM25 to retrieve
a subset of tables, and only those tables have been evaluated by
human annotators for relevance. As we discuss in the next sections,
this favors text-based methods and fails to collect relevance judg-
ment on many other relevant tables. This means that any search
method tested on these collections will not be able to verify the
ability to encompass more expressive semantics. As an example,
a query table in SemSearch’21 describes ferry boats of the East
Frisian Islands. This query table has 1 annotated table with a non-
zero relevance score in SemSearch’21 while it has 27 tables marked
as relevant in our proposed STSD (using Wikipedia categories),
among which the one table annotated as relevant in SemSearch’21
is also found. The annotated table in SemSearch’21 lists East Frisian
Islands and sand �anks, and it has been assigned a low relevance
score in both ground truths. In the STSD ground truth, however, the
tables contain semantically relevant information, including a list of
the largest ferries in Europe and the Caledonian MacBrayne �eet.
Similarly, another query table describes athletes from Montana,
USA. This table has 7 annotated tables with a non-zero relevance
score in SemSearch’21 and 27 in STSD, with three tables appearing
in both ground truths, and in both being assigned the highest rele-
vance. All of the relevance annotated tables in SemSearch’21 are
assigned the highest relevance score. Among the relevance anno-
tated tables in our STSD dataset are tables describing information
such as famous people from Montana, USA, athletes from Georgia
Institute of Technology, and medalists from USA. Among these,
only one table has also been assigned a non-zero relevance score
in both datasets which is the highest relevance score. Finally, these
two SemSearch’21 queries are the only queries that can be mapped
to our queries in STSD. The remaining 48 SemSearch’21 queries
have instead very few entity mentions appearing in them, resulting
in their exclusion from our corpus. By selecting only those rows
and columns containing entity links, the queries become too small
to be su�ciently descriptive.

This comparison shows how important it is to o�er a comple-
mentary set of tables and ground-truth relevance annotations since
all existing datasets do not o�er a su�ciently large, diverse, and
annotated table corpus.

4 SEMANTIC TABLE SEARCH TEST CORPUS

Table 2: Benchmark statistics: # of tables (T), mean # of rows
(R), mean # of columns (C), mean # of ground truth tables
per query using WP categories (GT), and mean entity link
coverage (Cov).

Queries Data Lake Tables
T R C GT T R C Cov

WT’13 9,296 25.1 3.4 65.7 238,038 35.1 5.8 27.7%
WT’19 2,560 24.9 2.4 374.4 457,714 23.9 6.3 18.2%

The STSD corpus is extracted and annotated from tables in
Wikipedia pages (WP) from 2013 and 2019 [2, 3] via the following
steps: (1) linking tables cells that contain links to a corresponding
WP to DBpedia using the isPrimaryTopicOf property, (2) �ltering
of tables to ensure a wide representation of entities and table sizes,
(3) extraction of a large and heterogeneous set of query tables, and
(4) construction of a ground truth relevance score for each query
table using ground truth meta-data from the original Wikipedia
pages.

4.1 Table Corpus
The STSD corpus is comprised of Wikipedia tables (WT) and is
annotated by linking cell values to DBpedia entities. Since many
cell values in the WT corpus contain links to WP pages (e.g., when
a cell contains the value “U.S.A.” that is linked to the corresponding
WP page), and given that DBpedia entities are linked to WP pages
via the isPrimaryTopicOf property, we match the cell to the corre-
sponding DBpedia entity via those links. Note that, if no WP links
is present, a state-of-the-art entity linker can be applied for this
task. Then, our STSD corpus is obtained by selecting from the 1.6M
WT tables in the original corpus (from a 2013 snapshot) those with
at least 10 unique DBpedia entities across their cell values. Perform-
ing this procedure results in 238,038 tables. In addition, for each
table, we also extract the set of Wikipedia categories and navigation
links from the WP page containing the table. Note that this infor-
mation is missing from the original WT corpus. We crawled it from
the current online Wikipedia. These are used to obtain our ground
truth relevance assessment as explained below. Following the same
procedure, we extracted tables and annotations from a 2019 snap-
shot [3] of 714,632 WT tables resulting in an additional 457,714
tables. Figures 2a and 2b show the table size distribution across the
2013 and 2019 corpora. Table 2 summarizes the characteristics of
our two STSD corpora from 2013 and 2019, as well as the entity
link coverage. Both WT tables from 2013 and 2019 show similar
characteristics regarding rows and columns. However, WT tables
from 2013 contain on average more DBpedia entity annotations
and are therefore semantically slightly more descriptive.
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2013 2019 2019 2019 2019
2013

2013 2013

(a) (b) (c) (d) (e) (f) (g) (h)

2013 2019

2013 2019 2019 2019 2019
2013

2013 2013

(a) (b) (c) (d) (e) (f) (g) (h)

2013 2019

Figure 2: Distribution of rows across tables in the corpus and rows, columns, and relevant tables across all query tables in STSD.

4.2 Query Corpus
Our set of query tables is generated by selecting one table from each
WP page. If a WP page contains more than one table, the table with
the largest number of entity mappings within a single row (called
horizontal entity mapping) is chosen. We keep only query tables
with a minimum horizontal entity mapping of at least 3 entities to
capture a su�ciently large schema. As an additional restriction to
improve the quality of our queries, we keep only query tables with
at least 10 rows. Furthermore, we keep only query tables with at
least one relevant (see below how relevance is established) table
from a di�erent WP page in the ground truth than the page of the
query table itself. These restrictions ensure that the query tables
can be used to �nd other non-trivial relevant tables. Applying these
restrictions provides 9,296 query tables on our 2013 STSD corpus
and 2,560 query tables on our 2019 STSD corpus. Focusing on the
entities, the query tables can also be considered as a list of entity
tuples. Figures 2c and 2d show the distribution of the number of
rows per query, while Figures 2e and 2f show the distribution of
the number of columns (i.e., width) per query table.

4.3 Relevance Assessment
Our dataset is the �rst to provide a large-scale set of ground truth
relevance annotations for the query-by-example semantic table search
task. Our ground truth annotations are designed speci�cally for
the semantic exploratory search task and establish the relevance
of two tables that appear on two pages by comparing the set of
Wikipedia categories or navigation links (i.e., links to related WP
pages) those pages share. Thus, for each query-table pair, we pro-
vide two relevance judgments: the Jaccard similarity of Wikipedia

categories and the Jaccard similarity of navigational links of pages
from which the two tables were extracted. More speci�cally, we
provide continuous relevance scores ranging between zero (irrele-
vant) and one (highest relevance possible): if the Jaccard similarity
comparing either the pages or links of the query table and a given
table is above zero, then that table is considered as somehow rele-
vant to the query. Notice that the relevance score of a query table
to a table from the same WP page will always be one, since tables
from the same WP page share the same categories and navigation
links. To further improve the quality of the relevance assessments,
generic Wikipedia categories and navigation links (e.g., “Pages Un-
der Construction”, or “Living People”) were excluded as they do not
contain semantically useful information. Figures 2g and 2h show
the distribution of the number of tables annotated as relevant per
query table. It should be noted that WPs in a few cases su�er from
generic or small and speci�c sets of categories. For example, the
only WP category of 108th United States Congress is “108th United
States Congress” and the WP 2014 in amusement parks has the
generic types “Amusement parks by year” and “2014-related
lists”.

We evaluate the trustworthiness of our automatically established
ground truth using Wikipedia categories and navigation links by
performing a user study over 25 randomly chosen 5-tuples queries
(query table containing �ve tuples). For each query, we select 20
tables for human annotation which are split into four groups of
�ve tables: (1) tables retrieved by both semantic relevance search
and BM25 keyword search and annotated as relevant in our ground
truth, (2) tables retrieved only by semantic relevance search and
annotated as relevant in our ground truth, (3) tables retrieved by

1147



A Large Scale Test Corpus for Semantic Table Search SIGIR ’24, July 14–18, 2024, Washington, DC, USA

semantic relevance search but annotated as not relevant in our
ground truth, and (4) random tables not annotated as relevant in
our ground truth. Semantic relevance search is implemented as
a table search approach �nding semantically relevant tables by
comparing the entities within the query and the tables. Pairs of
entities in the query and the table are compared in two alternative
ways: either (i) computing the Jaccard similarity of entity types
or (ii) computing the cosine similarity of entity embeddings. This
search method is described in greater detail in the Section 5. More
complex methods could also be designed, but we favored a simple
and easily explainable method for this experiment.

Given the query and answers described above, we performed
the user study on 12 users, with a background in data science and
data management. The users were tasked to annotate each query-
table pair with a relevance score in [1, 4], where 1 is “irrelevant”
and 4 is “very relevant”. We ensured each table is annotated by
three di�erent participants and the �nal table annotation used is
determined by averaging the votes of the three annotators. We
computed the Kendall-W coe�cient of concordance [14] of the
human annotators to measure the inter-annotator agreement. We
used Kendall-W instead of Kendall Tau [18] since it is more appro-
priate when comparing multiple annotators. We then obtained an
average of 0.87 per query, which shows a high agreement between
the human annotators. However, this measure requires the anno-
tations to be unique rankings of the tables per query. As this is
not the case in our user study, i.e., tables with the same annotation
score for a query are randomly assigned a ranking, Kendall-W can
provide an underestimation of the real agreement. Therefore, we
also compute Krippendor�’s Alpha [26], which can handle ordinal
input containing duplicates and multiple annotators. This score is
0.62, which once again shows a high inter-annotator agreement.

Once retrieved human relevance annotations for our sample, we
compared the ranking of the 20 tables for each query to the ground
truth ranking of the same tables. We employed Kendall Tau [18]
to measure the agreement between the automatically established
ground truth and the human annotators. Since the relevance scores
we produced in our automatic relevance computation are in the
range 0-1, we quantized these values into the 1-4 range of relevance
scores obtained in our user study. The quantization was obtained
by computing thresholds for the scores as the 1st quartile, the me-
dian, and the 3rd quartile. Thus, comparing the quantized relevance
scores computed in our dataset to the annotators’ relevance scores,
we obtained an average Kendall Tau value of 0.47, which shows a
high agreement between the human annotators and the automati-
cally established relevance scores.

5 SEMANTIC TABLE SEARCH EVALUATION
In this section, we show how the STSD corpus allows testing the
limitations of table search approaches for the QbE search task.
Speci�cally, using STSD 2013, we evaluate the recall of 5 baselines:
one based on BM25, one based on dense representation learning,
one based on a large language model for table union search, and
two based on semantic information that are also purely content-
based and do not use any other table information other than the
cell values.

BM25 [32] is a well-established keyword search algorithm in
information retrieval that has also been used as a baseline method
in numerous table search works [35, 36, 38]. To use BM25 to search
over our corpus, we �rst convert our query tables into keyword
queries. This is done by extracting the text �eld from each cell
and using that as the keyword (e.g., the entity “dbpedia:Boston”
from a query table will be converted into the keyword “Boston”).
Thus, every query and every candidate table is then treated as a
text document composed of all its cell values. Metadata is left out,
and tables are indexed for full-text search with BM25 to answer
keyword queries in a purely content-based manner.

TURL [9] is a deep-learning model for Table Representation
which we adapt for the dense table search task. That is, queries and
tables are represented as dense vectors. Speci�cally, we aggregate
all contextualized vector representations in each table to construct
an embedding for each query and table using the pre-trained model
of TURL. To rank the tables, we use cosine similarity between the
aggregated query and table representations.

Starmie [12] is a representation learning approach applying
a large language model to perform semantic matching of column
representations for table union search. Starmie is able to capture
rich contextual semantic information within tables using trained
column encoders.

Jaccard of Entity Types (STST) performs Semantic Table Search
by measuring the similarity between pairs of entities in the query
and the table. Given two entities (e.g., from DBpedia), we de�ne
their relevance score as the Jaccard similarity between the two sets
of their types (e.g., mapped via rdf:type in DBpedia). Then, to
estimate the similarity between the query table and the candidate
table, we aggregate the Jaccard similarity across all their entities. To
do so, we �rst align each column in the query tuple to the column
in the candidate table maximizing the Jaccard similarity of their
types in that column. We generate such an alignment using the
Hungarian algorithm [20] so that the Jaccard of their DBpedia types
is maximized per column. Once the best alignment is identi�ed the
relevance score for a candidate table can be computed by averaging
the Jaccard similarities of all query tuples with each row in the
candidate table.

Embedding Similarity (STSE) is an alternative to the above
Jaccard of types, that tries to better exploit the semantic infor-
mation encoded in the structure of the knowledge graph. We use
RDF2Vec [31] to construct 200-dimensional node embedding vec-
tors for each entity (which we also make available on Zenodo [8]).
The entity similarity is then the normalized (shifted in [0, 1]) cosine
similarity, between the query entities and entities in the candidate
table. Then, we align the query and target table columns as done
with STST to compute an aggregate score.

Experimental Results. We sample 50 query tables from our
STSD corpus, consisting of 1 and 5 tuples. We choose this subset of
50 queries, as evaluating the complete set of 9K queries would be
too time-consuming. The queries have an average of 65.7 and 374.4
relevant tables in the ground truth in the 2013 and 2019 snapshots
(some more than 400), respectively, as listed in Table 2. Table 3
shows recall across our baselines at two di�erent query sizes (i.e.,
number of tuples) for :=100 and 200.

For computing recall, we compute the median ground truth
relevance score and use that as the relevance threshold. Then, when
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Table 3: Average recall at top-100 and -200 for STST, STSE,
BM25, TURL, and Starmie.

Top-100
STST STSE BM25 TURL Starmie

1-Tuple 0.263 0.267 0.278 0.002 0.033
5-Tuples 0.159 0.145 0.166 0.002 0.042

Top-200
1-Tuple 0.292 0.331 0.320 0.006 0.033
5-Tuples 0.099 0.095 0.105 0.003 0.042

Table 4: AverageNDCGat top-10 for STST, STSE, BM25, TURL,
and Starmie.

Top-10
STST STSE BM25 TURL Starmie

1-Tuple 0.534 0.543 0.573 0.005 0.102
5-Tuples 0.595 0.628 0.660 0.004 0.126

Table 5: Average NDCG at top-10 for STST and STSE on the
2019 WT snapshot.

Top-10
STST STSE

1-Tuple 0.546 0.549
5-Tuples 0.612 0.617
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Top-100 Top-200
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Figure 3: Recall at top-100 and -200 for STST, STSE, BM25,
TURL, and Starmie.

measuring recall, we consider only tables with a ground truth score
above that value as relevant. This o�ers a conservative estimation
of the performance of these baselines and also shows the versatility
of our dataset.

We observe that STST, STSE, and BM25 generally achieve similar
recall (Table 3). However, STST and STSE retrieve almost completely
disjoint sets of tables compared to BM25. Speci�cally, for :=100,

1-tuple 5-tuples

ND
CG

Figure 4: NDCG at top-10 for STST, STSE, BM25, TURL, and
Starmie.

1-tuple 5-tuples

N
DC

G

Figure 5: NDCG at top-10 for STST and STSE on the WT’19.

we measure that the result sets of the two methods di�er by a me-
dian of 66 and up to 100 results. This is because BM25 is based
on keyword search and is therefore not able to retrieve ground
truth tables that do not contain any keyword matches to the query.
Therefore, BM25 leaves out a portion of tables that are semantically
relevant to the query. This also highlights how biased the existing
text collections are, since their relevance judgment is given only
for top-100 queries returned by BM25 (called pooling [6]) result-
ing in the omission of a large set of tables that are relevant but
not included in their test collections and thus their ground truth.
However, a fraction of our ground truth relevant tables do contain
keyword matches and are therefore retrievable with BM25, and
hence, BM25 can compete with STS if the fraction is large enough.
The performance of BM25 correlates to this fraction, and its per-
formance will therefore decrease as this fraction decreases. We
similarly plot the recall in Figure 3. Although, the average recall is
quite low, as reported in Table 3, STST, STSE, and BM25 are all able
to perform well on some queries. Even Starmie performs similarly
to STST, STSE, and BM25 in a few instances. Interestingly, even
though 5-tuples queries can be more informative as they contain
more entities overall, STST, STSE, and BM25 perform worse on
recall compared to the 1-tuple queries. This can be partly attributed
due to the overall smaller number of tables retrieved as relevant
since alignment between a query with more tuples and a candidate
table can lead to overspecialization, blocking out some tables that
would have been relevant.

Table 4 and Figure 4 present the ranking quality across our
baselines using NDCG (Normalized Discounted Cumulative Gain)
for top-10 results. TURL performs poorly in both recall (Table 3) and
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NDCG (Table 4) using 1- and 5-tuples queries. This is due to TURL
not being designed for semantic table search but rather as a table
understanding approach. However, when TURL is given the entire
source table, i.e., the entire WT from which 1- and 5-tuples queries
are extracted, as input query, it can reach an NDCG of 0.488. Starmie
also does not perform well in both recall and NDCG. This is due to
Starmie being a union search approach, meaning that it is designed
to only �nd a subset of tables that are relevant in semantic tables
search: namely, those tables that are unionable with the query table.
Figure 4 shows a varying performance of STST, STSE, and BM25,
and once again Starmie can only compete with these baselines in a
few instances. We also perform an experiment to verify the quality
of the 2019 WT snapshot. We present the ranking quality of STST
and STSE on this snapshot in Table 5 and Figure 5. Although this
snapshot has a comparatively lower entity-link coverage among the
tables (18.2% compared to 27.7% for the 2013 snapshot), semantic
table search with STST and STSE still performs nearly identically
to the WT tables from the 2013 snapshot. This shows that the more
recent snapshot of the WT tables from the 2019 snapshot is also of
high semantic quality, despite its lower entity link coverage.

6 CONCLUSION
While table search tasks have attracted substantial attention, exist-
ing benchmark datasets are still limited in quality and dimension
of the set of tables, queries, and relevance annotations they o�er.
The STSD corpus we propose provides instead queries and ground
truth relevance judgments that go beyond simple keyword match-
ing. The high quality of this resource is assured by the presence
of Wikipedia links and annotations which are assigned by human
editors. Furthermore, we performed a user study that shows that
the established ground truth aligns well with human relevance
annotations. Thanks to this dataset, we perform an exploratory
evaluation of a few table search methods and compare them to two
naïve baselines that try to exploit the information encoded in a KG.
Our experimental results point towards an unexplored potential
hidden in the semantic annotations when tables are linked (even
just partially) to a reference KG. This shows the necessity to study
methods for table search that can better take into account semantic
similarity. While in this work we only present very simple baselines,
in the future, we foresee the need for and plan to design advanced
tables search algorithms that can complement the e�ectiveness of
keyword search approaches based on content to more advanced
semantic-aware techniques that are also equally scalable as key-
word search. Furthermore, we plan to design a similar resource that
goes beyond Web tables and extends our corpus to a test collection
that includes also larger Open Data tables.

Availability. We have published the following resources in our
STSD GitHub repository2:
• Scripts, we release scripts to reproduce our results and extract
the Wikipedia categories and navigation links.

• Table Corpus and Queries, we release our 2013 corpus of 238K
tables and 9K table-queries (represented as both entity tuples and
text blobs) along with the entity linking to a recent snapshot of
DBpedia, as well as theWikipedia categories and navigation links
extracted for each page. We also publish our 2019 corpus of 457K

2https://github.com/EDAO-Project/SemanticTableSearchDataset

tables and 2K table queries, including the Wikipedia categories
and navigation links. We maintain the same WT �le names, so it
is possible to retrieve the original �les as well.

• Relevance Assessment, we release the relevance assessments
we collected for each query table based on both categories and
navigation links from Wikipedia comprising 610K relevance
scores across all queries and corpus tables from the 2013 snapshot,
as well as 958K relevance scores on the 2019 snapshot.

• User Study, we release our user study of our automatically
established relevance assessments for a total of 500 query-table
pairs from the 2013 snapshot.

• RDF2Vec Embeddings over DBpedia, along with this resource
we also share the KG graph embedding [8] for all entities in the
DBpedia snapshot we used.
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