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Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most
significant advancements in physics. During the past two decades, numerous captivating NH phe-
nomena have been revealed and demonstrated, but all of which can appear in both quantum and
classical systems. This leads to the fundamental question: What NH signature presents a radical
departure from classical physics? The solution of this problem is indispensable for exploring genuine
NH quantum mechanics, but remains experimentally untouched upon so far. Here we resolve this
basic issue by unveiling distinct exceptional entanglement phenomena, exemplified by an entangle-
ment transition, occurring at the exceptional point (EP) of NH interacting quantum systems. We
illustrate and demonstrate such purely quantum-mechanical NH effects with a naturally-dissipative
light-matter system, engineered in a circuit quantum electrodynamics architecture. Our results lay
the foundation for studies of genuinely quantum-mechanical NH physics, signified by EP-enabled
entanglement behaviors.

When a physical system undergoes dissipation, the Hermiticity of its Hamiltonian dynamics is broken down. As
any system inevitably interacts with its surrounding environment by exchanging particles or energy, non-Hermitian
(NH) effects are ubiquitous in both classical and quantum physics. Such effects were once thought to be detrimental,
and needed to be suppressed for observing physical phenomena of interest and for technological applications, until
the discovery that NH effects could represent a complex extension of quantum mechanics [1–3]. Since then, increasing
efforts have been devoted to the exploration of NH physics, leading to findings of many intriguing phenomena that are
uniquely associated with NH systems. Most of these phenomena are closely related to the exceptional points (EPs),
where both the eigenenergies and the eigenvectors of the NH Hamiltonian coalesce [4–6]. In addition to fundamental
interest, such NH effects promise the realization of enhanced sensors [7–11].
Hitherto, there have been a plethora of experimental investigations on genuinely NH phenomena, ranging from

real-to-complex spectral transition to NH topology [12–20], as well as on relevant applications [21–25], most of which
were performed with classically interacting but non-entangled systems. The past few years have witnessed a number
of demonstrations of similar NH phenomena in different quantum systems, ranging from photons [26–28] to atoms [29–
31] and ions [32, 33], and from nitrogen-vacancy centers [34–36] to superconducting circuits [37–39]. However, these
experiments have been confined to realizations of NH semiclassical models, where the degree of freedom either of the
light or of the matter was treated classically in the effective NH Hamiltonian describing the light-matter interaction,
and consequently, the observed NH effects bear no relation to quantum entanglement. Indeed, all the genuinely NH
effects demonstrated so far can occur in both quantum and classical systems. This naturally leads to an imperative
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issue: What feature can simultaneously manifest non-Hermiticity and non-classicality? Recently, there has been
a significant focus on nonequilibrium quantum phase transitions in the entanglement dynamics of NH many-body
systems [40–42], but the purely quantum-mechanical NH features associated with the Hamiltonian eigenstates have
remained unexplored.
We here perform an in-depth investigation on this fundamental problem, finding that dissipative interacting quan-

tum systems can display exceptional entanglement phenomena. In particular, we discover an EP-induced entanglement
transition, which represents a purely quantum-mechanical NH signature, with neither Hermitian nor classical analogs.
We illustrate our discovery with a dissipative qubit-photon system, whose NH quantum effects are manifested by
the singular entanglement behaviors of the bipartite entangled eigenstates. We experimentally demonstrated these
singular behaviors in a circuit, where a superconducting qubit is controllably coupled to a decaying resonator. The
exceptional entanglement signatures, inherent in the qubit-photon static eigenstates, are mapped out by a density
matrix post-casting method, which enables us to extract the weak nonclassical signal from the strong noise back-
ground. In addition to the quantum character, the demonstrated NH phenomena originate from naturally occurring
dissipation, distinct from that induced by an artificially engineered reservoir [12–39]. Our results are universal for
composite quantum systems immersed in pervasive Markovian reservoirs, endowing NH quantum mechanics with
genuinely non-classical characters, which are absent in NH classical physics.
The theoretical model, used to illustrate the NH entanglement transition, is composed of a two-level system (qubit)

resonantly coupled to a quantized photonic mode, as sketched in Fig. 1a. The quantum state evolution trajectory
without photon-number jumps is governed by the NH Hamiltonian (setting ℏ = 1)

HNH = Ω(a† |g⟩ ⟨e|+ a |e⟩ ⟨g|)− i

2
κq |e⟩ ⟨e| −

i

2
κfa

†a, (1)

where |e⟩ (|g⟩) denotes the upper (lower) level of the qubit, a† (a) represents the creation (annihilation) operator for
the photonic mode, κq (κf ) is the energy dissipation rate for the qubit (field mode), and Ω is the qubit-field coupling
strength. In the n-excitation subspace, the system has two right entangled eigenstates, given by

|Φn,±⟩ = Nn,±(
√
nΩ |e, n− 1⟩+ En,± |g, n⟩), (2)

where Nn,± = (nΩ2+ |En,±|2)−1/2 and En,± = −iγ/4±∆En/2 are the corresponding eigenenergies, with γ = κf +κq,

∆En = 2
√
nΩ2 − κ2/16, and κ = κf−κq. These two eigenstates are separated by an energy gap of ∆En. The inherent

quantum entanglement makes the system fundamentally distinct from previously demonstrated NH semiclassical
models [29–39], where the qubit is not entangled with the classical control field in any way. When Ω > κ/(4

√
n), the

system has a real energy gap, and undergoes Rabi-like oscillations, during which the qubit periodically exchanges a
photon with the field mode. With the decrease of Ω, the energy gap is continuously narrowed until reaching the EP,
where the two energy levels coalesce. After crossing the EP, the gap becomes imaginary, and the population evolution
exhibits an over-damping feature.
Unlike previous investigations, here each eigenenergy is possessed by the two entangled components, neither of

which has its own state. The nonclassical feature of each eigenstate is manifested by the light-matter entanglement,
which can be quantified by the concurrence [43]

E± =
2
√
nΩ |En,±|

|En,±|2 + nΩ2
. (3)

When the rescaled coupling strength η = 4
√
nΩ/κ is much smaller than 1, the two eigenstates are respectively

dominated by |e, n− 1⟩ and |g, n⟩. With the increase of η, these two populations become increasingly balanced
until reaching the EP η = 1, where both eigenstates converge to the same maximally entangled state. During this
convergence, E± exhibit a linear scaling with η. In the Bloch representation, this corresponds to a rotation of the
eigenvector |Φn,+⟩ (|Φn,−⟩) around the x (−x) axis from pointing at the north (south) polar, until merging at the y
axis, as shown in the left panel of Fig. 1b. After crossing the EP, E± become independent of Ω, which implies both
two eigenstates keep maximally entangled. However, |Φn,+⟩ (|Φn,−⟩) is rotated around the z (−z) axis, progressively
approaching the x (−x) axis (right panel of Fig. 1b). This sudden switch of the rotation axis manifests an entanglement
transition at the EP, where the derivative of the concurrence with respect to η presents a discontinuity, jumping from
1 to 0. By measuring the time-evolving output states associated with the no-jump trajectory, we can extract the
information about both the energy gap and entanglement regarding the “static” eigenstates. It should be noted that
the resonator plays a radically different role from the ancilla used in the previous experiments [34–37], which was
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introduced as an artificially engineered environment to the test qubit, but whose dynamics was not included in the
effective NH Hamiltonian dynamics. In distinct contrast, in the present system the degree of freedom of R constitutes
a part of the Hamiltonian, whose NH term is induced by the natural environment.
The experimental demonstration of the NH physics is performed in a circuit quantum electrodynamics architecture,

where the qubit-photon model is realized with a superconducting qubit Q and its resonator R with a fixed frequency
ωr/2π = 6.66 GHz (see Supplemental Material, Sec. S2 [45]). The decaying rates of Q and R are κq ≃ 0.07 MHz
and κf = 5 MHz, respectively. The accessible maximum frequency of Q, ωmax = 2π × 6.01 GHz, is lower than ωr by
an amount much larger than their on-resonance swapping coupling gr = 2π × 41 MHz (Fig. 1c). To observe the EP
physics, an ac flux is applied to Q, modulating its frequency as ωq = ω0+ε cos(νt), where ω0 is the mean |e⟩-|g⟩ energy
difference, and ε and ν denote the modulating amplitude and frequency. This modulation enables Q to interact with
R at a preset sideband, with the photon swapping rate Ω tunable by ε (see Supplemental Material, Sec. S3 [45]).
Our experiment focuses on the single-excitation case (n = 1). Before the experiment, the system is initialized to

the ground state |g, 0⟩. The experiment starts by transforming Q from the ground state |g⟩ to excited state |e⟩ with
a π pulse, following which the parametric modulation is applied to Q to initiate the Q-R interaction (see Fig. S4 of
Supplementary Material for the pulse sequence). This interaction, together with the natural dissipations, realizes the
NH Hamiltonian of Eq. (1). After the modulating pulse, the Q-R state is measured with the assistance of an ancilla
qubit (Qa) and a bus resonator (Rb), which is coupled to both Q and Qa. The subsequent Q → Rb, Rb → Qa, and
R → Q quantum state transferring operations map the Q-R output state to the Qa-Q system, whose state can be
read out by quantum state tomography (see Supplemental Material, Sec. S5 [45]).
A defining feature of our system is the conservation of the excitation number under the NH Hamiltonian. This

Hamiltonian evolves the system within the subspace {|e, 0⟩, |g, 1⟩}. A quantum jump would disrupt this conversion,
moving the system out of this subspace. This property in turn enables us to post-select the output state governed the
NH Hamiltonian simply by discarding the joint Qa-Q outcome |g, g⟩ after the state mapping. With a correction of the
quantum state distortion caused by the decoherence occurring during the state mapping, we can infer the quantum
Rabi oscillatory signal, characterized by the evolution of the joint probability |e, 0⟩, denoted as Pe,0. Fig. 2a shows
thus-obtained Pe,0 as a function of the rescaled coupling η and the Q-R interaction time t. The results clearly show
that both the shapes and periods of vacuum Rabi oscillations are significantly modulated by the NH term around the
EP η = 1, where incoherent dissipation is comparable to the coherent interaction. These experimental results are in
well agreement with numerical simulations (see Supplemental Material, Sec. S4 [45]).
The Rabi signal does not unambiguously reveal the system’s quantum behavior. To extract full information of

the two-qubit entangled state, it is necessary to individually measure all three Bloch vectors for each qubit, and
then correlate the results for the two qubits. The z-component can be directly measured by state readout, while
measurements of the x- and y-components require y-rotations and x-rotations before state readout, which breaks
down excitation-number conservation, and renders it impossible to distinguish individual jump events from no-jump
ones. We circumvent this problem by first reconstructing the two-qubit density matrix using all the measurement
outcomes, and then discarding the matrix elements associated with |g, g⟩ (see Supplemental Material, Sec. S5 [45]).
This effectively post-casts the two-qubit state to the subspace {|e, g⟩, |g, e⟩}. We note that such a technique is in
sharp contrast with the conventional post-selection method, where some auxiliary degree of freedom (e.g., propagation
direction of a photon) enables reconstruction of the relevant conditional output state, but which is unavailable in the
NH qubit-photon system. With a proper correction for the state mapping error, we obtain the Q-R output state
governed by the non-Hermitian Hamiltonian. In Fig. 2b, we present the resulting Q-R concurrence, as a function of
η and t. To show the entanglement behaviors more clearly, we present the concurrence evolutions for η = 5 and 0.5
in Fig. 2c and d, respectively. The results demonstrate that the entanglement exhibits distinct evolution patterns in
the regimes above and below the EP.
To reveal the close relation between the exceptional entanglement behavior and the EP, we infer the eigenvalues and

eigenstates of the NH Hamiltonian from the output states, measured for different evolution times (see Supplemental
Material, Sec. S7 [45]). The concurrences associated with the two eigenstates, obtained for different values of η, are
shown in Fig. 3a and b (dots), respectively. As expected, each of these entanglements exhibits a linear scaling below
the EP, but is saturated at the EP, and no longer depends upon η after crossing the EP. The singular features around
the EP are manifested by their derivatives to η, which are shown in the insets. The discontinuity of these derivatives
indicates the occurrence of an entanglement transition at the EP. Such a nonclassical behavior, as a consequence of
the competition between the coherent coupling and incoherent dissipation, represents a unique character of strongly
correlated NH quantum systems, but has not been reported so far. These results demonstrate a longitudinal merging
of the two entangled eigenstates at the EP (left panel of Fig. 2b). Accompanying this is the onset of the transverse
splitting, which can be characterized by the relative phase difference between |Φ1,±⟩, defined as φ = φ+ − φ−, with
φ± representing the relative phases between |g, 1⟩ and |e, 0⟩ in the eigenstates |Φ1,±⟩. Such a phase difference, inferred
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for different values of η, is displayed in Fig. 3c. This quantum-mechanical NH signature is universally applicable
to dissipative interacting quantum systems, a feature absent in earlier superconducting-circuit-based single-qubit NH
experiments [38, 39].
The demonstrated exceptional entanglement transition is a purely quantum-mechanical NH effect. On one hand,

quantum entanglement, which has no classical analogs, represents a most characteristic trait that distinguishes quan-
tum physics from classical mechanics [46]. On the other hand, this effect, uniquely associated with the EP, is absent
in Hermitian qubit-photon systems [47–50]. We further note that such an NH effect can occur in other dissipative
quantum-mechanically correlated systems, e.g., a system composed of two or more coupled qubits with unbalanced
decaying rates (see Supplemental Material, Sec. S8 [45]). This implies that such a quantum-mechanical NH signature
is universal for dissipative interacting quantum systems.
The real and imaginary parts of the extracted quantum Rabi splitting ∆En are shown in Fig. 3d. As theoretically

predicted, above the EP the two eigenenergies have a real gap, which is continuously narrowed when the control
parameter η is decreased until reaching the EP, where the two levels coalesce. After crossing the EP, the two levels
are re-split but with an imaginary gap, which increases when η is decreased. This corresponds to the real-to-imaginary
transition of the vacuum Rabi splitting between the Q-R entangled eigenstates, which is in distinct contrast with the
previous experiments on PT symmetry breaking [29–39], realized with the semiclassical models, where the exceptional
physics has no relation with quantum entanglement.
In conclusion, we have discovered an exceptional entanglement transition in a fundamental light-matter system

governed by an NH Hamiltonian, establishing a close connection between quantum correlations and non-Hermitian
effects. This transition has neither Hermitian nor classical analogs, representing the unique feature of NH quantum
mechanics. The experimental demonstration is performed in a circuit, where a superconducting qubit is controllably
coupled to a resonator with a non-negligible dissipation induced by a natural Markovian reservoir. The NH quantum
signatures of the eigenstates are inferred from the no-jump output state, measured for different evolution times.
Our results push NH Hamiltonian physics from the classical to genuinely non-classical regime, where the emergent
phenomena have neither Hermitian nor classical analogs. The post-projection method, developed for extracting the no-
jump output density matrix, would open the door to experimentally explore purely quantum-mechanical NH effects
in a broad spectrum of interacting systems, where excitation number is initially definite and conserved under the
NH Hamiltonian. Such systems include resonator-qubits arrays [51], fully-connected architectures involving multiple
qubits coupled to a single resonator [52], and lattices composed of many qubits with nearest-neighbor coupling [53].
When the system initially has n excitations, the no-jump trajectory can be post-selected by discarding the outcomes
with less than n excitations.
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FIG. 1: NH Light-matter interaction and experimental implementation. (a) Theoretical model. The system under
investigation involves a quantized field mode with a decaying rate κf resonantly interacting with a matter qubit with a decaying
rate κq. Their interaction is characterized by a coupling strength of Ω. The system’s dynamics can be cast onto different U(1)-
symmetric eigenspaces, denoted as {|e, n− 1⟩ , |g, n⟩}, within each of which there exist two eigenstates |Φn,±⟩, separated by
a gap of ∆En. (b) Bloch representation of |Φ1,±⟩ in the single-excitation subspace (n = 1). For clarity, we here pictorially
display the dependence of |Φ1,±⟩ on the rescaled coupling strength η = 4Ω/κ. For η = 0, |Φ1,±⟩ correspond to |e, 0⟩ and
|g, 1⟩, respectively. With the increase of η, |Φ1,±⟩ are respectively rotated around ±x axes, and merged to the y axis at the
EP η = 1, featuring the occurrence of the maximally entangled state |Y ⟩ = (|g, 1⟩ − i |e, 0⟩)/

√
2. After crossing the EP, the

eigenvectors |Φ1,±⟩ remain on the equatorial plane, but are rotated around the z and −z axes, progressively aligned with the
±x axes, tending to |±X⟩ = (|g, 1⟩ ± |e, 0⟩)/

√
2, respectively. (c) Implementation of the NH Hamiltonian. In the experimental

system, a superconducting qubit Q is highly detuned from the lossy resonator R with a fixed frequency ωr/2π = 6.66 GHz.
The Q-R interaction is enabled with an ac flux, which modulates Q’s energy gap around the mean value ω0, with a frequency ν,
mediating a photonic swapping coupling at one sideband, with the coupling strength controlled by the modulating amplitude
ε.
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FIG. 2: Characterization of NH dynamical evolutions. (a) Measured evolutions of the population |e, 0⟩ for different
values of the rescaled coupling η. The signals are extracted by correlating the measurement outcomes of Q and Qa, which
correspond to the outputs of R and Q right before the state mappings. The NH Hamiltonian evolution trajectory is post-
selected by discarding the detection events |g, g⟩, and renormalizing the remaining outcomes |g, e⟩ and |e, g⟩. (b) Evolutions of
the concurrences for different values of η. The concurrence at each point is inferred with the post-projected density matrix,
obtained by reconstructing the output Q-Qa density matrix, projecting the thus-obtained two-qubit state to the reduced
subspace with one excitation, and then renormalizing the remaining matrix elements. (c), (d) Concurrence evolutions for η = 5
(c) and 0.5 (d). The orange solid curves are the numerical simulations using the effective Hamiltonian and the blue circles are
the experimental results.

a b c d

FIG. 3: Observation of exceptional phase transitions. (a), (b) Entanglements for the eigenstates |Φ1,+⟩ and |Φ1,−⟩ versus
η. We obtain the concurrences E± at each point based on the corresponding eigenstates, which are mapped out from the Q-R
output states, measured for different evolution times. The dots denote the inferred concurrences, which well agree with the
results for the ideal output states. The derivatives dE±/dη around the EP, obtained by [E±(η + δη) − E±(η)]/δη, is displayed
in the insets. (c) Relative phase difference (φ) between |Φ1,±⟩. This phase difference is defined as φ = φ+ −φ−, where φ± are
the relative phase between |g, 1⟩ and |e, 0⟩ in the eigenstates |Φ1,±⟩. (d) Spectral gap ∆E1. As the eigenspectrum is possessed
by the entangled eigenstates of the Q-R system, this gap corresponds to the vacuum Rabi splitting. The solid and dashed lines
denote the real and imaginary parts, respectively.
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S1 . ENTANGLEMENT OF THE EIGENSTATES AND NH-HAMILTONIAN-EVOLVED STATE

When the qubit-resonator system is restricted in the n-excitation subspace, the resonator can be thought of as a
qubit with two basis vectors |n− 1⟩ and |n⟩. With this analogy, the qubit-resonator model corresponds to a composite
system composed of two qubits, whose entanglement can be quantified in terms of the eigenvalues of the operator [5]

∼
ρ = ρ(σqy ⊗ σry)ρ

∗(σqy ⊗ σry), (S1)

where ρ is the density operator of the composite system, and σqy and σ
r
y denote the corresponding y-component Pauli

operators of the two qubits, defined as

σqy = −i |g⟩ ⟨e|+ i |e⟩ ⟨g| , (S2)

σry = −i |n− 1⟩ ⟨n|+ i |n⟩ ⟨n− 1| . (S3)

Suppose that λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the eigenvalues of
∼
ρ. Then the two-qubit entanglement

associated with the density matrix ρ is measured by the quantity

E = max{λ1 − λ2 − λ3 − λ4, 0}. (S4)

E is referred to as concurrence [5], ranging from 0 to 1.
For the eigenstates |Φn,±⟩ of the NH Hamiltonian, given by Eq. (2) of the main text, the system density operator
in the basis {|g, n− 1⟩ , |g, n⟩ , |e, n− 1⟩ , |e, n⟩} can be expressed as

ρn,± = |Nn,±|2




0 0 0 0

0 |En,±|2
√
nΩEn,± 0

0
√
nΩE∗

n,± nΩ2 0
0 0 0 0


 . (S5)

The corresponding matrix
∼
ρ has a single non-zero eigenvalue, given by 4n |ΩEn,±|2 N 4

n,±. The resulting concurrence
is

E± = 2
√
nΩ |En,±| N 2

n,± (S6)

=
2
√
nΩ |En,±|

|En,±|2 + nΩ2
. (S7)

When η = 4Ω/κ < 1, the concurrence of each eigenstate increases linearly with η until reaching the maximum 1 at
the EP. After crossing the EP, the concurrence becomes independent of η. This exceptional entanglement transition
can be elucidated as follows. The entanglement between the qubit and the photonic mode arises from the coherent
superposition of the two basis vectors |e, n− 1⟩ and |g, n⟩. The amount of entanglement hinges on the relative
weighting of these basis vectors. Below the EP, their populations are unequal in each eigenstate. As η increases, these
populations gradually balance until η = 1. Beyond this point, further increments in η only change the relative phase
of the two superimposed basis vectors, while their populations remain evenly distributed. The entanglement can also
be characterized by the negativity of the partial transpose of the density matrix [6]. For each partial transpose, the
negativity is defined as the absolute value of the sum of the negative eigenvalues. The partial transposes corresponding
to the two eigenstates are

ρTn,± = N 2
n,±




0 0 0
√
nΩE∗

n,±
0 |En,±|2 0 0
0 0 nΩ2 0√

nΩEn,± 0 0 0


 . (S8)

The corresponding negativities are
√
nΩ |En,±| N 2

n,±, each of which is equal to half of the corresponding concurrence.
This implies that there is a monotonous one-to-one correspondence between concurrence and negativity, which ranges
from 0 to 1/2.
In our experiment, the eigenstates are extracted from the output state associated with the no-jump trajectory,
measured for different interaction times. The system starts from the initial state |e, 0⟩. After an interaction time t,
the system state, evolved under the NH Hamiltonian, can be expressed as a linear combination of the two eigenstates,

|ψn(t)⟩ = K±(t)

(
e−iEn,+t

Nn,+En,+
|Φn,+⟩ −

e−iEn,−t

Nn,−En,−
|Φn,−⟩

)
, (S9)
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where

K±(t) =

(∣∣∣∣
e−iEn,+t

Nn,+En,+

∣∣∣∣
2

+

∣∣∣∣
e−iEn,−t

Nn,−En,−

∣∣∣∣
2
)−1/2

. (S10)

Replacing Eq. (2) of the main text into this linear combination of |Φn,±⟩, we can obtain the state evolution in terms
of the basis vectors |g, n⟩ and |e, n− 1⟩, given by

|ψn(t)⟩ = Nn{[2∆En cos(∆Ent/2) + κ sin(∆Ent/2)] |e, n− 1⟩ (S11)

−i4√nΩsin(∆Ent/2) |g, n⟩},
where Nn = (|2∆En cos(∆Ent/2)+κ sin(∆Ent/2)|2+ |4√nΩsin(∆Ent/2)|2)−1/2 is the normalization factor. For the
state |ψn(t)⟩, the qubit-resonator concurrence is given by

E = sin(2θ), (S12)

where

θ = arctan

∣∣∣∣
4
√
nΩsin(∆Ent/2)

2∆En cos(∆Ent/2) + κ sin(∆Ent/2)

∣∣∣∣ . (S13)

S2 . EXPERIMENTAL SETUP AND SYSTEM PARAMETERS

Our device consists of five frequency-tunable superconducting Xmon qubits, labeled as Qj (j =1 to 5), each with
an anharmonicity of approximately 2π × 240 MHz. Every Xmon qubit has a microwave line (XY line) to drive
its state transitions and an individual flux line (Z line) to dynamically tune its frequency. These two constituents
consequently make each qubit flexibly on-and-off coupled (with a coupling strength gb,j) to a bus resonator Rb with a
bare frequency ωb/2π ≃ 5.582GHz and an energy relaxation time Tb ≃ 13 µs. Besides, each qubit is also dispersively
coupled to its own readout resonator, whose frequency and leakage rate are denoted by ωr,j and κf,j , respectively.
All the readout resonators are coupled to a common transmission line to enable the multiplexed readout of all qubits’
states. It is worth pointing out that the readout measurement performed here features both single-shot and quantum
nondestructive characteristics, and is achieved with the assistance of an impedance-transformed Josephson parametric
amplifier (JPA) with a bandwidth of about 150 MHz. In this experiment, the NH Hamiltonian dynamics is realized
by coupling Q1 to its readout resonator R1, and Q2 serves as an ancilla qubit for reading out the joint Q1-R1 output
state. The parameters of Qj and Rj (j = 1, 2) are listed in TABLE S1, including energy relaxation time T1,j , Ramsey
Gaussian dephasing time T ⋆

2,j , and spin echo Gaussian dephasing time T
SE
2,j at their idle frequency ωid,j . The readout

fidelity (Fk,j) is defined as the probability of correctly reading out the state of Qj when it is in |k⟩. For simplicity,
we will omit the subscript “1” of the test qubit and its readout resonator, and use the subscript “a” to denote the
ancilla qubit. The detailed experimental setup, including the whole electronics and wiring for the device control, is
summarized in Fig. S1. The readout resonator for Q is painted blue as an emphasis in the figure, as it is also used as
a decaying resonator for constructing the desired non-Hermitian dynamics.

S3 . CONTROLLED Q-R SIDEBAND COUPLINGS

In a superconducting circuit, the parametric modulation is often achieved by modulating the flux. In our work, the
modulation protocol is implemented by applying an external flux of the form

Φext(t) = Φ + Φ̃ cos (ν
′t), (S14)

to tune the transition frequency of the superconducting qubit Q. Here, Φ is the parking flux, Φ̃ and ν′ are, respectively,
the modulation amplitude and frequency. The Josephson energy of Q is modified through an external flux Φext,

EJ(t) = EJ
∑
∣∣∣∣cos

[
π
Φext(t)

Φ0

]∣∣∣∣ , (S15)

with Φ0 = h/(2e) being the flux quantum. Under this modification, the transition frequency of Q is modulated as
(setting ℏ = 1)

ωe(t) ≃
√
8EcEJ(t)− Ec, (S16)
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where Ec represents the charge energy. In light of the sinusoidal function in EJ(t) of Eq. (S15), Eq. (S16) can be
evaluated by Fourier series expansion, that is,

ωe(t) = ω0 +
∞∑

k=1

εk cos (ωkt). (S17)

Here, ω0 stands for the averaged Q transition frequency, and εk and ωk denote the amplitude and frequency of the
k-th harmonic, respectively.
Due to the nonlinear flux dependence of ωe(Φext), the average value ω0 of the Q transition frequency will be shifted
away from ωe(Φ) by some amount, and this shifted frequency amount can be measured by a Ramsey interferometer.
In this experiment, the operation point during the modulation procedure is chosen at the sweet point of Q with
Φext = 0 and Φ = 0. This is because at the Q’s sweet point, Eq. (S17) can be substantially simplified to the following
compact expression,

ωe(t) ≈ ω0 + ε cos (νt), (S18)

by simply keeping one dominant Fourier component while neglecting all the rest higher-order harmonic terms. Here
the actual qubit modulation frequency ν is twice that of the corresponding flux modulation [4]. In the experiment, ε
can be readily manipulated by tailoring the z-pulse amplitude (zpa).
Under this parametric modulation, the coherent dynamics of the system combined by Q and R is governed by the
Hamiltonian (setting ℏ = 1)

H = ωe(t)|e⟩⟨e|+ ωra†a+ gr(a†|g⟩⟨e|+ a|e⟩⟨g|), (S19)

where ωr is the center frequency of the quantized decaying bosonic mode and gr ascribes the on-resonance coupling
strength between Q and R. Now, substituting Eq. (S18) into Eq. (S19) and working in the interaction picture would
transform the full Hamiltonian of Eq. (S19) into

HI = gre
i∆rt−iµ sin(νt)a†|g⟩⟨e|+H.c., (S20)

Parameters Q1 (Q) Q2 (Qa)

Qubit idle frequency, ωid,j/2π 5.99 GHz 5.23 GHz

Coupling strength to the bus resonator Rb, gb,j/2π 20.9 MHz 20.3 MHz

Coupling strength to the decaying resonator Rj , gr,j/2π 41 MHz 40 MHz

Energy relaxation time, T1,j 14.3 µs 24.8 µs

Ramsey dephasing time, T ⋆
2,j 5.3 µs 1.1 µs

Dephasing time with spin echo, TSE
2,j 14.7 µs 3.5 µs

Frequency of decaying resonator, ωr,j/2π 6.66 GHz 6.76 GHz

Leakage rate of decaying resonator, κf,j 1/200 ns−1 1/226 ns−1

|g⟩ state readout fidelity, Fg,j 0.981 0.977

|e⟩ state readout fidelity, Fe,j 0.901 0.902

TABLE S1: Parameters of the circuit QED system. The parameters of both the test qubit (Q1) and ancilla qubit (Q2)
are measured at their idle frequencies ωid,j (j = 1, 2). ωid,j is also the point at which the single-qubit rotations and state
tomographies are performed. gb,j denotes the Rb-Qj coupling strength, which was inferred from the quantum Rabi signals of
Qj resonantly coupled to Rb. gr,j is the Qj-Rj coupling strength, which was deducted by measuring the dispersive frequency
shift of the decaying resonator. The fidelity for correctly recording each qubit’s state in experiment is Fk,j , characterized
by extracting the state information of each readout resonator with the resonance frequency and leakage rate ωr,j and κf,j ,
respectively.
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FIG. S1: Schematic layouts of our circuit QED system and experimental setup. The superconducting circuit has
five frequency-tunable Xmon qubits, labeled from Q1 to Q5. Each qubit can be individually frequency-biased and frequency-
modulated (through the Z line) and flipped (through the XY line). Thanks to such flexible adjustability, every qubit can
be coupled to the bus resonator (Rb) in a controllable way. The XY control of each qubit is implemented by mixing the
low-frequency signals (yielded by two Digital-to-analog converter (DAC)’s I/Q channels) with a Microwave source (MS) at
5.5-GHz carrier frequency; while the Z control is fulfilled by two signals: one is produced by the Direct-current (DC) biasing
line from a low frequency DC source, and the other is directly obtained from the Z control of a DAC. Meantime, every qubit
has its own readout resonator which helps to project out the state information. Experimentally, this is accomplished by the
mixing of the signals of two Analog-to-digital converter (ADC)’s I/Q channels and one MS at about 6.6-GHz frequency to
output a readout pulse. Both the employed DAC and ADC are field-programmable-gate-array-controlled and respond at the
nanosecond scale. The output from the circuit, before being captured and demodulated by the ADC, is sequentially amplified
by an impedance-transformed Josephson parametric amplifier (JPA, which is pumped by a 13.5-GHz MS and modulated by a
DC bias), a high electron mobility transistor (HEMT), and two room temperature amplifiers. Furthermore, a few custom-made
circulators, attenuators, and filters are utilized at some specific locations of the signal lines to reduce the noise that may affect
the operations of the device.

where µ = ε/ν, ∆r = ωr − ω0, and H.c. means the Hermitian conjugate. Using the Jacobi-Anger expansion

eiµ sin θ =
∞∑

−∞
Jn(µ)e

inθ, (S21)

with Jn(x) being the n-th Bessel function of the first kind, Eq. (S20) then becomes

HI = gr

[ ∞∑

n=−∞
Jn(µ)e

−i(nν−∆r)ta†|g⟩⟨e|+H.c.
]
. (S22)
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Equation (S22) looks complicated and time-dependent. In practice, its complexity and time-dependence can be
easily removed under the conditions ν = ∆r (ν = ∆r/2) and gr ≪ ν. Accordingly, this frequency setting is referred to
as the first-order (or second-order) sideband modulation for establishing the Q-R coupling with the coupling strength
Ω = J1(µ)gr (or Ω = J2(µ)gr). As a consequence, a swap operation of |e, 0⟩ ↔ |g, 1⟩ is available under such a
modulation arrangement.
Without considering the interference of Rb, it is favorable to use the second-order sideband coupling due to the
limitation of the available modulating flux. However, when this interaction is weak, it may be strongly intervened by
the first-order sideband coupling associated with Rb. To optimize the parametric modulation, we prepare Q in the
|e⟩-state, and observe the output |e⟩-state population (Pe) after a modulating pulse with a fixed duration of 1 µs.
Fig. S2a and Fig. S2b display the populations, measured respectively under the first-order and second-order sideband
modulations. Figure S2b shows a crossing region where the qubit Q is effectively coupled to both resonators R and
Rb. In this region, the first-order sideband interaction (labeled with “1”) with Rb coincides with the second-order
sideband interaction (labeled with “2”) with R, resulting in undesired effects in our experiments. To circumvent this
issue, we use the first-order sideband modulation to realize Q-R swapping interaction for the corresponding region. To
confirm the validity of these modulations, in Fig. S2c we present the vacuum Rabi oscillation signals for the test qubit
induced by these sideband couplings for different modulating amplitudes. In this way, we arrange our modulation
protocol and confine the system’s energy-level structure to the configuration shown in Fig. 1 of the main text.
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FIG. S2: Scanning map of the population Pe of the superconducting qubit Q after 1-µs parametric modulations.
(a) The measured data obtained by coupling Q with R via the first-order sideband modulation. (b) The measured data labeled
as “1” (“2”) attained by establishing the Q-Rb (Q-R) interaction via the first-order (second-order) sideband modulation. Here,
the x-axis states the modulation amplitude in zpa and the y-axis gives the modulation frequency. (c) Temporal evolution of
the population Pe under different single-tone modulations.
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S4 . NUMERICAL SIMULATIONS OF THE NON-HERMITIAN HAMILTONIAN DYNAMICS

To validate the authenticity of the effective NH Hamiltonian presented in Eq. (1) of the main text, we conducted
a numerical simulation focusing on the system dynamics associated with the no-jump trajectory, which is governed
by the original NH Hamiltonian. This NH Hamiltonian integrates the original coherent Hamiltonian from Eq. (S20)
with the NH terms, namely the last two terms of Eq. (1) in the main text. Figures S3a to f illustrate the evolution
of the population |e, 0⟩ and the qubit-resonator concurrence corresponding to the no-jump trajectory, determined by
the original NH Hamiltonian. These results are juxtaposed with those obtained using the effective NH Hamiltonian
from Eq. (1) in the main text. The comparative analysis confirms a robust correspondence between the dynamics
predicted by the effective NH Hamiltonian and those governed by the original NH Hamiltonian. In addition to the
doubled oscillation frequency, the entanglement is much more sensitive to the control parameter. For instance, when
the population of state |g, 1⟩ changes from 0 to 0.1, the concurrence increases by an amount ∼ 0.6, which is one order
of magnitude larger than the variation in the population of state |g, 1⟩. Therefore, the concurrence (Figs. S3e and
f) is much more influenced by the high-frequency oscillating terms than the population (Fig. S3b and c). In these
figures, the orange and blue lines respectively denote the numerical results with the effective and full Hamiltonians,
and the circles are the experimental data.

a

d

b

c

e

f

FIG. S3: Numerical evolutions of the system’s non-Hermitian evolution using the full Hamiltonian HI . (a)
Vacuum Rabi oscillations by calculating PN

|e,0⟩ in terms of the rescaled coupling η = 4Ω/κ. As an example, (b) and (c) compare

PN
|e,0⟩ obtained respectively with use of the full (blue) and effective (orange) Hamiltonians before (η = 5) and after (η = 0.5)

the exceptional entanglement transition. (d) Concurrence E evolution for different η. As an example, (e) and (f) compare E
obtained respectively with use of the full (blue) and effective (orange) Hamiltonians before (η = 5) and after (η = 0.5) the
exceptional entanglement transition. The blue empty circles are experimental data.
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FIG. S4: Pulse sequence. The NH dynamics starts with the initial state |e, 0⟩, prepared from |g, 0⟩ with a π pulse. After
a preset evolution time, the parametric modulation is switched off, followed by the state mappings Q → Rb, Rb → Qa, and
R → Q, each realized by an on-resonance swapping gate, where Qa is an ancilla qubit, and Rb represents the bus resonator
coupled to both qubits. After these mappings, the Q-R output state produced by the NH dynamics is encoded in the joint
Qa-Q state, which is then measured by quantum state tomography.

S5 . JOINT Q-R QUANTUM STATE TOMOGRAPHY

The joint Q-R output state after the NH dynamics is read out by mapping it to the Qa-Q system. The pulse
sequence is displayed in Fig. S4. To accomplish this mapping, we must first transfer the state of Q to Rb. This is
realized by tuning Q on resonance with Rb for a duration t = π/(2gb) = 12.5 ns. After the Q→ Rb state transfer, we
reset Q to its idle frequency and bring Qa resonance with Rb. Similarly, after an interaction duration t, Qa carries
the bus resonator’s state. Up to this moment, we complete the state transfer from Q to Qa.
The next step is to transfer the R-state to Q. Because the R-frequency is much higher than the Q’s, it is impossible

to realize a quantum state transfer within the same short time period using the resonant coupling technique introduced
above. As such, we consider the second-order sideband resonant coupling proposed in Section S3 instead. Limited
by the experimental constraints, the maximum achievable coupling strength is about Ωmax = 2π × 1.18 MHz, which
gives rise to the fastest state transfer time duration of approximately τ = 193 ns. This period is comparable to the
lifetime of the readout resonator so that the dissipation of R has a significant impact on the state mapping.
However, there is a one-to-one correspondence between the QaQ output state after the state mapping and Q-R

state just before the mapping for the no-jump case, as interpreted below. Without loss of the generality, the Q-R
state right before the state mapping can be expressed as

|ψ0⟩ = c1|e, 0⟩+ c2|g, 1⟩, (S23)

with |c1|2 + |c2|2 = 1. After the state mapping, the Qa-Q output state is

|ψ1⟩ = (1/
√
|c1|2 + k2|c2|2)(c1|ea, g⟩+ kc2|ga, e⟩), (S24)

where k = e−κf te−κfτ/4. For simplicity, we here do not include the phase accumulated during the mapping. This im-
plies that the original Q-R output state |ψ0⟩ can be inferred from |ψ1⟩ by multiplying the coefficient of the component
|ga, e⟩ by 1/k and then renormalizing the resulting state. In the experiment, the Qa-Q output state is characterized
by the two-qubit density matrix, which is reconstructed through joint quantum state tomography. The result as-
sociated with the no-jump trajectory is obtained by projecting the density matrix to the single-excitation subspace
{|ea, g⟩, |ga, e⟩}, which can be expressed as

ρ1 =

(
ρ11 ρ12
ρ21 ρ22

)
(S25)

The elements of Q-R density matrix within {|e, 0⟩, |g, 1⟩} right before the state mapping are related to those of ρ1 by

ρ1 =
1

ρ11 + ρ22/k2

(
ρ11 ρ12/k
ρ21/k ρ22/k

2

)
(S26)
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S6 . QUBIT READOUT CORRECTIONS

The fidelity matrix for calibrating the measured probabilities is defined as

F̂ =

(
Fg ege
eeg Fe

)
, (S27)

where Fj (j = g, e) represents the probability for correctly reading out the state of the qubit when it is in |k⟩, and
ejk (j, k = g, e) stands for the error that describes the leakage probability from the state |k⟩ to state |j⟩. To illustrate
how the qubit readout error can be corrected, we denote the measured probability distribution as P̂M and the genuine
probability distribution as P̂N . The relation among F̂ , P̂M , and P̂N is established by the following simple identity,

P̂M = F̂ · P̂N . (S28)

The above relation (S28) implies that the genuine states of the system can be mathematically reconstructed by

performing the matrix inversion of F̂ , i.e., P̂N = F̂
−1 · P̂M . The data used in our calibrations are extracted from the

measured I-Q (in phase and quadrature) values, as shown in Fig. S5. According to the measured data, in this work

a b

FIG. S5: Qubit readouts for Q (a) and Qa (b) with 3000 repetitions and 1.1-µs readout duration.

the fidelity matrices for Q and Qa are

F̂Q ≃
(
0.981 0.099
0.019 0.901

)
, F̂Qa

≃
(
0.977 0.098
0.023 0.902

)
. (S29)

In the computational basis, the joint QST measurement on Q and Qa can be therefore corrected by the following
formula,

P̂N = (F̂Q ⊗ F̂Qa)
−1 · P̂M . (S30)

S7 . EXTRACTION OF EIGENENERGIES AND EIGENSTATES OF THE NON-HERMITIAN
HAMILTONIAN

After collecting the data, we have applied the least-squares fitting to the measured density matrix ρ in order to
extract the eigenenergies and eigenstates of the system. Theoretically, for a certain point in the parameter space, we
can in principle write the eigenenergies and the corresponding eigenstates of the non-Hermitian system as

E± = c±,1 + ic±,2, |Φ±⟩ = α±|g, 1⟩+ β±|e, 0⟩, (S31)

where c±,1, c±,2, α± and β± are the fitting parameters. If we assume the system’s initial state to be

|e, 0⟩ = 1

α−β+ − α+β−
(α−|Φ+⟩ − α+|Φ−⟩), (S32)
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then at time t the system will evolve into the following state

|ψ(t)⟩ = 1

α−β+ − α+β−
(α−e

−iE+t|Φ+⟩+ α+e
−iE−t|Φ−⟩). (S33)

To minimize the fitting errors, we have defined an error function as a guidance, which has the form of

erf = Tr[ρ|ψ(t)⟩⟨ψ(t)|]− 1. (S34)

Based on this error function, the next step is to seek the fitting parameters which can minimize Eq. (S34) at each
moment. In this way, a reliable least-squares fitting to the entire evolution of the density matrix ρ is found with all
the parameters: c±,1, c±,2, α±, β±.

a

b

c

d

FIG. S6: Convergence of residuals and parameters. (a) (b) Above the EP, η = 5. (c) (d) Below the EP, η = 0.5.

The convergence condition is critical for ensuring the success of a fitting process. In Fig. S6, we show the convergence
of residuals and all parameters as functions of the number of iterations. To facilitate comparison, we rescaled each
parameter to an appropriate size, using [fi − fN ]/[max(f)−min(f)], where f represents the set of results after each
iteration, fi represents the result of the i-th iterations, and i = 0, 1, 2, ..., N , with N being the maximum iteration
number. We observe that all parameters converge together after a sufficient number of iterations. We provide two
representative examples, one for η = 5 (above the EP, shown in Figs. S6a and b) and the other for η = 0.5 (below the
EP, shown in Figs. S6c and d). We verified the validity of the remaining fitting procedures using the same approach.

We also calculate the fidelities of the eigenstates (|Φ′
±⟩) obtained in this manner with respect to the ideal ones

|Φ±⟩, which are defined as

F± = |⟨Φ′
±|Φ±⟩|2. (S35)

The fidelities as functions of η are presented in Figs. S7a and b, respectively. The dip in Fig. S7b is mainly caused by
two factors. First, we can observe from the comparison between Figs. S3e and f that the effect of off-resonant terms in
the parametric modulation is more significant when η < 1. This is demonstrated by the oscillations in Fig. S3f having
a significantly larger amplitude than those in Fig. S3e. Second, when η < 1, the system’s evolution is likewise more
susceptible to dephasing, resulting in an overall measured concurrence (associated with the non-diagonal elements of
the density matrix) that is lower than the theoretical value, as illustrated in Fig. S3f. Therefore, the fitting error
grows as the observed result deviates more from the theoretical value, leading to lower fidelity. Additionally, we
discovered that when A¡1, the fitting results are more sensitive to the initial guess and that adjusting the initial guess
appropriately can lead to better fitting results, as shown in Fig. S8. The results demonstrate that the eigenstates,
extracted from the measured two-qubit output density matrices by our density-matrix post-projecting method, well
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agree with the ideal ones, associated with the no-jump evolution trajectories. This agreement confirms the validity
of approximations for deriving the effective NH Hamiltonian, as well as the soundness of the density-matrix post-
projecting method.

a b

fid
el

ity

fid
el

ity

FIG. S7: Fidelities of fitted eigenstates. (a) F+ as a function of η. (b) F− as a function of η.

a b

FIG. S8: Fidelities of fitted eigenstates after adjusting initial guesses. (a) F+ as a function of η. (b) F− as a function
of η.

S8 . EXCEPTIONAL ENTANGLEMENT TRANSITION IN A TWO-QUBIT SYSTEM

The exceptional entanglement transition is not restricted to the light-matter system, but is a universal behavior
for a variety of NH interacting quantum systems. As a paradigmatic example, we here consider the system composed
of two decaying qubits interacting with each other by swapping coupling [1–3]. When the two qubits have the same
frequency, the no-jump evolution trajectory is governed by the NH Hamiltonian (setting ℏ = 1)

HNH = Ω(σ
+
1 σ

−
2 + σ

−
1 σ

+
2 )−

i

2
(κ1 |e1⟩ ⟨e1|+ κ2 |e2⟩ ⟨e2|), (S36)

where σ+
j = |ej⟩ ⟨gj | and σ−

j = |gj⟩ ⟨ej | with |ej⟩ (|gj⟩) denoting the upper (lower) level of the jth qubit, κj is the
dissipation rate of |ej⟩, and Ω is coupling strength. This swapping coupling does not change the total excitation
number of the system. When the system is initially in a one-excitation state, its dynamics will be restricted within
the subspace {|e1, g2⟩ , |g1, e2⟩}. In such a subspace, the eigenstates of the NH Hamiltonian are given by

|Φ±⟩ = N±(Ω |e1, g2⟩+ Γ± |g1, e2⟩), (S37)

where N± = (Ω2+|Γ±|2)−1/2 and Γ± = −iκ/4±Eg/2 with κ = κ2−κ1. The energy gap between these two eigenstates
is Eg = 2

√
Ω2 − κ2/16.



12

When the two qubits have distinct decaying rates, these eigenstates and eigenenergies have the same forms as those
of the qubit-resonator system. Consequently, the energy gap undergoes a real-to-imaginary transition at the EP
η = 4Ω/ |κ| = 1, which is accompanied by an entanglement transition of the eigenstates. The two-qubit concurrences
[5] for the two eigenstates |Φ±⟩ are

E± =
2Ω |Γ±|

|Γ±|2 +Ω2
. (S38)

When η → 0, the two eigenstates respectively reduce to |e1, g2⟩ and |g1, e2⟩, each of which has no entanglement. When
κ2 ≪ κ1, the concurrence is increased linearly with η until reaching the EP, where the energy gap vanishes and both
eigenstates approximately converge to the same maximally entangled state

|Φ±⟩ = (|e1, g2⟩ − i |g1, e2⟩)/
√
2. (S39)

After crossing the EP, |Φ±⟩ move in opposite directions, but with the concurrences E± remaining to be 1, independent
of η.
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