JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 00, Number 00, 2024

© Mary Ann Liebert, Inc.

Pp. 000-000

DOI: 10.1089/cmb.2023.0382
Open camera or QR reader and
scan code to access this article
and other resources online.

Pairwise Distances and the Problem of Multiple Optima

RAN LIBESKIND-HADAS

ABSTRACT

Discrete optimization problems arise in many biological contexts and, in many cases, we seek to
make inferences from the optimal solutions. However, the number of optimal solutions is
frequently very large and making inferences from any single solution may result in conclusions
that are not supported by other optimal solutions. We describe a general approach for efficiently
(polynomial time) and exactly (without sampling) computing statistics on the space of optimal
solutions. These statistics provide insights into the space of optimal solutions that can be used to
support the use of a single optimum (e.g., when the optimal solutions are similar) or justify the
need for selecting multiple optima (e.g., when the solution space is large and diverse) from which
to make inferences. We demonstrate this approach on two well-known problems and identify the
properties of these problems that make them amenable to this method.

Keywords: dynamic programming, multiple optima.

1. INTRODUCTION

M any problems in the life sciences are formulated as discrete optimization problems and the solutions to
those problems are often the bases of biological inferences. For example, the evolution of phenotypic
traits may be inferred from solutions to the small parsimony problem that takes as input a phylogenetic tree
whose leaves (extant taxa) have associated labels (e.g., traits) and seeks a labeling of the internal nodes that
minimizes the total number of differences between the labels on parent and child nodes (Fitch, 1971).

As other examples, the evolutionary histories of molecular sequences are inferred from solutions to the
global sequence alignment problem (Needleman and Wunsch, 1970), the secondary structures of RNA are
inferred from solutions to the RNA folding problem Eddy (2004), and the co-evolutionary histories of hosts
and parasites are inferred from solutions to the phylogenetic reconciliation problem (Bansal et al., 2012).

These—and many other—bioinformatic optimization problems can be solved efficiently with dynamic pro-
gramming (DP) algorithms. However, the number of optimal solutions to these optimization problems can be
exponentially large in the size of the problem instance, presenting challenges in interpreting solutions. Any
one solution may not be representative of the entire solution space and making inferences from a single solu-
tion may lead to incomplete, or even erroneous, conclusions.

To illustrate this challenge, we generated 100 random binary phylogenetic trees, each with 100 leaves labeled
randomly from a set of 20 distinct characters. The number of optimal solutions to the small parsimony problem

Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, California, USA.

http://dx.doi.org/10.1089/cmb.2023.0382

2 LIBESKIND-HADAS

ranged from 7 x 10° to over 3 x 10%. Without information about the diversity of this solution space, making
inferences about ancestral states from any one optimal solution may significantly misrepresent other equally plau-
sible scenarios and result in incorrect conclusions.

In a second experiment involving 100 randomly generated pairs of strings of length 1000 over an alphabet of
size 4, the number of optimal solutions to the edit distance problem (a simple version of a family of pairwise
sequence alignment problems) ranged from 5 x 10* to 5 x 10%. The same pattern has been reported with
real data. For example, for RNA folding using the Nussinov Algorithm (Nussinov et al., 1978), Kiirala et al.
(2019) found that on 117 23S rRNA sequences with average length 2726, the average number of optimal solu-
tions was ~10". For the phylogenetic tree reconciliation problem in the Duplication-Transfer-Loss (DTL)
model, Bansal et al., 2013 found that in a Tree of Life data set with 100 species and 4849 gene trees, >15% of sol-
utions had between 10* and 10*° optimal solutions.

A number of approaches have been suggested for dealing with the large optimal solution spaces arising in
such bioinformatic optimization problems (Bansal et al., 2013; Heitsch and Poznanovik, 2014; Huber et al.,
2018; Kiirala et al., 2019; Liu et al., 2022; Miklds and Darling, 2009; Mikls et al., 2014; Rogers and Heitsch,
2016; Salmela and Tomescu, 2018; Santichaivekin et al., 2019; Vingron and Argos, 1990).

One approach is to find parts of solutions that are shared by all optimal solutions for the given problem
instance. Such partial solutions are called safe. For example, algorithms for finding all safe partial solutions
have been developed for the protein sequence alignment problem (Vingron and Argos, 1990), the gap filling
problem (Salmela and Tomescu, 2018), the contig assembly problem (Tomescu and Medvedev, 2017), and the
RNA folding problem (Kiirala et al., 2019).

Another approach for addressing the large space of optimal solutions is to find a single “best” representative
solution. For the phylogenetic tree reconciliation problem, Nguyen et al. (2013) provided a technique for effi-
ciently computing a median solution, an optimal solution that minimizes the maximum distance to all other
optimal solutions with respect to a given distance metric between solutions. One challenge with this approach
is that the median is not unique and, in fact, there can be an exponential number of medians. Thus, any single
median may still not adequately represent the entire solution space. Yet another useful approach is to partition
the large solution space into a much smaller number of equivalence classes (Wang et al., 2023).

Recently, several efforts have been made to efficiently compute statistics and distributions that characterize
the potentially large space of optimal solutions. In particular, Huber et al. (2018) proposed computing the
diameter of the space of optimal solutions for the phylogentic reconciliation problem. The diameter is defined
to be the maximum distance between all pairs of optimal solutions with respect to a distance metric. For exam-
ple, if the solution space is large but the diameter is small, then a single optimal solution may adequately repre-
sent the solution space. The diameter allows us to report, for example, that all optimal solutions differ by no
more than a specified amount from the single selected optimal solution.

More generally, Huber et al. proposed computing the distribution of distances between all pairs of optimal
solutions. The distribution of pairwise distances provides insights into the solution space and allows us to com-
pute summary statistics in addition to the diameter (which is the maximum pairwise distance). These summary
statistics may help support reporting a single solution (e.g., if the mean pairwise distance and standard devia-
tion are relatively small) or indicate a need for multiple representative optimal solutions. In particular, if the
distribution of pairwise distances is multimodal, we may conclude that there are clusters of optimal solutions
and seek to find representative solutions from each cluster (Mawhorter and Libeskind-Hadas, 2019).

Since the optimal solution space can be exponentially large, Huber et al. proposed approximating the set of
pairwise distances using a random sample of the solution space (Huber et al., 2018). Subsequently, Haack
etal. (2018) and Santichaivekin et al. (2019) showed that, for the tree reconciliation problem, both the diameter
and the distribution of pairwise distances can be computed exactly (i.e., without sampling) in polynomial time.

In this article, we demonstrate a broadly applicable approach to computing diameters and pairwise distances
exactly (without sampling) and efficiently (polynomial time). This generalizes the results of Haack et al.
(2018) and Santichaivekin et al. (2019) to other problems and demonstrates the methods without the techni-
cally complicated details that are particular to the tree reconciliation problem.

In summary, the contributions of this article are as follows:

1. A systematic approach for computing diameters, demonstrated using two well-known bioinformatic
problems.

2. An extension of that method to compute pairwise distance vectors.

3. Criteria for which these methods can be applied.

PAIRWISE DISTANCES 3

The remainder of this article is organized as follows: In Section 2, we define key concepts, including the dis-
tance metric under consideration, diameter, and pairwise distances. In Section 3, we demonstrate the frame-
work for computing the diameter and pairwise distances using the edit distance problem as an example. In
Section 4, we demonstrate the framework for more complex problems, using the small parsimony problem as
an example.

2. DIAMETER AND PAIRWISE DISTANCES BY EXAMPLE

In this section, we define diameter and pairwise distance and demonstrate these concepts with two examples,
the edit distance problem and the small parsimony problem in phylogenetic trees. In the next two sections, we
show how to efficiently compute these diameters and pairwise distances for those two problems and describe
the conditions that allow this approach to be applied to other problems.

2.1. Diameter

The diameter of a finite space is defined as the maximum distance between all pairs of points in that space
with respect to a given distance metric. In this article, we use the symmetric difference distance metric because
of its versatility (Agius etal., 2010; Liu et al., 2022; Nguyen et al., 2013; Santichaivekin et al., 2019). The sym-
metric difference distance between two sets is the number of elements that are found in one of the two sets but
not in both sets. We note, however, that what constitutes the set of elements in a solution is problem-
dependent. The results described here may also extend to other distance metrics.

As our first example, we consider the edit distance problem (Levenshtein, 1966) that seeks to find the mini-
mum number of insertion, deletion, and substitution events that are required to transform one string S; to a sec-
ond string S,. We adopt the convention of indexing strings beginning with index 1 and use the notation S[i] to
indicate the symbol in string S at index i.

Consider S;="“AT” and S, =“TA”. The edit distance between these two strings is 2. One optimal solution
uses a substitution to replace the “T” at Sy [2] with an “A” and a second substitution to replace the “A” at S;[1]
with a “T.” This solution has a corresponding alignment shown in Figure 1a. Another optimal solution inserts
an “A” at the end of S| and deletes the “A” at S [1], also requiring two operations. This solution gives rise to
the alignment in Figure 1b. Finally, a third optimal solution deletes the “T” at S [2] and inserts a “T” at the front
of Sy, again requiring two operations and giving rise to the alignment shown in Figure 1c. Two symbols in the
same column in the alignment are said to be matched. Note that in these alignments, a substitution is indicated
by differing matched symbols. An insertion in S is indicated by a gap character in S; and a deletion in S is
indicated by a gap character in S,.

The distance between two solutions is given by the symmetric difference distance between their alignments.
The first two solutions, represented by the alignments in Figure 1a and b, differ at all indices and thus have dis-
tance 5. More precisely, in the solution in (Fig. 1a), the matching (due to substitution) of S;[1] and S,[1] is not
found in solution (Fig. 1b), and thus contributes 1 to the distance. The matching (due to substitution) of S;[2] to
S»[2] is also not found in (Fig. 1b) and also contributes 1 to the distance. Similarly, in (Fig. 1b), the matching
of $1[1] to a gap character (due to deletion), the matching of S} [2] to S,[1], and the matching of a gap character
at the end of S; to S,[2] are not found in (Fig. 1a), contributing a total of 3 to the distance. Similarly, the solu-
tions in (Fig. 1a) and (Fig. 1c) differ by 5. However, the solutions in (Fig. 1b) and (Fig. 1c) differ by six and
thus the diameter of this optimal solution space is 6.

In the instance of the small parsimony problem shown in Figure 2a with four leaves labeled “A,” “A,” “T,”
and “G,” the objective is to find a labeling of the internal nodes that minimizes the number of differences
between parent and child nodes. There are five optimal solutions, each with cost 2, shown in (Fig. 2b—f).

AT AT _ AT
T A _TA T A

(a) (b) ()

FIG. 1. The three optimal alignments for strings “AT” and “TA.”

4 LIBESKIND-HADAS

The distance between two solutions is the number of internal nodes with different labels. For example, in
Figure 2, solutions (b) and (c) differ only at internal node 2 and the distance is, therefore, 1. Similarly, solutions
(e) and (f) have distance 2 (since they differ at nodes 0 and 2). In this example of the small parsimony problem
the diameter is 2 since the maximum distance between any two optimal solutions is 2.

As noted earlier, the size of the optimal solution space may be exponential in the size of the problem instance.
Naively computing the diameter of the optimal solution space would require exponential time. However, as we
show in this article, for many optimization problems, the diameter can be computed exactly in polynomial time
by exploiting properties of the DP tables that are used to compute optimal solutions.

2.2. Pairwise distances

Although the diameter provides an insight into the space of optimal solutions, any single statistic is not fully
informative. For example, the diameter of an optimal solution space may be large due to two outliers with large
distance, whereas all of other optimal solutions may have small distances between them.

A more informative measure of the optimal solution space is the pairwise distance vector defined as a vector
v such that v; denotes the number of pairs of optimal solutions whose distance is exactly i. Note that vy is the
total number of optimal solutions since for a pair of solutions (x, y) to have distance 0, it must be that x=y. In
addition, if d is the maximum index such that v; > 0, then d is the diameter of the space. Thus, the pairwise
distance vector provides the size of the optimal solution space, its diameter, and a digest of the differences
between all pairs of optimal solutions.

For example, for the edit distance problem with strings “AT”” and “TA” (Fig. 1), the pairwise distance vector

is (3,0,0,0,0,2, 1) indicating that there are three optimal solutions and thus (;

pairs have distance 5 and one pair has distance 6, which is the diameter of this space. For the small parsimony

) =3 pairs of solutions, two

problem example (Fig. 2) the pairwise distance vector is (5,5,5). There are five solutions and thus <§> =10

pairs of solutions. Five of those pairs have distance 1 and five of those pairs have distance 2, which is the diam-
eter of this space.

2.3. Overview of the general principle

The edit distance problem and the small parsimony problem are two examples of problems that have the opfi-
mal substructure property, the property that a solution to the problem can be found from solutions to smaller

A A

0 0
A A A T
1 2 1 2
A A T G A A T G

(a) (b) ()

A T

0 0 0
A S A T A
1 2 1 2 1
A A T G A A T G

(d) (e) (f)

N\m

FIG. 2. (a) An instance of the small parsimony problem and (b—f) five optimal solutions.

PAIRWISE DISTANCES 5

subproblems of the same type. When the number of subproblems that are required is polynomially bounded, this
optimal substructure property can be exploited to solve the problem with an efficient DP algorithm.

In the next two sections we use the edit distance and the small parsimony problems to first demonstrate how
diameters can be computed by efficient algorithms and then extend this to computing the pairwise distance
vectors. This approach is based on first constructing the DP table for the original problem. The DP table is
annotated to record which choices give the minimum cost, giving rise to a graph where the vertices are the
entries in the DP table and the edges correspond to the annotations. Finally, we apply a second DP algorithm
on this graph to compute the diameter and, subsequently, the pairwise distance vector.

3. THE EDIT DISTANCE PROBLEM

Recall that the edit distance between two strings S; and S, is defined as the minimum number of insertions,
deletions, and substitutions required to transform string S to S,. Each such sequence of operations has a corre-
sponding alignment of the two strings. Other pairwise alignment problems have similar algorithmic solutions
and the results presented here for edit distance extend naturally to those problems.

3.1. Computing the edit distance

For completeness, the recursive algorithm for computing the edit distance is given in pseudocode in Figure 3
(Levenshtein, 1966). In this implementation, the two strings are denoted S; and S,. If S| has length m and S, has
length n, then the two strings are indexed from 1 to m and 1 to n, respectively. The Edit Distance function, ED,
takes the two strings S| and S, and indices i > 0 andj > 0 as input and returns the edit distance from the sub-
string of S} indexed from 1 to i and the substring of S, indexed from 1 to j. Note that when i (or j) is zero, this sub-
string is the empty string.

Since the worst-case running time of this recursive algorithm is exponential, it is implemented using DP by
maintaining an (m+1) x (n+1) DP table in which cell (i,) represents the value that would be computed by
ED (S}, S5, i, j). The table is filled row-by-row beginning with row 0 (i=0) by increasing value of j. Each cell
is filled by using the recursion in the algorithm in Figure 3, but each recursive call now becomes a constant-
time lookup in the corresponding cells in the table. Cell (m, n), therefore, contains the edit distance between
the two strings and the algorithm has asymptotic time complexity O(mn).

While filling in the DP table, each cell can be annotated to record which options give the minimum cost.
When the table is filled, the annotations can be traced back from cell (m,n) to reconstruct optimal solutions.
For example, the DP table for the strings S| = “AT” and S, = “TA” is shown in Figure 4.

The cells in the DP table correspond to vertices and the annotations correspond to directed edges. Thus, we
use the terminology of cells and vertices interchangeably and basic graph theory definitions for convenience.
The DP table is, therefore, a directed acyclic graph.

In addition, note that each path from cell (m, n) to cell (0,0) corresponds to a distinct optimal solution to the
edit distance problem and thus a distinct optimal alignment. For example, for the strings “AT” and “TA,” the
path (2,2),(1,1),(0,0) in the table in Figure 4 represents two substitutions, which corresponds to the align-
ment in Figure la. The path (2,2), (2, 1), (1,0), (0,0) corresponds to inserting an “A” at the end of “AT,”

ED(S1, 82, i, j):

if 1 == 0: return j
elif j == 0: return i
else:

if S1[i] == S2[j]: # Last symbols match
return ED(S1, S2, i-1, j-1)

else:
optionl = 1 + ED(S1, S2, i-1, j-1) # substitution
option2 1 + ED(S1, 82, i, j-1) # insertion
option2 = 1 + ED(S1, S2, i-1, j) # deletion
return min(optionl, option2, option3)

FIG. 3. Recursive algorithm for computing the edit distance between two strings.

6 LIBESKIND-HADAS

T A
J 0 1 2
0 O 1 & 2
FIG. 4. Edit distance dynamic programming table for the strings S; =“AT” H
and S, =“TA” with annotations indicated by arrows.
A 1 1 1 1
N\ i
| |
T 2 2 1 & 2

matching the “T” symbols (no operation), and deleting the “A” from the front, corresponding to the alignment
in Figure 1b. Finally, the path (2, 2), (1,2), (0, 1), (0, 0) corresponds to deleting the “T” from the end of “AT,”
matching the “A” symbols (no operation), and adding a “T” at the front of S}, corresponding to the alignment
in Figure 4c.

Thus, we refer to a path from (m,n) to (0,0) as an optimal solution path. Observe that the diameter of the
space of optimal solutions is the maximum number of edges in which two optimal solution paths differ. In this
example, the paths (2,2),(2,1),(1,0),(0,0) and (2,2), (1,2),(0,1), (0,0) differ in six edges, which is the
largest distance among the three pairs of paths, giving a diameter of 6.

3.2. Diameter

As noted earlier, computing the diameter is equivalent to the problem of computing the maximum number
of differences in edges between all pairs of optimal solution paths, that is, between all pairs of paths from cell
(m,n) to cell (0, 0) in the annotated DP table. This problem can be solved by a second DP algorithm operating
on the annotated DP table.

We begin by describing the recursive solution for computing the diameter and then the DP implementation fol-
lows immediately. We henceforth assume that the annotated DP table for the pair of input strings has been com-
puted. Let edges(i, /) denote the set of edges leaving cell (vertex) (i,) in the DP table, corresponding to the set of
operations that are part of optimal solutions to the subproblem represented by (i, j). Let neighbors(i, j) denote
the set of cells (vertices) at the endpoints of each of the edges leaving (i,), that is, the set of cells with an edge
entering from cell (vertex) (i,). For example, in the DP table in Figure 4, the cell at (2,2) has three outgoing
edges to cells (2,1), (1,1), and (1,2). Thus, neighbors(2,2)={(2,1),(1,1),(1,2)}. Let maxdifference
(i,j,i,j) denote the maximum number of differences in edges between two paths in the annotated DP table where
one path begins at cell (i, j) and ends at (0,0) and the other begins at cell (i, j') and ends at (0, 0). Then, the diam-
eter of the optimal solution space is maxdifference (1, n,m, n).

Consider two cells in the table, one at (i, j) and the other at (i',j'). Then, we say that (i, j) subsumes (i',j') if
i >i,j > j andeitheri > i’ orj > j. The significance of (i,j) subsuming (i',;") is that the first edge on
any path from (i, j) to (0 0) cannot be part of a path from (i', ;') to (00). Thus, in this case

maxdifference(i,j,i',j)= max 1 + maxdifference(s, ¢,i',j). (D)
(s,r)€neighbors(i.j)

Similarly, if (i,j') subsumes (i,) then

maxdifference(i, j, i ,j')= max 1 + maxdifference(i, j, s,). 2)
(s.r)eneighbors(i’ j')

If neither (i,7) subsumes (i,j) nor (i,j') subsumes (i,) and (i,j) # (i,j') then the first edge on path
from (i, /) to (0,0) cannot appear on a path from (i,j') to (0,0) and vice versa; thus maxdifference(i, ;, i,j')
can be computed using either of Equation (1) or (2). Finally, if (i,j)=(i,j') then two most different paths

PAIRWISE DISTANCES 7

from (i,5) to (0,0) may begin with either the same edge or two different edges. Let 6(x,y)=0if x=y and 1
otherwise. Then

maxdifference(i, ;. i,j) = max 20((s, 1), (u,v)) + maxdifference(s, 7, u, v). 3)
(s,),(u,v)Eneighbors(i.j)

Note that the term 258((s, 7), (u, v)) contributes 0 to the distance if (s, 7) = (u, v) and thus the two paths begin
with the same edge. This term contributes 2 to the distance if (s,7) # (u, v) and the two paths begin with two
different edges. The base case for this recursion is

maxdifference(0, 0, 0,0)=0. 4)

This set of rules defines a recursive algorithm and that algorithm is then implemented as a dynamic program.
Since there are four arguments in the recursive function, the DP table is four-dimensional. Moreover, for this
problem, each cell has only a constant number of neighbors, and thus the asymptotic running time of the
dynamic program is, therefore, O(m*n?).

3.3. Pairwise distance vector

Recall that the pairwise distance vector is a vector v such that v; denotes the number of pairs of optimal solu-
tions whose distance is exactly i. The pairwise distance vector can be computed using the same recursive structure
as that for the diameter, but now using vector operations rather than integer arithmetic.

Recall that pairwise distance vectors are indexed from O to the diameter of the space, d. Therefore,
d+ 1-dimensional vectors suffice. However, rather than first computing the diameter to establish the dimen-
sion, we can use an upper-bound on the diameter as the dimension of the vectors and then compute the pairwise
distance vector directly.

For this problem, observe that the diameter is upper-bounded by 2(m + n) since the longest path from (m, n)
to (0,0) has length m +n and, in theory, two paths could differ on every edge. Let dim denote the dimension of
the vectors used in the algorithm. In this problem, we use dim=2(m+n) + 1.

Let unit denote the vector (1,0, ...,0), let + denote the standard vector addition operator, and let shift,(v)
denote the vector in which each entry of v is shifted k places to the right. That is, shift,(v) is a vector w of
dimension dim such that foreach0 < i < dim:

_viek i 2k
e o 2 ®

Letv=pdv(i,j,i’,j') denote the vector of dimension dim such that v; denotes the number of pairs of paths
in the DP table, one from (i,j) to (0,0) and the other from (i',;) to (0,0) that differ by exactly k edges. Then,
the pairwise distance vector is pdv(m, n,m, n).

By analogy to the computation of diameter, if (7, j) subsumes (i,j'), then first edge on any path from (i, ;) to
(0,0) cannot be part of a path from (i, ;") to (0,0). Thus, in this case, pdv(i,j, i) is the sum of the vectors for
each of the neighbors of (i,) shifted one position to the right because each distance increases by one due to the
first edge from (i, /) to a neighbor, which is present in the solution beginning at (i,5) but not in the solution
beginning at (i,;):

pav(i,j,i.j)= > shift, (pdv(s,z,i',j')). (6)

(s,r)eneighbors(i.j)
Similarly, if (i,j') subsumes (i,) then

pdv(i,j,i',j)= Y shift, (pdv(i,j, s,1)). (7)
(s,t)eneighbors(i’ j")

If neither (i,7) subsumes (i,j') nor (i,j') subsumes (i,j) and (jj) # (i',j’) then the first edge on path from
(i,j) to (0,0) cannot appear on a path from (i,j") to (0,0) and vice versa; thus pdv(i,j,i,j) can be computed
using either of equations (6) or (7). Finally, if (i,j)=(i,j") then two most different paths from (i, ;) to (0,0)
may begin with either the same edge or two different edges. Again letting d((s,7), (u,v))=11if (s,7) # (u,v)
and O otherwise. Then,

8 LIBESKIND-HADAS

pdv(i,j,i,j)= Y shiftys((s,0),uv)) (PAV(s, 1, 1, v)). (®)
(s,1),(u,v)eneighbors(i.j)

Since there is exactly one pair of paths (the empty path and itself) from (0,0) to (0,0) at distance O from one
another, the base case for this recursion is

maxdifference(0, 0, 0, 0) = unit. 9)

Implementing this recursive algorithm using DP results in a four-dimensional table with O(m?n?) cells and
computing each entry in that table requires a constant number of vector additions and shift operations, each
taking time O(m + n). Therefore, the asymptotic running time of the algorithm is O(m*n*(m+n)).

As an example, Figure 5 shows a visualization of the pairwise distance vectors for two different instances of
the edit distance problem. Each instance comprises a pair of randomly generated strings of length 100 where
each symbol is generated uniformly at random from a set of four characters. The horizontal axis represents
indices of the pairwise distance vector (symmetric difference distance) and the vertical axis represents the
value of the vector at that index (number of pairs of solutions with that distance). The distribution in (Fig. 5a)
has a single peak at distance ~ 60, whereas the distribution in (Fig. 5b) is multimodal, suggesting that there are
likely to be two or more clusters of solutions.

Although the edit distance problem is relatively simple, this example is illustrative of a general principle
that is broadly applicable. First, the diameter of the optimal solution space is induced by the paths in the DP
table that differ in the largest number of edges, where edges are the annotations that are recorded while solving
the DP. Second, finding a pair of paths that differ in the largest number of edges can be solved by a recursive
algorithm whose arguments are pairs of vertices (cells) in the annotated DP table.

Third, that recursive algorithm can then be implemented using DP to obtain a polynomial-time algorithm to com-
pute the diameter. Finally, the polynomial-time algorithm for computing the diameter can then be directly extended
to compute pairwise distance vectors by replacing integer operations with corresponding vector operations.

In the next section, we illustrate this approach again for a problem that is somewhat more complicated but,
nonetheless, can be solved using the same approach.

4. THE SMALL PARSIMONY PROBLEM

The small parsimony problem (also known as the ancestral state reconstruction problem) takes a binary
tree as input with leaves labeled from a set of characters. These characters are typically phenotypic or molecu-
lar characters. The objective is to find an assignment of characters to internal nodes that minimizes the total
number of differences between the labels of parent and child nodes. The small parsimony problem is used as a

A lel0 B 1le9

3.5 1

3.0 1

2.5 1

2.0

1.5

1.0

0.5 1

0.0 ™ . . A
0 50 100 150 200

0-

0 20 40 60 80 100 120 140 160

FIG. 5. Pairwise distance vectors for two random pairs of strings, each of length 100 over an alphabet of size 4.
The horizontal axis is the pairwise distance and the vertical axis is the number of optimal pairs of solutions at this
distance. (A) More than 1.9x 107 optimal solutions, diameter 162, vertical scale x 100, (B) More than 1.4%x10°
optimal solutions, diameter 215, vertical scale x 10°.

PAIRWISE DISTANCES 9

subproblem of the large parsimony problem, in which a phylogenetic tree is sought that minimizes the small
parsimony score, but is also used in evolutionary studies where the phylogenetic tree is already established and
the objective is to infer the characters of ancestral species. In the latter case in particular, the fact that there can
be a very large number of equally optimal solutions to the small parsimony problem presents challenges
because each solution is a different putative evolutionary history.

4.1. Computing the small parsimony score

The small parsimony problem can be solved using well-known recursive algorithms such as the Fitch Algo-
rithm (Fitch, 1971). For completeness, we describe the basic recursive algorithm here. Let T denote a binary
phylogenetic tree and let L(T) denote its leaves. Let C denote a finite set of characters (e.g., molecular or phe-
notypic characters) and let ¢ : L(T) — C denote a labeling of the leaves with characters. Let left(v) and
right(v) denote the left and right children, respectively, of an internal node v and let r denote the root of the
tree.

For each node, v and each character ¢ € C, let cost(v, ¢) denote the minimum cost of a subtree rooted at v if

itis labeled with c. Then the minimum cost for the tree is minceccost(r, ¢). The recursive algorithm for com-
puting cost(v, ¢) first computes cost(right(v),d) and cost(left(v),d) for each d € C. Then, again letting
d(x,y)=1beifx # y and 0, we now compute

cost(v,c)= {‘Jlneig(cost(left(v), d)+6(c,d))

+ r(}leig(cost(right(v)7 d)+9(c,d)). (10)
The base case is for v € L(T)
cost(v, ¢) = { go ﬁg:g ;CC : (11)

Although this algorithm can be implemented bottom up as a dynamic program (e.g., the Fitch Algorithm),
the recursive function is polynomial-time since this recursion makes no duplicated recursive calls. In either
case, the complexity is O(nk) where n is the number of nodes in the tree and k is the size of the character set. In
either case, we can record (either in the top-down recursion or in the bottom-up dynamic program) annotations
for each node and character to indicate the subproblems that give rise to optimal solutions. That is, for each
(v, ¢) pair comprising a node v and character ¢, we can record all of the labels on left(v) and right(v) that give
rise to the optimal score for (v, ¢). Let leftopt(v, ¢) denote the set of all labels d such that left(v) has label d in
some optimal solution in which v is labeled c. Similarly, let rightopt(v, ¢) denote the set of all labels d such
that right(v) has label d in some optimal solution in which v is labeled c.

4.2. Diameter

Consider the graph in which (v, ¢) pairs are vertices and the annotations computed in the recursion or DP
table are directed edges. Specifically, for each vertex (v, ¢), there is a directed edge to each vertex (left(v), d)
such that d € leftopt(v, ¢) and, analogously, there is a directed edge from (v, ¢) to each vertex (right(v),d)
such that d € rightopt(v, c).

Let OPT =min.cccost(r, ¢) and let start={c | cost(r,c) = OPT}. In other words, start represents all char-
acters that are assigned to the root of the phylogenetic tree in some optimal solution. An optimal solution to the
small parsimony problem corresponds to a tree rooted at (r, ¢), ¢ € start, containing some node (v, -) for each
v in the phylogenetic tree.

Equivalently, a solution corresponds to a set of pairs (v, -) for each v in the phylogenetic tree. Therefore, the
symmetric set difference between two solutions is the number of (v, -) pairs in which they differ. Thus, if one
solution assigns label ¢ to vertex v and the other assigns c; to vertex v, vertex v contributes 0 to the distance if
c1 =c;, and contributes 2 otherwise. It is more natural, however, to consider this as contributing a distance of 1
since vertex v is simply labeled differently in the two solutions. Thus, for this problem, we define the distance
between two solutions to be half of the symmetric set difference between the solutions. The diameter of the
optimal solution space is, therefore, the maximum number of differences between any two optimal solutions.

10 LIBESKIND-HADAS

Note that those trees may or may not begin with the same node (r, ¢). That is, the diameter may involve two
trees in which the root node has the same or different characters.

Let maxdist(v, ¢1, c;) denote the maximum distance between two subtrees rooted at v, where one associates
v with label ¢ and the other with ¢, (noting, as aforementioned, that ¢; may be equal to ¢;). Then, the diameter
18 max maxdist(r, ¢y, ;). (12)
cy,cpEstart

In general, maxdist(v, ¢1, ¢;) can be computed as follows:
maxdist(v, c1,c2) =0(cy, ¢2) (13)

+ max maxdist(left(v), d;,d>) (14)
d € leftopt(v,c;)
dy € leftopt(v,c2)

+ max maxdist(right(v),d;,d,). (15)
d, € rightopt(v, c;)
d, € rightopt(v, ¢;)

The base case is when v is a leaf node, in which case maxdist(v, ¢, ¢) =0 for £(v) =c. (No characters other
than ¢(v) = ¢ are relevant).

Note that this function can make multiple repeated recursive calls because two different labels on a node v
may have the same optimal solutions to left or right subproblems. Thus, this recursive algorithm is imple-
mented with DP to compute the values bottom up or with memoization to avoid repeated recursive calls. We
assume that C is a fixed set (e.g., nucleotides and phylogenetic characters) and thus treat |C| as a constant. The

asymptotic running time is O(r2) because there are n|C|* DP table entries entries of the form maxdist(v, |, ¢,)

and each such entry can explore at most |C\2 combinations of labels on each of the left and right children of v.

We make several observations about this problem. First, as in the case of the diameter for edit distance, the
diameter is found through a recursive algorithm (and ultimately, a DP implementation) that seeks the “traver-
sals” of maximum distance in the graph induced by the DP table. Whereas a traversal in the edit distance prob-
lem was a path from one corner of the table to the opposite corner, in the small parsimony problem a traversal
is a tree. However, the recursive calls on the left and right subtrees are independent of one another, and thus
can be solved using two separate and independent recursive calls. In other words, not only does the small phy-
logeny problem have the optimal substructure property (Cormen et al., 2009) required for its efficient solution,
but the diameter problem also has the optimal substructure property, allowing it too to be solved efficiently.
Finally, whereas in the edit distance problem, the distance between two optimal solutions is the number of
edges in which two traversals in the DP table differ, in the small parsimony problem it is more natural to define
the distance as the number of vertices (v, -) in which two traversals in the DP table differ.

4.3. Pairwise distance vector

The pairwise distance vector for the small parsimony problem can be solved again by extending the algo-
rithm for diameter and replacing arithmetic operations with vector operations. Let n denote the number of

nodes in the phylogenetic tree. Then the number of internal nodes is % and two labelings of the tree can differ

in at most that many places. Thus, we use vectors with dim = % +1.
In this problem, the addition of solutions for the left and right subproblems is replaced by the convolution of
vectors. Let ® denote the convolution of two vectors: x ® y is the vector v such that
V= Z ij[,j,o < i< dim. (16)
0<j<i
By analogy to the computation of the diameter, let pdv(v, ¢1, ¢2) denote the vector of dimension dim whose
kth element is the number of pairs of subtrees in the DP table, one rooted at (v, ¢;) and the other at (v, ¢;), that
differ by k.
Then, the pairwise distance vector is
) pdv(r,ci,), (17)

(c1,c2)€Estart x start

where x represents the Cartesian product and summation represents standard vector summation. The summation is
used here since the pairwise distance vector counts the total number of pairs of solution at each possible distance.

PAIRWISE DISTANCES 11

For non-root internal nodes v, the pairwise distance vector for one subtree rooted at (v, ¢;) and one rooted at
(v, ¢2) can be computed by first finding the pairwise distance vectors for each pair of subtrees for the left child of
v with labels found in some optimal solution and, analogously, for each pair of subtrees for the right child of v
with labels found in some optimal solution. Those vectors are then combined using convolution since the total
number of solutions that differ in a total of k edges is the sum of all of the ways that k differences arise between
the left and right subtrees: O on the left and & on the right, 1 on the left and k— 1 on the right, and so forth. Finally,
if ¢| # ¢, then there is an additional difference in the two subtrees and thus all of the distance counts must be
shifted one position to the right in the pairwise distance vector. Thus, the general recursive step is

. Y pdv(left(v),d;,d>) ® Y pdv(right(v),d;, d>)
pdV(V, €1, C2) = Shlfté(clv C2) <d1 € leftopt(v, c) d, € rightopt(v, c;) ’
d, € leftopt(v, c;) d, € rightopt(v, ¢;)

(18)

The base case for this recursion arises when v is a leaf node. The only label for a leaf node is the one defined
by the given association L(T') of leaf nodes to labels, and thus

unit : {(v)=ci=cp

zero : otherwise (19)

PdV(chl,Cz):{

Note that unit and zero correspond to the unit and zero vectors, respectively, with dimension dim.
The asymptotic time complexity of the DP implementation of this algorithm is derived as follows. There are

O(n|C|?) cells in the table, one for each pdv(v, ¢, ¢,) in Equation (18). Each cell involves one shift operation,

a constant number (at most |C \2) addition operations, and one convolution operation. The shift and addition
operations take O(n) time and the convolution operation takes O(nlogn) time using a discrete Fourier trans-
form (Cormen et al., 2009). Therefore, the asymptotic running time is O(n*logn).

As an example, Figure 6 shows a visualization of the pairwise distance vectors for two different randomly
generated phylogenetic trees with 101 leaves (100 internal nodes) labeled randomly from a set of 20 charac-
ters. Each of the two trees is randomly generated and the labels of their leaves are selected at random.

The horizontal axis represents indices of the pairwise distance vector (symmetric difference distance) and the
vertical axis represents the value of the vector at that index (number of pairs of optimal solutions with that dis-
tance). The peak of part (b) of Figure 6 is at 60, indicating that the modal difference between pairs of solutions is
60% (60 differences among 100 internal nodes). In addition, the bimodal distribution suggests that there are clus-
ters of solutions. These facts suggest that a single optimal solution does not adequately represent the diversity of
the solution space for this problem instance.

le24 B 1le33

3.5
1.2

3.0
1.04

2.54
0.8

2.0
0.6 1

1.5
0.4 104
0.2 4 0.5 4
0.0 0.0+

0 10 20 30 40 50 0 10 20 30 40 50 60 70 80

FIG. 6. Pairwise distance vectors for two random binary trees with 101 leaves (100 internal nodes) and 20 charac-
ters. The horizontal axis is the pairwise distance and the vertical axis is the number of optimal pairs of solutions at this
distance. (A) More than 4 X 10"? optimal solutions, diameter 50, vertical scale is X 10**. (B) More than 4x 10" opti-
mal solutions, diameter 79, vertical scale is x 103,

12 LIBESKIND-HADAS

5. CONCLUSION

Many applications in bioinformatics involve making inferences from the solutions to discrete optimization
problems. These problems often give rise to very large spaces of equally optimal solutions. When the solution
space is diverse, making inferences from any single solution may lead to conclusions that are not supported by
other equally optimal solutions.

In this article, we have described a general method for efficiently computing statistics on the spaces of optimal sol-
utions. These statistics may be useful in justifying the use of a single optimal solution (e.g., when the diameter or
other pairwise distance statistics suggest that most solutions are similar to one another) or establishing the need for
multiple representative solutions (e.g., when the solution space is diverse). Our method for computing the diameter,
and by extension by the pairwise distance distribution, is based on the fact that not only does the underlying optimi-
zation problem (e.g., edit distance or small parsimony) have the optimal substructure property, but the diameter prob-
lem (and thus the pairwise distance problem) also has the optimal substructure property. This results in efficient DP
algorithms for the diameter and pairwise distance problems. Those algorithms rely on first constructing the annotated
DP table for the underlying problem and then constructing a second DP algorithm that operates on that table.

Although we have provided two examples of this method, one open problem is that of characterizing which prob-
lems are amenable to this approach. It is currently not known whether this approach can be applied to all problems
with efficient DP algorithms. For example, the RNA folding problem (Nussinov et al., 1978; Zuker, 1989) has effi-
cient DP algorithms based on optimal substructure of the recursive formulations, but computing the diameter for the
space of optimal foldings remains an open problem (Liu et al., 2022). In particular, the RNA folding problem
involves considering multiple pairs of subproblems and selecting the pair that gives the best folding score. Two dif-
ferent optimal solutions may, therefore, comprise solutions to different pairs of subproblems. Consequently, when
seeking to compute the diameter for this problem, the subproblems can evidently overlap in complicated ways that
did not arise in the simpler problems that we have considered here. The problem is potentially further complicated
when using more realistic energy functions as in the Zuker Algorithm (Zuker, 1989). Thus, further study is required
to determine whether more powerful methods can be used to compute diameters and pairwise distance vectors effi-
ciently for such problems or whether computation of those statistics is computationally intractable in some cases.

ACKNOWLEDGMENTS

The author wishes to thank Dr. Shibu Yooseph, Danzhe Chen, and Ross Mawhorter for valuable conversations
about this research as well as the anonymous reviewers and editorial staff whose suggestions improved the article.

CODE

The code used in this article is freely available at https://github.com/RanLH/PairwiseDistances

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

FUNDING INFORMATION
This study was funded by the U.S. National Science Foundation under grant number I1S-1419739.

REFERENCES

Agius P, Bennett K, Zuker, M. Comparing RNA secondary structures using a relaxed base-pair score. RNA 2010;
16(5):865-878.

Bansal MS, Alm EJ, Kellis M. Reconciliation revisited: handling multiple optima when reconciling with duplication,
transfer, and loss.] Comput Biol 2013;20(10):738-754; doi: 10.1089/cmb.2013.0073

Bansal M, Alm E, Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal trans-
fer and loss. Bioinformatics 2012;28(12):1283-i291.

https://github.com/RanLH/PairwiseDistances
http://dx.doi.org/10.1089/cmb.2013.0073

PAIRWISE DISTANCES 13

Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithms, 3rd ed. The MIT Press, Cambridge, Massachusetts;
2009.

Eddy S. How do RNA folding algorithms work? Nat Biotechnol 2004;22(11):1457-1458.

Fitch W. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Biol 1971;20(4):
406-416.

Haack J, Zupke E, Ramirez A, et al. Computing the diameter of the space of maximum parsimony reconciliations in the
duplication-transfer-loss model. IEEE/ACM Trans Comp Biol 2018;16(1):14-22.

Heitsch C, Poznanovik S. Combinatorial Insights into RNA Secondary Structure. Springer:Berlin; 2014.

Huber K, Moulton V, Sagot, M.-F, et al. Exploring and visualizing spaces of tree reconciliations. Syst Biol 2018;68(4):
607-618; doi: 10.1093/sysbio/syy075

Kiirala N, Salmela L, Tomescu A. Safe and Complete Algorithms for Dynamic Programming Problems, with an Appli-
cation to RNA Folding. In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany 2019;8:1-8:16.

Levenshtein V. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys Doklady 1966;10:
707-710.

Liu J, Duan I, Santichaivekin S, et al. Distance Profiles of Optimal RNA Foldings. In: International Symposium on Bio-
informatics Research and Applications. Springer, Berlin 2022; pp. 315-329.

Mawhorter R, Libeskind-Hadas R. Hierarchical clustering of maximum parsimony reconciliations. BMC Bioinfor-
matics 2019;20:1-12.

Miklés I, Darling A. Efficient sampling of parsimonious inversion histories with application to genome rearrangement
in Yersinia. Genome Biol Evol 2009;1:153-164.

Mikls I, Kiss S, Tannier E. Counting and sampling SCJ small parsimony solutions. Theor Comput Sci 2014;552:83-98;
doi: 10.1016/j.tcs.2014.07.027

Needleman S, Wunsch C. A general method applicable to the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 1970;48(3):443-453.

Nguyen, T, Ranwez V, Berry V, et al. Support measures to estimate the reliability of evolutionary events predicted by
reconciliation methods. PLoS One 2013;8(10):e73667.

Nussinov R, Pieczenik G, Griggs J, et al. Algorithms for loop matchings. SIAM J Appl Math 1978;35(1):68-82.

Rogers E, Heitsch C. New insights from cluster analysis methods for RNA secondary structure prediction. Wiley Inter-
discip Rev RNA 2016;7(3):278-294; doi: 10.1002/wrna.1334

Salmela L, Tomescu Al Safely filling gaps with partial solutions common to all solutions. IEEE/ACM Trans Comp
Biol 2018;16(2):617-626.

Santichaivekin S, Mawhorter R, Libeskind-Hadas R. An efficient exact algorithm for computing all pairwise distances
between reconciliations in the duplication-transfer-loss model. BMC Bioinformatics 2019;20(Suppl 20):636.

Tomescu A, Medvedev P. Safe and complete contig assembly through omnitigs. J Comp Biol 2017;24(6):590-602.

Vingron M. Argos P. Determination of reliable regions in protein sequence alignments. Protein Eng Des Select 1990;
3(7):565-569; doi: 10.1093/protein/3.7.565

Wang Y, Mary A, Sagot M.-F, et al. A general framework for enumerating equivalence classes of solutions. Algorith-
mica 2023;85(10):3003-3023.

Zuker M. On finding all suboptimal foldings of an RNA molecule. Science 1989;244(4900):48-52.

Address correspondence to:

Dr. Ran Libeskind-Hadas

Kravis Department of Integrated Sciences
Claremont McKenna College

Claremont

CA91711

USA

E-mail: rhadas @cmc.edu

http://dx.doi.org/10.1093/sysbio/syy075
http://dx.doi.org/10.1016/j.tcs.2014.07.027
http://dx.doi.org/10.1002/wrna.1334
http://dx.doi.org/10.1093/protein/3.7.565
mailto:rhadas@cmc.edu

