
ALT-GEN: Benchmarking Table Union Search using Large
Language Models

Koyena Pal
Northeastern University

Boston, MA, USA
pal.k@northeastern.edu

Aamod Khatiwada
Northeastern University

Boston, MA, USA
khatiwada.a@northeastern.edu

Roee Shraga
Worcester Polytechnic Institute

Worcester, MA, USA
rshraga@wpi.edu

Renée J. Miller
Northeastern U. & Waterloo U.

Boston, MA, USA
miller@northeastern.edu

ABSTRACT
We consider the table union search problem which has emerged
as an important data discovery problem in data lakes. Semantic
problems like table union search cannot be benchmarked using
only synthetic data. Our current methods for creating benchmarks
for this problem involve the manual curation and human label-
ing of real data. These methods are not robust or scalable and
perhaps more importantly, it is not clear how comprehensive the
created benchmarks are. We propose to use generative AI models
to create structured data benchmarks for table union search. We
present a novel method for using generative models to create ta-
bles with speci�ed properties. Using this method, we create a new
benchmark containing pairs of tables that are both unionable and
non-unionable, but related. We use this benchmark to provide new
insights into the strengths and weaknesses of existing methods.
We evaluate state-of-the-art table union search methods over both
existing benchmarks and our new benchmarks. We also present and
evaluate a new table search method based on large language models
over all benchmarks. We show that the new benchmarks are more
challenging for all methods than hand-curated benchmarks. We
examine why this is the case and show that our new methodology
for creating benchmarks permits more detailed analysis and com-
parison of methods. We discuss how our generation method (and
benchmarks created using it) sheds more light into the successes
and failures of table union search methods sparking new insights
that can help advance the �eld. We also discuss how our benchmark
generation methodology can be applied to other semantic problems
including entity matching and related table search.

VLDBWorkshop Reference Format:
Koyena Pal, Aamod Khatiwada, Roee Shraga, and Renée J. Miller.
ALT-GEN: Benchmarking Table Union Search using Large Language
Models. VLDB 2024 Workshop: Tabular Data Analysis Workshop (TaDA).

VLDBWorkshop Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

The source code, data, and/or other artifacts have been made available at
https://github.com/northeastern-datalab/gen.

1 INTRODUCTION
David Paterson states that when a �eld has good benchmarks, we
settle debates and the �eld makes rapid progress [33]. Tradition-
ally, benchmark generation is done using synthetic data generators
that precisely control parameters such as data size, data distribu-
tions, and correlations in data [17]. These parameters in�uence the
standard DBMS performance metrics such as response time and
through-put. However today, more and more data management
challenges require not only the fast and scalable processing of data,
but also an understanding of the semantics of data. A common
example that we consider is table union – do two tables contain
attributes and relationships with the same semantics so that they
can be meaningfully unioned [29]. For this problem, the most im-
portant performance metric is accuracy. In comparing di�erent
methods, we would also like to understand their accuracy over
tables with di�erent data characteristics (for example, tables with
more incompleteness or tables with longer textual attribute values).

The state-of-the-art in union search benchmarking is for re-
searchers to �nd and curate (manually label) real datasets. Nar-
gesian et al. [29] created the �rst labeled benchmarks (which we
will call TUS-Small and TUS-Large in our work) using real open
data (from government open data portals). These benchmarks have
been reused for diverse applications, not just the table union search
problem [4, 26, 27]. They took several large tables and sliced them
horizontally and vertically to create tables that are unionable on
some or all attributes. This approach was later extended by Khati-
wada et al. [24] to create SANTOS-Small and SANTOS-LARGE
benchmarks that were also used in other works [16, 19, 20, 25].
Table union search is not unique in its need for hand curated bench-
marks. Another example is the T2K Gold Benchmark for evaluating
matching systems, which was created from a large web table cor-
pus [44] matched with properties from DBpedia and hand labeled.
All these e�orts require considerable human e�ort to �nd appropri-
ate real data and to label the ground truth. Also, it is not clear how
representative these benchmarks are. For example, while the TUS-
Large benchmark [29] o�ers thousands of “labeled” tables, they
originate from only 32 seed tables which are necessarily limited in
the variety of semantics they capture (for example, the topics in

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/northeastern-datalab/gen

the tables). SANTOS-Large [24], which is large in size and based
on real open data tables, o�ers only 80 human-labeled samples, not
complete ground truth. Also, none of these benchmarks o�er a set
of non-unionable table pairs and assumes that table pairs that are
not labeled as unionable are not unionable. This assumption is made
for scaling, a human cannot label a quadratic number of table pairs
for anything beyond a modest number of tables. But generative
models give us an opportunity to address some of the limitations
of hand labeled benchmarks.

Generative AI models have become increasingly popular espe-
cially in NLP, where models such as GPT3 [7] and ChatGPT [30]
are used by millions of users on a daily basis. These models can be
used as is (aka zero-shot learning [47]) or by providing a (small) set
of examples that steer the model in the right direction with respect
to the task at hand (aka in-context learning [7, 15]). It is our thesis
that these models could provide the key to making innovative new
advancements in benchmarking semantic problems in structured data
management.
Contributions:We use generative AI models (which we will de-
note as LLMs) to create benchmark datasets for the table union task.
Our contributions can be summarized as follows.
• Automated LLM Table Generator (ALT-GEN) : an automated
framework to generate tables for table union search tasks based on
a set of desired properties. Our framework includes a veri�cation
step that we use to study the extent and in�uence of hallucination
on benchmark generation. In addition, we use a novel iterator to
generate larger tables using LLMs which by de�nition have �nite
(limited) context.
• New Table Union Search Benchmark: we generate and share
a new table union search benchmark UGEN-V2. UGEN-V2 con-
tains 1050 tables on 50 topics ranging from World Geography to
Veterinary Medicine, 1000 labeled table pairs (500 unionable/500
non-unionable) allowing �ne-grained e�ectiveness analysis.1
• Table Union Search Evaluation: we evaluate and analyze ex-
isting table union search methods over the new and existing bench-
marks. While the best search methods achieve a MAP of over 90%
on existing benchmarks, we show that the new benchmark is more
challenging. The best MAP values are around 70%, potentially trig-
gering research into more robust methods.
• A More Thorough Experimental Analysis: previous work
has used hand-labeled benchmarks as-is. We show that our ALT-
GEN methodology lends itself to more robust benchmarking by
considering other important parameters. For instance, we vary
UGEN-V2 benchmark’s sparsity (how many null values it contains)
and evaluate methods on di�erent table topics. We show that by
using ALT-GEN, we can do ablation studies on these parameters
to understand the table union search methods even better, some-
thing that has not been done before. This helps create a better
understanding of the relative strengths and weaknesses of di�erent
search methods.
• New Table Union Search Method: in generating benchmarks
using LLMs, an important question is whether an LLM is better at
table union search (especially on its own benchmark) than the best
existing methods. An LLM can easily be used to classify two tables
1UGEN-V2 provides an important advancement over UGEN-V1, an early benchmark de-
veloped with ALT-GEN [32]. Both are used in our experiments, and both are described
in Section 3.

as unionable or non-unionable, but not for table union search (given
a query table, �nd tables within a massive repository that are union-
able with it). So to answer this question, we present a new table
union search method that uses a state-of-the-art search technique
to �nd a set of candidates tables (Starmie [16]) and then uses an
LLM to classify table pairs among the candidates as unionable/non-
unionable. Our in depth analysis of the performance of this new
method with existing methods highlights some important and in-
teresting areas for future work and improvement.

In Section 2, we survey related work. Section 3 presents our
methodology to generate benchmarks and the new benchmark.
Section 4 provides analysis and evaluation.

2 RELATEDWORK
We �rst present the state-of-the-art methods in table union search
(including methods that appear in our experimental study). We then
consider benchmark creation in data management tasks, including
benchmark generation for semantic tasks like data cleaning and
data integration. Finally, we introduce generative models.

Table Union Search: Given a query table by the user, table union
search techniques �nd a set of data lake tables that can be unioned
with the query table and potentially used to add new rows to the
query table [29]. Nargesian et al. [29] considered two tables to be
unionable if they a subset of their columns are unionable. Column
unionability is determined by using an ensemble of three statistical
tests based on value overlap, semantic overlap, andword embedding
similarity of the column values. D3L [4] extended that work [29]
by considering, three additional attribute unionability measures
(column header similarity, numerical value distribution, and regular
expression similarity). SANTOS [24] considered the similarity of
both columns and binary relationships between columns to make ta-
ble unionability decisions. The binary relationships help SANTOS to
understand table context better and omit the unioning of the tables
having similar columns but di�erent contexts [24]. Starmie [16]
uses a contrastive-learning approach to capture the context of the
entire query table rather than just the binary relationships. In very
recent work, Hu et al. [20] used the contextualized representation
of the relationships between the column pairs to capture the ta-
ble contexts and use them to �nd unionable tables from the data
lakes (however, open code is not available as of this writing). The
benchmarks used (and created) in the respective papers and their
limitations are discussed in the introduction. Importantly, their
creation and evaluation involve a signi�cant amount of manual
annotation.

Benchmark Generation in Databases: Benchmark generation
has been considered for many data management tasks. In data
cleaning, Arocena et al. [2] introduced BART which can be used
to add errors into clean databases and evaluate data-repairing al-
gorithms. In data integration, iBench [1] generates schemas and
schema constraints with arbitrarily large and complex mappings.
These systems start with real data and metadata and systematically
vary speci�c parameters that can in�uence the performance of
cleaning or integration systems. In a similar spirit, we show how
ALT-GEN can generate realistic data and use it to vary certain pa-
rameters (such as textuality) during the generation process. We also

2

consider how to post-process the generated result to vary other
parameters such as sparsity.

Others have used knowledge graphs [13], Git repositories [21],
and the web [5] to generate tabular benchmarks. For example, the
SemTab challenge [13], which focuses on the semantic annotation of
the tabular datasets using knowledge graphs, generates benchmarks
using Wiki data for important intra-table tasks such as column type
annotation and column-column relationship annotation. However,
limited value coverage in the knowledge graph [24] could pose
a challenge for creating diverse benchmarks and this is an area
where generative models could be helpful. Another example is The
Web Data Commons project [5] which extracts schema.org [18]
data from the Web using Common Crawl [12]. This project yielded
several successful benchmarks for multiple tasks such as Product
Matching [34]. The extraction is limited to a speci�c schema and
still requires manual annotation.

A recent data discovery benchmark includes Lakebench which
contains 8 open datasets for joinability and unionability tasks [39].
Di�erent from our work where we generate tables for table search
task using a generative model, they manually label existing open
datasets for �ne tuning large language models. For some bench-
marks, they also use entities and classes in Knowledge graphs to
create and annotate tables.

Generative Models and LLMs: Generative models generate new
data instances making them appealing for benchmark generation.
They have been used to augment training data in various related
tasks such as commonsense reasoning [48], event detection [43],
text classi�cation and summarization [10]. Recently, researchers
have coined the term large language models (LLMs) which refers to
generative language models in general. We use Mistral AI’s Mixtral-
8x7B-Instruct [22] for UGEN-V2 and Open AI’s GPT3 [7] for UGEN-
V1 benchmark generation and also experiment with GPT2-xl [37],
Alpaca [40] and Vicuna [50] (open source via Hugging Face [46]).
LLMs have been used within the data management community
extensively. For example, Arora et al. [3] use LLMs to generate
structured views of semi-structure data lakes. Others use LLMs to
extract knowledge graphs [11, 45]. Trummer usedGPT-3 to generate
code for query processing [41, 42]. Recently, some attempts were
made to solve other data management tasks such as information
extraction [6] and entity matching [34] using prompting and in-
context learning. But to the best of our knowledge, generative
models have not be used in generating benchmarks for semantic
data management tasks.

Note that our preliminary work is available on ArXiV [32]. In
the current work, we standardize the bene�ts and challenges of
generative benchmarks and present a framework to create larger
and veri�ed tables.

3 GENERATIVE UNION BENCHMARKS
Wenow present the opportunities that LLMs present for Benchmark
Generation as well as some of the important challenges that must
be overcome to make them e�ective.

3.1 The Promise
Generative models are designed to generate realistic data. This
promise means they may be able to generate (potentially) better

semantic database benchmarks than humans are able to create,
label, and curate themselves and in less time.

Realistic and Diverse Data: Benchmarks for semantic data
management problems should in general contain realistic and se-
mantically meaningful (not necessarily real) tuples and structured
tables. All union benchmarks to date have been created from real
open data sets rather than using synthetic data, though this data is
often manipulated (for example by chopping up tables and tuples
into smaller pieces randomly). Hence, the benchmarks contain real-
istic data though due to the manipulation, individual facts (tuples)
may not be veri�able or real in that they appear in a known knowl-
edge base. LLMs are good candidates for benchmark generation as
they can generate realistic data. We do not require that this data
be veri�ed as being accurate. We use the temperature parameter to
ensure the model is set to be creative to generate a diverse set of
tables, on a more diverse set of topics than has been feasible using
manual benchmark creation.

Balancing the Hardness of Unionable and Non-unionable
Examples: In addition, LLMs provide a new opportunity for union
search benchmarking that has not been explored before. The state-
of-the-art in benchmarking is to select a set of disparate large tables,
called originating tables, and chop them up. The created tables that
originate from the same table are the (labeled) unionable pairs. All
others are assumed to be non-unionable implicitly. To make this
assumption realistic, each of the originating tables is choosen to
be from a di�erent topic so that it is unlikely that any subset of it
would be unionable with a subset from a di�erent originating table.
Consider what this means for TUS-Small, a benchmark containing
1530 tables of which just over 200K pairs are labeled as unionable.
The remaining 2 Million pairs are (implicitly) assumed to be non-
unionable. Of course this has never been veri�ed by hand. So to
ensure this is the case, the original source tables must be very
di�erent indeed, making the non-unionable cases perhaps too easy.
In particular, there are no non-unionable table pairs on the same
topic. This is a gap in our community’s benchmarks that we show
can be overcome by LLMs.

Varying Data Characteristics: Finally, an opportunity pro-
vided by LLMs is the ability to vary additional data characteristics
such as textuality (the average length of string values), the ratio of
numeric to non-numeric attributes, and the incompleteness or spar-
sity (number of nulls) of tables. These are characteristics that can
in�uence the accuracy of di�erent methods. In our benchmark gen-
eration methodology (Section 3), we show how these characteristics
can be added to the prompts. However, due to space limitations, we
do not vary these parameters in the experiments, rather we report
their values for our new benchmark and existing benchmarks for
comparison. This report is motivated by Primpeli and Bizer [36],
who presented a set of similar properties that should be reported
within (hand-curated) entity-matching benchmarks (they also do
not vary these characteristics systematically). To explore the poten-
tial for varying such characteristics, we perform an ablation study
that injects di�erent amounts of nulls (degrees of sparsity) into
both positive and negative example table pairs (Section 4.3.1).

3

“ Given the following table column headers for table 1,
create table 2's column headers, … They can be unioned
because …“

Create Table Proper-es Construct Instruc-ons and Prompt LLM

Prompt LLM to Re-Verify Previous Response

“ Verify that Table 2 has … and the tables can be unioned …“
“ Verify that Table 2 has … and the tables cannot be unioned
“ Verify that Table 1 has … and Table 2 has … and the generated
tables can be unioned … “

Topic
Textuality
Number of
Columns
…

Topic
Textuality
Number of
Columns
…

Topic
Textuality
Number of
Columns
…

“ Given the following table column headers for table 1,
create table 2's column headers, … They cannot be unioned
because …

“Given the following column header for
a table about {topic}, generate 10 table
rows where each row has at least
{textuality} words. … “

Prompt LLM to Generate Rows Prompt LLM to Generate More Rows

“Given the column headers and last couple
rows for a table about {topic}, generate 10 more
table rows where each row has at least
{textuality} words …”

Ini-al Setup
1

Generate Column Headers
2

3

4 5

Generate Rows

“ Create 2 semi-colon-separated table column headers. … They
can be unioned because …“

Query Table Folder

Table 1 FileTable 1 FileTable 1 File

Data Lake Table Folder

Table 2 FileTable 2 FileTable 2 File

Ground Truth
Query DL Unionable

Store Benchmark
Extract Step 3’s Output -> Headers; Step 4’s -> Ini-al Rows; Step 5’s -> More Rows6

Figure 1: Pipeline for generating benchmarks using Large Language Models

3.2 The Challenges
Despite these opportunities, there are important challenges in the
use of LLMs for benchmarking semantic database problems.

Generating Large Data: LLMs have a limited context length,
which includes the number of tokens they can read and generate in
a single run. This means it is challenging to generate large tables.
To address this issue, in our framework, ALT-GEN, we break down
our table generation into three steps. We �rst generate the table’s
column headers. Second, we include the table’s column headers and
instruct the model to generate)A>FB rows where this parameter
is set based on the size of the output the LLM can generate. In the
third and following prompts, we sample and prompt the previously
generated rows and instruct the model to generate more rows.

Model Hallucination: One of the well-known issues in LLMs is
that they do not always follow the prompt and so may produce data
that is not accurate. This phenomenon is generally termed model
hallucination. We show how we can address this by adding a veri�-
cation step, where we include an additional prompt for the model to
double-check its response and verify whether it generated a (non-
)unionable pair of as requested. We present an empirically analysis
of our veri�cation method in Section 3.4 comparing a benchmark
created without veri�cation to one that uses veri�cation.

Reducing Prompt Sensitivity: An LLM’s response to an input
prompt can change with even subtle changes to the prompt [23, 28,
49]. Hence, it can be challenging to come up with robust prompts.
ALT-GEN addresses this using systematic o�ine trials with prompt
instruction text variations.

Algorithm 1: Benchmark Generation

1 Input: S = {(1,(2, . . . (< }, a list of topics
2 //Language Model Initialization
3 LM Model(temp=0.7, repPenalty=2.0, doSample=True, ...)
4 &⇠$!(,⇡!⇠$!(GenerateColumnHeaders(S, LM)
5 D [)1, ...):] where) 2 &⇠$!(,⇡!⇠$!(
6 ⇡'>FB GenerateFirstNRows(D, LM)
7 AddMoreRows(⇡,⇡'>FB , LM)

3.3 Unionability Benchmark Generation
Figure 1 illustrates ALT-GEN’s pipeline for generating tables using
LLMs. Through a series of phases, we prompt an LLM to generate

pairs of tables – �rst their column headers, and then their rows
with the following set of features customized for each table: topic,
shape, and the textuality rate. In Algorithm 1, we showcase the
algorithmic breakdown of the same. To generate tables for a union-
ability benchmark, we add additional properties to the prompt such
as whether the table pairs are supposed to be unionable or not.

We now provide an example illustrating prompts and the corre-
sponding generated tables.

E������ 1. Figure 2 provides an instance of how table-pairs can
be generated. Starting o� with generating a unionable-table pair,
we generate both query table and unionable table column headers.
Using the same query table headers, we generate non-unionable
table column headers. Once all the table headers are generated, we
generate each table’s �rst set of rows. The top-most table on the
right side of the �gure is the generated query table. The bottom-
most left side of the �gure is the generated unionable table, and
beside that table, is the resulting non-unionable table. The generated
tables contain realistic data. For example, White House’s architect
is James Hoban. While this data point is historically accurate, in
the benchmark, there can be instances were this is not the case. For
the union search problem, this is not an issue (and we do not need
to verify the current accuracy of facts in tables). What is important
is that the data is realistic and about the given topic. In some real-
world applications where real data can be considered as a privacy
leakage, this may be an advantage [8, 9].

The unionable table pairs (bottom-left and top-right) are re-
lated to Architecture and share (at least) 6 unionable columns,
out of which Building Description, Style, Build Year, and
Designer are visible in the �gure. Notably, the column values over-
lap (e.g., Sydney Opera House), but not completely (for instance,
subset of the year values match) and contain multiple data types
(e.g., Building Type is a string and Year Built is a date).

The non-unionable table pairs (right) are also related to
Architecture and do not share any unionable columns. Note that
current methods for unionability consider tables unionable even if
they share a single unionable column [29], but of course the prompt
could be changed when testing other unionability solutions. We envi-
sion such examples to be the most challenging ones for contemporary
methods which are built on top of identifying semantics, which can

4

Building Type Architectural
Style

… Year Built Architect

Gothic
Cathedral

Gothic … 1163-1345 Jean de Chelles,
Pierre de Montreuil

White House Neoclassical … 1972-1800 James Hoban

…

Sydney Opera
House

Expressionist
Modern

… 1959-1973 Jørn Utzon

Petronas Twin
Towers

Postmodern … 1992-1998 César Pelli

Architectural
Theories Building Use … Architectural

Details Preservation Status

Baroque Worship … Ornate
Decorations

Protected
Monument

Brutalism Gothic … Raw Finishes James Hoban

…

Regionalism Leisure … Contextual Design Actively Restored

Vernacular Postmodern … Regional
Decorative
Elements

Documented and
Preserved

Query Table

Unionable Table Instance Non-Unionable Table Instance

“Create 2 semi-colon-separated table column headers. Table 1 has 14 columns on the topic of
Architecture. Table 2 has 15 columns on the same topic. They can be unioned because they have 6
seman=cally similar columns that can be aligned in both tables. In other words, 6 of the columns in
table 2 resemble columns in table 1. The remaining columns don't necessarily resemble any of the
columns in table 1. Answer the above task in the following format:
Table 1: <semi-colon-separated table 1 column headers>
Table 2:<semi-colon-separated-separated table 2 column headers>”

“Verify that Table 1 has 14 columns and
Table 2 has 15 columns and the
generated tables can be unioned. Re-
generate your answer with the corrected
response in the requested format. ”

Generate Unionable Table Column Headers
Building

Description Style … Build Year Designer Special
Features

Grand Palace Thai Architecture … 1782 King Rama I Gold-plated
spires …

Guggenheim
Museum Bilbao Deconstructivism … 1997 Frank Gehry -

…

Sydney Opera
House

Expressionist
Modernism … 1973 Jørn Utzon -

The Burj Khalifa Neo-Futurism … 2010
Skidmore,
Owings &

Merrill
-

A

“Given the following table column headers for table 1, create table 2's column headers, where
this table has 11 columns on the same topic, i.e., Architecture. They cannot be unioned because there
are no columns in table 2 that are semanKcally similar to any columns in table 1 and vice-versa. In other
words, none of the columns in table 2 resemble any of the columns in table 1. Table 1's column headers
are “Building Descrip=on, Style, … Special Features”.
Answer the above task in the following format:
Table 2:<semi-colon-separated-separated table 2 column headers>”

“Verify that Table 2, has 11 columns and
the tables cannot be unioned, i.e., none
of the columns are semanKcally similar
to any columns in table 1 and vice-versa.
Re-generate your answer with the
corrected response.”

Generate Non-Unionable Table Column Headers
B

B

A

C

C

“Given the following column header for a
table about Architecture, generate 10 table
rows where each row has at least
{textuality} words. Here's the column
header: {tableHeaders}. Answer this task in
the format of semi-colon-separated rows,
where each row is in a new line.”

C

Generate Rows A

C

Figure 2: Example of generating unionable and non-unionable table pairs using ALT-GEN. The A, B, and C indicators show
where the prompt’s outputs are used in the creation of the tables.

be mistakenly thought of as topic. Also, here we see some interest-
ingly missing values (in Special Features) –another property we
aimed for in a benchmark (incompleteness).

3.4 New Generative Benchmarks
In an initial investigation, we generatedUGEN-V1 [32] using GPT3
as the LLM. We generated 1000 pairs of tables (half unionable, half
non-unionable), covering 50 topics ranging from World Geography
and Art History to Genealogy and Veterinary Medicine. For each
topic, we generated 1 query table and 20 data lake tables (10 union-
able, 10 non-unionable with the query table). In UGEN-V1, we did
not attempt to create larger tables. Rather, we limited the number
of rows to eight and generated eight rows from a single prompt to
avoid scalability issues. We also did not verify the generated data.

UGEN-V2 was created using ALT-GEN and Mixtral-8x7B-
Instruct (as the LLM model). Similar to UGEN-V1, we generated
1000 pairs of tables (half unionable, half non-unionable). This took
approximately 10 hours to generating column headers and 24 hours
for generating up to �rst 10 rows for the 1050 tables (50 query tables
on 50 di�erent topics and 1000 data lake tables). An additional 24
hours were used to generate additional rows (around 100 rows)
for a sample of tables. We ran these prompt requests on a shared
cluster of 8 A100 GPUs. We also created 5 versions of each table
with di�erent levels of sparsity (0%, 5%, 10%, 15% and 20% of the
values in a table are replaced by nulls). The benchmark and our
generation code for ALT-GEN are available.2
Benchmark Validation: This is the �rst use of LLMs for table
union search benchmark generation. Thus, in this work, we man-
ually validated both UGEN-V1 and UGEN-V2 benchmarks. Recall
UGEN-V1 does not use our veri�cation step, while UGEN-V2 does.

2 https://github.com/northeastern-datalab/gen

For a total of 1000 evaluation cases (50 query tables from 50 dif-
ferent topics in the benchmark, each having 10 unionable and 10
non-unionable data lake tables labeled in the ground truth), UGEN-
V2 achieves an overall accuracy of 97%. Within that, the accuracy
with respect to unionable (query and data lake) table pairs is 98%
and that with respect to non-unionable table pairs is 96%. UGEN-
V1, on the other hand, achieves 77% overall accuracy, with 90% for
unionable table-pairs, and 64% for non-unionable tables.

To understand the performance even better, we evaluated the
accuracy for all 50 topics in UGEN-V2 separately. Out of them, 49
(respectively, 38) topics achieve 90% or higher accuracy only con-
sidering unionable pairs (respecively, non-unionable pairs). This
shows that it is more challenging to create the non-unionable ta-
ble pairs than the unionable ones. For comparison, we manually
evaluate the ground truth accuracy of the existing TUS-Small bench-
mark. As the unionable columns of the unionable tables in the TUS
benchmark are generated from the same seed table [29] and hence,
are always accurate, we evaluate the accuracy of non-unionable
table pairs. We randomly sample 100 non-unionable table pairs
and evaluate them. Overall, the accuracy of non-unionable pairs in
the TUS Benchmark is 62%. This shows that our new automated
approach generates benchmarks with signi�cantly better accuracy
without manual work in a more challenging setup of generating
non-unionable table pairs from the same topic.

3.5 Comparison of Unionability Benchmarks
Table 1 overviews the new benchmarks (UGEN-V1, UGEN-V2) as
well as other unionability benchmarks. We provide the following
features of each benchmark:
Tables: Total number of benchmark tables.
Average Shape: Average number of rows and attributes in the
tables, for query tables and also for data lake tables.

5

https://github.com/northeastern-datalab/gen

Table 1: Overview of Union Table Search Benchmarks

Benchmark SANTOS-Small SANTOS-Large TUS-Small TUS-Large UGEN-V1 UGEN-V2
Tables 550 11166 1530 5044 1050 1050
Average Shape
rows x columns

Query 21402 x 12 12917 x 13 4423 x 13 1996 x 12 8 x 11 107 x 13
Datalake 6921 x 11 7685 x 11 4457 x 10 1915 x 11 8 x 10 19 x 13

Size Query 129 MB 143 MB 139 MB 2 GB 205 KB 2 MB
Datalake 442 MB 12 GB 1 GB 2 GB 4 MB 8 MB

Labeled Pair Unionable 695 80 230921 1202826 500 500
Non-unionable 0 0 0 0 500 500

Attributes
(query,datalake)

% Short Str (13%, 11%) (8%, 7%) (10%,25%) (31%, 35%) (1%, 2%) (2%, 1%)
% Medium Str (14%, 16%) (19%, 21%) (10%,12%) (20%, 19%) (11%, 9%) (10%, 8%)
% Long Str (49%, 48%) (48%, 45%) (69%, 53%) (41%, 39%) (81%, 82%) (75%, 74%)
% Num (22%, 23%) (16%, 18%) (11%,9%) (6%, 6%) (6%, 4%) (11%, 13%)
Avg. Density (95%, 93%) (85%, 76%) (94%,96%) (87%, 89%) (94%, 94%) (96%, 94%)
% Small Domains (64%, 58%) (65%, 50%) (81%, 87%) (82%, 83%) (5%, 7%) (19%, 8%)
% Medium Domains (13%, 15%) (15%, 18%) (6%, 5%) (10%, 9%) (11%, 10%) (26%, 14%)
% Large Domains (23%, 27%) (20%, 32%) (13%, 8%) (8%, 8%) (84%, 84%) (54%, 78%)

Size: Total size/storage space of the benchmark.
Labeled Pairs: For each benchmark, there is a ground truth
�le that indicates which pairs of tables are unionable or not. For
existing benchmarks, this can be a non-exhaustive list since non-
unionability, for instance, can be inferred to hold for all pairs that
are not stated to be unionable (though this may include false neg-
atives e.g., if tables happen to share one or more address or date
attributes). We report the number of unionable and non-unionable
pairs explicitly labeled in the ground truth.
Attributes: In the attributes section of the table, we give the fol-
lowing properties of the query tables (�rst number) and data lake
tables (second number). All are averages over the total number of
attributes except density which is an average over the total number
of cell values in the tables.

(1) % Short Str: Percentage of string attributes that have an average
length less than 3.

(2) % Medium Str: Percentage of string attributes that have an
average length less than 6, but � 3.

(3) % Long Str: Percentage of string attributes that have an average
length greater than or equal to 6.

(4) % Num: Percentage of numerical type attributes.
(5) Avg Density: Avg percentage of non-null values present in

attributes.
(6) % Small Domains: Percentage of attributes where the number

of unique values is less that 20% of the table size.
(7) % Medium Domains:Percentage of attributes where the number

of unique values is between 20% and 50%.
(8) % Large Domains: Percentage of attributes where the number

of unique values is more than 50%.

Compared to past benchmarks, our two new benchmarks have
relatively smaller tables in terms of average number of rows and
attributes in both query and data lake sets of tables although ALT-
GEN permits further scaling of both. However, even with this mod-
est size, they are more challenging benchmarks as we will show
in the next section. Unlike previous benchmarks, our benchmarks

have higher textuality rate, which is evident in the comparatively
higher long string ratio, and higher unique domain values (the
hand-labeled benchmarks are created from 10 seed tables, which
means many domain values are reused). These are contributing
factors that may make our benchmarks more di�cult.

4 ANALYSIS AND EVALUATION
We now perform empirical analysis over existing benchmarks and
the new generative benchmarks.

4.1 Experimental Setup
We run experiments using Python 3.8 on a server with A100 80GB.
We host the large language models locally in the aforementioned
GPU. For the models unavailable to host locally, we use their open
APIs. Our experiments aim to answer speci�c questions.

• How do the current union search methods perform on the new
UGEN-V2 benchmark?

• Can generative models understand unionability?
• How is the performance of union search techniques impacted by

tables sparsity (incompleteness)?
• How does the performance of union search techniques di�er on

speci�c topics?

We now detail the tasks, benchmarks, methods and evaluation
metrics.

4.1.1 Tasks. We consider two tasks. The �rst is the traditional
search problem for which there are numerous solutions in the
literature [4, 16, 24, 29].

Table Union Search. Given a query table, & , and a set of data
lake tables, T = {C1, C2, ...C<}, �nd the top-: data lake tables in T
that are most unionable with & .

Table Union Classi�cation. Given a pair of tables)1 and)2,
determine if they are unionable or not. This second problem is
motivated by our use of LLMs to generate a unionability bench-
mark. Since we are claiming LLMs can produce unionable tables and

6

benchmark table union search solutions, can we also use an LLM to
classify whether two tables we give to it are unionable or not? For
example, we can use labeled pair of tables from our own UGEN-V1
benchmark or hand-labeled pairs from any of the existing bench-
marks. This can be viewed as a sanity check on whether the notion
of unionability used by an LLM is a reasonable one conforming to
de�nitions used in current research.

4.1.2 Union Search Methods and Benchmarks. We evaluate the
publicly available recent union search methods over the existing
and new benchmarks.

D3L [4]. Bogatu et al. extended TUS [29] to use not only word
embeddings, knowledge graph mappings, or value overlap, but also
column header similarity, distributions for numerical columns, and
regular expressions.

We used ⇡3!’s publicly available code.3 For a fair comparison,
we do not use the column header similarity metric since the existing
benchmarks use identical schema names for unionable columns [24,
29].

SANTOS [24]. SANTOS uses column semantics and the se-
mantics of relationships between column pairs to search for the
unionable tables. SANTOS only uses column values and does not
use metadata like column headers. To �nd column semantics and
relationships semantics, SANTOS uses an external knowledge base
and a synthesized knowledge base created using the data lake itself.
To run SANTOS, we use the public code provided with the paper.4

Starmie [16]. Starmie is a recent self-supervised table union
search technique based on contrastive learning. Starmie captures
the table context in the form of contextualized column embed-
dings and uses them to perform table union search. We reproduced
Starmie following the instruction in its open implementation.5

Starmie-LLM. LLMs cannot be used directly for the search task
but, as mentioned, can be used for union classi�cation. Therefore,
to assess LLMs in the table union search task, we use an existing
table union search method to search for a set of candidate unionable
tables for each query table. Then we prompt an LLM to classify
whether the query table is unionable with each of these candidate
tables. This two-phase approach is very common for information
retrieval applications [14, 38] in which two models are applied
consecutively. In our experimental setup, we use Starmie to search
for a larger number of candidate unionable tables. Then we prompt
an LLM to classify each query-candidate table pair as unionable or
not by asking the following question:

Are the following tables unionable? Answer in the
following format: Unionable: {yes/no}

We use recent LLMs that have shown promising performance
in other generative tasks. Speci�cally, we use GPT2-XL6, Alpaca
(7 Billion parameters)7, and Vicuna (7 billion parameters)8 in our
experiments. We denote respective LLM variations using Starmie-
GPT2-XL, Starmie-Alpaca, and Starmie-Vicuna.

3https://github.com/alex-bogatu/d3l
4https://github.com/northeastern-datalab/santos
5https://github.com/megagonlabs/starmie
6https://huggingface.co/gpt2-xl
7https://huggingface.co/circulus/alpaca-7b
8https://huggingface.co/lmsys/vicuna-7b-v1.3

Table 2: P@k, MAP@k and R@k of table union search meth-
ods over di�erent benchmarks.

Benchmark Method "�%@: %@: '@:

TUS-Small
k=60

D3L 0.79 0.77 0.21
SANTOS 0.88 0.81 0.23
Starmie 0.94 0.82 0.27
Starmie-VicunaZero 0.89 0.70 0.24
Starmie-VicunaOptim 0.94 0.80 0.27

SANTOS-Small
k=10

D3L 0.52 0.58 0.42
SANTOS 0.94 0.91 0.69
Starmie 0.95 0.91 0.68
Starmie-VicunaZero 0.81 0.68 0.50
Starmie-VicunaOptim 0.95 0.90 0.67

UGEN-V1
k=10

D3L 0.26 0.19 0.19
SANTOS 0.56 0.46 0.46
Starmie 0.61 0.51 0.51
Starmie-VicunaZero 0.44 0.32 0.32
Starmie-VicunaOptim 0.57 0.48 0.48

UGEN-V2
k=10

D3L 0.15 0.13 0.13
SANTOS 0.43 0.27 0.27
Starmie 0.71 0.56 0.56
Starmie-VicunaZero 0.65 0.48 0.48
Starmie-VicunaOptim 0.71 0.56 0.56

LLMs can function either as they are (zero-shot) or can be di-
rected towards speci�c tasks by providing a few examples (in-
context learning). For comparison with other methods, we denote
zero-shot versions denoted as Starmie-LLMZero and in-context ver-
sions with an optimal number of examples (meaning the best per-
formance against other in-context versions) as Starmie-LLMOptim.

4.1.3 Evaluation measures. Following the literature [4, 24, 29], we
use Precision@k (P@k), Recall@k (R@k) and Mean Average Preci-
sion (MAP@k) to evaluate the e�ectiveness of table union search
techniques. Consistent with prior work [16, 24], we run experi-
ments with k less than the ground truth size to ensure that there
are enough true results available in the data lake when searching
for top-k unionable tables per query table. In such cases, a Recall@k
of 1 is not possible since all unionable tables cannot be returned.
We refer to the best possible Recall@k as the IDEAL. Furthermore,
unlike existing benchmarks, our new benchmarks also contain la-
beled non-unionable pairs. So, we also measure Accuracy (ACC)
and Corner Case Ratio (CCR) in these benchmarks. Let, TP, FP, TN,
and FN represent the True Positives, False Positives, True Negatives,
and False Negatives returned by a method over a benchmark. Then,

�⇠⇠ =
)% +)#

)% +)# + �% + �#
⇠⇠' = 1 ��⇠⇠ (1)

We further use a confusion matrix to illustrate the speci�c TP, FP,
TN, and FN values.

4.2 Union Search E�ectiveness
Now we evaluate the performance of various table union search
methods using both existing and new benchmarks. Speci�cally,
we compare D3L, SANTOS, Starmie, and Starmie-LLMs. Among

7

https://github.com/alex-bogatu/d3l
https://github.com/northeastern-datalab/santos
https://github.com/megagonlabs/starmie
https://huggingface.co/gpt2-xl
https://huggingface.co/circulus/alpaca-7b
https://huggingface.co/lmsys/vicuna-7b-v1.3

Starmie-LLMs, we select the best-performing Starmie-Vicuna’s
zero-shot version (Starmie-VicunaZero) and optimal-shot version
(Starmie-VicunaOptim) as it shows a balanced performance in both
versions. In the ablation study (Section 4.3), we discuss the results
of other Starmie-LLM variations and their di�erent versions. The
evaluation metrics used are MAP@k, P@k, and R@k. Following
previous work [24, 29], the maximum value of k is chosen for each
benchmark, based on the number of unionable tables available in
the data lake for query tables. For TUS-small, we select k up to 60.
For SANTOS-small, we go up to k = 10. Accordingly, in Starmie-
LLM, we select 70 candidates for the TUS-Small and 20 candidates
for SANTOS-Small, UGEN-V1 and UGEN-V2. The e�ectiveness re-
sults for the maximum value of k on each benchmark is presented in
Table 2. We bold the score of the best-performing method on each
measure and benchmark. Further results for other smaller values of
k are plotted in Fig. 3 with di�erent values of k in horizontal axes,
the evaluation metrics in vertical axes, and the methods encoded
using di�erent colors and line styles. As noted, the recall cannot
be perfect if k is smaller than the ground truth size [24]. So, we
show the IDEAL-RECALL line that indicates the maximum possible
recall for each value of k.

(a) Average %@: on TUS-Small (b) Average '@: on TUS-Small

(c) Average %@: on Santos-Small (d) Average '@: on Santos-Small

(e) Average %@: on UGEN-V2 (f) Average '@: on UGEN-V2

Figure 3: E�ectiveness of baselines in di�erent benchmarks

Curated Benchmarks. The performances of all methods follow
a similar trend in both TUS-Small and SANTOS-small benchmarks.
Speci�cally, Starmie mostly stands out in terms of MAP@k, P@k,
and R@k followed by Starmie-VicunaOptim, Starmie-VicunaZero,
SANTOS and D3L. As Starmie captures the entire table context us-
ing contrastive learning, it seems to understand the table semantics
better in both benchmarks. Furthermore, when we steer Starmie-
Vicuna to understand unionability by providing an optimal number
of in-context examples, its MAP increases by 5% over the zero-shot
version in the TUS-small benchmark, and by 14% in the SANTOS-
small benchmark matching the performance of the best-performing
Starmie. This indicates that the out-of-the-box LLMs are not good
enough to understand unionability, but they can be taught to do
so by using in-context learning. Moreover, SANTOS also shows a
comparable performance against Starmie and Starmie-VicunaOptim
in both benchmarks and is the best method in SANTOS-small in
terms of P@10 and R@10.

Generated Benchmarks. On the new UGEN-V1 and UGEN-
V2 benchmarks, Starmie continues to outperform all other meth-
ods across all three evaluation metrics, followed by Starmie-
VicunaOptim, SANTOS, Starmie-VicunaZero, and D3L. However, it
is important to note that the performance of all methods shows
a signi�cant drop when compared to their performance on the
SANTOS-Small and TUS-Small benchmarks. For instance, Starmie’s
MAP@k on UGEN-V2 for all values of k drops by over 20% com-
pared to its MAP@k on both the SANTOS-Small and TUS-Small
benchmarks.

Finally, the lower performance achieved by Starmie-VicunaZero,
the best among the zero-shot Starmie-LLM variations, against the
classical table union search methods, indicates that even advanced
LLMs like Vicuna face challenges in the new benchmark. This shows
ample opportunity for creating better table union search methods.

4.3 Ablation Study
Now we perform �ne-grained analyses over the new benchmark to
get better insights into the impact of di�erent factors in the table
unionability search. We also study performance on both unionable
and non-unionable pairs to see if the (perhaps harder) labeled non-
unionable pairs may account for this drop in performance on the
new UGEN-V2 benchmark. The trends are similar in the UGEN-V1
benchmark and they are available in our repository.2

4.3.1 Sparsity. One of the benchmark properties that we care about
is sparsity, which relates to the number of null or missing attribute
values in the tables. Within the ALT-GEN framework, this property
is controlled by a script that randomly removes values in a table
until the desired sparsity is reached. Fig. 4 illustrates how di�erent
methods can handle benchmarks with di�erent rates of sparsity.
We vary sparsity from 0% to 20% on the X-axis and report MAP@10
and P@10 in y-axis. SANTOS, Starmie, and Starmie-Vicuna are not
impacted by sparsity. However, the performance of the column-
based approach (D3L) goes down from the 0%-sparsed version when
we increase sparsity. For example, its MAP@10 reduces by 50%
when we increase sparsity to 15%. This gives us an interesting
insight that the methods which make unionability decisions by
capturing table context rather than just considering individual
columns independently are more tolerant towards sparsity.

8

(a) Average"�%@10 (b) Average %@10

Figure 4: Sparsity variations of UGEN-V2

4.3.2 Topic-Based Analysis. One of the bene�ts of the ALT-GEN
framework is that we can generate unionable and non-unionable
table pairs based on topics. This enables us to perform a topic-based
analysis and understand how each baseline performs on various
topics. For a comprehensive analysis, we also report MAP@10
by each union search method on all 50 topics in Figure 5. In the
repository 2, we also highlight the top-5 and bottom-5 topics out
of 50 topics based on MAP@10 for each method.

Except for Starmie and its LLM variation (Starmie-Vicuna), it is
interesting to see that there is not much overlap in the top-5 best
topics of each method. Even more interesting, there is an overlap
between the top-5 topics of one method and the bottom-5 topics
of another method. For example, Sports is the second best topic
Starmie and Starmie-Vicuna, but the second worst topic for D3L
and third worst topic for SANTOS. This signi�es that each method
captures di�erent properties in the table to infer table unionability
and an easy topic for one method could be di�cult for another
method. The ALT-GEN framework allows users to delve into the
characteristics of tables in di�erent topics to understand such di�er-
ences. In this case, the shorter strings mostly representing entities
(Artwork, Artist) in Art-History may give a knowledge-graph
approach like SANTOS an advantage while the longer descriptive
strings in Economics (policy details) may give D3L or TUS that
use word embedding vectors an advantage.

This result suggests that future work on building domain-speci�c
search methods could be useful along with combining the strength
of multiple methods to build a single highly-e�ective table union
search method.

Additional interesting insights are visible in Figure 5 which al-
lows a comparison among methods for a given topic. For example,
Religion achieves a fair MAP@10 score among all methods except
SANTOS which achieves a score of less than 0.5. This can be attrib-
uted to poor coverage of their knowledge base in this topic, which is
key for a successful utilization of SANTOS [24]. Another apparent
example is the topic of Language for which D3L fails to �nd a single
unionable table (MAP@10=0) while others were very successful
with signi�cantly higher MAP@10 scores. Finally, another inter-
esting insight is the topic-speci�c bene�t of in-context learning,
comparing Starmie-Vicuna/4A> (Figure 5 (d)) Starmie-Vicuna$?C8<
(Figure 5 (e)). For example, along side topics such as Psychology
and Literaturewhich are una�ected, topics such as Environment
and Astronomy are signi�cantly improved with in-context learning

and, interestingly, the performance over topics such as Gardening
and Business declines.

4.3.3 Non-Unionable Pair Analysis. ALT-GEN has the ability to
generate labeled non-unionable table pairs from the same topic,
something that was previously overlooked in unionability bench-
marks [24, 29]. As reported in Table 1, we have 50 query tables and
each query has 10 unionable data lake tables and 10 non-unionable
data lake tables, all of which are on the same topic and labeled in
the ground truth. The other tables that are unlabeled with respect to
the query are non-unionable as they are semantically di�erent, not
even from the same topic. In this section, we analyze the potential
impact of non-unionable table pairs from the same topic on the
performance of the union search methods by creating confusion
matrices using the 1000 labeled unionable and non-unionable pairs
and reporting accuracy over them vs. overall non-unionable tables.

The availability of “non-unionable" table pairs from the ground
truth, allows us to also extract true negatives in addition to the
traditional true positives. Thus, we generate confusion matrices
(provided in a technical report9 for space considerations). By ana-
lyzing these matrices, we �nd that D3! seems to be the best at de-
tecting non-unionable tables (predicts 467 out of 500 non-unionable
pairs accurately). However, if we look at true positives, D3L has
the least number, around two times fewer than the second-least
performing SANTOS. This means that the false positives in D3L’s
results are other unlabeled non-unionable tables from random top-
ics rather than the labeled “non-unionable" tables from the same
topic. Starmie and Starmie’s LLM variations have high true posi-
tives and relatively lower true negatives. This means that their false
positives are mostly non-unionable tables from the same topic, as
we discussed in Example 1. This study does reveal that by labeling
non-unionable pairs in UGEN-V2, we have been able to create di�-
cult cases that lead to false negatives for all methods. We also get
a very interesting insight into table unionability – it is important
that our benchmarks are not just testing if a method can �nd tables
on the same topic. Instead, the search methods should also separate
non-unionability among the same topic tables.

4.4 Discussion and Future Work
In ALT-GEN, we use the massive knowledge present in LLMs to
generate table pairs. Of course, there remain certain limitations
posed by this framework. In ALT-GEN, it is not guaranteed that
the size and type of table pairs are exactly as requested in a prompt.
For instance, it is possible that an LLM generates a table with a
di�erent number of rows than requested in the prompt.

As future work, including examples for each table-pair gener-
ation could be more helpful to create more unionability-speci�c
tasks. While this can be limited due to token size limits in LLM
prompting, there are many new LLMs such as GPT4 [31], that have
very recently been released and have higher token limit tolerance.
In addition, as ALT-GEN has showcased, it is possible to breakdown
queries into smaller sub-queries to ultimately generate a desired
benchmark. Apart from this direction, the examples showcase the
ability for LLMs to generate other inter-table tasks such as joinabil-
ity or related table search, or entity matching.While LLMs are being
9The technical report can be found at the GitHub link: https://github.com/northeastern-
datalab/gen

9

https://github.com/northeastern-datalab/gen
https://github.com/northeastern-datalab/gen

(a) (b) (c) (d) (e)

Figure 5: Topic-based MAP@k (k=10) by (a) D3L (b) SANTOS (c) Starmie (d) Starmie-Vicuna/4A> (e) Starmie-Vicuna$?C8< methods
in UGEN-V2 benchmark

used to solve some of these tasks [35], we believe there is great
potential in also generating benchmarks for them. Lastly, using
LLMs as new table union search method relies on current methods
such as Starmie to provide a small set of candidate unionable tables
and then classify whether an LLM understands these are unionable
or not. As future work, we would like to have a framework where
an LLM can be a standalone method to perform table-union search.

5 CONCLUSION
We presented ALT-GEN, a framework that uses LLMs to automat-
ically generate tables for the table union search task. Using ALT-
GEN, we generated two benchmarks, UGEN-V1 and UGEN-V2,
which we showed to be realistic but more challenging benchmarks
than existing benchmarks for state-of-the-art table union search
methods. Our methodology allows for a more in-depth analysis

comparison of union search methods, since it generates labeled
non-unionable and allows the user to control the topics, number of
topics, and data characteristics used. Our new approach enabled the
�rst topic-based analysis of table union search and the �rst in-depth
analysis of the true/false positive/negative rates for all state-of-the-
art methods shedding new light on the strengths and weaknesses of
di�erent methods. Finally, we have made both ALT-GEN and bench-
marks UGEN-V1 and UGEN-V2 available for other researchers and
practitioners to use in their experiments and analysis.

ACKNOWLEDGMENTS
This work was supported in part by NSF award numbers IIS-
2107248, IIS-1956096, and IIS-2325632.

10

REFERENCES
[1] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The

iBench Integration Metadata Generator. PVLDB 9, 3 (2015), 108–119. https:
//doi.org/10.14778/2850583.2850586

[2] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo
Papotti, and Donatello Santoro. 2015. Messing Up with BART: Error Generation
for Evaluating Data-Cleaning Algorithms. PVLDB 9, 2 (2015), 36–47. https:
//doi.org/10.14778/2850578.2850579

[3] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable Simple
Systems for Generating Structured Views of Heterogeneous Data Lakes. PVLDB
17, 2 (oct 2023), 92105. https://doi.org/10.14778/3626292.3626294

[4] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709–720.

[5] Alexander Brinkmann, Anna Primpeli, and Christian Bizer. 2023. The Web Data
Commons Schema. org Data Set Series. In Companion Proceedings of the ACM
Web Conference 2023. 136–139.

[6] Alexander Brinkmann, Roee Shraga, Reng Chiz Der, and Christian Bizer. 2023.
Product Information Extraction using ChatGPT. arXiv preprint arXiv:2306.14921
(2023).

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian
Tramer, and Chiyuan Zhang. 2022. Quantifying Memorization Across Neural
Language Models. In The Eleventh International Conference on Learning Represen-
tations.

[9] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. 2021. Extracting training data from large language models. In 30th USENIX
Security Symposium (USENIX Security 21). 2633–2650.

[10] Bharath Chintagunta, Namit Katariya, Xavier Amatriain, and Anitha Kannan.
2021. Medically aware GPT-3 as a data generator for medical dialogue summa-
rization. In Machine Learning for Healthcare Conference. PMLR, 354–372.

[11] Roi Cohen, Mor Geva, Jonathan Berant, and Amir Globerson. 2023. Crawling The
Internal Knowledge-Base of Language Models. In Findings of the Association for
Computational Linguistics: EACL 2023. Association for Computational Linguistics,
Dubrovnik, Croatia, 1856–1869. https://aclanthology.org/2023.�ndings-eacl.139

[12] Common Crawl. [n.d.]. Common Crawl. https://commoncrawl.org/.
[13] Vincenzo Cutrona, Jiaoyan Chen, Vasilis Efthymiou, Oktie Hassanzadeh, Ernesto

Jiménez-Ruiz, Juan Sequeda, Kavitha Srinivas, Nora Abdelmageed, Madelon
Hulsebos, Daniela Oliveira, and Catia Pesquita. 2021. Results of SemTab 2021. In
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching, Vol. 3103.
1–12.

[14] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural ranking models with weak supervision. In Proceedings of
the 40th international ACM SIGIR conference on research and development in
information retrieval. 65–74.

[15] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A Survey for In-context Learning. arXiv
preprint arXiv:2301.00234 (2022).

[16] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. PVDLB 16, 7 (2023), 1726–1739.

[17] Jim Gray (Ed.). 1993. The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann.

[18] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org:
evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51.

[19] Mossad Helali, Shubham Vashisth, Philippe Carrier, Katja Hose, and Essam
Mansour. 2023. Linked Data Science Powered by Knowledge Graphs. CoRR
abs/2303.02204 (2023).

[20] Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos
Faloutsos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S. Yu.
2023. Automatic Table Union Search with Tabular Representation Learning.
In Findings of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023. Association for Computational Linguistics, 3786–3800.
https://aclanthology.org/2023.�ndings-acl.233

[21] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-
Scale Corpus of Relational Tables. Proc. ACM Manag. Data 1, 1 (2023), 30:1–30:17.
https://doi.org/10.1145/3588710

[22] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep
Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024.

Mixtral of Experts. arXiv:2401.04088 [cs.LG]
[23] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can

We Know What Language Models Know? Transactions of the Association for
Computational Linguistics 8 (2020), 423–438. https://doi.org/10.1162/tacl_a_00324

[24] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer,
Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based Se-
mantic Table Union Search. In Accepted to appear in SIGMOD Conference. ACM.
https://arxiv.org/pdf/2209.13589.pdf

[25] Aamod Khatiwada, Harsha Kokel, Ibrahim Abdelaziz, Subhajit Chaudhury, Ju-
lian Dolby, Oktie Hassanzadeh, Zhenhan Huang, Tejaswini Pedapati, Horst
Samulowitz, and Kavitha Srinivas. 2024. TabSketchFM: Sketch-based Tabular
Representation Learning for Data Discovery over Data Lakes. arXiv preprint
arXiv:2407.01619 (2024). https://arxiv.org/abs/2407.01619

[26] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lo�, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In ICDE. 468–479.

[27] Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. In EDBT, Yannis Velegrakis, Demetris Zeinalipour-Yazti, Panos K.
Chrysanthis, and Francesco Guerra (Eds.). 13–24.

[28] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (jan 2023), 35 pages. https://doi.org/10.1145/3560815

[29] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union
search on open data. PVLDB 11, 7 (2018), 813–825.

[30] OpenAI. 2023. Chat GPT. https://chat.openai.com/chat.
[31] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[32] Koyena Pal, AamodKhatiwada, Roee Shraga, and Renée J.Miller. 2023. Generative

Benchmark Creation for Table Union Search. arXiv:2308.03883 [cs.DB]
[33] David Patterson. 2012. Technical perspective for better or worse, benchmarks

shape a �eld. Commun. ACM 55, 7 (2012).
[34] Ralph Peeters and Christian Bizer. 2023. Using chatgpt for entity matching. In

European Conference on Advances in Databases and Information Systems. Springer,
221–230.

[35] Ralph Peeters and Christian Bizer. 2023. Using ChatGPT for Entity Matching.
In New Trends in Database and Information Systems - ADBIS (Communications
in Computer and Information Science), Alberto Abelló, Panos Vassiliadis, Oscar
Romero, Robert Wrembel, Francesca Bugiotti, Johann Gamper, Genoveva Vargas-
Solar, and Ester Zumpano (Eds.), Vol. 1850. Springer, 221–230. https://doi.org/
10.1007/978-3-031-42941-5_20

[36] Anna Primpeli and Christian Bizer. 2020. Pro�ling entity matching benchmark
tasks. In CIKM. 3101–3108.

[37] Alec Radford, Je� Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

[38] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Mustafa Cannim. 2020. Web
table retrieval using multimodal deep learning. In Proceedings of the 43rd interna-
tional ACM SIGIR conference on research and development in information retrieval.
1399–1408.

[39] Kavitha Srinivas, Julian Dolby, Ibrahim Abdelaziz, Oktie Hassanzadeh, Harsha
Kokel, Aamod Khatiwada, Tejaswini Pedapati, Subhajit Chaudhury, and Horst
Samulowitz. 2023. LakeBench: Benchmarks for Data Discovery over Data Lakes.
arXiv preprint arXiv:2307.04217 (2023).

[40] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[41] Immanuel Trummer. 2022. CodexDB: Synthesizing code for query processing
from natural language instructions using GPT-3 Codex. PVLDB 15, 11 (2022),
2921–2928.

[42] Immanuel Trummer. 2022. From BERT to GPT-3 codex: harnessing the potential
of very large language models for data management. PVLDB 15, 12 (2022),
3770–3773.

[43] Amir Pouran Ben Veyseh, Minh Le Nguyen, Bonan Min, and Thien Huu Nguyen.
2021. Augmenting Open-Domain Event Detection with Synthetic Data from
GPT-2. In ECML/PKDD.

[44] WDC 2017. T2D Gold Standard. http://webdatacommons.org/webtables/gold-
standard.html.

[45] Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan
Le Bras, Ximing Lu, Sean Welleck, and Yejin Choi. 2022. Symbolic Knowl-
edge Distillation: from General Language Models to Commonsense Models. In
Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. Associa-
tion for Computational Linguistics, Seattle, United States, 4602–4625. https:
//doi.org/10.18653/v1/2022.naacl-main.341

11

https://doi.org/10.14778/2850583.2850586
https://doi.org/10.14778/2850583.2850586
https://doi.org/10.14778/2850578.2850579
https://doi.org/10.14778/2850578.2850579
https://doi.org/10.14778/3626292.3626294
https://aclanthology.org/2023.findings-eacl.139
https://aclanthology.org/2023.findings-acl.233
https://doi.org/10.1145/3588710
https://arxiv.org/abs/2401.04088
https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/pdf/2209.13589.pdf
https://arxiv.org/abs/2407.01619
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.03883
https://doi.org/10.1007/978-3-031-42941-5_20
https://doi.org/10.1007/978-3-031-42941-5_20
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341

[46] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural language processing. In Pro-
ceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations. 38–45.

[47] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. 2018.
Zero-shot learninga comprehensive evaluation of the good, the bad and the
ugly. IEEE transactions on pattern analysis and machine intelligence 41, 9 (2018),
2251–2265.

[48] Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ro-
nan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for commonsense reasoning. arXiv preprint
arXiv:2004.11546 (2020).

[49] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Cal-
ibrate Before Use: Improving Few-shot Performance of Language Models. In
Proceedings of the 38th International Conference on Machine Learning (Proceedings
of Machine Learning Research), Marina Meila and Tong Zhang (Eds.), Vol. 139.
PMLR, 12697–12706. https://proceedings.mlr.press/v139/zhao21c.html

[50] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]

12

https://proceedings.mlr.press/v139/zhao21c.html
https://arxiv.org/abs/2306.05685

A TECHNICAL REPORT
A.1 Unionability Benchmark Generation

Initial Setup. Before prompting the LLMs about generating the
tables, we �rst populate the topic, shape, and textuality require-
ments for the table. In our case, we prompt an LLM to generate
tables related to di�erent topics in order to create diverse and real-
istic benchmarks. An important property, which is not present in
other benchmarks, is the ability to generate non-unionable tables of
the same topic and to let the user of the generator pick the number
of topics (meaning how diversity they want their benchmark to be).

Generating Column Headers and the Veri�cation Process. For each
topic, we have a query table and a set of data lake tables that are
either unionable or not unionable to the former table. We �rst
generate a pair of query and data lake table. As mentioned in Sec-
tion 3.2, LLMs can be sensitive to the prompts provided since it
can interpret the task di�erently with any subtle variations of the
task’s description. Hence, while instructing LLMs, we �rst describe
the shape of the tables.

Create 2 semi-colon-separated table column headers.
Table 1 has {)12>;} columns on the topic of {) 1C>?82}.
Table 2 has {) 22>;} columns on the same topic.

Then, we instruct the LLM about their unionability:

They can be unioned because they have {)D=8>=01;4_2>;}
semantically similar columns that can be aligned in
both tables. In other words, {)D=8>=01;4_2>;} of the
columns in table 2 resemble columns in table 1. The
remaining columns don’t necessarily resemble any of
the columns in table 1.

They cannot be unioned because there are no columns in
table 2 that are semantically similar to any columns
in table 1 and vice-versa. In other words, none of the
columns in table 2 resemble any of the columns in table
1.

In the prompts, {) 12>; } and {) 1C>?82 } (and similarly for) 2) as well as
{)D=8>=01;4_2>; } are parameters. They may be instantiated randomly
during the ‘initial setup’ phase in Figure 1, but their ranges can also
be set by users if a table-pair needs to have certain user-speci�c
conditions. For example,{)D=8>=01;4_2>; } represents the number of
semantically similar columns that are present between the two
tables if they are unionable. To generate benchmarks for evaluating
SANTOS [24] we might set the range of this parameter to be from
two to ten (since SANTOS requires a minimum of two unionable
columns).

To further reduce prompt sensitivity and to allow for increased
consistency in the format of the output generated by an LLM, we
add the following instruction to the prompt template.

Answer the above task in the following format:
Table 1: <table 1-separated table 1 column headers>
Table 2: <table 2-separated column headers>

To combat another challenge of LLMs, i.e., hallucination (re-
fer: Section 3.2, we add a veri�cation phase, where we use the
response of the LLM from the above prompt, and ask the LLM to
verify its’ response. Here’s an instance of prompt template:

Verify that Table 1 has {) 12>;} columns and Table 2 has
{) 22>;} columns and the generated tables can be unioned.
Re-generate your answer with the corrected response in
the requested format.

In the non-unionable case, we change the ‘can’ to ‘cannot’ and
further clari�cation that ‘none of the columns are semantically
similar to any columns in table 1 and vice-versa.’

After verifying the initial query and data lake table pairs for a
particular topic, we use the query table column headers and repeat
the above process for other data lake tables as illustrated in Figure 2.

Generating Rows. After storing the generated column headers for
each table in the benchmark, we populate these tables by prompting
the LLM to produce �rst)A>FB rows for these tables given their
respective column headers. To do so,

Given the following column header for a table about
{topic}, generate)A>FB table rows where each row has
at least {textuality} words. Here’s the column header:
{tableHeaders}. Answer this task in the format of semi-
separated rows, where each row is in a new line.

To address scalability, we divide up the task of adding many rows
into the previous prompt of generating the �rst set of rows, and
then prompting LLM to add more rows, using previously extracted
table headers and a sample of row texts:

Given the column headers and last couple rows for a
table about {topic}, generate)A>FB more table rows
where each row has at least {textuality} words. Here’s
the column header: {tableHeaders}. Here’s the last
couple rows:{rowTexts}. Answer this task in the format
of semi-colon-separated rows, where each row is in a
new line.

An LLM outputs the requested instructions/prompts as strings.
We use post-processing scripts to convert the string-formatted ta-
bles into CSV �les. In cases were a union search method might
require more information than the above tables, we have other
scripts to further prompt the LLM and retrieve the required infor-
mation. For instance, a key or intent column is required by one
of the search techniques that we will evaluate [24]. For this, we
prompt the LLM to provide us this column based on the query-table
and data-lake table pair column headers provided to it.

A.2 Additional Union Search Method Results
Runtime Performance. In Section 3.4, we reported the time and

cost (if any) to generate UGEN-V1 and UGEN-V2 benchmarks. The
Starmie-LLM variation methods had varying query-time based on
their model sizes, length of the prompt, and platform for running
them. In the zero-shot case for UGEN-V2, Starmie-GPT-2XL took a
total of about 12 minutes, Starmie-Vicuna took about 15 minutes,

13

(a) (b) (c)

(d) (e)

Method ACC / CCR

(a) D3L 0.57 / 0.43

(b) SANTOS 0.62 / 0.38

(c) Starmie 0.68 / 0.32

(d) Starmie-VicunaZero 0.54 / 0.36

(e)Starmie-VicunaOpFm 0.68 / 0.32

(f)
Figure 6: Confusion matrices for (a) D3L (b) SANTOS (c) Starmie (d) Starmie-Vicuna/4A> (e) Starmie-Vicuna$?C8< methods on
distinguishing unionable and non-unionable pairs in UGEN-V2 Benchmark. A legend in the top-right corner is for all the
confusion matrices. (f) Accuracy and Corner Case Ratio of di�erent methods in UGEN-V2 Benchmark

and Starmie-Alpaca took around 25 minutes. GPT2-XL is a 1.5 Bil-
lion parameter model while Vicuna and Alpaca models are around
7 Billion parameter models. Hence, GPT2-XL had a relatively faster
inference time than Vicuna and Alpaca. These query times increase
non-linearly. Furthermore, between zero-shot and three-shot, there
is about 50% increase in average query time for all models. This is
due to the signi�cant increase of the prompt length from a prompt
without any examples to one with 3 examples.

Finally,we also create a confusion matrix, we need true labels,
false labels, and predicted labels. True labels and false labels are
"unionable" and "non-unionable" table pairs from the ground truth
respectively. Note that we use search methods that return top-k
results for each query. As the total number of unionable table pairs
for each query is 10 in the ground truth, we search for the top-
10 unionable tables for each query. With 50 query tables, we get
500 predicted true labels. The table pairs that are in the ground
truth, but do not make it to the top-10 are false (non-unionable)
predicted labels. We compare predicted labels with the ground truth
to construct confusion matrices.

We report confusion matrix and accuracy in Figure 6 for each
method on UGEN-V2. If we see correct non-unionable predictions
(bottom-right of confusion matrices), D3! seems to be the best
at detecting non-unionable tables (predicts 467 out of 500 non-
unionable pairs accurately). Notice however, if we look at true
positives (top-left of confusion matrix in Figure 6(a)), D3L has the

least number, around two times fewer than the second-least per-
forming SANTOS (Figure 6 (b)). This means that the false positives
in D3L’s results are other unlabeled non-unionable tables from ran-
dom topics rather than the labeled "non-unionable" tables from the
same topic. But if we look at Starmie and Starmie’s LLM variations
that capture the table context to make unionability decisions, they
have high true positives and relatively lower true negatives. This
means that their false positives are mostly non-unionable tables
from the same topic, as we discussed in Example 1. For instance,
Starmie-VicunaOptim seems to be the most balanced method in dif-
ferentiating unionable and non-unionable among the same topic,
achieving the highest accuracy. This may be because Starmie cap-
tures overall table context well and from the remaining unionable
candidates, LLM may also be less confused on the tables from the
same topic. This study does reveal that by labeling non-unionable
pairs in UGEN-V2, we have been able to create di�cult cases that
lead to false negatives for all methods. We also get very interesting
insight into table unionability – it is important that our benchmarks
are not just testing if a method can �nd tables on the same topic.
Instead, the search methods should also separate non-unionability
among the same topic tables.

14

	Abstract
	1 Introduction
	2 Related Work
	3 Generative Union Benchmarks
	3.1 The Promise
	3.2 The Challenges
	3.3 Unionability Benchmark Generation
	3.4 New Generative Benchmarks
	3.5 Comparison of Unionability Benchmarks

	4 Analysis and Evaluation
	4.1 Experimental Setup
	4.2 Union Search Effectiveness
	4.3 Ablation Study
	4.4 Discussion and Future Work

	5 Conclusion
	Acknowledgments
	References
	A Technical Report
	A.1 Unionability Benchmark Generation
	A.2 Additional Union Search Method Results

