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Results: We extend the DTL model to account for two events that commonly arise in
the evolution of microbes: origin of a gene from outside the sampled species tree and
rearrangement of gene syntenic regions. We describe an efficient algorithm for maxi-
mum parsimony reconciliation in this new DTLOR model and then show how it can

be extended to account for non-binary gene trees to handle uncertainty in gene tree
topologies. Finally, we describe preliminary experimental results from the integration of
our algorithm into the existing xenoGl tool for reconstructing the histories of genomic
islands in closely related bacteria.

Conclusions: Reconciliation in the DTLOR model can offer new insights into the evo-
lution of microbes that is not currently possible under the DTL model.
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Background

Microbes occupy a vast range of ecological niches [1]. Understanding how particular
species have come to occupy their niches requires us to reconstruct how their genomes
have evolved over time.

In a clade of closely related microbes with a known gene and species tree, inferring the
genetic history can be done through a process called reconciliation. This process maps
the gene tree to the species tree, and in doing so implies genetic events that explain the
discordance between the two trees. The DTL model considers duplication, horizontal
gene transfer, and loss events whereas some models consider a subset of these events
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(e.g., only duplication and loss) or different types of events (e.g,. incomplete lineage
sorting).

While the DTL model is applicable to evolution in microbes, it only allows horizontal
transfer between species that are part of the species tree. In the analysis of the evolution
of microbes in particular, it is quite common that the species tree is not fully sampled.
Thus, from the perspective of performing a reconciliation analysis, a gene family may
effectively enter the given species tree via transfer from the outside [2, 3].

In this paper we describe the DTLOR model that addresses this issue by extending
the DTL model to allow some or all of the evolution of a gene family to occur outside
of the given species tree and for transfers events to occur from the outside. To facilitate
the recognition of such entry events, the model also keeps track of the syntenic region
of each gene as it evolves in the species tree. Two genes are said to be in the same syn-
tenic region if they share a substantial fraction of core genes in a relatively large window
around them and, second, they share a certain amount of similarity among all genes in
a smaller window around them [2]. Thus, in addition to duplication, transfer, and loss
events, the DTLOR model adds origin events to indicate that a gene is transferred from
outside of the species tree and rearrangement events that account for changes in the syn-
tenic regions of genes on the genome.

In the DTL model, reconciliation is generally performed using a maximum parsimony
formulation. A positive cost is associated with each type of event and the objective is
to find a reconciliation that minimizes the total cost of the incurred events. Efficient
algorithms have been developed for maximum parsimony reconciliations (MPRs) in the
DTL model [4-6], and several software tools implement these algorithms [7-10].

In earlier related work, Delabre et al. studied a related problem of reconciliation with
synteny information in the Duplication-Loss model; horizontal transfer events were not
considered in that work [11]. Szo6ll6si et al. [3] proposed an event called “transfer from
the dead” to account for gene evolution that occurs outside of the species tree and Jacox
et al. [10] described an extension of an existing DTL maximum parsimony reconcilia-
tion algorithm to compute most parsimonious reconciliations with this additional event.
Our work differs in two significant ways from that prior work. First, while “transfer
from the dead” allows gene lineages to transfer out of and back into the sampled species
trees multiple times, the DTLOR model only permits transfer from the outside under
the assumption that the species tree comprises closely-related species and, thus, trans-
fers out of the species tree and back in are considered to be relatively rare. Second, the
DTLOR model captures rearrangement events, which are not considered in conjunction
with DTL events in previous models. Reconstructing rearrangement events is particu-
larly important in identifying genomic islands in bacteria [2].

In summary, in this paper we extend the DTL model to allow origin (O) and rearrange-
ment (R) events. We give an exact polynomial-time algorithm for maximum parsimony
reconciliation in the DTLOR model. Since gene trees are often non-binary due to lack of
signal in their sequence data, we show how maximum parsimony reconciliations can be
found in fixed-parameter polynomial time for non-binary gene trees where the param-
eter is the maximum branching factor of a node. Finally, we describe preliminary results
from the integration of the DTLOR MPR algorithm into the xenoGI tool [2] which may
provide new insights into microbial evolution.
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Definitions

An instance of the DTLOR reconciliation problem comprises undated rooted spe-
cies and gene trees, S and G, respectively; a positive integer syntenic region number
associated with each leaf vertex (extant gene) in G; and a mapping of the leaves of G
to the leaves of S. We assume that both trees are binary, but consider the case that
gene trees may be non-binary in Sect. 4. Some leaves of the gene tree may be in the
same syntenic region while others may be in unique syntenic regions. The DTLOR
model comprises the standard DTL events (duplication, transfer, and loss; described
in detail below) [4] and two additional events called origin and rearrangement. Each
of those five event types has an associated positive cost.

A syntenic region number is a positive integer from the set of syntenic region num-
bers of the leaves of the gene tree (called an actual syntenic region) or the special
unknown syntenic region symbol x. When a gene vertex is labeled with *, that vertex
is assumed to be evolving outside the species tree. When a gene vertex is assigned an
actual syntenic region but its parent has unknown syntenic region, this means that
the gene entered the species tree through transfer from outside, inducing an origin
event. Rearrangement indicates a change in syntenic region that happens during the
course of evolution within the species tree.

The rules for syntenic region numbering are as follows:

1. If a vertex u is labeled * and v is a child of u, then v may be labeled with either * or an
actual syntenic region number.

2. If a vertex u is labeled with an actual syntenic region number, then its children must
be labeled with actual syntenic region numbers. Note that this implies that any ver-
tex labeled with an actual syntenic region number has the property that all of its
descendants are also labeled with actual syntenic region numbers.

Constraint 1 ensures that genes can originate outside the species tree while constraint
2 ensures that once a gene is found in the species tree it continues evolving within the
tree.

The DTL events in this model are analogous to those in the DTL model. O and R
events are induced as follows:

1. If a vertex u is labeled * and a child v is labeled with an actual syntenic region num-
ber, then vertex v induces an O event.

2. If a vertex u and its child v have actual syntenic region numbers and those two syn-
tenic region numbers are different, then an R event is induced on the edge between u
and v.

The objective of the DTLOR maximum parsimony reconciliation (DTLOR MPR)
problem is to map the vertices and edges of the gene tree onto the species tree and
to identify a syntenic region number with each internal vertex in the gene tree, mini-
mizing the total cost of the induced events. Note that this model implicitly assumes
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that duplications are tandem or proximal duplications, and thus a duplication event
by itself does not imply a change of syntenic region. A duplication that gives rise to a
copy at a different syntenic region is modeled implicitly by a duplication and a rear-
rangement event. The model can be extended to permit other types of duplication
events.

Notation

Let S and G denote a pair of undated species and gene trees, respectively. Throughout
this and the next section, we assume that S and G are binary. In Sect. 4 we extend results
to non-binary trees.

For a tree 7, let root(7) be the root and Le(T) be the set of leaves or tips. For a non-
root vertex v in the tree, p(v) is the parent of v. For a non-leaf vertex v, v; and v, denote
its two children. We assume that each tree 7 has an additional sandle edge, namely an
edge (1, root(T)). The handle of S is denoted e® and the handle of G is denoted e®. For a
vertex v of T, we let T(v) be the subtree of T rooted at v, including its own handle edge
e” from p(v) to v. An edge of a tree T is said to be a leaf edge if its terminus is a leaf and is
said to be an internal edge otherwise.

The DTLOR MPR problem
An instance of the DTLOR-MPR problem is a 10-tuple (S, G, L, ¢, y, D, T, L, O, R) where:

« §=(Vs,Es)and G = (Vg, Eg) are binary species and gene trees, respectively;

« L is afinite set of syntenic regions which are represented by counting numbers;

+ ¢ :Le(G) — Le(S)is a mapping that associates each leaf of G with a leaf of S;

+ y :Le(G) — Lis a surjective mapping that associates each leaf of G with a syntenic
region;

+ Parameters D, T, L, O, R are positive costs for duplication, transfer, loss, origin, and
rearrangement events, described in detail below.

A reconciliation in the DTLOR model comprises a pair of mappings (¥, I') that extend
the mappings ¢ and y. Specifically, ® : V(G) — V(S) U {N} maps the vertices of G to
the vertices of S or the special N location representing a species that is not in the species
tree S. The constraints on @ are as follows:

1. ®(g) = ¢(g) for each leaf g of G;
2. If gis an internal vertex of G and ®(g) # N then the children of g, denoted g; and gy,
have the properties that

(@) ®(g1) # N and ®(g2) # N;
(b) Neither ®(g1) nor ®(g») is an ancestor of ®(g); and
(c) Atleast one of ®(g1) or ®(g2) is equal to or a descendant of O (g).
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Constraint 1 ensures that the mapping ® is consistent with the leaf mapping ¢ while con-
straint 2 ensures that for any gene vertex mapped to a species vertex, (a) the children of
g are also mapped to species vertices, (b) the children are not mapped to species vertices
that are ancestral to their parent, and (c) at most one child can transfer to a different
clade.

Note that we assume that the trees are undated and it is therefore possible that a map-
ping that satisfies these constraints is, nonetheless, time-inconsistent in the sense that
there is no ordering of the internal nodes of the species tree that is consistent with the
set of duplication, transfer, and loss events. But time-inconsistencies in an MPR can be
detected in polynomial-time [12, 13]. Moreover, the problem of finding MPRs that are
guaranteed to be time-consistent is NP-hard [14].

Note also that unlike the DTL model, which requires every gene vertex to be mapped
to a vertex in the species tree, the DTLOR model allows gene vertices to be mapped to
the N location which is outside the sampled species tree.

The mapping ® induces four types of events. For an internal gene tree vertex g, with
children g; and g2, and ®(g) # N, the events induced by @ are as follows:

Speciation event: Vertex g induces a speciation event if one of ®(g1) and ®(g2) is
in the left subtree and the other is in the right subtree of ®(g).
Duplication event: Vertex g induces a duplication event if each of ®(g;) and & (g2)

is either equal to or a descendant of ®(g) but does not satisfy the requirements for a
speciation event.

Transfer event: Vertex g induces a transfer event if exactly one of ®(g;) and ®(g2) is
either equal to or a descendant of ®(g) and the other is neither an ancestor nor a
descendant of @ (g).

Loss events:  Each non-root vertex g (including leaf vertices) may induce zero or
more loss events as follows: If ® (p(g)) # N is ancestral to ®(g), then each species
vertex s on the path from @ (p(g)) to ®(g) induces a loss event, except for ®(g) and
also not ®(p(g)) if p(g) induces a speciation event. For each loss induced by a ver-
tex s on the path from ® (p(g)) to ®(g), we say that g passes through s.

If ®(g) = N then ginduces none of these four types of events.

The mapping I' : V(G) — L U {*} maps each vertex g in G to an element of L or the
special syntenic region represented by * indicating that it is in an unknown syntenic
region because it occurs outside of the species tree. The constraints on I" and its relation-
ship to @ are as follows:

1. I'(g) = y(g) for each leaf g of G;
2. ®(g) = NifandonlyifI'(g) = %
3. IfI'(g) # xand g has children g; and go thenI"(g1) # *and I'(g2) # *

Constraint 1 ensures that the mapping I is consistent with the leaf mapping y, constraint
2 ensures that if a gene vertex is mapped outside of the species tree then its syntenic
region is not yet established, and constraint 3 ensures that once the syntenic region for
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a gene node is established, the syntenic regions of its children are also established. The
mapping I induces events as follows:

Origin event: A non-root vertex g induces an origin event if I'(p(g)) = * and
I'(g) # *. The root vertex root(G) induces an origin event if I'(root(G)) # x*.
Rearrangement event: A non-root vertex g induces a rearrangement event if I'(g) # *,

F(p@) # * and'(p(Q)) # T'(Q).

The cost of a reconciliation is defined to be the sum of the number of duplication, trans-
fer, loss, origin, and rearrangement events scaled by the event costs D, T, L, O, and R,
respectively. Speciation events are assigned an implicit cost of zero because a gene is
expected to diverge when the species that carries it diverges.

Methods

When a gene vertex g induces an origin event, all of the genes in the subtree G(g) rooted
at ¢ must have actual syntenic regions (by rule 3 in the definition of I'), and the genes
in that subtree are mapped to species in S (by rule 2 in the definition of T'), that is,
®(g") € Vsand '(g") € L for all g’ € G(g). The mappings ® and I' are only related by the
constraint that ®(g) = N iff I'(g) = *. Thus, if g induces an origin event, then the pair
of mappings ® and I restricted to the domain G(g) are independent. Therefore, for an
origin subtree, a subtree of G whose root induces an origin event, the process of finding
an optimal species mapping ® can be decoupled from the process of finding an opti-
mal syntenic region mapping I'. Further, by definition, vertices that induce origin events
cannot be ancestrally related. Thus, in a reconciliation (®, ") where g/, g” induce origin
events, the species and syntenic region mappings restricted to the origin subtree G(g’)
are independent of the mappings restricted to the origin subtree G(g”).

For binary gene trees, we use a dynamic programming algorithm to compute the opti-
mal cost of a species mapping of each subtree of the gene tree. Then, we use a second
dynamic programming algorithm to compute the optimal cost for the syntenic region
mapping for each subtree. Finally, a third algorithm combines these results to find an
optimal solution to the DTLOR MPR problem. For non-binary gene trees, this decou-
pling is no longer possible and a different (and less efficient) algorithm is presented in
Sect. 9.

Computing the species map
Next, we give an efficient algorithm for computing an optimal species mapping for each
origin subtree G(g). The algorithm is similar to other DTL reconciliation algorithms [4],
but the variant used here is useful in the extensions and generalizations in later sections.
For a species mapping ®, or its restriction to an origin subtree of the gene tree, we say
that a gene tree edge e, is placed on species tree edge e; if either ®(g) = s or if the path
from ®(p(g)) to ®(g) includes vertex s, unless p(g) is involved in a speciation event at
s. As a special case, if g is the root of an origin subtree, then ®(p(g)) = N. In this case,
there is no path from ®(p(g)) to ®(g), so e, is placed on e if and only if ®(g) =s. If
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®(g) = s we say that e, terminates on edge e; and if ®(g) is a descendant of s then a loss
event is induced and we say that e, continues on the corresponding child edge of e;.

Let C(g) denote the optimal cost for a species mapping restricted to the domain of
G(g) and let C(eg, e5) denote the optimal cost for a species mapping of G(g) such that e, is
placed on e;. Then C(g) = minecg; C(eg, €5).

We now describe an algorithm for computing C(eg, e;5). The algorithm computes the
C table by considering edges in the gene tree bottom-up (postorder): An edge e, is con-
sidered if either g is a leaf or the children edges ey, and ¢,, have already been considered.
For each edge e; under consideration, we now consider each edge e; in the species tree in
postorder.

To compute C(eg, e5), we enumerate the four possible cases:

+ Inthe base case, if g and s are leaves, then:

0 ifp(g) =s

oo otherwise 1)

C(eg, e5) = {

« Ifneither g nor s is a leaf, then either g is mapped to s or not. If g is not mapped to s, then
it induces a loss at s by being mapped to one of its children. Otherwise, g is mapped to
s, which induces either a speciation, duplication, or transfer event, which incurs a cor-
responding cost. Thus,

C(eg, es) = min{Spec(ey, es), Loss(eg, e5)

Dup(eg, e5), Transfer(eg, e5)} (2)
where the computation of Spec, Loss, Dup, and Transfer are described below.
« Ifgisnotaleaf but s is a leaf, then speciation and loss at g are not possible, so:
C(eg, e5) = min{Dup(ey, €5), Transfer(eg, e;)} (3)

« Ifgisaleaf but s is not a leaf, then speciation, duplication and transfer at g are not pos-

sible, so:
C(eg, e5) = Loss(eg, €5) (4)

The functions Spec(eg, e5), Loss(eg, €s), Dup(eg, €5), and Transfer(eg, e5) are computed as
follows:

Spec(eg, e5) = min{Cl(eg,, &5,) + C(eg,, €s,),
Cleg,,es,) + Cleg,, e5))}

Loss(eg, es) =L + min{c(eg; esl): C(egr 652)} (6)

Dup(eg, e5) =D + C(eg,, e5) + C(eg,, €5) (7)

Page 7 of 22
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Transfer(eg, e5) = T+

. C(eq,, e5) + Best-Transfer (e, , €5),
min { C(eg,, es) + Best-Transfer(eg, , e;) (8)

The speciation term (5) considers both ways in which the children edges of e, can be
placed onto the children edges of e in a speciation event. The loss term (6) considers
both ways in which edge e, can continue, either on one child of e or the other. The dupli-
cation term (7) places both children edges of e; on ¢;. In the transfer term (8), we con-
sider both ways of selecting the transferred child edge. The non-transferred child edge of
eg remains on e, but the transferred child edge is placed on a species edge determined
by Best-Transfer; Best-Transfer(ej, e5) denotes the minimum cost of a mapping of the
subtree G(gj) assuming that e; is placed on a species edge that is neither ancestral nor
descendant to e;. In order to compute these values, the algorithm maintains another
table called Best-Entry(eg, e5) which stores the minimum of C(eg, ¢;) over all e; in the sub-
tree rooted at e;. The algorithm is given in Algorithm 1.

1 for each gene edge e4 in postorder do
2 for each species edge es in postorder do
3 if g is not a leaf then
a if s is not a leaf then
5 C(eg’ 63) =
min{SPEC(eg, €5), LOSs(eg, €5)
DuP(eg, es), TRANSFER(eg, €5) };

6 else
‘ C(egv 63) =
min{DUP(eg, €s), TRANSFER(egq, €5) };
8 end
9 else
10 if s is not a leaf then
11 | Cleg,es) =Loss(eg, es)
12 else
13 if ¢(g) = s then C(egy,es) =0 else
‘ Cl(eg, es) = o0;
14 end
15 end
16 if s is a leaf then
17 | BEST-ENTRY(eg, €s) = C(eg, €s)
18 else

19 BEST-ENTRY (eg, €5) =
min{C/(eg, €s), BEST-ENTRY (eg, €s, ),

BEST-ENTRY (eg, €s,) };

20 end

21 end

22 BEST-TRANSFER(eg, €) = 00 ;

23 for each non-handle species edge es in preorder do
24 BEST-TRANSFER(eg, €5, ) =

min{BEST-TRANSFER(eg, €5), BEST-ENTRY (eg, €5, ) };

25 BEST-TRANSFER(eg, €s,) =
min{BEST-TRANSFER(eg, €5), BEST-ENTRY (eg, €5, ) };

26 end
27 C(g) = mineSEES C(ega 65)
28 end

Computing the synteny map
We use another dynamic programming algorithm to find the optimal cost for a syntenic
region mapping for each subtree G(g). Let syn(g) denote the optimal cost for a syntenic
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region mapping of G(g). Let syn(g, £) denote the optimal cost for a syntenic region mapping
of G(g) such that g has the syntenic region £. Then syn(g) = min¢z syn(g, £).
If gis aleaf, thenI"(g) = y () (by rule 1 in the definition of I'). Thus,

syn(g, £) = {O iy =t )

oo otherwise

If g is not a leaf, then (recalling that g; and g denote the children of g):

syn(g, £) = min{syn(gi, £), R + syn(g1)}+

min{syn(g, £), R + syn(g2)} 10

This accounts for each child g and g» either remaining in the same syntenic region as
g or potentially changing to a new region and incurring a cost of R. The algorithm for
computing syn(g, £) is summarized in Algorithm 2.

1 for each gene vertex g in postorder do
2 for each actual syntenic region ¢ € L do
3 if g is a leaf then
4 syn(g,€) = 0if £ = ~(g)
5 syn(g,£) = oo otherwise
6 else
7 SYN(g, ¢)
min{sYN(g1,¢),R+syN(g1)} +
min{SYN(gz,¢), R+ sYN(g2)}
8 end
9 end
10 SYN(g) = minger, SYN(g, £)
11 end

Solving the DTLOR MPR problem
Let Origin(g) denote the cost of reconciling an origin subtree G(g) which, as noted ear-
lier, can be computed as Origin(g) = O 4+ C(g) + syn(g). To find a maximum parsimony
reconciliation, we must therefore determine the optimal locations for origin events.

Let Null(g) be the optimal cost of reconciling G(g) such that g has the unknown syn-
tenic region *. Since the given mapping y of leaves to syntenic regions must be respected,
g may not be assigned syntenic region x if g is a leaf. Thus, Null(g) is calculated as:

00 if g is a leaf

Null(g) = ¢ min{Null(g1), Origin(g1)} + (11)
min{Null(g,), Origin(gy)}  otherwise

The optimal cost for reconciling the entire gene tree G is given by:
Opt = min{Null(root(G)), Origin(root(G))} (12)

The algorithm for computing Null(g) is summarized in Algorithm 3.
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1 for each gene vertex g in postorder do

2 ORIGIN(g) = O + syN(g) + C(g)

3 if g is a leaf then

4 | NuLL(g) =0

5 else

6 NuLL(g) =
min{NULL(g; ), ORIGIN(g1)} +
min{NULL(g2), ORIGIN(g2) }

7 end

8 end

9 return min{NULL(root(G)), ORIGIN(root(G))}

Note that if we wish to reconstruct an optimal solution, the DP tables C, syn, Null can
be annotated in the standard way, allowing the solutions to be reconstructed by trac-
ing through the table. We first trace through the Null table to find a set of origin events
that produce an optimal solution. For any gene vertex not in any of the origin subtrees
induced by these origin events, they are labeled with the unknown syntenic region .
For each origin subtree, we trace through the syn table to get an optimal syntenic region
mapping, and then we trace through the C table to get an optimal species mapping.
Because of loss events, there can be multiple C (e, e;) entries that involve the same gene
vertex in an optimal solution. The mapping of that gene vertex corresponds to the lowest
such e;.

The proofs of the following are given in the Appendix:

Lemma 1 Algorithm I correctly computes C(g) for every gene vertex g € V(G).
Lemma 2 Algorithm 2 correctly computes syn(g) for every gene vertex g € V(G).

Theorem 1 Algorithm 3 correctly computes the optimal solution to the DTLOR-MPR
problem.

Time complexity

Computing each entry of the C table takes constant time, so the running time for com-
puting the C table is O(|G||S|). Computing the syn table takes O(|G||L|) time, and com-
puting the Origin and Null entries takes O(|G]|) time. In total, the asymptotic running
time of this algorithm is O(|G||S| + |G||L|).

Non-binary gene trees

While it is generally possible to construct accurate species trees using a variety of
methods, gene trees are susceptible to ambiguity due to the relatively little information
available in their sequence data. Consequently, phylogenetic trees for genes often have
non-binary vertices, also known as multifurcations or soft polytomies, which correspond
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to an unknown ordering of the underlying sequence of divergences [15]. In this case, we
wish to expand each multifurcation into a sequence of binary divergences, leading to a
binary gene tree. Such an expansion is called a resolution or binarization of the non-
binary tree. The DTLOR MPR problem for non-binary trees seeks to find the optimal
reconciliation of G and S over all possible resolutions of G.

Unfortunately, the number of resolutions of a non-binary tree can be exponential
in the number of vertices in the tree. It is, therefore, impractical to explicitly consider
every resolution. However, Kordi and Bansal [15] and Jacox et al. [16] demonstrated
the existence of fixed-parameter polynomial-time algorithms for finding maximum
parsimony reconciliations for non-binary trees in the DTL model. These algorithms
operate in polynomial time assuming the maximum number of children of any non-
binary vertex is bounded by some constant k. More precisely, a fixed-parameter algo-
rithm in this context runs in time O(f(k)p(m, n)) where m and n denote the sizes of
the gene and species trees, k is the maximum branching factor of any gene vertex,
p(m, n) is a polynomial in m and », and f(k) is some function of k which may even
be exponential in k. In particular, f{k) in this context is the number of distinct binary
resolutions of a tree comprising a root and k children times the size of such a binary
resolution, which can be shown to be f(k) = Ok (k — 1)!). For any fixed k, this value
is a fixed constant. Jacox et al. [16] offer an approach that results in an f(k) which is
smaller but still potentially exponential in k. Importantly, a fixed-parameter polyno-
mial-time algorithm is much more efficient and practical than an exponential time
algorithm such as the naive approach of enumerating all possible resolutions of a
non-binary tree which would have running time O((2%(k — DH)H™).

In this section, we describe a fixed-parameter polynomial time algorithm for the
DTLOR MPR problem. Following the approach of Kordi and Bansal [15], our algo-
rithm expands each individual non-binary vertex into every possible binary resolu-
tion but avoids enumerating all possible binary resolutions of the entire tree, thus
resulting in a fixed-parameter polynomial-time algorithm rather than an exponential-
time algorithm. While our algorithm leverages the important ideas for resolving non-
binary vertices first proposed by Kordi and Bansal [15], it requires a new algorithm
due to the advent of O and R events.

Each binary resolution of a non-binary gene tree implies a different topology for
the gene tree, which induces potentially different costs for both the species mapping
and the syntenic region mapping. Note that one resolution may be most favorable for
minimizing the cost of the species mapping while a different one may admit the least
expensive syntenic region mapping (Fig. 1). Thus, while in binary gene trees the spe-
cies mapping and syntenic region mappings could be efficiently solved independently
and then merged into an optimal solution for the DTLOR MPR problem, the situ-
ation is more complicated in the presence of non-binary gene trees. The algorithm
presented here considers the species mapping and syntenic region mapping simulta-
neously as non-binary vertices are resolved one-by-one. Importantly, once the best
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Fig. 1 An example showing that one resolution of a multifurcation can be optimal for species mapping
while another may be optimal for syntenic region mapping. a A gene tree with six leaves labeled with their
syntenic regions. b A species tree. The tip association is ¢(g;) = s;,1 < i < 6. ¢ A binary resolution of the
gene tree in which the optimal species mapping cost is necessarily greater than the origin cost O since this
tree is not isomorphic to the species tree; the optimal number of rearrangements in this case is 1. d Another
binary resolution of the gene tree in which the optimal species mapping cost is just the origin cost O since
this tree is isomorphic to the species tree; the optimal number of rearrangements in this case is 2

resolution is found for the subtree rooted at a given gene vertex, that value can be
saved and used as the dynamic program processes the ancestors of g. For this reason,
it is not necessary to consider complete resolutions of the gene tree but, instead, the
non-binary vertices can be resolved one-at-a-time. This results in an algorithm that is
additive, rather than multiplicative, in the number of resolutions of individual non-
binary vertices.

The following definitions and equations assume that the terminus vertex g of edge e,
is either a leaf or has exactly two children. Later, we show how to apply these to non-
binary trees. Let C(eg, €5, £) denote the optimal cost of reconciling the subtree G(g)
with S such that e, is placed on e; and g has the syntenic region £. Note that in contrast
to C(eg, es) used in the previous section, C(eg, e, ) also encodes the constraint that g
has syntenic region ¢ and the total cost includes the cost of rearrangement events in
the subtree G(g). We define Best-Entry(eg, e, £) and Best-Transfer (e, e, £) analogously
to Best-Entry(eg, e5) and

Best-Transfer(eg, e5), respectively, in the previous section. We define
C(eg, €5, L) = minger Ceg, €5, £) and
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Best-Transfer(eg, e5, L) = rzpiil Best-Transfer (e, e;, £)
€.
We compute C(eg, es, £) in postorder. There are four cases:

+ Inthe base case, if g and s are leaves, then:

0 ifg(g)=sandy(g)=¢
oo otherwise

Cleg, 5, 0) = {

+ If neither g nor s is a leaf, then:

C(eq, €5, £) = min{Spec(eg, €5, £), Loss(eg, €, £),
Dup(ey, €5, £), Transfer(eg, e, £)}

where the computation of Spec, Loss, Dup, and Transfer are given below.
+ Ifgis nota leaf but s is a leaf, then:

C(eq, €5, ¢) = min{Dup(eg, es, £), Transfer(eg, €5, £) }

3

If g is a leaf but s is not a leaf, then:

C(eg, €5, £) = Loss(eg, €5, £)

(15)

(16)

The functions Spec(eg,es, £), Loss(eg, e, £), Dup(eg, es,£), and Transfer(eg, es, £) are

computed as follows:
Spec(eg, €5, £) = min{

min{C(eg,, €s5,,¢), R + C(eg, €5, L) }+
min{C(eg,, es,, ), R + C(eg,, €s,, L)},
min{C (eg,, €s,,£), R + C(eg, €5y, L) }+
min{C/(eg,, e5;,£), R+ C(eg,, €5, L) }}

Loss(eg, e, £) =L + min{C/(eg, es,,£), C(eg, es,,£)}

Dup(eg, e5,£) =

D + min{C(Egl, esrg)) R + C(egl, esrL)}
+ min{C/(eg,, €5, £), R + C(eg,, €5, L)}

Transfer(eg, 5, £) = T + min{

min{C (g, €5, £), R + C(eg,, €5, L) }+
min{Best-Transfer(eg,, es, £),
R + Best-Transfer(eg,, e, L)},
min{C(eg,, es, £), R + C(eg,, €5, L) }+
min{Best-Transfer(eg, , es, £),
R -+ Best-Transfer(eq,, €5, L)}}

(19)

Page 13 of 22
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In order to compute Best-Transfer, we compute Best-Entry(eg, es, £) as follows. If s is a
leaf, then

Best-Entry(eg, €5, £) = C(eg, €5, £). (21)

Otherwise,

Best-Entry(eg, €5, £) = min{C(eg, €5, £),

Best-Entry(eg, €5, £), Best-Entry(eg, e;,, £)} (22)

Best-Transfer(ey, es, £) is then computed in preorder: First, for the handle edge es

Best—Transfer(eg,eS,E) =oC (23)
For all other edges, e; with child edges e, and e,

Best-Transfer (e, e, £) = min{

Best-Transfer(eg, e, £), Best-Entry(ey, €5,, £) } (24)
Best-Transfer(ey, es,, £) = min{

Best—Transfer(eg, es, £), Best-Entry(eg, €., £)} (25)

Now, we consider the case that each internal vertex g has an arbitrary number of chil-
dren denoted g1,...gk, kK > 2. A binary resolution for g is defined to be a binary tree
whose root is g and whose leaves are g1,82, . .., gx. Let BR(g) denote the set of all binary
resolutions for g. Note that if g has two children, then it has just one binary resolution.
Note also that a binary resolution for a vertex g is different from a binary resolution for
the entire gene tree; the former only resolves g into a binary subtree whereas the latter
resolves all non-binary vertices in G.

Let Null(g) be the optimal cost of reconciling G(g) with S such that g has the unknown
syntenic region . Let Origin(g) be the optimal cost of reconciling G(g) with S such that
g induces an origin event. Let H be a binary resolution for g and let G (g) denote the
subtree G(g), along with its handle, such that g and its children have been replaced by
H. Note that if g has exactly two children, then G (g) = G(g). Let CH, Best-Entry’?,
Best-Transfer/ s OriginH , Null correspond to C, Best-Entry, Best-Transfer, Origin, and
Null (from the previous section) for G (g).

Let ej, be an edge in H. If e, is a leaf edge in H (and thus /4 is one of the children of
g in G), then CH(ey, e5l) = Cley,es,t) for all e, ¥, OriginH(h) = Origin(h), and
Null” (1) = Null(#). Thus, as the algorithm considers each gene edge e; in postorder,
it then considers each binary resolution H of g and the induced subtree G/ (g). Within
GH(g) it considers the edges of H in postorder to compute the optimal reconciliation
for GH (g). Finally, the optimal reconciliation over all binary resolutions H of g yields the
optimal reconciliation for G(g). The algorithm is summarized in Algorithm 4. (Recall
that /11 and /5 denote the two children of vertex /.)
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1 Initialize all entries in tables used below to oo;
2 for each gene edge ey in postorder do
3 if ey is a leaf edge then
4 ORIGIN(g) =0 ;
5 C(eg7e¢(g)7’7(g)) =0;
6 end
7 for each H € BR(g) do
8 for each leaf edge ey, in H do
9 Initialize ORIGIN'T (h) = ORIGIN(h);
10 Initialize NuLLH (h) = NuLL(h);
11 for each syntenic region £ do
12 for each species edge es in postorder do
13 | Initialize CH (ep,, €5,€) = Clep, es,£);
14 end
15 end
16 end
17 for each internal edge ey, in H in postorder do
18 for each syntenic region £ do
19 for each species edge es in postorder do
20 Compute CH (ep,, e5,4) ;
21 Compute BEST—ENTRYH(eh, es,l);
22 end
23 for each species edge es in preorder do
24 Compute
BEST-TRANSFERY (e, €5, , £);
25 Compute
BEST-TRANSFERH (e, €55, £);
26 end
27 end
28 OriciNt (h) = ming_ ¢ CH(ep,es,0) + 0;
29 NuLLH (h) =
min{NuLL (hy), OriciNT (h1)} +
min{NuLL? (ha), OriGINT (h2)};
30 end
31 for each syntenic region ¢ do
32 for each species edge es in postorder do
33 Cl(eg,es,4) =
min{CH (eg, es,£), Cleg, s, £)};
34 C(eg,es,L) =
min{C(eg, es,£),C(eg,es,L)};
35 end
36 end
37 ORIGIN(g) = min{ORIGIN (g), ORIGIN(g)}
NuLL(g) = min{NurLH (g), NuLL(g)}
38 end
39 end
40 return min{ORIGIN(root(G)), NULL(root(G))}

Theorem 2 Algorithm 4 correctly computes the optimal solution to the DTLOR-MPR

problem for non-binary gene trees.

The proof is summarized in the Appendix.

Time complexity

The algorithm first initializes Origin, Null, C entries for all the leaf edges of the gene
tree, which takes O(|G|) time. Then, for each internal gene edge e,, the algorithm loops
through all binary resolutions H at the gene vertex and computes C/, Best-Entry’,
Best-Transfer”, OriginH, and Null”, which takes O(|H||S||L]) = O(k|S||L|) time. (Here
|H| is the size of any binary resolution at a gene vertex, which is bounded by O(k) where
k is the maximum degree of any vertex in the gene tree.) For each H, the algorithm

Page 15 of 22
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updates all entries of C(eg, e, £) and C(eg, e5, L), which takes O(|L||S|) time. In total, the
running time for computing all the DP entries for all gene edges and binary resolutions
is O(flk)k|G||S||L|) time, where f{k) upper bounds the number of binary resolutions at
any gene vertex.

Results

The implementation of the DTLOR MPR Algorithm (Algorithm 3) was integrated into
the xenoGI software package [2] which seeks to reconstruct the history of genome evo-
lution in clades of microbes. xenoGI takes as input a set of sequenced genomes, iden-
tifies gene families within this set, and groups those families by common origin. The
previous version of xenoGI created gene families in a species-tree aware way, but did not
make use of reconciliations. It was able to map gene families onto the species tree and
identify their point of origin. However, it was not able reconstruct events in the subse-
quent evolution of the gene family (e.g. losses or rearrangements). The integration of the
DTLOR MPR algorithm allows xenoGI to reconstruct these subsequent events, provid-
ing potentially important new insights into microbial evolution.

Within the new DTLOR version of xenoGI, we construct a gene tree for every family,
then reconcile it with the species tree. The resulting reconciliation can be used to refine
the family (e.g. split it into multiple parts based on the placement of origin events) and
to provide detailed information about the family’s subsequent evolution.

Table 1 shows the running time for the DTLOR MPR Algorithm within xenoGI on
all gene trees given inputs ranging from 4 to 15 bacterial genomes (species). Trees were
constructed using FastTree [17] and MUSCLE [18] In each case, DTLOR was run on
every binary gene tree with more than two leaves, with gene trees being rooted in all
possible ways. These calculations were performed on a commodity server (50 AMD
Opteron 6276 2.3 GHz processors, 503 GB RAM). The DTLOR costs were set at
1,1, 1, 2, 2, respectively.

In one of our enteric bacterial test data sets (Dataset B in Table 1), we examined
DTLOR output for a known genomic island, the Acid Fitness Island (AFI) [19]. The cor-
responding species tree is shown in Fig. 2. This island is thought to have originated with
an insertion of 19 genes on branch s2 (the branch leading to the internal vertex s2) via
horizontal transfer from outside the clade. It then evolved in the clade and was inherited
in the four descendant strains, with the notable loss of nine genes along the branch lead-
ing to E. coli K12 [2]. For nearly all the gene families in this island, DTLOR produced
reconciliations that place the origin of the family on the branch leading to s2, and it cor-
rectly recognized loss events on the K12 branch where those occurred. In a few cases,

Table 1 Runtimes for four different species trees

Species # Genomes # Gene Median Total
Tree Trees GT size Time (s)
A 4 3288 4 43

B 6 4032 6 10.6

C 11 4750 9 1288

D 15 5510 9 563.8
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Fig. 2 The species tree for Dataset B

there were multiple most parsimonious reconciliations (MPRs), one of which agreed
with the above scenario and was deemed correct, and the others did not agree. Finally
there is one family (glutamate decarboxylase) with an evidently complicated post-inser-
tion evolution that is not fully understood. In this case, none of the MPRs using the
selected event costs appear to be correct. (The evolution of this family likely involved
gene conversion, but the MPR lacks transfer events using the event costs that we used in
this experiment.)

Discussion

Several important problems remain to be studied. First, the impact of event costs is not
well-understood. Just as in the case of the DTL model, different event costs can give rise
to different reconciliations which, in turn, can lead to different conclusions. We believe
that the costscape algorithm developed for the DTL model [20] may be extendible to the
DTLOR model, which would provide insights into the impact of event costs to the solu-
tion space.

Second, it is often the case that there are many distinct MPRs. In fact, even in the DTL
model, the number of MPRs can be exponential in the size of the two trees [21]. A subset
of these MPRs may be of particular interest because they contain certain evolutionary
events that are strongly believed to have occurred (e.g., a horizontal transfer on a par-
ticular branch of the species tree). It is desirable, therefore, to efficiently filter the set of
MPRs to only include those that contain a specified set of events, count the number of
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MPRs in the filtered set, compute support values on the constituent events in that space
of MPRs, and select representative reconciliations from this set.

Finally, further systematic studies are needed to determine the full impact of the
DTLOR MPR algorithm on the analyses that can now be performed with the enhanced
xenoGlI tool, including the case of non-binary gene trees.

Conclusions

In this paper, we have described the DTLOR model which extends the well-known DTL
model to include origin and rearrangement events. This model is particularly applicable
to the evolution of microbes where the species tree is, in many cases, not fully sampled.
Therefore, reconciliations must be able to account for transfer events from outside the
sampled tree. In addition, the DTLOR model allows for syntenic rearrangement, which
is also prevalent in microbial gene families.

We have described efficient algorithms for maximum parsimony reconciliation in the
DTLOR model. In binary gene trees, our algorithm solves the DTL reconciliation prob-
lem and the sytnenic region problems independently and then combines the results of
those two algorithms, resulting in a particularly efficient solution. When the gene tree is
non-binary, the two subproblems can no longer be decoupled in this way, and our algo-
rithm for this case considers all of the events simultaneously.

Appendix
This appendix contains proofs of results from the main paper.

Proof of Lemma 1

Proof

We prove that the algorithm correctly computes C(eg,-) and Best-Transfer(eg,-) by
structural induction on G. For the base case for Cl(eg,-), consider a leaf edge e;. We
perform structural induction on S. In the base case where es is a leaf edge, g must map
to ¢(g), so Cleg,es) is computed correctly by equation 1. In the inductive step, con-
sider a non-leaf edge es. In this case, g must induce a loss event at s since g is a leaf, so
C(eq,e5) = Loss(eg, e5) (by Eq. 4). By the inductive hypothesis, for each descendant branch
ey of e;, Cleg, ey) is computed correctly, so Loss(eg, €5) is computed correctly (by Eq. 6).
This concludes the base case for C(eg, -).

In the base case for Best-Transfer(eg, ), we consider a leaf edge e;. Since its correct-
ness relies on Best-Entry(eg, ), we first use structural induction on S to prove that
Best-Entry(eg, ) is correctly computed. In the base case, e; is a leaf edge, so the only
choice for e, to enter the subtree rooted at e; is at e;. Since C(eg, €) is correctly com-
puted, Best-Entry(ey, &) is also correctly computed on line 17. In the inductive step,
consider a non-leaf edge e;. By the inductive hypothesis, Best-Entry(eg, ey) is computed
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correctly for each descendant edge ey of e;. The ways for e; to enter the subtree rooted at
es are at e, the left subtree of e;, or the right subtree of e, thus Best-Entry(ey, e;) is com-
puted correctly on line 19.

Now we prove the base case for Best-Transfer(e,, ) using structural induction on
S from the handle edge 3. In the base case where e, = ¢°, all edges in S is a descend-
ent of e, so there is no valid species edge for the child edge of e, to transfer to. Thus
Best—Transfer(eg,eS) is computed correctly on line 22. In the inductive step, we con-
sider a non-root edge e;;, which has a sibling edge e;,. By the inductive hypoth-
esis Best-Transfer(e,, p(es;)) is computed correctly and by the inductive proof on
Best-Entry(eg, -), Best-Entry(e,, es,) is computed correctly. Since the species edges that ¢,
are allowed to transfer to from e, not only include the same edges if e, were to transfer
from p(e;, ), but also edges in the subtree rooted at e;,, and the optimal cost of placing
eg inside the subtree rooted at ey, is given by Best-Entry(eg, es,), Best-Transfer(eg, e;) is
computed correctly. This concludes the base case for Best-Transfer(eg, -).

To conclude the proof of correctness of C(eg, -), we consider a non-leaf edge e,. We use
structural induction on S. In the base case, e is a leaf edge; the only two possibilities
are e; duplicates on e or transfers on e;. The correctness of Dup(eg, e5) is guaranteed
by the correctness of C(e,,-), while the correctness of Transfer(eg, e5) is guaranteed
by the correctness of both C (eg/,-) and Best—Transfer(eg/, -) for each descendant edge
e of ey . In the inductive step, e is not a leaf edge, then C(eg, €;) is, by definition, the
minimum of Spec(eg, e5), Dup(eg, e5), Transfer(eg, 5), and Loss(ey, e;) (see Eq. 2). Again,
Spec(eg, e5), Dup(eg, e5) and

Transfer(eg,e;) are computed correctly by the correctness of C(ey,:) and
Best-Transfer(e,,-). The correctness of Loss(eg,es) is guaranteed by the inductive
hypothesis on the correctness of C(ey, ey) for every descendant edge ey of ;. This con-
cludes the inductive step for C(eg, €5). The inductive step for Best-Transfer(eg, -) is analo-
gous to the proof for the base case.

Finally, C(g) is the optimal cost for a species mapping of G(g) such that g can be mapped
to any species in S. By definition, C(g) = min, C(g, s) where C(g, s) denotes the optimal
cost for a species mapping of G(g) in which g is mapped to s.

Consider min,, C(eg, €5). Since C(eg, €;) is the optimal cost of a species mapping where
eg is placed on e, this implies a mapping of g to s or one of its descendants. If g is
mapped to s, then C(eg, e5) = C(g,s). If C(eg, e5) involves a mapping of g to s” which is
a descendant of s, then it induces loss events. Because loss events have a non-negative
cost, C(eg, ;) < C(eg, €5), and thus min,, C (e, e5) only includes those entries of C(eg, &)
where g is mapped to s. Thus, C(g) = min; C(g,s) = min,, C(eg, €s).

O
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Proof of Lemma 2

Proof

We prove the correctness of syn(g, £) and syn(g) by induction on g In the base case, g is a
leaf, then the syntenic region of g must be y (g), so both syn(g, £) and syn(g) are computed
correctly on line 5. In the inductive step, consider an internal vertex g. By the inductive
hypothesis, syn(g;, £') and syn(g;) is computed correctly for g; € {g1,2} and €' € L. The
syntenic regions for the left and the right child are chosen independently, and the total
cost for syn(g, £) is the sum of the costs for choosing syntenic regions for the left subtree and
the right subtree of g. If g; is a child of g with syntenic region {, then no R event is induced
and the cost is syn(g;, £). If an R event is induced by a change in syntenic region, then it
is optimal to choose a syntenic region that minimizes the total cost of choosing syntenic
regions for G(g;). Thus, the cost for a syntenic region mapping of G(g;) with an R event is
syn(g;) + R. The cost for a syntenic region mapping of G(g;) as a whole is the minimum of
these two possibilities, and this is the same for both children of g Thus, syn(g,£) is com-
puted correctly on line 7. Then, by definition, syn(g) is also computed correctly by taking
the minimum of syn(g, £) overall £ € L. [

Proof of Theorem 1

Proof

First we prove the correctness of Origin(g). Since a species mapping for an origin subtree
G(g) is independent of a syntenic region mapping of the same subtree, the optimal cost of
a reconciliation of G(g) is the optimal cost C(g) for a species mapping and the optimal cost
syn(g) for a syntenic region mapping and the cost of the origin event at g. Thus Origin(g) is
computed correctly on line 2.

Now we prove Null(g) is computed correctly by an induction on g. In the base case, g is
a leaf, so ¢ must have a known syntenic region y (g). Thus Null(g) = co as computed on
line 4. In the inductive case, consider an internal vertex g. By the inductive hypothesis,
Null(g;) is computed correctly for any g; € {g1,22}. There are two cases we need to con-
sider for each child since it can either induce an origin event or remain unassigned to
any real syntenic region. Since we already know Origin(g;) and Null(g;) are computed
correctly, taking the minimum over the two cases yield the optimal cost for assigning
each child and the sum of the costs for both children is the optimal cost for assigning g
to the unknown syntenic region *. Thus Null(g) is computed correctly on line 6.

Since the root of the gene tree can either be mapped to the unknown syntenic region or
some actual syntenic region, we minimize over the two cases and get the optimal cost for
reconciling the entire gene tree. Using standard DP traceback techniques, we can also
obtain the mappings and events involved in an optimal solution. []
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Proof of Theorem 2

The correctness of Algorithm 4 is a direct extension of the proof of correctness of Algo-
rithm 1, now using triple induction to account for the third argument, the syntenic
region, in the DP table. The correctness for non-binary vertices then extends analogously
to the proof in [15] for the DTL model.

Abbreviations
DTLOR: Duplication-transfer-loss—origin—rearrangement; MPR: Maximum parsimony reconciliation.
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