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Robots increasingly interact with humans through touch, where people are touching or being touched by
robots. Yet, little is known about how such interactions shape a user’s experience. To inform future work in this
area, we conduct a systematic review of 44 studies on physical human-robot interaction (pHRI). Our review
examines the parameters of the touch (e.g., the role of touch, location), the experimental variations used by
researchers, and the methods used to assess user experience. We identify five facets of user experience metrics
from the questionnaire items and data recordings for pHRI studies. We highlight gaps and methodological
issues in studying pHRI and compare user evaluation trends with the Human-Computer Interaction (HCI)
literature. Based on the review, we propose a conceptual model of the pHRI experience. The model highlights
the components of such touch experiences to guide the design and evaluation of physical interactions with
robots and inform future user experience questionnaire development.
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1 Introduction

Robots are increasingly moving from caged areas in factories into public and private spaces. This
transition creates situations where robots touch people on purpose or accidentally. For example,
a robot may fetch an object and hand it over to a user, correct a person’s pose during physical
therapy, or touch someone to provide emotional support. Conversely, the ability of people to touch
a robot also has important use cases. For instance, the user may teach the robot a physical maneuver,
correct its movements, or touch a robot to convey emotions. In the Human—-Robot Interaction
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(HRI) literature, such touches are called tactile or Physical HRI (pHRI). In this article, we refer
to these interactions as pHRI.

Past research has supplied initial evidence that pHRI can impact User Experience (UX) and
behavior [98, 110, 111]. For example, research has shown that users form an impression of the robot
based on its timing and movement parameters [98], and robot touches can increase user motivation
and effort in repetitive tasks [110]. Some studies have varied physical interaction parameters (e.g.,
touching force or location) [9, 98], whereas others have focused on the relation to other modalities
(e.g., verbal announcement [32]) or the context of interaction [73]. Also, prior pHRI studies have
used a wide range of evaluation metrics ranging from the ease of interaction [31, 42], to the
touch sensation [124] or emotion [126] or user appraisal of the robot’s social attributes in such
interactions [19, 98].

Despite its importance, little is understood about the UX of pHRI and the factors influencing it. In
particular, the above studies have not been pulled together systematically, and their integration into
a conceptual model of pHRI has not happened. The lack of a conceptual model for the experience
of robotic touch hinders progress on pHRI in several ways. First, researchers may find it difficult
to clearly define an interaction’s goals and measure the UX. Second, discussing the impact of
interaction parameters on UX outcomes across studies is challenging. Third, the relation between
the pHRI experience and existing work in fields such as UX of other forms of computing [15, 67,
106] is unclear. Thus, one cannot pinpoint how the growing area of physical interactions with
robots, as embodied autonomous agents, may borrow from or complement the literature on the UX
of other technologies.

We review work on pHRI to highlight gaps in the literature and provide a conceptual model of
the UX of touching and being touched by robots. As a step toward this model, we ask (1) What
physical interactions, experimental variables, and data collection methods are used in pHRI studies?
and (2) What metrics do pHRI researchers use, and how do they relate to UX metrics reported for
other technologies?

To answer these questions, we conducted a systematic review of a sample of pHRI studies that
were published between 2010 and 2021. We identified 44 empirical studies of human-robot touch
experience by screening the literature based on inclusion and exclusion criteria. Two authors
coded various aspects of these studies, such as their goals, physical interactions, data collection
methods, and measurements. Our analysis of the trends in these studies highlights underexplored
areas in pHRI experience, such as a gap in studying accidental touch. For the second question, we
collected all the questionnaire items and data recordings used in the studies and created an affinity
diagram. This analysis led to 25 UX metrics that we further divided into 5 facets of pHRI experience:
(1) overall, (2) usability, (3) sensory, (4) personal and interpersonal, and (5) experiential facets. We
report the prevalent UX metrics as well as methodological issues in evaluating and reporting the
interactions in our sample of 44 studies.

Based on the above analysis, we propose a conceptual model of the pHRI experience with
three components (Figure 1): (1) design parameters of pHRI revolve around the three entities
of the user, robot, and their interaction, (2) the pHRI timeline includes the physical interaction
as a subcomponent that happens once or is repeated, and (3) the UX metrics capture the out-
come of the interaction with the five facets of pHRI experience. The details of these components
are derived from our systematic review of the 44 pHRI studies. We discuss how this concep-
tual model and the results of our review can inform pHRI research and practice. This article
contributes:

—Trends and gaps in pHRI interactions and user evaluation practices from 44 studies published
between 2010 and 2021.
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Fig. 1. A conceptual model of pHRI experience with three components: (1) design parameters can vary around
the user, the robot, and their interaction, (2) the interaction timeline includes physical interactions, which
are short and possibly repeated episodes during an overall HRI timeline, and (3) the UX outcomes of pHRI
are shaped by the design parameters and interaction timeline. The UX can be measured according to five
UX facets of overall, usability, sensory, personal and interpersonal, and experiential metrics. We devised this
conceptual model based on our systematic review of the pHRI studies.

—Five facets of UX metrics and their prevalence in the pHRI studies.
— A first conceptual model of the pHRI experience based on our review.

2 Related Work

We present an overview of previous surveys in pHRI followed by research on defining the UX in
the Human-Computer Interaction (HCI) and HRI literature.

2.1 Surveys on pHRI

Previous work refers to physical interactions with robots as tactile or pHRI. In the Springer Handbook
of Robotics, Haddadin and Croft categorize pHRI as a form of proximate interaction where humans
and robots are collocated, and the robot has autonomy in performing (part of) a task [43]. Others
use tactile HRI to refer to physical interactions with robots. For example, Argall and Billard discuss
that tactile HRI is at the intersection of two areas: (1) tactile sensing and (2) interactions between
humans and robots [11]. No clear distinction exists between tactile HRI and pHRI in the literature.
While “touch” has more social and experiential connotations than pHRI, both tactile HRI and pHRI
have been used to refer to either technical or social aspects in the HRI literature. For example,
when the purpose of interaction was purely pragmatic such as in object handover or kinesthetic
teaching, the users could associate social and emotional attributes to the robot or interaction. Pan
et al. conducted an instance of such a study where users evaluated the social attributes of the robot
based on an object handover task [98]. We adopt the definition by Haddadin and Croft and treat
pHRI as any collocated interaction that involves an exchange of haptic signals (e.g., force, contact,
accelerations) between a human and an autonomous embodied agent. Specifically, in our definition,
pHRI is the umbrella category that includes direct tactile interactions where humans are touching
or being touched by a robot as well as indirect physical interactions through an object (e.g., during
a handover). Also, in our definition, pHRI can refer to both pragmatic and experiential aspects of
physical contact.

The literature on pHRI diverges into two areas, one investigating technical engineering challenges
of pHRI in the robotics literature, while the second area focuses on the social experiential aspects of
physical interactions with robots. Existing pHRI surveys primarily cover the former literature on the
technical developments in the field. In their atlas of pHRI, De Santis et al. proposed the safety and
dependability of robots as two key criteria for assessing physical interactions [35]. They provided
an overview of work on robot hardware and software design toward these two criteria. Relatedly,
Hadadin and Croft provided an overview of the technical pHRI literature focusing on human injury
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analysis and safety standards for pHRI. They presented progress toward human-friendly hardware
and algorithm design for robots [43]. Losey et al. reviewed techniques and algorithms related
to sharing control between humans and robots in collaborative physical tasks [80]. Argall and
Billard categorized the literature according to progress in tactile sensor development and types
of physical interactions [11]. The categorization of tactile sensors was purely technical, focusing
on the composition of the sensor and the applications of various approaches (e.g., hard sensors
vs. soft sensors). They categorized the types of physical interactions into three groups where the
touch (1) interferes with robot behavior execution such as in accidental touch, (2) contributes to
behavior execution such as in collaborative assembly or robot-assisted therapy, or (3) contributes
to behavior development, for instance, when the robot is learning a skill through physical contact.

Others have focused on one type of physical interaction. Most recently, Ortenzi et al. published
a review of object handover studies [95]. They described two phases of a handover task as pre-
handover and physical handover, noting that important cognitive and physical processes start
before the physical part of the interaction. The authors reviewed the progress and gaps in the
literature according to these two stages of the object handover task. In addition, they summarized
the user evaluation metrics into two categories of objective task performance and UX metrics, and
further divided the UX metrics into subjective and psycho-physiological metrics. The above surveys
informed our initial codes for analyzing the studies.

Our work complements the above literature by providing a systematic review of UX in pHRL
In contrast to the above surveys, our review focuses on the UX of pHRI. Also, while informative,
the above surveys do not explicitly report the sample of articles and the analytical process of the
authors. In contrast, we present a systematic review of the literature where we define a sample based
on clear inclusion and exclusion criteria and code the articles according to a code book to provide
statistics on the trends observed in the sample. With this approach, we also present a data-driven
categorization of subjective and objective UX metrics for pHRI across various physical tasks.

2.2 Definition and Metrics for UX

Previous work in the HCI domain (e.g., games and mobile phones) has outlined the definition and
methods for evaluating the UX of interactive technology. UX research aims to provide a holistic
view of human interactions and reactions to technology. Hassenzahl and Tractinsky divided the
UX of an interactive product into pragmatic and hedonic factors [49, 50]. Pragmatic or usability
factors provide a task-centered view, focusing on the effectiveness and efficiency with which target
users can complete specific tasks with a given technology [55, 62]. In contrast, UX is a broader
multidimensional concept that also encompasses the positive aspects of interactions such as user
motivation, emotions, and esthetics, and reflects the context-dependent and dynamic nature of
interacting with technology [15, 50]. Bargas-Avila and Hornbeek provided a systematic review
of 51 empirical studies of UX, analyzing the range of products (e.g., websites, and games), UX
dimensions, and data collection methodologies employed in their sample. The studies in their review
showed a prominent focus on using qualitative methods (e.g., interviews) and evaluating emotions,
enjoyment, and aesthetics as measures of UX. We follow a similar systematic review approach and
compare evaluation trends in pHRI with those reported by Bargas-Avila and Hornbaek for other
forms of interactive technology.

In the HRI domain, researchers have emphasized the need for adopting the UX design practices
from HCI [7, 78] and proposed new frameworks to capture the unique nature of interacting with
robots [129]. Lindblom et al. described three primary challenges for HRI as the need for robot
designers to adopt an iterative process, incorporate UX goals in the development process, and learn
about UX evaluation methods and theory [78]. Young et al. discussed adopting three perspectives
when designing and evaluating HRI. These perspectives account for (1) visceral factors such as
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emotions, (2) social mechanics such as gestures and facial expressions, and (3) social structures
involving the interaction context [129]. Similarly, Weis et al. provided a framework and guidelines
for the holistic evaluation of HRI with four key factors: usability, UX, social acceptance, and societal
impact [119]. Grounded in the researchers’ experience and knowledge of the literature, these
frameworks highlight the complexity of capturing the UX of interacting with robots. Yet, the extent
to which these frameworks or their underlying factors are employed in pHRI studies is unknown.

A few questionnaires exist for evaluating the UX of robots. HRI researchers commonly employ
general-purpose questionnaires to measure user emotions [22, 87, 117] or workload [48]. In addition,
the Godspeed questionnaire [16] and Robotic Social Attributes Scale (RoSAS) [29] are specifically
designed and widely used for robots. The Godspeed questionnaire consists of 24 Likert-scale user
ratings about the robot’s anthropomorphism, animacy, likeability, intelligence, and safety. While the
questionnaire is not validated, its wide adoption reflects the field’s demand for established evaluation
practices. In a series of online studies, Carpinella et al. analyzed the Godspeed questionnaire and
developed the RoSAS with 18 items that capture a robot’s perceived warmth, competence, and
comfort. RoSAS has been validated in online studies using descriptions of robots or images of robot
faces, but the questionnaire is also used in pHRI studies recently [98]. Other instruments such as
the Negative Attitude toward Robots Scale (NARS) [91, 93] and Robot Social Anxiety Scale
(RAS) [92] capture overall user beliefs and feelings toward robots. Building on this literature, we
provide a detailed account of how empirical studies of pHRI measure UX and discuss how our
results can inform future evaluation practices and questionnaire development in the field.

3 Methods

We describe our process for identifying and screening relevant studies for our review, iterative
coding of the studies included in our final sample, and creating an affinity diagram of the UX metrics.
Our review procedure is based on the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) Flow Diagram [97] for systematic reviews (see Figure 2).

3.1 Identification

To gather high-impact articles on pHRI user studies, we searched through three top HRI venues:
the ACM/IEEE International Conference on Human Robot Interaction (HRI), ACM; the ACM
Transactions on Human—-Robot Interaction (THRI), ACM; and the International Journal of
Social Robotics (IJSR), Springer. We used the following query to search in the title and abstract of
every publication in the selected venues:

(touch* OR tactile* OR hand* OR haptic* OR kines*) AND (study OR evaluat* OR
participant* OR experimentx*)

Since we focused on UX in pHRI, our query filtered for articles with both a physical interaction
and a user study of the interaction. The first part of the query aimed to capture articles with
touch interaction, while the second part included articles with a user study. The wild cards (*)
helped us capture different possible wording such as “handover” or “handshake” and “evaluate” or
“evaluation.” For HRI and THRI, we could directly run our query using the ACM Digital Library
search options. In the case of IJSR, Springer only supports searching on the full text of the article.
Hence, we used a custom script to further filter the results obtained from the Springer website
to ensure that the search terms only appear in the title or abstract. We included all full articles
published before October 2021, when we ran the search query. The query returned 215 articles: 92
from HRI, 32 from THRI, and 91 from IJSR.
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Fig. 2. The four stages we used to identify relevant studies for our review. These stages are based on the
PRISMA Flow Diagram [97] and include the number of articles involved in each stage.

3.2 Screening

To further screen relevant articles from the search query results, we defined the following inclusion
criteria:

(1) Physical Autonomous Robots: The article needs to involve a physical robot that appears as
an autonomous agent to the user. This criterion ensures that the user thinks they are interacting
with a robot rather than a human. We include studies using a Wizard of Oz setup [104] where
a human operates the robot without the user’s knowledge. Articles involving virtual avatars or
simulations [86], haptic devices operated by a human [107], and teleoperated robots [113] are
excluded according to this criterion.

(2) Touch Interaction: The article needs to have a direct touch interaction or indirect interaction
through an object (e.g., handover) where physical forces or tactile feedback is exchanged between
a human and a robot. The interaction should not be via an intermediate interface such as through a
joystick [115], a touchscreen [84], or haptic devices [107, 131].

(3) User Study: Physical interaction needs to be evaluated through a quantitative or qualitative
user study by having a research question or a hypothesis about the touch interaction. The study
should focus on user response and evaluation rather than hardware design [112] or algorithm
development [33]. The participants in the study must either participate in the touch action or
observe it.

Two authors independently determined and marked the inclusion of all the articles (0 for excluded,
1 for included) by skimming through the full-text articles. The overall agreement percentage was
90.69%, and Cohen’s kappa was 0.746. Each article with a rating discrepancy was discussed among
all three authors, with the third author providing an independent opinion. In this phase, 169 articles
were excluded, resulting in a sample of 46 articles for further coding. During the coding process,
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we further removed eight articles that did not meet our inclusion criteria or were duplicates due
to a conference article being extended and later published in a journal. We included the journal
version in our analysis.

The final set of 38 articles consisted of 44 unique studies, which we included in the review.

3.3 Coding the Included Articles

We coded the final set of 44 studies in two rounds. The first round provided summary codes, and
the second round resulted in detailed codes for the user studies and physical interactions. In the
first round, two authors extracted free-form text from the articles about the study goal(s), physical
interactions and their context, user evaluation methods, and high-level outcomes of the article. We
copied the article’s text and paraphrased it for brevity whenever necessary. These text descriptions
(i.e., summary codes) served as a memory aid for the coders and guided the next coding round.

In the second round, the same two authors defined detailed codes for the physical interactions and
user evaluation methods. For the physical interactions, we defined five detailed codes describing
the role, type, location, actor(s), and duration of the physical interaction (Table 1). For the user
evaluation methods, we coded the time of data collection, methods of data collection, and the
questionnaires used in the studies (Table 3) similar to the review by Bargas-Avila and Hornbeek [15].
Also, we further extracted all the subjective user-reported data (e.g., questionnaire items, interview
questions) and measurements (e.g., task completion time and user behavior coded from videos).
Finally, we extracted parameters that were varied in the studies (i.e., independent variables) as
well as the robot model, number of participants, and the participant background data that were
collected in the studies (Table 2). We established an interrater agreement for the detailed codes
on a random 25% subset of the studies (i.e., 11 studies) before coding the rest of the studies. The
interrater reliability was full agreement on 78.03% of the codes, partial agreement on 10.61% of
the codes, and a mismatch on 11.36% of the codes. The two authors discussed the differences and
updated the descriptions in a coding sheet. The rest of the studies (n = 33) were coded by one
author. The aggregated results of this coding process are reported as numbers, percentages, and
instances in the 44 studies (Tables 1-3). The final coding scheme and the codes for the 44 studies
are included as supplementary materials.

3.4 ldentifying User Experience Metrics through Affinity Diagraming

We further analyzed all the measurements and questionnaire statements from the previous coding
phase to identify UX metrics in the pHRI studies (see Supplemental Materials). These measurements
and questionnaire statements capture the aspects of UX that the pHRI researchers aimed to cover
in their study. Thus, they provided a rich data source for analysis. In two sessions, the three authors
created affinity diagrams of the measurements and statements.

We grouped the questionnaire statements that users rated in the studies in one session. We
discarded all the ratings where the exact statement or question was not reported in the article
(53 rated statements and questions from 14 studies). This left 333 statements and questions for
the affinity diagraming session. Before the session, all the statements were printed on article, cut
individually, and mixed into a random order. During the affinity diagraming session, the three
authors read each statement aloud, discussed the underlying metric, and placed it on a table near
statements referring to the same metric. When a statement was unclear, it was set aside for checking
in the future. After going through 100 statements, the authors labeled the affinity groups using
sticky notes. This process was repeated until all the statements were placed in the groups. If an
author proposed a change in the grouping of a statement, all the authors discussed and accepted or
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Table 1. Parameters of the Physical Interactions in the 44 pHRI Studies

H. Seifi et al.

Physical Interaction Description and Examples N %

Parameters

1. Role of touch

Support completing a task Physical contact is needed for completing a task [41, 100]. 8 18

Communicate or influence Physical contact is mainly provided to communicate to or influence 26 59
users or robots (e.g., emotions, effort, and judgment) or socially support
them [12, 54].

Teach or guide movement Physical contact is used to teach or guide movement of the robot or 10 23
user [74, 79].

Unintended contact Physical contact is not intended in the interaction, but it happens (or 1 2
appear to happen) as a result of an error [64].

2. Who

Human The human initiates and is active in the physical contact [42, 76]. 19 43

Robot The robot initiates and is active in the physical contact [32, 73]. 10 23

Mutual Both the human and the robot participate in the physical interaction 20 45
(e.g., handover, handshake, and hug) [18, 109].

3. Type of touch

Touch (general) The action is generally reported as “touching” in the article. This 13 30
category often involves brief or static contact [12, 124].

Move Holding onto and moving a body part in space [5, 38]. 6 14

Handover Passing objects without direct physical contact between the actors [8, 7 16
98].

Handshake Taking hold of and shaking each other’s hand [9, 14]. 4 9

Hug Embracing or being embraced in one’s arms [18, 111]. 5 11

Stroke Actions that were described as stroking or wiping in the studies [32, 2 5
110].

Other Push, pull, tap, hand clapping, or when users could select any touch 11 25
actions from a set of available actions [31, 42].

4. Body location

Hand or end effector Anywhere on or below the wrist for the user as well as the robot’send 19 43
effector [39, 79].

Arm Forearm or upper arm of the user, a humanoid robot, or any location 7 16
on a robotic arm [5, 124].

Whole body The physical contact involved multiple body parts (e.g., during a hug) 10 23
or the contact could be applied to any body part (e.g., touching a robot
anywhere on its body) [19, 109].

Other Other body locations included shoulder, upper back, waist, buttock, and 11 25
the robot’s tray [69, 73].

5. Duration

Brief <60 seconds [8, 88] 13 30

Long >60 seconds [109, 123] 2 5

Unlimited No time limit was imposed on the physical interactions and the timing 8 18
varied across the users [52, 59].

Not reported Duration of the contact is unclear from the article [76, 79]. 21 48

We coded the studies according to the role of touch, who initiated the touch (actors), type of touch, location of touch, and
duration of the physical interaction. The numbers and percentages may not add up to 44 and 100, respectively, because

one study can involve multiple parameters.

rejected the proposed change. In this process, we discarded 17 statements that were either open-
ended questions (e.g., “What would you name the robot?”) or the exact measures or their meaning
was unclear (e.g., “the participant’s impression of the researcher who proctored the experiment”).
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Table 2. Factors That Were Systematically Varied (i.e., Independent Variables) in the pHRI Studies

Independent Variable Description and Examples N %
Physical interaction Touch/no touch (n = 10), role of touch (n = 2), who (n = 4), location (n =1), 35 80
sensation or motion parameters (n = 13), duration or timing of touch (n = 5)
[69, 110].
Visual Facial expressions (n = 2), gaze behavior (n = 1), or visual appearance of 4 9

the robot (n = 1) [18, 39].

Sound/utterances Verbal utterances or noises made by the robot as part of the physical 1 2
interaction [32].

Task The study task to be completed [31, 42]. 6 14

Intention Robot or human’s attitude or social role [63, 126]. 9 20

Demographics Gender or other demographic characteristics of the robot or participants 3 7
[12, 109].

Other Previous interactions, task outcome (success or failure), human vs. robot 6 14
[52, 10].

None This category includes qualitative studies without independent variablesand 5 11

studies where the researchers collected numerical data but no parameters
were varied systematically [14, 100].

The numbers and percentages may not add up to 44 and 100, respectively, because one study can involve multiple
independent variables.

This process resulted in 24 groups (i.e., UX metrics). After the session, one of the authors entered
the UX metric for each of the 316 statements (333 statements—17 discarded items) into an Excel
sheet. Another author reviewed all the statements and their UX metrics and flagged 31 items that
were not consistently categorized. In a subsequent meeting, the three authors discussed these
statements and revised the UX metrics for the statements as needed.

In a second session, the authors grouped 72 data measurements (e.g., through datalogs or video
coding) from the 44 studies. The three authors followed the same procedure as above to group the
measurements. This process led to five groups (i.e., UX metrics). Four of the UX metrics, including
accuracy, time, social traits or behavior, and emotion, overlapped with the 24 metrics from the rated
statements. One new metric was identified as descriptive measures (e.g., number of actions).

Finally, one of the authors counted the number of studies with a rated or measured item for each
UX metric. Table 4 presents the results of the above process.

4 Results

In this section, we present trends and gaps in the pHRI studies based on the detailed analysis of
our sample. Specifically, we report the physical interaction parameters, independent variables used
in the studies, data collection methods, and user study metrics in our sample of 44 studies.

4.1 Physical Interaction

We discuss the physical interactions according to five parameters that were varied in previous
studies: role of touch, who initiates and is active in touching (actor), type of touch, body location,
and duration of the physical interaction. Figure 3(f) shows six example physical interactions with
different combinations of these parameters. Table 1 gives an overview of physical interaction
parameters for all the studies in our sample.
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Table 3. Timing and Methods of Data Collection and Questionnaires Used in the Reviewed Studies

H. Seifi et al.

Categorization Scheme Description and Examples N %

1. Time of data collection

Before Electrodermal arousal before touch [76]; NARS before any 11 25
interaction with the robot [130]

During Video recordings of each touch event [126]; time to complete 25 57
task [31]

After RoSAS after interaction with the robot [98]; post-study inter- 37 84
view [79]

2. Method of data collection

Questionnaires Self-developed questionnaire on robot friendliness [110], social 38 86
perception of human-to-robot handovers with RoSAS [98]

Video recordings Video analysis of emotions exhibited by participants during 15 34
clap interaction [39], timing and frequency information from
videos of handovers [45]

Datalog Motion tracking to collect average of speed, step-length,and 7 16
cadence [74], temperature and tactile sensor data [14]

Interviews Interviews regarding attitudes toward assistance from arobot 4 9
in homes [100], interviews regarding the whole experience of
touch interactions with a humanoid robot [130]

Physiological signals Skin conductance response [130], respiration rate [121] 3 7

Other Expert rating of task outcomes [5], manual timing [42], and 6 14
think aloud [38, 45]

3. Questionnaire type

Existing questionnaires (validated) =~ NASA TLX [48], SAM [22], PANAS [117], PAD [87],and RoSAS 16 36
[29]

Existing questionnaires (not vali- GodSpeed [16], RAS [92], and NARS [93] 12 27

dated)

Self-developed (items known) Likert scale rating on robot’s social qualities [12], Likert scale 16 36
rating on user’s convenience while receiving an object during
a handover [8]

Self-developed (items unknown) Open-ended questions regarding kinesthetic teaching methods 4 9

[5], questionnaire regarding subjective experience of interact-
ing with the robot via touch [10]

The numbers and percentages may not add up to 44 and 100, respectively, because one study can involve multiple methods.
SAM, Self-Assessment Manikin; PANAS, Positive and Negative Affect Schedule; and PAD, Pleasure-Arousal-Dominance.

Role of Touch. pHRI has been used in multiple domains such as healthcare, manufacturing,
education, technical assistance, and domestic help. Within these domains, we identified four
primary roles for physical interactions. First, in most studies (n = 26), the main purpose of the
physical interaction was to communicate or influence the user’s or the robot’s emotions, judgment, or
behavior. For example, Law et al. studied if participants’ trust in a robot is impacted after observing
the robot touch a person on the shoulder in a video [73]. Shiomi et al. investigated the effect of
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Table 4. The 25 Metrics and the 5 Facets of the pHRI Experience
UX Metric Definition Example Measurements and Rated N N
Statement (Rated) (Measured)
F1—Overall
Overall evalua-  Assessment of overall experience as  “I think using the robot is a good idea” 13 -
tion positive or negative, including state- [19], “I would have preferred that the (21)
ments about user preference and robot did not touch my arm” [32].
liking.
Descriptive Summary statistics describing the ~Number of actions [110], gesture inten- - 11 (15)
measures task/interaction without a positive  sity [126]
or negative connotation
F2—Usability
Time Time needed to complete a task Completion time [42], response time 2(2) 8(13)
[76], “I am satisfied with the time it took
to complete the task using the interface.”
[31], “Efficient” [42]
Accuracy The accuracy with which a task is  Number of collisions [31], if the robot 1(1) 8 (10)
completed, that is some quantifica- accidentally dropped the object [45], “ac-
tion of error curate” [88]
Ease of use General satisfaction with using the  “I think the robot is easy to use” [18], “I  8(22) -
interface was worried that I might break the robot
using the interface” [31].
Understanding  Understanding or learning of infor-  “I found the voice of the robot easy to  6(12) -
the task* mation in the interface understand” [41], “The interface was in-
tuitive to use to complete the task.” [31]
Workload The physical (e.g., energy) and/or  “Ireally had to concentrate to use thero- 3 (4) -
mental resources users spend on the  bot” [41], “Was the handling physically
interaction, including NASA Task exhausting?” [123]
Load Index (TLX) as an estab-
lished instrument
Feedback The amount and quality of informa- “The instructions from the robot were 3 (4) -
tion given to the user during the sufficient” [41], “Do you think the feed-
interaction back was helpful?” [123]
Learnability User attitude toward how easy itis  “It was easy to learn how to use the 2(3) -
to learn to use the interface touching interface” [31], "How difficult
was to learn how to use the robot?” [74]
F3—Sensory
Visual Qualities judged based on appear- “Large/small” [124], “laid-back/busy” 7(15) -
ance [124]
Physical sensa-  Qualities judged through touch “Smooth/rough” [124], “The robot looks 3 (16) -
tion very strong.” [32]
Auditory Qualities judged through sound “Quiet/noisy” [124] 1(1) -
F4—Personal
and Interper-
sonal
Social traits or  Traits or behavior that relate to in- Percentage of eye-contact [14], 14 7 (21)
behavior teractions with others face distance [14], and frequency (32)
of prompted/unprompted touches
[34], “This hug made the robot seem
(unfriendly—friendly).” Block et al. [18],
“Likeable” [42]
(Continued)
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Table 5. Continued
UX Metric Definition Example Measurements and Rated N N
Statement (Rated) (Measured)
Personal traits  Qualities that typically belong to a  “I think the robot went out of its way to  9(37) -
person help the person.” [12], “Principled” [73]
Capability Assessment of the skills or ability ~ “I felt that the robot was very capable 8(19) -
of an entity which may or may not  of performing its job” [12], “I trust the
refer to a specific task robot to do the right thing at the right
time.” [45]
Active or pas- Assessment of the overall activity of ~ “The robot moves its arms too slowly” 8(17) -
sive an entity. This includes statements  [63], “The robot showed an passive be-
about the speed or frequency of ac-  havior” [41].
tion or reaction.
Intelligence A subset of capability that focuses  “I feel understood by the robot” [19], 8(11) -
on mental skills or ability “The robot understood what I explained
to it” [63]
Predictability =~ Qualities of reliability, consistency, “I always knew what the robot was go- 7(11) -
and anticipating the next action of  ing to do next” [42], “The robot worked
an entity the way I expected it to.” [41]
Teamwork A subset of capability that focuses  “The robot has specialized capabilities  5(14) -
on joint abilities or skills between  that can increase our performance.” [12],
two or more entities “Someday I could work with this robot
to build something of interest.” [63]
F5—Experiential
Safety Feelings of fear, being threatened or ~ “I felt safe” [8], “I feel threatened by the 16 -
nervous, and danger robot” [19] (26)
Enjoyment Comfort, enjoyment, or engage- “It was enjoyable when the robot was 15 -
ment touching my arm” [32], “I feel uncom- (25)
fortable with the robot.” [45]
Emotion Affect instruments (PAD [87], SAM  Arousal level from Galvanic Skin Re- 8(18) 5 (8)
[22], and PANAS [117]), emotion la- sponse [76], facial expressions [39], “I
bels in Russell’s circumplex model  found it exciting to interact with the ro-
of affect [105], or reference to user  bot.” [41], “Interesting/Boring” [14]
feelings
Symbolic Referring to the value or meaning  “People would be impressed if Thad such 2 (2) -
of something in the society (among  a robot” [19], “I would feel nervous op-
people) [6] erating a robot in front of other people.”
[130]
Motivation Internal desire or external pressure  “I was motivated to walk” [74], “I 1(2) -
to do something felt pressure or resistance for walking
faster/slower.” [74]
Autonomy Sense of control or independence in ~ “I felt independent to walk, even being  1(1) -

the interaction

supported by the platform.” [74]

The metrics are derived from the rated statements and measured items reported in the 44 studies. The numbers outside the
parentheseis reflect the number of studies and the numbers. The numbers inside the parentheses reflect the number of
items. The metrics in each facet are sorted from high to low prevalence in the studies.

touch on user behavior. In a study, they examined how touching or being touched by a robot
influences user effort in a monotonous task and their judgment of the robot’s friendliness [110]. In
another study, the same authors examined if reciprocating the user’s hug by a teddy bear robot can
increase the user’s interaction time and amount of self-disclosures [111]. Fitter and Kuchenbecker
studied user perception of the social attributes of a Baxter robot during a playful hand-clapping
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(a) A robot hands over a hammer to a user in (b) Novice users teach a movement to arobotarm (c) The PR2 robot touches the user on the shoul-
an orientation that maximizes the user’s conve- by grabbing and moving the arm [124]. der while guiding them about how to fix an error
nience when grasping the object [8]. on the computer [74].

(d) A humanoid robot strokes the user’s hand ask- (e) A user plays a hand-clapping game with the (f) A user and a teddy bear robot hug while con-
ing them to complete a repetitive office task [111]. Baxter robot [40]. versing with each other [112].

Fig. 3. Example of physical interactions in our review that show a variety of touch parameters (Table 1).

game [39]. Second, in several studies (n = 8), physical contact was required to support completing a
task, such as object handover [8], nursing [32], or opening a path for robot navigation [64]. Third,
in a subset of the studies (n = 10), the physical contact served to guide or teach movement of the
robot or the user. In particular, five studies had the user involved in guiding a robot to a position
through direct touch [31, 38, 42, 63], four studies examined UX of programming movements of
a robot by physical demonstration [5, 52, 79, 123], and one study focused on a robotic platform
supporting user movement in a walking rehabilitation task [74]. Fourth, only in one study (n = 1)
the physical contact was unintended, meaning that the contact appeared to be the result of an error
[64]. Given that accidental contact with robots can happen as a result of errors or noise in the
robot hardware or algorithms, the lack of research on the effects of accidental contact on UX is
surprising. We discuss this gap in Section 5.

Who Touches. The studies also differed in whether the human (n = 19), the robot (n = 10), or
both (n = 20) were actively engaged in the touch interactions. In this case, analyzing the link
between who touches and the role of touch in the reviewed studies revealed interesting patterns.
When the human was touching, the role of touch could be any of the four categories mentioned
above. Joint touches were used to communicate or influence users (n = 12), support completing a
task (n = 7), or teach or guide movement (n = 1). In contrast, when the robot was touching, the
role of the touch was mainly to communicate or influence the participant (n = 9). For example,
Yeufang et al. investigated how a robot’s touch impacts the user’s emotion and attitude toward the
robot [130]. Only in two study conditions did the robot-initiated touch support completing a task.
In one study, the robot cleaned the forearm of the user in a nursing context [32], and in another
study, the robot touched the participant to open a navigation path [64]. Robot-initiated touches
were not used to teach or guide the user’s movement, and a robot did not initiate an unintended
accidental contact. These scenarios are imaginable in physical interaction with robots, but they are
underexplored in the literature.
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Type of Touch and Body Location. The type of touch interaction was described with various
phrases and levels of detail. Several studies (n = 13) referred to the interaction generally as touching
without specifying it in detail. Others used a label (e.g., tapping) to describe the touch. However,
we could not discern whether the use of these labels was consistent across different studies. The
location of touch was mainly on the hand (n = 19) or arm of the users or the robots (n = 7).
Others involved multiple areas of the body (n = 10) such as during a hug, or focused on other
body parts (n = 11) such as the shoulder or waist. The focus on hands and arms is similar to the
haptics literature, reflecting the importance of hands in sensing and manipulation. In contrast,
haptic devices targeting multiple or other body parts are rare.

Duration. The duration and timing of the touch showed trends and some methodological issues in
the reviewed articles. The duration of physical contact was reported in only about half of the studies
(n = 23). When reported, the duration ranged from a few seconds (n = 13) to minutes (n = 2). In
some cases, the duration was not limited in the study and differed between participants (n = 8). In
all cases, the touch event was part of a longer interaction timeline, usually spanning a single session.
Only one study was conducted over several sessions. Huijnen et al. ran a four-session study with
children with autism over 4 weeks to compare their attention and interaction with the KASPAR
robot and a teacher [59]. The time of the robot-initiated touches (n = 10) was either implicitly or
explicitly communicated to the participants. In two studies, the participants could not anticipate
the exact timing of the touch. In one study, the robot occasionally touched the participant during a
scary movie [121], and in another study, the robot touched the participant’s shoulder to open a
navigation path while passing from behind the participant [64]. In other cases, the participants
could either anticipate the contact from the robot’s verbal announcement or the study protocol
(n = 3), or they only observed videos of a robot touching someone (n = 5). Studies of the robot
touching the user without explicit notice or permission can improve the efficiency of human-robot
teaming, but they are underexplored in the reviewed studies.

4.2 User Study Variables and Methods

Most reviewed studies (n = 39) used controlled experiments to study the effect of one or
more independent variables on UX or task performance. We examined the independent variables
(Table 2) and the data collection methods (Table 3) that the authors employed in their studies.
Independent Variables. Most studies varied the parameters of the physical interaction. Some
compared direct physical contact with the robot to no contact or to interacting through an interface
such as a joystick (n = 10) while others varied who touched the other (n = 4). Variations in
sensation or motion parameters included the type of touch and robot forces [9, 18, 19, 39, 79, 123,
125], body materials [124], temperature [19], the existence of clothes [10], as well as robot’s position
or trajectory of motion [8, 25, 45, 69, 88, 98] for the physical interaction. Other studies examined
timing variables such as the touch duration [18, 19, 45] or robot’s movement speed [98] or reactivity
[39]. Two studies varied the role of the touch interaction [32, 64]. Specifically, in one study, the
robot stroked the user’s forearm to either clean it (i.e., completing an action) or to support the
user emotionally [32]. In another study, the robot directly touched the user to open a path for its
navigation (support completing a task), or the user accidentally collided with the moving robot
(unintended contact) in two different conditions [64]. The location of touch was only varied in one
study. The focus on studying the impact of physical parameters is not surprising for pHRI studies.
Other studies varied factors such as visual and auditory modalities, the interaction tasks, and
the user or robot’s background or intent. Only one study varied the robot form by asking users to
rate videos of two hugging robots [18]. All the other studies used a single robot. Similarly, verbal
utterances or sounds were also only varied in one study. In this case, Chen et al. manipulated
the timing of verbal utterance in relation to touch [32]. The results of these studies confirmed
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that various contextual parameters can mediate the UX of touch. Finally, a few studies did not
have any independent variable; they examined the correlation between different variables and
measurements (e.g., number of verbal utterances and data from temperature sensors) without
systematically varying them [14] or collected user interaction data and experience for only one
physical interaction condition [34, 100].

Study Methods. We analyzed the user study methods based on the time and methods of data
collection and the questionnaire types and sources following Bargas-Avila and Hornbee’s analysis
of the HCI literature [15].

The results of coding the time of data collection show clear similarities between the pHRI and
the HCI literature (Table 3). Researchers often collected the data after (n = 37,84%) or during
(n = 25,57%) the physical interaction. A small set of studies also collected data before the physical
interaction (n = 11, 25%). The before data provided baselines for physiological recordings (n = 3)
or user impressions of a robot before physical contact (n = 5). The video recordings helped the
researchers code the start time of the physical interactions in two studies. Similar to these trends,
the review of UX methods in the HCI literature reported that researchers often collected data after
the user interaction (70%), followed by during (58%) and before the interaction (20%).

In contrast, the data collection methods in our review (Table 3) are less diverse and more focused
on quantitative data than those reported in the above-mentioned review. Most pHRI studies in our
review used a questionnaire with subjective ratings (n = 38, 86%), followed by video recordings
(n = 15,34%) and datalogs (n = 7,16%). Interviews and other data collection methods, such as
measurements of body movements and think-aloud protocol, were rarely used. In contrast, Bargas-
Avila and Hornbeaek noted that only 33% of their reviewed studies mainly used quantitative methods.
Also, they reported a wider range of data collection methods in their sample, such as live observation,
diaries, probes, collages or drawings, and photographs.

Many studies (n = 20) use self-developed questionnaires. In a subset of the studies (n = 4), the
authors do not report the exact statement or questions presented to the participants. Validated
questionnaires are often used for evaluating one’s emotions or workload. Similar methodological
trends and issues are previously reported in other fields [15] and are known to the community. Such
patterns may be inevitable in a developing field and suggest the need to develop questionnaires
and best practices for pHRI studies.

4.3 UX Metrics

To capture the metrics of the pHRI experience, we collated the rated statements and measurements
in the reviewed articles, created an affinity diagram, and grouped the resulting metrics into five
facets. Table 4 shows the 25 UX metrics from this process. One can note the variety and distribution
of the UX metrics in the reviewed studies. No metric was used by more than half of the studies
(n > 22), and some metrics such as autonomy and motivation were included in only one study.
Among the UX metrics, accuracy, time, social traits or behavior, and emotions are captured with
both rated and measured items. In contrast, the rest of the metrics are only collected via rated
statements, and descriptive measures is only among measured items. We further divided the 25 UX
metrics into the following five facets:

F1—Owverall. These UX metrics provide an overall interaction perspective without focusing on
any specific component. The metrics include descriptive measures and overall evaluation ratings.

F2—Usability. This facet provides a task-centered perspective and focuses on the users’ per-
formance and opinion in relation to completing a task. These metrics are known for evaluating
the usability of an interface in the HCI literature [55]. Here, the robot is regarded as a computer
interface. Ease of use, accuracy of the outcome, user workload, or extent of understanding the task
are covered in several studies, whereas learnability and feedback are less common in our sample.
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Hornbeek reports a wider range of usability metrics for the HCI literature [55], some of which are
more detailed subsets of the metrics found in our sample. For example, Hornbaek reports mental
effort, communication effort, and information accessed, but we include all of them in workload.
Other usability metrics from Hornbeek’s review, such as quality of outcome, binary task completion,
and input rate, were rare or absent in our sample.

F3—Sensory. The metrics in this facet evaluate the interaction or robot in relation to the human
basic senses such as user perception of visual, auditory, or physical aspects. A few studies ask about
attributes that are judged visually, while only 3 studies (out of 44) ask users to rate touch sensory
properties. Only one study includes a rating of auditory components [124]. Our sample of studies
did not include any metrics related to the sense of smell or taste. We could not find an exact match
for this facet in the HCI literature. Metrics related to esthetics or appeal in the HCI literature [15]
and the autotelics from recent work on haptic experience [67] seem the most related to this facet.

F4—Personal and Interpersonal. This facet evaluates the robot as an autonomous being. The metrics
cover the judgment of the robot’s characteristics, capability, or social attributes and the judgment
of the robot’s joint interaction with the user or teamwork. Only 5 studies ask users to rate teamwork
when 20 studies have a mutual touch between the user and the robot. Overall, the personal and
interpersonal metrics are well represented in our sample with many of the rated statements (142
out of 317). In contrast, these metrics are not present in the HCI literature.

F5—Experiential. These metrics deal with the user’s feelings, are more holistic, and are not focused
on a task. The metrics in this facet overlap with the UX metrics reported by Bargas-Avila and
Hornbeek, but we note a different distribution in our sample. Among the metrics, enjoyment, emotion,
and motivation are present in both our and their HCI sample. In contrast, the UX of safety is the
most common metric in our sample, but it is absent from their review. The focus on safety in the
pHRI literature is perhaps due to the possibility of user injury in physical interactions with robots
compared to the minimal risk of interacting with visual and auditory interfaces common in HCL
Surprisingly, the experience of autonomy is only included in one study in our sample.

The experiential (F5) and personal and interpersonal (F4) metrics are included the most in our
sample, followed by the usability (F2) and overall (F1) metrics. The sensory metrics (F3) are evaluated
the least in our sample.

Analyzing the distribution of UX metrics employed in the pHRI studies highlights that researchers
are often interested in more than a single aspect of UX but have difficulty delineating their UX goals.
While some studies focused on a single UX metric such as emotions (e.g., [9, 125]) or social traits
or behavior (e.g., [34]), most studies (n > 30) in our sample collected data on more than one UX
metric. In several cases, the studies collect data on UX metrics spanning across both task-centered
usability metrics (F2) as well as metrics in the personal and interpersonal or experiential facets (F4,
F5). For example, for human-robot collaboration in an assembly task, Gleeson et al. collected data
across 11 UX metrics ranging from ease of use, time, and workload of the task to the physical
sensation, the robot’s personal and interpersonal traits, and user enjoyment [42]. However, the
goal statements are often either broadly defined or are not directly linked to the study’s metrics.
For example, some studies aimed to assess if a touch condition was “positive” or “favorable” but
collected user responses for several UX metrics (e.g., 16 metrics) across all the facets. Defining the
metrics and facets of the pHRI experience can provide researchers with a lexicon to clearly specify
and link their goals to data collection.

5 Discussion

Below, we present a conceptual model for the pHRI experience based on the above analysis. Then,
we discuss implications for future work based on the trends and gaps in the literature and reflect
on the limitations of this work.
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5.1 A Conceptual Model of pHRI Experience

We propose a conceptual model for pHRI (Figure 1) with three main components: (1) design
parameters, (2) interaction timeline, and (3) UX metrics. While this article focuses on the UX of
pHRI, the first two components can directly impact UX and thus are included in our conceptual
model. These components can help designers and researchers describe an interaction, use it to
generate ideas about alternative designs and evaluate the UX of the interaction. Below, we briefly
describe each component and discuss its utility for pHRI research.

(1) Design Parameters: The first component of the model depicts the pHRI design parameters
around the user, robot, and their interaction. Researchers can manipulate the design parameters
to study their impact on UX. For instance, one may design the pHRI for a specific demographic
user group or compare the UX of two user groups. For example, Law et al. studied the impact of
a user’s gender on their trust in a robot after watching a video of the robot tapping a person on
the shoulder [73]. Others could study the impact of user expertise or beliefs (e.g., negative attitude
toward robots [63]) on the pHRI experience. Studies of pHRI frequently manipulate physical and
overall interaction parameters (Table 2). Finally, several design parameters exist for the robot, such
as its multisensory presentation (e.g., robot’s appearance, gaze, and sound) or its social parameters
of the robot’s role, intention, or attitude.

Design parameters have both descriptive and generative power by nature. The list of parameters
and their values can be used to clearly describe what is manipulated or kept constant in an
interaction. The parameters can also help generate ideas for new interactions. For example, how
does the robot’s appearance or form impact UX outcomes? As another example, all the studies in
our sample focus on the interaction between one human and one robot. Yet, one can examine UX
where a team of humans or robots are present [68].

(2) Timeline: The second conceptual component is the interaction timeline, which enables re-
searchers to describe the sequence and timing of physical and overall interactions. The temporal
description of pHRI in our sample of studies is surprisingly incomplete. Duration of touch stimula-
tion is a salient parameter for a haptic signal [127]. Yet, many studies in our review do not report the
duration of their physical interactions. The interaction sequence is often described qualitatively and
sometimes mixed with the description of the study procedure. The timeline component provides
descriptive power for pHRI studies and emphasizes the impact of previous interactions, such as
verbal utterances, on the pHRI experience.

Second, a timeline view of pHRI has generative power. A few studies in our sample showed
the importance of temporal parameters (e.g., motion speed and duration) and the sequence of
verbal and touch modalities [32] on UX outcomes. The temporal view is in line with work on robot
sensing and planning algorithms that are sequential in nature. In robot sensing, the difference
between touch gestures is in the spatiotemporal signature of the touch signals obtained from
the sensor [24, 26]. Robot planning frameworks such as partially observable Markov decision
processes [72] and reinforcement learning are inherently sequential. Considering interaction as
sequential decision-making is also gaining traction in computational models of human interaction
with technology [96]. Sequential descriptions of pHRI can facilitate knowledge transfer from pHRI
studies to computational simulations of pHRI interactions and results.

(3) UX Metrics: The third component of the model is the UX metrics and their five facets. This
component captures the complex and multidimensional aspect of UX in pHRI. The UX metrics are
obtained from the statements and measurements in the studies and divided into overarching facets.

In contrast to the design parameters, the relationship between the UX metrics and the user,
robot, and interaction entities is complex. Specifically, the overall (F1) metrics can apply to any
of the human, robot, or interaction entities, the usability (F2) metrics can apply to the robot or

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 2, Article 27. Publication date: June 2024.



27:18 H. Seifi et al.

the interaction, the sensory (F3) and personal and interpersonal (F4) metrics mainly apply to the
evaluation of the robot or the joint work, and the experiential metrics (F5) can apply to the human or
the robot (e.g., evaluating emotion of the robot). Thus, we represent them separately from the user,
robot, and interaction entities in the conceptual model. Among these metrics, the first three facets
(overall, usability, and sensory) can apply to interactions with computers, personal and interpersonal
metrics only apply to robots or virtual agents, and some metrics from the experiential facet such as
safety, and autonomy mainly apply to pHRI or interactions with Artificial Intelligence (AI).

The five pHRI facets are meant to provide an initial guide, rather than fixed categories, to
evaluate various aspects of UX. Thus, the metrics in the five facets can relate and overlap. For
example, ease of use can refer to the evaluation of an interface or task and also convey a subjective
feeling of ease, making the metric relevant to both the usability (F2) and the experiential (F5)
facets. Similarly, the usability and UX metrics are not strictly separate and overlap in the HCI
literature. In the proposed model, we included ease of use in the usability metrics for two reasons.
First, the ease of use statements in our sample refer to the evaluation of the task or the robot
as a tool when completing a task, in line with our definition of the usability facet. Second, this
categorization is aligned with existing HCI literature where ease of use is regarded as a usability
rather than an UX metric [55], enabling the development of shared theories across the pHRI and
HCI fields.

The UX metrics and their facets provide descriptive and evaluative power for pHRI research. The
metrics can help researchers better describe the goal(s) of their pHRI interactions and evaluate
the relevant metrics in empirical studies. Also, the metrics and their underlying statements (see
supplementary materials) provide a starting point for creating a validated questionnaire for pHRI
experience. The design parameters and the interaction timeline influence the UX outcomes. Yet, how
these parameters impact UX outcomes cannot be currently established due to the methodological
variations and gaps in the pHRI studies.

Using the Conceptual Model of pHRI Experience. We anticipate three ways that future work can
use and build on this conceptual model to further highlight nuances of designing and evaluating
physical interactions with robots.

First, researchers can use the model to identify gaps and define research directions. For example,
an open question is the impact of different design parameters on the pHRI experience. Touch
is often described in the literature as a personal and emotional communication channel when
compared to the audio and visual modalities [83]. Future work can test whether this assumption
holds in pHRI by designing experiments where a robot communicates emotional support through
physical contact vs. other channels (e.g., gaze, facial expressions) and comparing user evaluation of
personal/interpersonal and experiential metrics (F4, F5). Another important area for future work
would be to investigate the impact of temporal parameters such as the duration, repetition, and
influence of previous interactions on the UX of pHRI. Also, the combination of the conceptual
model and the review of pHRI studies in our sample highlight gaps and open challenges for future
research as we discuss in the next section (Section 5.2).

Second, the model can serve as an initial structure for promoting a shared understanding and
communication among researchers with various engineering and social experiential research
directions in the field. By charting the pHRI space with a set of parameters, the model out-
lines what and how to report pHRI experiments. The model can also help teaching and edu-
cation in the field, allowing students to identify and discuss the design considerations in pHRI
experiments.

Third, we hope pHRI researchers improve the model based on their empirical results. With
improved reporting of design parameters and UX metrics, future research can revise the conceptual
model to establish stronger links between different components. For example, our model currently
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divides the design parameters according to the user, the robot, and their interaction, but future
empirical studies may lead to a hierarchical structure for the design parameters that conveys
the relative importance of the parameters on UX outcomes. Also, future studies of the temporal
parameters of pHRI can help further specify the timeline component. Eventually, these descriptive
models can form the basis for predictive and computational models of pHRI experience.

5.2 Implications for Future Research

We summarize gaps in the pHRI studies and discuss avenues for further charting the UX of pHRL

Physical Interaction Parameters. Our review highlights three gaps in studying the physical
parameters of pHRI. First, little work exists on the effect of unintended and accidental robot
contact on users. Only one study in our sample included unintended contact. As robot hardware
and algorithms are susceptible to error, studying the UX of accidental contact and other haptic
errors (e.g., force variations) is an important area for future work. Studying accidental contact in
an ecologically valid way is challenging and would require a careful study design. We anticipate
advances in predicting user movement trajectories [30, 44] and detecting anomalies from robot
sensor data [99] can help in conducting such studies in the future.

Second, our sample did not have any studies where robot-initiated touch guides or teaches
movement to humans. Such physical interactions are particularly relevant for rehabilitation
and skill training scenarios. Robotic devices for physical rehabilitation are often not (perceived
as) autonomous systems. Also, rehabilitation studies often focus on hardware design and clin-
ical outcomes [40, 81]. Future work should assess the UX of being guided by robot-initiated
touch.

Third, the studies in our sample often involved short physical interaction episodes (e.g., seconds
to minutes). We conjecture that longer interactions may be possible depending on the form of
the robot. For example, users may hold and touch robotic pets such as PARO for longer (e.g., 30
minutes) and multiple sessions over several weeks or months [102]. Also, autonomous vehicles
or automatic beds that simulate the feel and breathing of a human body [51] may be viewed as a
form of pHRI; these technologies can sense the environment and “touch” the user, and the duration
of physical contact can extend to hours or days. Do users perceive these systems as robots? The
relationship between the UX of touching and being touched by these technologies and conventional
robots is an open question for future work.

UX of Observed vs. Real Touch. Our sample included five studies of observed touch where partici-
pants watched videos of physical interactions between a human and a robot. A few studies in haptics
and HRI show that people can infer tactile sensations and their emotional associations through
vision [17, 57, 108, 114, 120]. These studies are in line with neuroscience research suggesting that a
subset of motor neurons is fired for the observation or execution of actions, offering a neural basis
for human empathic response [65]. On the other hand, a recent study showed that observing robot
touch in a video vs. receiving robot touch in the lab can result in different emotional reactions in
users [70]. Little is known about the extent to which user evaluations of observed and actual pHRI
are consistent or different for various facets and metrics of the pHRI experience. Thus, future work
should further investigate the relationship between observed vs. felt pHRI.

Generalizing Beyond a Single Robot. The impact of robot form and body materials on the pHRI
experience is another open question. For example, users may experience the same tapping gestures
differently depending on whether the robot is human or machine-like or whether the robot’s body
is made of hard or soft materials. The studies in our sample used a single robot (except for Block
et al. [18]) while acknowledging that their results may not generalize to other robots. The variety
of robots used in the pHRI studies prevents the community from deriving generalizable findings
and formulating guidelines for pHRI design. One obvious solution is to test the same physical
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interaction(s) with several robots. Yet, robots can vary across many parameters. Researchers often
have access to one or a few robots, and adding a new robot can notably increase the time or number
of participants for a study. These factors make this problem intractable in a lab setting and for a
single research group.

We anticipate two possible solutions to this problem. One solution would be to crowdsource
this task across multiple HRI research labs that follow one predefined reproducible interaction
protocol. Results of studies from different research labs can be compiled in a database and pulled
to assess generalizable trends. An alternative solution can aim to identify archetypal robot forms,
create visual proxies of the physical interactions (e.g., with video, virtual reality), and collect data
on UX at scale. Recent collections of robots [1, 2, 3, 4, 108] can help HRI researchers formalize
archetypal robot forms and their variations. Then, designers create virtual models of archetypal
robot forms and program the interactions with a human avatar to collect user responses. Since
physical feedback is not present, the collected data can only be an estimate of UX. They must
be combined with smaller-scaler in-lab studies to assess the validity of the estimates. Progress
in haptic feedback in virtual environments can further help with addressing this problem in the
future [116].

Developing and Validating a Questionnaire for pHRI Experience. Our review highlights the need
and provides a starting point for developing an UX questionnaire for pHRI. Existing questionnaires
are either adapted from other fields or cover a small subset of the long list of metrics that matter to
pHRI researchers (Table 4). On the other hand, the relationships between different pHRI metrics
are unknown. Which ones correlate? What tradeoffs exist among different UX metrics? Future
work on developing a pHRI questionnaire can shed light on these relationships and tradeoffs.

Establishing a valid questionnaire has an extensive process with several rounds of develop-
ment and validation with many users [94]. Our work provides a list of UX mertics with their
relevant statements for developing the questionnaire and a summary of use cases against which
the instrument could be validated. The list of rated statements can be expanded through common
user research methods (e.g., brainstorming, scenarios) to cover underrepresented dimensions (e.g.,
autonomy) in the initial phases of questionnaire development. Recently, HRI researchers have
successfully used crowdsourcing platforms such as Amazon Mechanical Turk to develop and vali-
date questionnaires such as the RoSAS based on images of robots [29]. Similarly, pHRI researchers
may use crowdsourcing with videos of physical interaction use cases to collect responses at scale
for the development and initial validation of a pHRI questionnaire. However, given the impor-
tance of haptic feedback in pHRI, such a questionnaire must be further validated through in-lab
studies.

Going Beyond Ratings of UX. The pHRI literature can further develop thick qualitative descriptions
and objective measures of UX. Most pHRI studies in our sample use subjective ratings to capture
UX of their physical interactions. While valid, this focus is limiting. This approach falls between
the quantitative measurement-based view common in robotics and the qualitative social science
view that provides in-depth descriptions of a complex phenomenon. We argue that more pHRI
research is needed on the two ends of the spectrum of the qualitative-to-quantitative data collection
methods.

On the qualitative end of the spectrum, in-depth interviews and contextual inquiry can provide
thick subjective descriptions of the UX of pHRI and shed light on design parameters and qualities
that researchers may overlook. For example, the sense of autonomy, teamwork, and symbolic
experience of pHRI are hardly captured in the studies. Qualitative studies can further highlight
the nuances of these dimensions to inform future work. Interestingly, the review by Bargas-Avila
suggests that such qualitative studies are prevalent in the HCI literature [15], and they have been
used to highlight nuances of UX with other technological artifacts [71].
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On the quantitative end of the spectrum, we need more research on identifying objective be-
havioral measures of UX. User ratings are hard to collect and potentially disruptive during the
interaction, limiting the data to before and after the interaction. As such, the temporal view of
physical interactions with robots is still poorly understood. A few studies in our review incorpo-
rated measures of user gaze [39, 63] or contact force [34], yet objective metrics of pHRI experience
are sparse and hard to link to subjective ratings. For instance, user ratings of safety are often
collected in pHRI studies. Yet, the relationship between user perception of safety and existing
definitions and safety standards in the robotic literature [43] is underexplored. Devising objective or
behavioral pHRI metrics and linking them to subjective UX metrics remains an open challenge for
future work.

Adapting Robot Behavior to UX. Metrics of UX are mainly used as an outcome measure to compare
predefined interaction conditions. How can UX metrics guide robot planning and learning during
the interaction? How can robots adapt their touch actions to the user’s state and decide when the
touch could be useful or conversely recognize if touching is undesirable by the user? Past pHRI
studies have adapted the robot motion to the user body (e.g., size) or movement (e.g., user speed) [18,
58] with positive outcomes. Yet, the extension of this approach to UX metrics is not apparent. As
mentioned above, a possible direction is establishing a link between behavioral measures (e.g., user
gaze) and subjective ratings and incorporating them as an optimization parameter in robot learning
and planning algorithms. Another approach may use advances in conversational agents to obtain
an estimate of UX from natural dialogues during the interaction. Finally, a third approach can build
on the pioneering work of Card and Moran [27, 28] and its extensions [75, 96] to predict human
behavior in a task. These studies attempt to model the human interaction partner as an agent with
perceptual [66], cognitive [56], and motor constraints [82] to predict the human’s actions in a task.
Extensions to model human emotion are also being developed [89]. While these computational
models are still in their infancy and cannot capture the full range of UX (e.g., motivation), they
provide a path for adapting pHRI algorithms to user behavior and experience.

In the last 2 years, 11 other pHRI studies were published in our 3 target venues, showing similar
trends to studies covered in our review. Specifically, several studies focused on communicating
emotions with robots [13, 20, 128] or predicting user perception of robots before and after touch
[108]. In other studies, the physical interaction aimed at completing a task, including two studies on
object handover between a human and a robot [36, 60] and a co-manipulation scenario where the
user and robot hold and move an object together [85]. Finally, four studies focused on teaching or
guiding movement [61, 77, 101, 122]. Interestingly, in three of these studies, the robot was guiding
a human [61, 101, 122] each with a different robot form: a drone that corrects user motion during
an exercise [122], a robotic cane that can guide a visually impaired user [101], and a humanoid
robot that guides the user while walking hand-in-hand [61]. These studies target one of the gaps in
the literature where a robot guides or teaches movement to humans. The UX methods and metrics
in these 11 pHRI studies were also similar to trends reported in our review. Most of the studies
(n = 7) used custom questionnaires, followed by NASA TLX questionnaire for workload, and a few
studies reported measures of task accuracy, gaze or blinking behavior, or physiological recordings.

5.3 Reflecting on the pHRI Experience

The UX metrics used in pHRI vs. HCI suggest key differences and shared characteristics for user
interactions with robots vs. other technologies.

Most UX metrics in our sample fall in the personal/interpersonal facet (F4) while these metrics
were absent from prior surveys of UX in HCI. Perhaps the frequent inclusion of personal/inter-
personal metrics in pHRI reflects the common belief that robots are social agents. Previous work
has shown that people evaluate robots in the same way they evaluate other humans according to
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competence, warmth, and comfort [103]. This social view of robots is also reinforced by popular
fiction [37]. Relatedly, the design of robots’ actions is often inspired by or modeled after human-
human or human-animal interactions. Another important factor in pHRI experience is the robot’s
physicality and autonomy. Young et al. argued that the robot’s physical presence and autonomy to
act in the personal and social spaces of humans can convey a sense of agency and intentionality
often attributed to living creatures [129]. These factors are emphasized in pHRI since physical
modifications of the world can signal competence, and touching is often associated with personal
or social behavior.

Other key differences are related to the UX of safety (from F5), frustration, and sensory (F3)
metrics in the pHRI and HCI literature. The focus on safety in our sample is aligned with the
technical research in pHRI that aims to quantify and reduce the potential for harm and injury
to users [43]. These safety considerations are less relevant in HCI when the user interacts with
software-based user interfaces. In contrast, a common UX in HCI is frustration during computer
use [53], but this aspect of UX is absent in our sample of pHRI literature. HRI studies have started
to investigate user frustration in HRI [90, 118], which can help develop relevant measures for
pHRI research as well. Also, the sensory facet has been a focus in the multisensory HCI and
haptics research communities for decades but is rarely present in our sample of the pHRI litera-
ture. This facet presents an opportunity for leveraging HCI literature to inform pHRI design and
research.

The overall (F1), usability (F2), and experiential (F5) metrics were frequently captured in both
the pHRI and HCI literature. The inclusion of usability metrics suggests that robots can also be
perceived and evaluated as a computer interface. Thus, the social vs. device appraisal of robots may
depend on the interaction context and applications. In the HCI literature, the experiential factors are
described as the “third wave in HCI” focusing on aesthetics, affective interaction, and the embodied
and contextual aspects of human activity and experience [21, 37, 47]. These considerations overlap
with the mixing of technical and social considerations when designing pHRI.

5.4 Limitations

Our work has three main limitations that can be addressed in future work. First, we scoped our
sample to publications in three top-tier HRI venues. This decision was pragmatic. Given no prior
systematic review of pHRI, we found it important for our analysis to cover various aspects of the
user studies (e.g., goals, data collection methods), parameters of physical interactions, and UX
metrics. Thus, we narrowed our sample to these three venues that focus on human-subject studies in
robotics. Yet, pHRI studies with UX metrics are sometimes published in other robotics, engineering
(e.g., rehabilitation, haptics), or interaction design venues (e.g., HCI, affective computing). Future
systematic reviews can complement our work by analyzing one aspect (e.g., physical interaction
parameters) in a larger sample to assess whether our reported trends can generalize across venues.
Second, we obtained the UX metrics and their facets through affinity diagraming and discussion.
Affinity diagraming is an established method for qualitative data analysis [46]. We acknowledge the
active role of the researchers in generating the clusters from the data and the inherent subjectivity
of our analysis method [23]. To support future work, we provide all the rated and measured items
annotated with their UX metrics from our analysis as supplementary material. Third, our review
focused on interactions with robots that are autonomous or perceived as autonomous by users.
Yet, robot autonomy is a spectrum from user-controlled (e.g., in grounded force-feedback haptic
devices or teleoperation) to semi-autonomous (e.g., shared-control robots) to fully autonomous
robots. Future work can extend the proposed conceptual model to capture interactions with robots
with varying levels of autonomy.
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6 Conclusion

Physical interactions with robots have been an active area of research for the last two decades.
However, little is known about how to think about, design, and evaluate these interactions system-
atically. This work presents a systematic review of 44 studies that vary in their use cases of pHRI
and provides a conceptual model of the pHRI experience. Our analysis highlights common trends
and underexplored areas in the literature. We hope our results pave the way for future theories,
empirical studies, and evaluation questionnaires for touch interactions with robots.
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