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ABSTRACT

Similarity analysis plays a crucial role in various software engi-
neering tasks, such as detecting software changes, version merging,
identifying plagiarism, and analyzing binary code. Equivalence anal-
ysis, a stricter form of similarity, focuses on determining whether
different programs or versions of the same program behave identi-
cally. While extensive research exists on code and binary similarity
as well as equivalence analysis, there is a lack of quantitative rea-
soning in these areas. Non-equivalence is a spectrum that requires
deeper exploration, as it can manifest in different ways across the
input domain space. This paper emphasizes the importance of quan-
titative reasoning on non-equivalence which arises due to semantic
differences. By quantitatively reasoning about non-equivalence, it
becomes possible to identify specific input ranges for which pro-
grams are equivalent or non-equivalent. We aim to address the gap
in quantitative reasoning in symbolic similarity analysis, enabling
a more comprehensive understanding of program behavior.
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1 INTRODUCTION

Similarity analysis has various applications, including detecting
and understanding software changes [26], detecting source code
plagiarism [25], and analyzing binary codes for tasks like patch
analysis, bug search, and malware detection [18]. Equivalence anal-
ysis, a stricter form of similarity, focuses on determining if different
programs or versions behave identically. It relies on techniques
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Version 2:
double snippet(int x, int y) {
if (xxx*xx > 0){
if(y==10)//change
return 1000;
} else {
if (false)//change
return -1000;

Version 1:
double snippet(int x, int y) {
if (xxxxx > 0){
if(x>0 && y==10)
return 1000;
} else {
if (x>0 && y==20)
return -1000;
} }

return 0; } return 0; }

Figure 1: Two versions of C programs of equivalent set of the
dart/test from EqBench [5] benchmark

such as symbolic execution [21] and heuristics [3, 4, 24, 26, 29] to
assess that.

Even though there is a lot of prior work on source code or bi-
nary similarity and equivalence analysis, there is no prior work on
quantitative reasoning for code similarity and equivalence. When
we assert that two programs are functionally equivalent we mean
that any terminating version of the programs will produce the
same output for any identical input [17, 26]. On the other-hand,
non-equivalence can correspond to very different scenarios:

e Two programs may produce non-identical output for all
inputs. In essence, the programs maybe non-equivalent for
the entire input domain. This is the most extreme case of
non-equivalence.

e Another case may be, there are some inputs for which the
programs generate non-identical outputs, but for the rest of
the inputs, the corresponding outputs are identical.

Two programs are considered non-equivalent even when the non-
equivalence arises for only one input from the whole domain. So,
when we assert that two programs are non-equivalent we are not
providing the full picture of how different the two programs (or
two different versions of one program) are. Non-equivalence can
be seen as a spectrum which can not be comprehensively reasoned
about just by saying that two programs are non-equivalent. This
is because, unlike equivalence, non-equivalence does not mean
non-equivalence over the whole input domain. Here, we demon-
strate the importance of quantitative reasoning with an example in
Figure 1. The two versions of the C programs are from the EqBench
[5] which is a dataset for equivalence checking. It contains 147
equivalent and 125 non-equivalent programs in both C and java
languages. Both of the versions of the C programs are marked as
semantically equivalent in this dataset even though they are syn-
tactically different. However, recall that integer overflow can lead
to undefined behavior in the C programs. In this case 1, the value of
variable, x, gets multiplied 3 times by itself and the comparison of
the resultant determines whether it will go to the else branch or not.
Interestingly here, the multiplication of 3 positive, x’s, can result in
negative value due to integer overflow. Therefore, only classifying
two programs into non-equivalent or equivalent will not show the
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complete view on the semantic similarity of this program. We may
want to know more about for which values of x and y the programs
will be equivalent or non-equivalent.

After analysis, we can infer that the two program versions are
equivalent with respect to C semantics only when x < 1290 A x >
—1290. If x is within that bound, then whatever the value of v is,
these two programs will be equivalent. This result can only be ob-
tained by using a more refined reasoning about non-equivalence.
Note that, this information can also be used to obtain a quantita-
tive result: the number of inputs for which the two programs are
equivalent, or the percentage of the input domain for which the
two programs are equivalent.

2 PROPOSED APPROACH

Given a pair of programs as inputs either binary or source code,
our goal is to determine whether they are equivalent or not. If they
are non-equivalent, we want to acquire further information on the
input values for which the programs behave differently. To achieve
our objective, we can divide our workflow into three steps.

Our first task is to collect the path constraints from the programs
along with the return values using symbolic execution. All the
path constraints and returns from a program will be collected and
combined with disjunction operation to generate the program sum-
mary. The functional symbolic summary for Figure 1 version 1 is:
S1 = ((xXxXx > 0Ax > 0AYy = 10Areturn = 1000) V (x XxXx <=
0Ax >0AY =20Areturn=—1000) V (x XxXx > 0Ax > 0Ay #
10Areturn=0)V(xXxXx <=0Ax>0Ay # 20 Areturn =
0O)V(xXxXxx>0Ax <=0Areturn = 0) V (x Xx X x <=
0 A x <=0 A return = 0)). The generated summary of version 2
i: 52 = ((x XxXx >0Ay=10 A return =1000) V (x X x X x >
0Ay+10 Areturn=0)V (x X x X x <=0 A return = 0)).

In second step, using a constraint solver we can determine
whether S1 & S2 holds, i.e., check equivalence. If they are equiva-
lent, we are done. But if they are not equivalent, then we continue
with further analysis in third step.

For quantitative reasoning on the non-equivalence, we first test
whether the non-equivalence is true for the whole domain or not
by solving the constraint S1 A S2. If we find no solution, then we
can conclude that the programs are non-equivalent for the entire
input domain. If there are some solutions, then we can do more
analysis. We can use model counting projected on the inputs (for
Figure 1, on x and y) to find the number of solutions for which
they are equivalent or non-equivalent. Then we can find the ratio
of the equivalent and non-equivalent solutions with respect to the
domain size. Moreover, we can also find out the inputs for which
the programs act differently or similarly and by this, we have both
the understanding of the input values for which the programs are
equivalent (or non-equivalent) and the number of such cases.

We plan to use KLEE [8] and angr [27] for collection of path
constraints and summary generation using symbolic execution
on the source code and binary code, respectively. For constraint
solving, we plan to use solvers like Z3 [12], ABC [1], cvc5 [7] or yices
[13]. Finally, for the quantitative analysis, we can use any of the
above mentioned constraint solvers with enumeration or directly
use the model counting based solvers [1] for counting the number
of solutions. We can also use the approximate model counting
tools [9], [20] for the approximation on the number of solutions.
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Counting alone does not provide the input values that determine
program equivalence. To address this, we can collect solutions while
counting and reason about the input domain. However, exhaustive
enumeration is not scalable, so heuristic-based search techniques
can be employed to find solutions.

3 RELATED WORK

Binary similarity: Binary code similarity is a valuable approach
used to compare and identify similarities and differences between
binaries. [18] has discussed about 70 binary code similarity ap-
proaches from past 25 years and 27 of the approaches work on the
semantic similarity. Three methods for finding semantic similarities
include symbolic formulas, input-output pairs, and instruction/sys-
tem call semantics. [16] did the basic block comparison using sym-
bolic execution and theorem proving and used that knowledge to
find the graph isomorphism for finding the overall similarity of two
binaries. [30], [23] use symbolic execution on two binary paths for
finding binary differences. [11] works on the statistical similarity
of the binaries by decomposing procedures into small strands and
calculating the similarity score of the binary accumulating the pair-
wise semantic matching of the strands. Function wise similarity is
calculated in [14] under different environments and features using
jaccard index. But no work has been done for finding similarity
focusing on the input domain.

Source Code similarity and equivalence: Source code similarity
is crucial for detecting source code plagiarism. A study [25] reviews
plagiarism detection tools in academia, covering 150 papers. In [10],
behavioral similarity approach utilizing symbolic execution [21] is
utilized for plagiarism detection. Moreover, majority of the popular
techniques relies on symbolic execution [21] for formally prov-
ing or refuting the equivalence of two source codes. [26] proposes
differential symbolic execution where they found out about the
functional difference using symbolic summaries. To improve effi-
ciency, the study abstracted syntactically identical code segments
in the compared versions and explored pre-condition, path-based
differential testing. [3] proposes an alternative way than [26] for
abstracting the complex code. It focuses on tracking impacted state-
ments using static analysis but does not prune common impacted
code, which can be complex and unnecessary for analysis. In con-
trast, [4] introduces a CEGAR-based [19] approach that abstracts
complex and unnecessary code, focusing only on the statements
required for establishing equivalence. [29] and [24] focus on ex-
tending symbolic equivalence checking in inter-procedural level
where [29] is a modular, demand driven approach and [24] is a
client-specific checker. But none of them works on quantitative
reasoning.

Model counting: Quantitative program analysis is an emerging
area and relies on constraint solvers for model counting. [1] has
implemented an automaton-based model counting tool for string
constraints, reducing the problem to path counting. [2] introduced
a multi-track finite state automaton for numeric and string con-
straints, including combinations of both. [15] improves model count-
ing performance using sub-formula caching. Other model counting
tools include SMC [22], S3# [28], LattE [6] each targeting specific
domains such as strings and linear integer arithmetic. Additionally,
there is an approximation-based model counter, [9], which utilizes
a hashing-based approach.
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