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ABSTRACT

Similarity analysis plays a crucial role in various software engi-

neering tasks, such as detecting software changes, version merging,

identifying plagiarism, and analyzing binary code. Equivalence anal-

ysis, a stricter form of similarity, focuses on determining whether

di�erent programs or versions of the same program behave identi-

cally. While extensive research exists on code and binary similarity

as well as equivalence analysis, there is a lack of quantitative rea-

soning in these areas. Non-equivalence is a spectrum that requires

deeper exploration, as it can manifest in di�erent ways across the

input domain space. This paper emphasizes the importance of quan-

titative reasoning on non-equivalence which arises due to semantic

di�erences. By quantitatively reasoning about non-equivalence, it

becomes possible to identify speci�c input ranges for which pro-

grams are equivalent or non-equivalent. We aim to address the gap

in quantitative reasoning in symbolic similarity analysis, enabling

a more comprehensive understanding of program behavior.
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1 INTRODUCTION

Similarity analysis has various applications, including detecting

and understanding software changes [26], detecting source code

plagiarism [25], and analyzing binary codes for tasks like patch

analysis, bug search, and malware detection [18]. Equivalence anal-

ysis, a stricter form of similarity, focuses on determining if di�erent

programs or versions behave identically. It relies on techniques
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Version 1:

double snippet(int x, int y) {

if (x*x*x > 0){

if(x>0 && y==10)

return 1000;

} else {

if (x>0 && y==20)

return -1000;

}

return 0; }

Version 2:

double snippet(int x, int y) {

if (x*x*x > 0){

if(y==10) // change

return 1000;

} else {

if (false)// change

return -1000;

}

return 0; }

Figure 1: Two versions of C programs of equivalent set of the

dart/test from EqBench [5] benchmark

such as symbolic execution [21] and heuristics [3, 4, 24, 26, 29] to

assess that.

Even though there is a lot of prior work on source code or bi-

nary similarity and equivalence analysis, there is no prior work on

quantitative reasoning for code similarity and equivalence. When

we assert that two programs are functionally equivalent we mean

that any terminating version of the programs will produce the

same output for any identical input [17, 26]. On the other-hand,

non-equivalence can correspond to very di�erent scenarios:

• Two programs may produce non-identical output for all

inputs. In essence, the programs maybe non-equivalent for

the entire input domain. This is the most extreme case of

non-equivalence.

• Another case may be, there are some inputs for which the

programs generate non-identical outputs, but for the rest of

the inputs, the corresponding outputs are identical.

Two programs are considered non-equivalent even when the non-

equivalence arises for only one input from the whole domain. So,

when we assert that two programs are non-equivalent we are not

providing the full picture of how di�erent the two programs (or

two di�erent versions of one program) are. Non-equivalence can

be seen as a spectrum which can not be comprehensively reasoned

about just by saying that two programs are non-equivalent. This

is because, unlike equivalence, non-equivalence does not mean

non-equivalence over the whole input domain. Here, we demon-

strate the importance of quantitative reasoning with an example in

Figure 1. The two versions of the C programs are from the EqBench

[5] which is a dataset for equivalence checking. It contains 147

equivalent and 125 non-equivalent programs in both C and java

languages. Both of the versions of the C programs are marked as

semantically equivalent in this dataset even though they are syn-

tactically di�erent. However, recall that integer over�ow can lead

to unde�ned behavior in the C programs. In this case 1, the value of

variable, x, gets multiplied 3 times by itself and the comparison of

the resultant determines whether it will go to the else branch or not.

Interestingly here, the multiplication of 3 positive, x’s, can result in

negative value due to integer over�ow. Therefore, only classifying

two programs into non-equivalent or equivalent will not show the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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complete view on the semantic similarity of this program. We may

want to know more about for which values of x and y the programs

will be equivalent or non-equivalent.

After analysis, we can infer that the two program versions are

equivalent with respect to C semantics only when G ≤ 1290 ∧ G ≥

−1290. If x is within that bound, then whatever the value of y is,

these two programs will be equivalent. This result can only be ob-

tained by using a more re�ned reasoning about non-equivalence.

Note that, this information can also be used to obtain a quantita-

tive result: the number of inputs for which the two programs are

equivalent, or the percentage of the input domain for which the

two programs are equivalent.

2 PROPOSED APPROACH

Given a pair of programs as inputs either binary or source code,

our goal is to determine whether they are equivalent or not. If they

are non-equivalent, we want to acquire further information on the

input values for which the programs behave di�erently. To achieve

our objective, we can divide our work�ow into three steps.

Our �rst task is to collect the path constraints from the programs

along with the return values using symbolic execution. All the

path constraints and returns from a program will be collected and

combined with disjunction operation to generate the program sum-

mary. The functional symbolic summary for Figure 1 version 1 is:

(1 ≡ ((G×G×G > 0∧G > 0∧~ = 10∧A4CDA= = 1000)∨(G×G×G <=

0∧G > 0∧~ = 20∧A4CDA= = −1000) ∨ (G ×G ×G > 0∧G > 0∧~ ≠

10 ∧ A4CDA= = 0) ∨ (G × G × G <= 0 ∧ G > 0 ∧ ~ ≠ 20 ∧ A4CDA= =

0) ∨ (G × G × G > 0 ∧ G <= 0 ∧ A4CDA= = 0) ∨ (G × G × G <=

0 ∧ G <= 0 ∧ A4CDA= = 0)). The generated summary of version 2

is: (2 ≡ ((G × G × G > 0 ∧ ~ = 10 ∧ A4CDA= = 1000) ∨ (G × G × G >

0 ∧ ~ ≠ 10 ∧ A4CDA= = 0) ∨ (G × G × G <= 0 ∧ A4CDA= = 0)).

In second step, using a constraint solver we can determine

whether (1 ⇔ (2 holds, i.e., check equivalence. If they are equiva-

lent, we are done. But if they are not equivalent, then we continue

with further analysis in third step.

For quantitative reasoning on the non-equivalence, we �rst test

whether the non-equivalence is true for the whole domain or not

by solving the constraint (1 ∧ (2. If we �nd no solution, then we

can conclude that the programs are non-equivalent for the entire

input domain. If there are some solutions, then we can do more

analysis. We can use model counting projected on the inputs (for

Figure 1, on x and y) to �nd the number of solutions for which

they are equivalent or non-equivalent. Then we can �nd the ratio

of the equivalent and non-equivalent solutions with respect to the

domain size. Moreover, we can also �nd out the inputs for which

the programs act di�erently or similarly and by this, we have both

the understanding of the input values for which the programs are

equivalent (or non-equivalent) and the number of such cases.

We plan to use KLEE [8] and angr [27] for collection of path

constraints and summary generation using symbolic execution

on the source code and binary code, respectively. For constraint

solving, we plan to use solvers like Z3 [12], ABC [1], cvc5 [7] or yices

[13]. Finally, for the quantitative analysis, we can use any of the

above mentioned constraint solvers with enumeration or directly

use the model counting based solvers [1] for counting the number

of solutions. We can also use the approximate model counting

tools [9], [20] for the approximation on the number of solutions.

Counting alone does not provide the input values that determine

program equivalence. To address this, we can collect solutions while

counting and reason about the input domain. However, exhaustive

enumeration is not scalable, so heuristic-based search techniques

can be employed to �nd solutions.

3 RELATED WORK

Binary similarity: Binary code similarity is a valuable approach

used to compare and identify similarities and di�erences between

binaries. [18] has discussed about 70 binary code similarity ap-

proaches from past 25 years and 27 of the approaches work on the

semantic similarity. Three methods for �nding semantic similarities

include symbolic formulas, input-output pairs, and instruction/sys-

tem call semantics. [16] did the basic block comparison using sym-

bolic execution and theorem proving and used that knowledge to

�nd the graph isomorphism for �nding the overall similarity of two

binaries. [30], [23] use symbolic execution on two binary paths for

�nding binary di�erences. [11] works on the statistical similarity

of the binaries by decomposing procedures into small strands and

calculating the similarity score of the binary accumulating the pair-

wise semantic matching of the strands. Function wise similarity is

calculated in [14] under di�erent environments and features using

jaccard index. But no work has been done for �nding similarity

focusing on the input domain.

Source Code similarity and equivalence: Source code similarity

is crucial for detecting source code plagiarism. A study [25] reviews

plagiarism detection tools in academia, covering 150 papers. In [10],

behavioral similarity approach utilizing symbolic execution [21] is

utilized for plagiarism detection. Moreover, majority of the popular

techniques relies on symbolic execution [21] for formally prov-

ing or refuting the equivalence of two source codes. [26] proposes

di�erential symbolic execution where they found out about the

functional di�erence using symbolic summaries. To improve e�-

ciency, the study abstracted syntactically identical code segments

in the compared versions and explored pre-condition, path-based

di�erential testing. [3] proposes an alternative way than [26] for

abstracting the complex code. It focuses on tracking impacted state-

ments using static analysis but does not prune common impacted

code, which can be complex and unnecessary for analysis. In con-

trast, [4] introduces a CEGAR-based [19] approach that abstracts

complex and unnecessary code, focusing only on the statements

required for establishing equivalence. [29] and [24] focus on ex-

tending symbolic equivalence checking in inter-procedural level

where [29] is a modular, demand driven approach and [24] is a

client-speci�c checker. But none of them works on quantitative

reasoning.

Model counting: Quantitative program analysis is an emerging

area and relies on constraint solvers for model counting. [1] has

implemented an automaton-based model counting tool for string

constraints, reducing the problem to path counting. [2] introduced

a multi-track �nite state automaton for numeric and string con-

straints, including combinations of both. [15] improvesmodel count-

ing performance using sub-formula caching. Other model counting

tools include SMC [22], S3# [28], LattE [6] each targeting speci�c

domains such as strings and linear integer arithmetic. Additionally,

there is an approximation-based model counter, [9], which utilizes

a hashing-based approach.
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