Check for
Updates

Quantitative Symbolic Similarity Analysis’

Laboni Sarker
University of California Santa Barbara
Santa Barbara, CA, USA
labonisarker@ucsb.edu

ABSTRACT

Similarity analysis plays a crucial role in various software engi-
neering tasks, such as detecting software changes, version merging,
identifying plagiarism, and analyzing binary code. Equivalence anal-
ysis, a stricter form of similarity, focuses on determining whether
different programs or versions of the same program behave identi-
cally. While extensive research exists on code and binary similarity
as well as equivalence analysis, there is a lack of quantitative rea-
soning in these areas. Non-equivalence is a spectrum that requires
deeper exploration, as it can manifest in different ways across the
input domain space. This paper emphasizes the importance of quan-
titative reasoning on non-equivalence which arises due to semantic
differences. By quantitatively reasoning about non-equivalence, it
becomes possible to identify specific input ranges for which pro-
grams are equivalent or non-equivalent. We aim to address the gap
in quantitative reasoning in symbolic similarity analysis, enabling
a more comprehensive understanding of program behavior.

CCS CONCEPTS

« Software and its engineering — Software verification; Soft-
ware reliability.

KEYWORDS

symbolic execution, equivalence, similarity, quantitative analysis,
model counting

ACM Reference Format:

Laboni Sarker. 2023. Quantitative Symbolic Similarity Analysis. In Proceed-
ings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3597926.3605238

1 INTRODUCTION

Similarity analysis has various applications, including detecting
and understanding software changes [26], detecting source code
plagiarism [25], and analyzing binary codes for tasks like patch
analysis, bug search, and malware detection [18]. Equivalence anal-
ysis, a stricter form of similarity, focuses on determining if different
programs or versions behave identically. It relies on techniques

“This material is based on research supported by ONR Contract No. N6833523C0019,
OCEANIT LABORATORIES, INC. Award #SB230168, NSF Award #2008660

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3605238

1549

Version 2:
double snippet(int x, int y) {
if (xxx*xx > 0){
if(y==10)//change
return 1000;
} else {
if (false)//change
return -1000;

Version 1:
double snippet(int x, int y) {
if (xxxxx > 0){
if(x>0 && y==10)
return 1000;
} else {
if (x>0 && y==20)
return -1000;
} }

return 0; } return 0; }

Figure 1: Two versions of C programs of equivalent set of the
dart/test from EqBench [5] benchmark

such as symbolic execution [21] and heuristics [3, 4, 24, 26, 29] to
assess that.

Even though there is a lot of prior work on source code or bi-
nary similarity and equivalence analysis, there is no prior work on
quantitative reasoning for code similarity and equivalence. When
we assert that two programs are functionally equivalent we mean
that any terminating version of the programs will produce the
same output for any identical input [17, 26]. On the other-hand,
non-equivalence can correspond to very different scenarios:

e Two programs may produce non-identical output for all
inputs. In essence, the programs maybe non-equivalent for
the entire input domain. This is the most extreme case of
non-equivalence.

e Another case may be, there are some inputs for which the
programs generate non-identical outputs, but for the rest of
the inputs, the corresponding outputs are identical.

Two programs are considered non-equivalent even when the non-
equivalence arises for only one input from the whole domain. So,
when we assert that two programs are non-equivalent we are not
providing the full picture of how different the two programs (or
two different versions of one program) are. Non-equivalence can
be seen as a spectrum which can not be comprehensively reasoned
about just by saying that two programs are non-equivalent. This
is because, unlike equivalence, non-equivalence does not mean
non-equivalence over the whole input domain. Here, we demon-
strate the importance of quantitative reasoning with an example in
Figure 1. The two versions of the C programs are from the EqBench
[5] which is a dataset for equivalence checking. It contains 147
equivalent and 125 non-equivalent programs in both C and java
languages. Both of the versions of the C programs are marked as
semantically equivalent in this dataset even though they are syn-
tactically different. However, recall that integer overflow can lead
to undefined behavior in the C programs. In this case 1, the value of
variable, x, gets multiplied 3 times by itself and the comparison of
the resultant determines whether it will go to the else branch or not.
Interestingly here, the multiplication of 3 positive, x’s, can result in
negative value due to integer overflow. Therefore, only classifying
two programs into non-equivalent or equivalent will not show the


http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4793-7859
https://doi.org/10.1145/3597926.3605238
https://doi.org/10.1145/3597926.3605238
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3605238&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

complete view on the semantic similarity of this program. We may
want to know more about for which values of x and y the programs
will be equivalent or non-equivalent.

After analysis, we can infer that the two program versions are
equivalent with respect to C semantics only when x < 1290 A x >
—1290. If x is within that bound, then whatever the value of v is,
these two programs will be equivalent. This result can only be ob-
tained by using a more refined reasoning about non-equivalence.
Note that, this information can also be used to obtain a quantita-
tive result: the number of inputs for which the two programs are
equivalent, or the percentage of the input domain for which the
two programs are equivalent.

2 PROPOSED APPROACH

Given a pair of programs as inputs either binary or source code,
our goal is to determine whether they are equivalent or not. If they
are non-equivalent, we want to acquire further information on the
input values for which the programs behave differently. To achieve
our objective, we can divide our workflow into three steps.

Our first task is to collect the path constraints from the programs
along with the return values using symbolic execution. All the
path constraints and returns from a program will be collected and
combined with disjunction operation to generate the program sum-
mary. The functional symbolic summary for Figure 1 version 1 is:
S1 = ((xXxXx > 0Ax > 0AYy = 10Areturn = 1000) V (x XxXx <=
0Ax >0AY =20Areturn=—1000) V (x XxXx > 0Ax > 0Ay #
10Areturn=0)V(xXxXx <=0Ax>0Ay # 20 Areturn =
0O)V(xXxXxx>0Ax <=0Areturn = 0) V (x Xx X x <=
0 A x <=0 A return = 0)). The generated summary of version 2
i: 52 = ((x XxXx >0Ay=10 A return =1000) V (x X x X x >
0Ay+10 Areturn=0)V (x X x X x <=0 A return = 0)).

In second step, using a constraint solver we can determine
whether S1 & S2 holds, i.e., check equivalence. If they are equiva-
lent, we are done. But if they are not equivalent, then we continue
with further analysis in third step.

For quantitative reasoning on the non-equivalence, we first test
whether the non-equivalence is true for the whole domain or not
by solving the constraint S1 A S2. If we find no solution, then we
can conclude that the programs are non-equivalent for the entire
input domain. If there are some solutions, then we can do more
analysis. We can use model counting projected on the inputs (for
Figure 1, on x and y) to find the number of solutions for which
they are equivalent or non-equivalent. Then we can find the ratio
of the equivalent and non-equivalent solutions with respect to the
domain size. Moreover, we can also find out the inputs for which
the programs act differently or similarly and by this, we have both
the understanding of the input values for which the programs are
equivalent (or non-equivalent) and the number of such cases.

We plan to use KLEE [8] and angr [27] for collection of path
constraints and summary generation using symbolic execution
on the source code and binary code, respectively. For constraint
solving, we plan to use solvers like Z3 [12], ABC [1], cvc5 [7] or yices
[13]. Finally, for the quantitative analysis, we can use any of the
above mentioned constraint solvers with enumeration or directly
use the model counting based solvers [1] for counting the number
of solutions. We can also use the approximate model counting
tools [9], [20] for the approximation on the number of solutions.

1550

Laboni Sarker

Counting alone does not provide the input values that determine
program equivalence. To address this, we can collect solutions while
counting and reason about the input domain. However, exhaustive
enumeration is not scalable, so heuristic-based search techniques
can be employed to find solutions.

3 RELATED WORK

Binary similarity: Binary code similarity is a valuable approach
used to compare and identify similarities and differences between
binaries. [18] has discussed about 70 binary code similarity ap-
proaches from past 25 years and 27 of the approaches work on the
semantic similarity. Three methods for finding semantic similarities
include symbolic formulas, input-output pairs, and instruction/sys-
tem call semantics. [16] did the basic block comparison using sym-
bolic execution and theorem proving and used that knowledge to
find the graph isomorphism for finding the overall similarity of two
binaries. [30], [23] use symbolic execution on two binary paths for
finding binary differences. [11] works on the statistical similarity
of the binaries by decomposing procedures into small strands and
calculating the similarity score of the binary accumulating the pair-
wise semantic matching of the strands. Function wise similarity is
calculated in [14] under different environments and features using
jaccard index. But no work has been done for finding similarity
focusing on the input domain.

Source Code similarity and equivalence: Source code similarity
is crucial for detecting source code plagiarism. A study [25] reviews
plagiarism detection tools in academia, covering 150 papers. In [10],
behavioral similarity approach utilizing symbolic execution [21] is
utilized for plagiarism detection. Moreover, majority of the popular
techniques relies on symbolic execution [21] for formally prov-
ing or refuting the equivalence of two source codes. [26] proposes
differential symbolic execution where they found out about the
functional difference using symbolic summaries. To improve effi-
ciency, the study abstracted syntactically identical code segments
in the compared versions and explored pre-condition, path-based
differential testing. [3] proposes an alternative way than [26] for
abstracting the complex code. It focuses on tracking impacted state-
ments using static analysis but does not prune common impacted
code, which can be complex and unnecessary for analysis. In con-
trast, [4] introduces a CEGAR-based [19] approach that abstracts
complex and unnecessary code, focusing only on the statements
required for establishing equivalence. [29] and [24] focus on ex-
tending symbolic equivalence checking in inter-procedural level
where [29] is a modular, demand driven approach and [24] is a
client-specific checker. But none of them works on quantitative
reasoning.

Model counting: Quantitative program analysis is an emerging
area and relies on constraint solvers for model counting. [1] has
implemented an automaton-based model counting tool for string
constraints, reducing the problem to path counting. [2] introduced
a multi-track finite state automaton for numeric and string con-
straints, including combinations of both. [15] improves model count-
ing performance using sub-formula caching. Other model counting
tools include SMC [22], S3# [28], LattE [6] each targeting specific
domains such as strings and linear integer arithmetic. Additionally,
there is an approximation-based model counter, [9], which utilizes
a hashing-based approach.



Quantitative Symbolic Similarity Analysis

REFERENCES

(1]

[2

[

(3]

[7

[

8

=

=
0

[10

[11

[12]

==
L

puy
&

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-Based Model
Counting for String Constraints. 255-272. https://doi.org/10.1007/978-3-319-
21690-4_15

Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tevfik Bultan, and Fang Yu. 2018. Parameterized model counting for string and
numeric constraints. 400-410. https://doi.org/10.1145/3236024.3236064

John Backes, Suzette Person, Neha Rungta, and Oksana Tkachuk. 2013. Regres-
sion Verification Using Impact Summaries, Vol. 7976. https://doi.org/10.1007/978-
3-642-39176-7_7

Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDIff: scaling pro-
gram equivalence checking via iterative abstraction and refinement of common
code. 13-24. https://doi.org/10.1145/3368089.3409757

Sahar Badihi, Yi Li, and Julia Rubin. 2021. EqBench: A Dataset of Equivalent and
Non-equivalent Program Pairs. 610-614. https://doi.org/10.1109/MSR52588.2021.
00084

V. Baldoni, N. Berline, J.LA. De Loera, B. Dutra, M. Koppe, S. Morei-
nis, G. Pinto, M. Vergne, and J. Wu. [n.d.]. LattE integrale v1.7.2.
http://www.math.ucdavis.edu/ latte/.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Notzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cve5: A Versatile and Industrial-Strength SMT Solver.
415-442. https://doi.org/10.1007/978-3-030-99524-9_24

Cristian Cadar and Martin Nowack. 2021. KLEE symbolic execution engine in
2019. International Journal on Software Tools for Technology Transfer 23 (12 2021).
https://doi.org/10.1007/s10009-020-00570-3

Supratik Chakraborty, Kuldeep Meel, Rakesh Mistry, and Moshe Vardi. 2015.
Approximate Probabilistic Inference via Word-Level Counting. Proceedings of the
AAAI Conference on Artificial Intelligence 30 (11 2015). https://doi.org/10.1609/
aaai.v30i1.10416

Hayden Cheers, Yuan Lin, and Shamus Smith. 2021. Academic Source Code
Plagiarism Detection by Measuring Program Behavioral Similarity. IEEE Access
PP (03 2021), 1-1. https://doi.org/10.1109/ACCESS.2021.3069367

Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of
binaries. ACM SIGPLAN Notices 51 (06 2016), 266-280. https://doi.org/10.1145/
2980983.2908126

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: an efficient SMT solver.
Tools and Algorithms for the Construction and Analysis of Systems 4963, 337-340.
https://doi.org/10.1007/978-3-540-78800-3_24

Bruno Dutertre and Leonardo de Moura. 2006. The Yices SMT solver. (01 2006).
Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components
(SEC’14). USENIX Association, USA, 303-317.

William Eiers, Seemanta Saha, Tegan Brennan, and Tevfik Bultan. 2019. Subfor-
mula Caching for Model Counting and Quantitative Program Analysis. 453-464.
https://doi.org/10.1109/ASE.2019.00050

1551

[16

[17

[18

(19]

™
=

[21

[22

[23]

[24

™~
2

[26

[27

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Debin Gao, Michael Reiter, and Dawn Song. 2008. BinHunt: Automatically Finding
Semantic Differences in Binary Programs. 238-255. https://doi.org/10.1007/978-
3-540-88625-9_16

Benny Godlin and Ofer Strichman. 2010.
Equivalence of Recursive Procedures. Acta Informatica 45, 167-184.
//doi.org/10.1007/s00236-008-0075-2

Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity.
Comput. Surveys 54 (04 2021), 1-38. https://doi.org/10.1145/3446371

Alexey Khoroshilov, Mikhail Mandrykin, and Vadim Mutilin. 2013. Introduc-
tion to CEGAR — Counter-Example Guided Abstraction Refinement. Proceed-
ings of the Institute for System Programming of RAS 24 (01 2013), 219-292.
https://doi.org/10.15514/ISPRAS-2013-24-12

Seonmo Kim and Stephen McCamant. 2018. SearchMC: an approximate model
counter using XOR streamlining techniques. (4 2018). https://doi.org/10.6084/
m9.figshare.5928604.v1

James King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19
(07 1976), 385-394. https://doi.org/10.1145/360248.360252

Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. 2014. A Model
Counter For Constraints Over Unbounded Strings. ACM SIGPLAN Notices 49 (06
2014). https://doi.org/10.1145/2594291.2594331

Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
Based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In Proceedings of the 26th USENIX Conference on Security Symposium
(Vancouver, BC, Canada) (SEC’17). USENIX Association, USA, 253-270.
Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. 2018. Client-specific
equivalence checking. 441-451. https://doi.org/10.1145/3238147.3238178
Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-code Similarity
Detection and Detection Tools Used in Academia: A Systematic Review. ACM
Transactions on Computing Education 19 (05 2019), 1-37. https://doi.org/10.1145/
3313290

Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pundefined-
sundefinedreanu. 2008. Differential Symbolic Execution. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Atlanta, Georgia) (SIGSOFT "08/FSE-16). Association for Computing Machinery,
New York, NY, USA, 226-237. https://doi.org/10.1145/1453101.1453131

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. 138-157. https://doi.org/10.1109/SP.2016.17

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2017. Model Counting for
Recursively-Defined Strings. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, Proceedings, Part II. 399-418.

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. 2017. Modular
Demand-Driven Analysis of Semantic Difference for Program Versions. 405—
427. https://doi.org/10.1007/978-3-319-66706-5_20

Shi-Chao Wang, Chu-Lei Liu, Yao Li, and Wei-Yang Xu. 2017. SemDiff: Finding
Semtic Differences in Binary Programs based on Angr. ITM Web of Conferences
12 (01 2017), 03029. https://doi.org/10.1051/itmconf/20171203029

Inference Rules for Proving the
https:


https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1145/3236024.3236064
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1109/MSR52588.2021.00084
https://doi.org/10.1109/MSR52588.2021.00084
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1609/aaai.v30i1.10416
https://doi.org/10.1609/aaai.v30i1.10416
https://doi.org/10.1109/ACCESS.2021.3069367
https://doi.org/10.1145/2980983.2908126
https://doi.org/10.1145/2980983.2908126
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ASE.2019.00050
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1145/3446371
https://doi.org/10.15514/ISPRAS-2013-24-12
https://doi.org/10.6084/m9.figshare.5928604.v1
https://doi.org/10.6084/m9.figshare.5928604.v1
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2594291.2594331
https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1051/itmconf/20171203029

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Related work
	References

