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 INTRODUCTION 

undreds of robotic hands have been designed in the last decades. For example, the humanoid
obot, Pepper, has a five-fingered hand with articulated joints [ 9 ]. NAO uses a similar design but
ith only three fingers and no palm [ 1 ]. Other robots, such as the PR2 and Baxter, have metal
rippers and/or suction cups [ 2 , 5 ]. A growing number of soft manipulators are designed with
ovel materials and working principles [ 53 ]. For example, Homberg et al., developed a silicon-
ased pneumatic gripper that can comply with a wide range of object shapes [ 34 ]. New designs
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Fig. 1. Capturing user impressions of a diverse set of robot hands. (A) A collage of the 73 robotic hands in 
our database. (B) In an online study, users rated images of the robot hands. (C) In a lab-based study, users 
evaluated seven physical hands before and after being touched by the hands. User ratings showed similar 
trends between the online and in-lab settings and before and after touch. 
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ppear every year focusing on dexterous manipulation of objects and performance metrics [ 13 ,
3 ]. 
Robotic hands are often used in collaborative settings with humans. For example, Baxter and PR2

an work on assembly and manipulation tasks with users [ 33 , 48 ] or engage in social touch (e.g.,
and clapping, hugging) [ 15 , 27 ]. The soft gripper by Homberg et al., has been attached to Baxter
nd trained to grasp a range of household objects [ 34 ]. Socially interactive robots can use hand
estures or direct touch to convey emotion and intent in education, therapy, or service tasks [ 19 ,
3 , 38 , 45 ]. In these settings, users may merely observe the hand or interact with it through touch.
However, little is known regarding how people perceive different robotic hands, and how they

espond to touch interactions with the hands. Despite the vast design space of robotic hands, little
ffort has been devoted to studying their design features (e.g., number of fingers) and how these
eatures affect user impression. Recently, human-robot interaction (HRI) researchers have adopted
nline platforms such as Amazon Mechanical Turk for large-scale studies with users [ 39 , 51 ]. Yet,
e do not know if user perception of robot hands in an online study would be similar to a physical
xperiment where the robot hands are present in close proximity to the user. Furthermore, no data
xists on how the user impressions may change if the hands contact the user’s body. To support
he increasing adoption of robots in social settings and guide the design of future robot hands, we
et forth to answer the following questions: 

• RQ1. How do laypeople perceive subjective qualities of existing robot hands? 

• RQ2. Do user ratings of the hands differ when collected online vs. an in-lab setting?

With this question, we investigate the impact of physical presence [ 18 , 23 ] in evaluation of
robot hands. 

• RQ3. Do user ratings change after being touched by the hands? This question is
motivated by past studies that suggest that touch interactions with a robot can improve
user acceptance and behavior toward the robot [ 30 , 54 ]. 

• RQ4. What design features of the hands (e.g., number of fingers) can predict user

ratings? 

To address these questions, we reviewed existing robotic hands and ran two studies to capture
ay users’ visual and touch experience with these hands (Figure 1 ). We first compiled a large set of
obot hands from commercial and research venues and then selected 73 hands that represented the
ariations in the set. In an online study, 160 users evaluated images of the hands on 17 semantic dif-
erential rating scales. A principal component analysis of the ratings showed that three qualities of
he hand Comfortableness , Interestingness , and Industrialness can describe variations in user ratings
f the hands (RQ1). Next, we ran an in-lab study to further investigate if the in-person evaluation
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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f the hands differ from the online results (RQ2) and how user evaluation of the hands is influenced
y touch (RQ3). The participants rated seven prototype hands before and after receiving four short
aps on their forearm from each hand. Our results did not show a statistically significant difference
etween user ratings of the hands in the lab and online. Also, we did not find a significant differ-
nce between the participants’ ratings before and after the participants were touched by the robot
ands. To inform the design of robot hands, we created a database of the 73 robot hands and coded
heir design features (e.g., number of fingers, color scheme). We trained 17 linear regression models
o predict user ratings from the hand features. The shape of the fingertip, color scheme, and hand
ize were among the top predictors for most ( ≥14 ) of the regression models, while the visible sur-
ace texture, number of fingers, and existence of a palm only contributed to a few ( ≤3 ) predictions.
e provide an online interface to the database and the predictive models and discuss implications
f our findings for future work on robotic hands. 
The contributions of the article are as follows: 

• a database of 73 robot hands with 15 design features (e.g., number of fingers) and 17 user
ratings (e.g., humanlike) per hand 

• three subjective qualities ( Comfortableness , Interestingness , and Industrialness ) that describe
variations in user ratings of robot hands 

• comparisons of user ratings for robot hands based on images, physical hands in the lab,
and physical hands after touch 

• 17 regression models that can predict user ratings and an analysis of the models’ most
predictive design features 

• the RobotHands online interface for browsing the database and predicting user ratings for
new hands. 1 

 RELATED WORK 

e review the literature on designing robotic hands and present findings on user evaluation of
obot appearance and robotic touch. In this article, we use robot “hand,” “end effector,” and “ma-
ipulator” interchangeably. 

.1 Designing Robot Hands 

xisting robotic end effectors vary based on many design features. One of the earliest robotic
ands was a two-fingered parallel jaw gripper that is still in use for many applications. Some de-
igns closely replicated a human hand with articulated fingers and a palm [ 22 ] or were inspired by
nimals [ 40 ]. For example, similar to fish, some robotic end effectors use suction for grasping and
oving objects [ 5 ]. Others may closely resemble a tool such as a cup holder or a hook [ 3 ]. The ma-
erials and working mechanisms of the hands have also evolved over the years. Early manipulators
ere composed of rigid parts and electrical motors [ 13 ]. Later efforts have incorporated soft elas-
ic materials (e.g., electroactive polymers) in designing parts of the hand or the whole hand [ 53 ].
oft manipulators tend to be smaller due to the actuation limitations of their materials [ 13 ]. Past
tudies have supported and evaluated the wide variety of hand designs according to performance
onsiderations such as weight, speed, ease of design and control, and robustness in interacting
ith a wide range of objects [ 13 , 53 ]. 
Human-robot interaction (HRI) researchers often use existing robot hands in their studies [ 33 ,

6 , 54 , 60 ]. As an exception, a few recent studies customized hands of commercial robots to improve
ser comfort in touch interactions with the robot. Fitter et al., placed boxing pads over the Baxter’s
 http://robothands.org/ . 

ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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rippers so that users can clap hands with the robot as part of their physical exercise games [ 28 ].
amani et al. designed a five-fingered flat hand for the Sawyer robot to study the impact of motion
arameters (e.g., speed) on user evaluation of a robot-initiated tapping gesture [ 61 ]. The main
otivation for designing a custom hand was to measure the applied force, but the authors also
oted the addition of a silicone layer for user comfort. Another study used a similar design but
ith rubber pads instead of silicone [ 27 ]. These studies relied on the intuition of the researchers
n their design and mainly focused on the material softness. We investigate how the materials and
ther design features of the hand can influence user ratings. 

.2 User Impression of Robot Appearance 

eople can form mental models of a robot and its capabilities based on its appearance [ 31 , 42 , 50 ,
5 ]. In a study by Powers and Kiesler, people perceived an anthropomorphic advisor robot with a
hort chin length to be more sociable, and they were more likely to follow its advice compared to
 robot with a longer chin [ 50 ]. Li et al. compared a machine-like robot with an animal-like and a
uman-like robot in a study and found that the machine-like robot was less likeable than the other
wo robots [ 42 ]. 
Recent crowdsourced studies on large collections of social robots have found generalizable

rends in user impressions of robots. Reeves et al. collected 300 social robots and showed that
eople evaluate and stereotype robots, similar to their impressions of humans, along two primary
imensions of warmth and competence [ 51 ]. Phillips et al. investigated the human likeness of 200
obots based on their images [ 49 ]. Kalegina et al. compiled a database of 176 robots with pro-
rammable faces and coded variations in their facial features (e.g., existence of eyelashes) [ 39 ].
ased on two studies with 12 and 17 robot faces, Kalegina et al. provided guidelines on how dif-
erent facial features impact user ratings. These studies used images of the robots to collect user
atings on Amazon Mechanical Turk. Similarly, we use the Mechanical Turk to collect user rat-
ngs of a large set of robot hands. Our focus is on a single body part instead of the whole robot.
herefore, our database lists different types of hands for a robot (e.g., vacuum cup gripper and
arallel jaw gripper for Baxter [ 5 ]) as separate entries. We also include hand prototypes that are
ot embedded in existing robots. 
Many of the above studies investigated features that contributed to user ratings, but almost
one provided a predictive model for user ratings. One exception is the work of Phillips et al.,
ho developed a linear regression model for predicting the human likeness of robots. Phillips
t al. included the model in an online tool together with their ABOT database [ 49 ]. Inspired by
heir work, here we present regression models for predicting user ratings of new robot hands and
nvestigate the most predictive hand features for the models. 
Finally, HRI researchers have proposed questionnaires for capturing the user impression of

obots. The Godspeed questionnaire and the Robotic Social Attributes Scale (RoSAS) are the
ost frequently used instruments in the literature [ 11 , 20 ]. The Godspeed questionnaire has
4 Likert-scale items that capture the user ratings of anthropomorphism, animacy, likeability,
erceived intelligence, and perceived safety of robots. The Godspeed questionnaire was developed
ased on a literature review of prior HRI questionnaires and related empirical studies, but the
uthors did not attempt to validate the Godspeed questionnaire. Later, Carpinella et al. developed
he RoSAS and validated it in a series of online studies with descriptions of robots or images of
obot faces. RoSAS is a 18-item questionnaire that captures the perceived warmth, competence,
nd comfort with a robot. These questionnaires capture user ratings of a robot, but the questions
o not include any items about a robot’s limb or user reactions to physical interactions with
he robot. Thus, we used a custom questionnaire with items from the Godspeed and RoSAS
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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uestionnaires as well as additional items to capture user ratings of robotic hands and their
motions and comfort in physical interactions with the hands. 

.3 Touch Interactions with Robots 

ast research suggests that physical interactions with a robot can impact user impressions and be-
avior toward the robot. Shiomi et al. showed that users rated a robot as friendlier, performed more
ctions, and spent more time on a repetitive task if the users touched the robot beforehand [ 44 , 54 ].
he effect was even larger when the robot actively touched the participants back. Block et al. found
hat users felt more understood and trusted a robot more after receiving a hug from the robot [ 14 ].
 study by Fukuda et al. showed that receiving a touch from the robot during an unfair proposal
n a game setting can inhibit the perception of robot unfairness [ 30 ]. To check if these findings
old for a robot limb, we tested whether user ratings of different hands changed after the hands
ouched the participants. 
Others have investigated factors that influence acceptance and affective appraisal of a robotic

ouch. Chen et al. found that users had higher acceptance of a robot-initiated touch if the intent
as instrumental (e.g., cleaning the participant’s hand) rather than affective (e.g., providing com-
ort) [ 21 ]. Teyssier et al. studied how the type of touch (e.g., tapping) and its amplitude, force, and
elocity are linked to the perceived pleasantness and intensity of touch [ 57 ]. Type of touch did
ot have a clear link to user ratings, whereas all the other factors influenced the ratings. Similarly,
amani et al. varied parameters of a tapping gesture and found that force had a significant impact
n arousal and dominance ratings [ 61 ]. Based on these findings, we used a tapping gesture with a
reset force and velocity in our in-lab study. 
While touch studies usually need physical contact, the literature suggests that users can infer

ome aspects of a tactile experience through vision. In particular, there is high correspondence
etween visual and tactile evaluations of material roughness and hardness [ 12 , 58 ]. The same
atterns hold for texture evaluation in the visual and tactile modalities [ 59 ]. Other studies showed
hat people can also visually infer affective qualities of materials and vibrations [ 29 , 52 ]. In tactile
RI, a recent study found that user pleasantness ratings for videos of a stroking sensation peaked
t 3 cm/s, similar to ratings of a physical stroking experience [ 60 ]. We reflect on results of our
n-lab study in relation to this correspondence between visual and tactile evaluation. 

 STUDY I - THE PERCEPTUAL SPACE OF ROBOT HANDS 

o investigate the perceptual space of robot hands (RQ1), we collected a representative set of 73
ands from industry and academia, designed a custom questionnaire, and ran an online user study
n Amazon Mechanical Turk. 

.1 Compiling Representative Robot Hands 

Collecting a Large Set of Hands. We use a broad definition for robot hands to capture a large
ariety of designs. Specifically, our definition includes robotic end effectors that can pick up, hold,
r manipulate objects. We also include robot parts that are located at a place that is normally
ssociated with a hand (e.g., end of a robot arm) or have the appearance of an animal or human
and. The first part of this definition covers the wide range of robotic grippers [ 53 ] and suction
ups [ 5 ]. The second part covers hands with rigid designs such as those in the KASPAR [ 36 ] or
he CuDDler [ 43 ] robots. We exclude robotic limbs that are only used for locomotion (e.g., [ 4 ]) as
ell as exoskeletons [ 16 ]. Also, we exclude graphical renderings of robot hands [ 32 ] or hands that
re shown in animations or movies. This definition covers a wide range of designs that have the
unctionality or appearance of a hand but keeps the hand selection focused on existing physical
esigns. 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Fig. 2. Example of an edited image in Study I. The image shows the PR2 gripper and its size w.r.t a medium- 
sized mug [ 2 ]. 

 

p  

d  

a  

d  

c  

h  

1  

b

 

i  

t  

t  

r  

t  

a  

o  

w

 

i  

v  

t  

r  

p  

w  

o  

(  

a

3

S  

b  

q

 

h  

A

Using this definition, we collected 371 robot hands from existing robot databases and review
apers. The authors examined all the robots in the following three databases: (1) IEEE Robots
atabase [ 7 ] which has 232 robots, (2) Stanford Social Robot Collection [ 10 , 51 ] with 342 robots,
nd (3) ABOT (Anthropomorphic roBOT) database [ 6 , 49 ] with 251 robots. The second and third
atabases were recently developed by HRI researchers with the aim to compile a comprehensive
ollection of robots. We listed all the robots that had a hand according to our definition. If a robot
ad multiple hand designs (e.g., Baxter [ 5 ]), we added all the designs to our list. This led to 130,
24, and 85 unique hands from these three sources, respectively. Finally, we added 32 new designs
y examining all the hands presented in recent review papers on robotic manipulators [ 13 , 53 ]. 

Selecting Representative Designs. We chose 73 robot hands that captured the design variation
n the larger set of hands. All four authors separately identified a subset of the 371 hands that
he authors deemed to represent the variations in the appearance and working mechanisms of all
he hands in the original set. In particular, we paid attention to the number of fingers, materials,
igid vs. moving parts, working mechanism, and colors of the hands. Next, the authors merged
heir choices in a meeting. We included all the hands selected by four ( n = 10 hands) or three
uthors ( n = 25 ). We discussed the hands selected by one or two authors and reached a consensus
n which ones are distinct and should be included in the final set. We added 26 and 12 hands that
ere selected by two authors and one author, respectively. 

Preparing Robot Hand Images. We divided the 73 hand models into 8 subsets and prepared their
mages for the study. One of the authors grouped the hands with an overall goal of having a
ariety of hand designs (e.g., number of fingers, colors) in each of the eight sets. Each set included
he edited images of nine unique hands as well as the PR2 gripper for comparison [ 2 ]. For each
obot hand, we prepared a single image with a white background showing the hand in one or two
oses and included a mug or a coin as a scale reference (Figure 2 ). For the majority of the hands,
e found one neutral open pose and one closed or figurative pose ( n = 49 out of 73 hands). If one
f these two poses was not available online ( n = 5 ), we included two images from different angles
e.g., palmar and dorsal sides of the hand). If the hand was rigid ( n = 13 ) or if only one pose was
vailable online ( n = 6 ), we included one image of the hand. 

.2 Designing a Custom Questionnaire 

ince no established questionnaire exists for a robotic limb, we designed a custom questionnaire
ased on past studies of robot appearance and touch interaction. We also used a set of demographic
uestions from prior work. 

Robot Hand Questionnaire. We aim to capture user impressions of a hand or a robot with this
and as well as user emotions and comfort in interacting with the hand. Our questionnaire has
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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7 semantic differential ratings on a 0–100 scale. While no consensus exists in the literature on the
ppropriate range for a rating scale, we use the 0–100 scale to regard the data as interval rather
han ordinal in our analysis. Specifically, one can apply parametric statistical analysis methods
e.g., ANOVA, linear regression) to analyze the ratings on this scale. Our choice of scale is also in
ine with the prior studies on user ratings of robots [ 39 , 49 ]. Ten of the ratings are about quali-
ies of the hand (e.g., humanlike) or a robot with this hand (e.g., intelligent). Eight out of the ten
atings are from the Godspeed questionnaire [ 11 ], RoSAS [ 20 ], and a recent study on user per-
eption of robot faces [ 39 ]. While a core principle of the Godspeed and RoSAS questionnaires is
hat of increasing internal reliability, using a large number of ratings from these questionnaires
ould incur increased study fatigue in the participants. Thus, we employed a subset of items from
hese questionnaires to capture user ratings of robots. The Creepy - Nice scale is from the IEEE
obots database [ 7 ]. We added the Boring - Interesting rating based on internal discussions. We
lso included three ratings to capture users’ emotion(s) if the users are touched by the robot [ 17 ].
ast studies have used custom statements to assess user comfort in physical interactions with
obots [ 21 , 61 ]. Thus, we added four ratings to capture user comfort when touching the robot
and, being touched by the hand, passing or receiving objects from the hand, and being present
ear the robot hand. Similar to Kalegina et al. [ 39 ], we also asked respondents to provide a descrip-
ive name for the hand and to indicate suitable jobs for it. Table 1 presents all the questions, their
horthand for the rest of the paper, and their literature references. We denote the shorthand that
orresponds to the 17 user ratings with capitalization (e.g., Humanlike) in the rest of this article. 
The questionnaire displayed the hands from one of the eight sets in a random order. Each page

howed the edited image of a robot hand at the top and asked the participants to indicate if there
s a robot hand and/or object in the image. Next, the participant answered the questions in Table 1
or that hand. As an attention test, we added an extra rating for two of the robot hands in the ques-
ionnaire and asked the participants to set its value to “very uncomfortable (0)”. We also included
 dummy blue image instead of a robot hand as an attention test. 

Demographic Questionnaire . The demographic questionnaire asked about the participants’ age,
ender, and the country where they grew up. We also asked them to rate their familiarity with
obots on the following scale: (1) None: I have no experience with robots; (2) Novice: I have seen
ome commercial robots; (3) Beginner: I have interacted with some commercial robots; (4) Interme-
iate: I have done some designing, building, and/or programming of robots; (5) Expert: I frequently
esign, build, and/or program robots. Finally, we used the Negative Attitude Toward Robots Scale
NARS) to capture variations between users in their beliefs and feelings toward robots [ 46 , 47 ].
ARS has three subscales capturing negative attitudes toward interacting with robots (S1), so-
ial influence of robots (S2), and emotional communication with robots (S3). We included the first
ubscale from NARS (S1), as it was the most relevant for the evaluation of robot hands. 

.3 Running an Online Study 

e administered the survey online through the Amazon Mechanical Turk. The criteria for eligible
urkers were having more than 5,000 approved hits and a hit rate of 99% or more. The participants
eeded to confirm that they are 18 years or older, have normal or corrected to normal vision, and
nderstand English at least at the B2 level. We recruited a total of 168 participants. We removed 8
articipants who did not pass our attention tests, resulting in 20 responses for each of the eight sets.
The majority of the participants were from the United States (122), followed by India (15), Brazil

13), Italy (5), Canada (2), Australia (1), England (1), and Turkey (1). The participants self-identified
s man ( n = 66 ), woman (93), or nonbinary (1). The majority rated their familiarity with robots
s novice (65) or beginner (57), followed by no familiarity (23), intermediate (11), or expert (4).
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Table 1. The questionnaire used in the studies. The second and third columns show 

the acronyms we use for the user ratings in the rest of the paper and citations 
to the origin of the ratings/questions, respectively 

Question Shorthand Reference 

Give a descriptive name to the robot hand. - [ 39 ] 
This robot hand is . . . 

Machinelike - Humanlike Humanlike [ 11 , 39 ] 
Creepy - Nice Nice [ 7 ] 
Boring - Interesting Interesting - 
Incapable - Capable Capable [ 20 ] 
Dangerous - Safe Safe [ 20 ] 
A robot with this hand is . . . 

Masculine - Feminine Feminine [ 39 ] 
Childlike - Mature Mature [ 39 ] 
Unfriendly - Friendly Friendly [ 11 , 39 ] 
Unintelligent - Intelligent Intelligent [ 11 , 39 ] 
Untrustworthy - Trustworthy Trustworthy [ 39 ] 
If this robot touches me, I would feel . . . 

Unhappy - Happy Happy [ 17 ] 
Calm - Excited Excited [ 17 ] 
Submissive - Dominant Dominant [ 17 ] 
I feel [Uncomfortable - Comfortable] to . . . 

Touch this robot hand. To Touch -
Be touched by this robot hand. Be Touched - 
Pass or receive objects from this robot hand. Handover - 
If this robot hand interacts with objects near me. Nearby - 
Which jobs or roles will this robot be suitable for? - [ 39 ] 
(Select all that apply) 

Education, Entertainment, Healthcare (nursing, rehabilitation), 
Home, Industrial (factory), Research, Service (hotel, restaurant, 
shops), Security (surveillance, security guard), Other (please specify) 
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imilarly, the majority of the participants in each set rated their familiarity with robots as novice
r beginner, followed by no familiarity, intermediate, or expert. The NARS scores were measured
n a scale from 6 (the lowest) to 30 (the highest) for a negative attitude toward robots. The mean of
he participant scores was 11.75 ( std = 4 . 88 ), indicating positive to neutral attitudes toward robots.

.4 Results 

e present a low-dimensional perceptual space for the hands and summarize its correlations with
he selected applications for the hands. 
Q1. How do laypeople perceive subjective qualities of existing robot hands? 

e derived a perceptual space for the hands from the user ratings. The 17 rating scales showed
trong correlations ( r (72 ) > . 5 , p < . 0001 ) for around 60% of the bi-variate correlations. Figure 3
resents the distribution of the mean user ratings for the 73 robot hands with example hands from
he dataset that fall on the extremes of each rating scale. One can see a few hands (from the 73 in our
ataset) fall at the extremes of several rating scales. To obtain a low-dimensional representation of
ser ratings, we applied Principal Component Analysis (PCA) to the average ratings for the robot
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Fig. 3. Distribution of the mean user ratings for the 73 hands in the online study. We show the hand images 
with the highest (max), second to the highest (second max), lowest (min), and second to the lowest (second 
min) values on the rating scales. 

Fig. 4. Scree plot from principal component analysis (PCA) on the average user ratings on the 17 rating 
scales for the 80 hands. Three components have eigen values above 1. 
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ands. The PCA yields three dimensions (principle components) that had eigenvalues greater than
 (Figure 4 ) and together explained 86.13% of the total variance (Table 2 ). Following the convention
n the previous HRI studies [ 20 , 49 ], we consider values higher than 0.5 as strong loadings and
nclude them in the interpretation of the PCA components. After the Varimax rotation, the first
imension (or component) reveals strong loadings ( > .50) for eleven ratings including user comfort
o Touch, user comfort to Be Touched, Friendly, Safe, user feeling Happy, Trustworthy, Nice, user
omfort to be Nearby, user comfort to Handover, user feeling Dominant, and Intelligent ratings.
hese ratings correspond to the positive feelings of comfort and safety in interacting with the hand.
hus, we label this dimension as Comfortableness . The second dimension has strong loadings for
ix ratings including Interesting, user feeling Excited, Intelligent, Capable, Humanlike, and Mature.
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Table 2. Principal components loading matrix after varimax rotation. 
Loadings above 0.5 are in bold [ 20 , 49 ] 

Rating Scales PC1 PC2 PC3 

Comfortableness Interestingness Industrialness 

[User comfort] To Touch .96 .16 .06 
[User comfort to] Be Touched .95 .21 −.06 
Friendly .94 .19 .20 
Safe .91 .06 −.21 
[User feeling] Happy .90 .34 −.07 
Trustworthy .88 .38 .19 
Nice .87 .21 .16 
[User comfort to be] Nearby .86 .34 .31 
[User comfort to] Handover .84 .36 .33 
[User feeling] Dominant .66 −.23 −.25 
Interesting .30 .82 .22 
[User feeling] Excited −.07 .82 .11 
Intelligent .51 .70 .42 
Capable .41 .66 .56 

Humanlike .49 .64 −.24 
Feminine .26 −.04 −.90 
Mature .09 .54 .74 

Eigenvalue 10.16 3.41 1.07 
% Variance 59.75 20.08 6.30 
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hese ratings correspond to the user interest and perception of the capability of the hand. We label
his dimension as Interestingness . Dimension 3 has strong loadings for three ratings of Feminine,
ature, and Capable. Also, D3 has low ( < .10) or negative loadings for user feeling Happy, user

eeling Dominant, Safe, user comfort To Touch, and user comfort to Be Touched. In addition, the
3 values show a strong linear correlation with the number of times the participants selected
Industrial” as a suitable application category for each hand ( r (72 ) = . 79 , p < . 0001 - Figure 6 ).
hese loadings and the correlation result suggest a category of industrial hands that are capable
f assembling objects, but they are not inviting users for touch interaction. Thus, we label this
imension as Industrialness, i.e., the quality or state of being industrial. 
Figure 5 depicts these three dimensions with images of the robot hands. Moving from low to
igh values on D1 and D2 (i.e., bottom left to top right corner of Figure 5 (a)), the hands increasingly
esemble the human hand and have several fingers or joints. Interestingly, the bottom left corner of
he space (i.e., low comfort and interest) is empty suggesting that the users found the hands either
omfortable and safe or interesting. The majority of grippers and static hands have negative values
n the Interestingness dimension (D2). The hands with positive values on D3 (i.e., Industrialness )
ave metal components, whereas those with negative D3 values have softer materials (e.g., silicon,
lastic, and fur), bright colors, and/or a static or rigid configuration (Figure 5 (b)). 

Discussion . In the above PCA space, some of the 17 ratings load on more than one PCA dimen-
ion. For example, the Intelligent ratings have strong loadings ( >. 5 ) on two dimensions. In such
ases, it is common to try alternative rotation methods (e.g., oblique rotation) to obtain a solution
ith the least cross-loadings and/or delete items that load on multiple dimensions. We applied
arious orthogonal and oblique rotations to the PCA solution. The obtained solutions from these
ethods had similar number of cross-loadings and only the items with the cross-loadings changed
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Fig. 5. The four-dimensional representation of user ratings for the 73 robot hands from principal component 
analysis (PCA). 
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n the results. Thus, we decided to retain the Varimax solution that applies an orthogonal rotation
o the PCA space and is commonly used in the literature. Furthermore, we decided to retain all
he 17 rating scales since the purpose of this research is to chart the user ratings of robot hands
nd their similarities and differences with a low-dimensional space rather than developing a ques-
ionnaire for robot hands. Studies that focus on questionnaire development usually employ a large
umber of items (e.g., over 40) which can allow for better separation of the factors. Thus, we keep
ll the 17 ratings in the PCA solution to represent the contributions of all the ratings to the three
esulting dimensions. 

Suitable Application Categories for the Hands . To further chart user perception of the hands, we
ounted the number of times that the participants selected an application category for each robot
and. Figure 6 shows the correlations between the frequency of the selected applications for each
and and the hand positions on the three PCA dimensions. PCA dimension 1 (i.e., Comfortableness )
as high positive correlations ( r (72 ) > . 5 , p < . 0001 ) with the frequency of selecting Education,
ealthcare, Home, Service, and the total frequency of applications selected for the hands (i.e., All
pplications). In other words, with an increase in the Comfortablenss of the hand (D1), the hands
re perceived to be more suitable for these applications. PCA dimension 2 (i.e., Interestingness )
as high correlations with Healthcare ( r (72 ) = . 55 , p < . 0001 ) and total number of applications
or the hand ( r (72 ) = . 52 , p < . 0001 ). PCA dimension 3 (i.e., Industrialness ) has high correlations
ith Industry ( r (72 ) = . 79 , p < . 0001 ) and Security ( r (72 ) = . 57 , p < . 0001 ) selections. This result
uggests that people regard the hands with high masculine and mature ratings to be suitable for
hese applications. 

 STUDY II - THE IMPACT OF PHYSICAL PRESENCE AND TOUCH 

ur next study examined whether the results of the online study are applicable to an in-person
xperience of robot hands (RQ2), and if the user ratings change after being touched by the hand
RQ3). To answer these questions, we prepared seven robot hand prototypes and collected user
valuations of them via online and in-lab experiments. 
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Fig. 6. Correlation matrix showing the relationship between the frequency of selected application categories 
and PCA dimensions. 

Fig. 7. The seven hands used in Study II. (A) Existing robot hands with various design features from Study 
I. (B) The corresponding hand prototypes that we used in Study II. From left to right, we call the prototypes 
“human replica,” “soft gripper,” “furry hand,” “metal skeleton,” “hard gripper,” “black plastic,” and “suction 
cup” in our results. 
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.1 Seven Robot Hand Prototypes 

e chose seven distinct hands with different numbers of fingers, materials, and working
echanisms from Study I and prepared prototypes with a similar look and feel (Figure 7 (A)). Three
f the hands have five fingers resembling a human hand but with different materials (Hands 1, 4,
nd 6). We included two grippers, one with soft materials, three fingers, and a pneumatic actua-
ion mechanism (Hand 2) and the other one with hard components, two fingers, and mechanical
ctuation (Hand 5). Finally, we included a static furry hand (Hand 3) and a suction cup (Hand 7). 
Next, we prepared seven prototypes, aiming to make them similar to the selected hands in visual

ppearance and haptic properties (Figure 7 (B)). For Hands 1, 3, and 7, we bought a silicon replica of
he human hand used for jewelry display, a 40-mm Bellows Vacuum Suction Cup, and a teddy bear,
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Fig. 8. The setup for the in-lab experiment. The left and right images show the in-lab visual and in-lab touch 
conditions, respectively. The participant’s face is blurred to preserve anonymity. 

r  

F  

a  

a  

t  

w  

d  

h  

f  

“  

e

4

W  

a  

t  

i
 

a  

f  

I  

i  

6  

w

4

W  

h  

i

 

h  
espectively. We call these hands “human replica,” “suction cup,” and “furry hand” in the results.
or Hand 2, we silicone-moulded the three fingers and the center cube, 3D printed the base, and
ttached plastic tubes to the fingers. We call this hand “soft gripper”. For Hand 4, we bought an
natomical skeleton model, sprayed it with silver, and wrapped a metal thread around the fingers
o give it a metallic appearance and feel. We could not source a metal gripper for Hand 5. Instead,
e used the TinkerKit Braccio Robot gripper [ 56 ] that we had in the lab. While the TinkerKit hand
oes not closely resemble the PR2’s design, it has the appearance of a two-fingered gripper with
ard materials and metal screws. We call this hand “hard gripper”. We replicated Hand 6 using a
abrication model from InMoov, an open-source 3D-printed robot [ 8 ]. We called this prototype the
black plastic” hand in the results. For all the hands, we 3D printed a wrist to allow attachment to
xternal hardware. 

.2 Online Evaluation of the Hand Images 

e evaluated the seven prototypes using Amazon Mechanical Turk. The procedure was the same
s in Study I. For each hand, we prepared an image showing the hand from two angles and scaled
hem relative to the mug image. We also added the PR2 hand and used the same attention tests as
n Study I. 
Twenty-two workers responded to the survey. We removed two responses that did not pass the

ttention tests. The participants (13 female, 7 male) were between 22 and 61 years old. They were
rom the United States (12), India (4), Brazil (1), France (1), Italy (1), and the United Kingdom (1).
n terms of prior experience with robots, 1 self-identified as none, 7 as novice, 7 as beginner, 4 as
ntermediate, and 1 as expert. The mean of the NARS scores was 12.4 ( std = 5 . 89 ) on a scale of
–30, suggesting that, overall, the participants had positive to neutral attitudes toward interacting
ith robots. 

.3 In-Lab Evaluation of the Hands 

e ran a lab-based experiment to collect user ratings of the physical hands after the users saw the
ands and were touched by them (Figure 8 ). We call these conditions in-lab visual and in-lab touch
n the rest of this article. 

Study Design . We had two main considerations in our study design. First, we included the seven
ands as well as the in-lab visual and touch conditions as within-subjects factors. The main reason
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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or this decision was to allow us to detect any effect, if it exists, despite the variations in
ubjective ratings (the standard deviation of ratings in Study I was 22.85 on a 0–100 scale). Second,
e randomized the presentation order of the seven hands, but the in-person visual condition al-
ays preceded the in-person touch condition in our study. We did not counterbalance the order of
hese two conditions, since the experience of being touched by a robot hand cannot be erased once
t is felt. In other words, it was not possible to counterbalance the two conditions in a meaningful
ay. Furthermore, this order reflects a natural human-robot interaction where, in most cases, a
ouch interaction happens only after seeing the robot. 
To prevent participants from remembering their responses from the in-lab visual evaluation,
e asked them to complete a short cognitive task before the touch condition. We used a comput-
rized version of the 2-back task for this purpose. The participant saw a sequence of letters and
ad to indicate if the current letter matched the one from two steps earlier in the sequence. The
-back task is a variation of the n -back task, which is commonly used for assessing or engaging
he working memory [ 37 ]. We used the task as a filler to flush the participant’s working memory
efore the in-lab touch condition. 

Hardware Setup and Questionnaire. We attached the hands to a UR5e robot arm and programmed
 tapping gesture (Figure 8 ). The wrist connector for each hand could slide in and out of a
D-printed attachment on the UR5e. The robot arm was controlled via the Robot Operating Sys-
em (ROS). We programmed the tapping gesture as four up/down movements with 1.5 newtons of
orce and speed of 16 cm/s . This gesture was designed based on a recent study showing that robot-
nitiated tapping with these movement parameters can induce emotion associations in users [ 57 ].
e adopted these gesture parameters to study if variations in the robot hand can impact the user
erception and emotion association. 
The questionnaire was similar to that used in Study I with a few changes (Table 1 ). For evalua-

ion of the physical hands, we removed the robot hand images. Also, we added three open-ended
uestions at the end to ask about factors that contributed to (1) the participant’s ratings of the
and, (2) their emotion ratings, and (3) any change in their ratings before and after the touch. 

Procedure . The experiment was advertised through mailing lists, social media posts, and flyers
ver the University of Copenhagen’s campus. The experimental protocol was approved by the
thics board of the university. Each session took between 45 and 90 minutes, and the participants
eceived gifts equal to $23 USD as compensation. At the start, the participants filled out the de-
ographic questionnaire and received a short training on the 2-back task. Then, the experimenter
oved the robot to a fixed position for calibration purposes. She then measured the participant’s

eft forearm, marked the 1 / 3 distance from the participant’s elbow, and instructed the participant
o align this mark with preset marks on the table. The experimenter also elevated the participant’s
orearm until it reached a preset height. 
Next, the participants evaluated the hands one at a time. For each hand, the participants filled
ut the questionnaire after seeing the hand (in-lab visual condition). We encouraged the partic-
pants to look at the hand from different angles, but they could not touch the hand. Then, the
articipants completed one round of the 2-back task, the robot hand tapped their left forearm, and
he participants evaluated the hand again (in-lab touch condition). At the end of the session, the
articipants answered the three open-ended questions. 

Participants. We recruited 20 new participants (12 female, 7 male, and 1 nonbinary) between 22
nd 60 years old. They were from northern Europe (14), Germany (2), Hungary (1), Spain (1), Russia
1), and Argentina (1). For prior experience with robots, 7 self-identified as none, 4 as novice, 5 as
eginner, 4 as intermediate, and 0 as expert. The mean of the NARS scores was 12.3 ( std = 4 . 53 ),
uggesting that the participants had positive to neutral attitudes toward interacting with robots. 
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.4 Analysis 

o analyze the results, we calculated the hand scores along the three dimensions of Comfortable-
ess , Interestingness , and Industrialness derived from Study I. We chose to compute these scores for
wo reasons. First, running ANOVAs on the 17 rating scales would increase the chance of type I
rror and using family-wise error correction methods would result in a very small alpha value.
econd, individual items on a multi-item questionnaire often have noise. An established practice
or dealing with multi-item questionnaires in the literature is to run statistical analysis on the de-
ived components from dimensionality reduction as the derived dimensions are more robust to
oise than the individual items [ 20 , 49 ]. 
Following the procedure in prior work [ 20 , 49 ], we computed the three derived ratings by av-

raging the ratings across high-loading items for each of the PCA components (Table 2 ). This
easure is simple to calculate and interpret. Furthermore, the scores computed with this method
or the 73 robot hands in Study I showed strong correlations with the PCA scores ( Comfort-
bleness , r (72 ) = . 94 , p < . 0001 ; Interestingness , r (72 ) = . 83 , p < . 0001 ; Industrialness , r (72 ) = . 82 ,
 < . 0001 ). Thus, similar to prior work, we used this average score as an efficient measure for
omputing the hand scores along the three dimensions in the rest of our analysis. 

.5 Results 

elow, we compare the ratings in the online and in-lab settings and for the in-lab visual and
ouch conditions using α = 0 . 05 as the significance level. We also summarize comments from the
articipants. 
Q2. Do user ratings of the hands differ when collected online vs. an in-lab setting? 

e ran three separate ANOVAs on the derived ratings for the Comfortableness , Interestingness ,
nd Industrialness as dependent variables and the seven hands (within-subjects) and the online
nd in-lab visual settings (between-subjects) as independent variables. Since the participants were
ifferent in the online and in-lab settings, we regarded the experimental setting as a between-
ubject factor. All three ANOVAs showed significant main effects of the robot hand ( p < . 000 ).
ince we had selected and designed the hand prototypes to vary in their design features (e.g.,
umber of fingers) and user ratings, we do not further discuss these significant effects. 
The ANOVAs did not show a significant effect of the experimental setting or any interaction

ffect. Thus, we conjecture that the derived ratings were not significantly different between the
nline vs. in-lab settings in our study (Figure 9 ). The effect sizes for the online vs. in-lab settings
ere small (partial η2 ≤ 0 . 01 ) for all three derived ratings, suggesting limited-to-no practical sig-
ificance of the experimental setting on user evaluation of the hands in our study. 
Q3. Do user ratings change after being touched by the hands? 

e ran two-way repeated-measure ANOVAs on the ratings derived for Comfortableness , Interest-
ngness , and Industrialness as dependent variables and the rating condition (in-lab visual vs. touch)
nd the robot hands (7 levels) as within-subjects factors. The three ANOVAs showed significant
ain effects of the robot hand ( p < . 000 ). Similar to RQ2, we do not further discuss these effects. 
User ratings did not show a significant effect of the rating condition (i.e., in-lab visual vs. touch)

n our study. The effect sizes for the rating condition were small (partial η2 ≤ 0 . 01 ) for all the three
erived ratings, suggesting limited-to-no practical significance of touch on the user ratings. 

Qualitative Comments . The participants also answered three questions about factors that con-
ributed to (1) their ratings of the hand, (2) emotion ratings, and (3) any change in their ratings
efore and after the touch. The participant responses to questions 1 and 2 referred to the visual
ppearance, haptic feel, and materials and texture of the hands as well as their perceived capa-
ility. The majority of the participants noted that the visual appearance affected their judgment
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Fig. 9. User ratings for the three derived ratings of Comfortableness , Interestingness , and Industrialness in 
Study II for the online, in-lab visual, and in-lab touch conditions. The Comfortableness , Interestingness , and 
Industrialness ratings are calculated by averaging the ratings across high-loading items for each of the PCA 

components in Table 2 [ 20 ]. 
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f the robot hands ( n = 15 and 17 participants for questions 1 and 2). Here, the participants
entioned color, size, human likeness, visibility of the mechanical parts, or associations with
ovies or other familiar objects. About half of the participants mentioned softness, hardness, pres-
ure, or temperature ( n = 10 and 11). Several participants indicated that the material and texture
f the hands impacted their ratings ( n = 7 and 3). Finally, some stated that the perceived capability
f the robot hands influenced their judgment ( n = 6 and 5). 
In contrast to the quantitative results, 15 (out of 20) participants stated that their ratings changed

or some or all the robot hands after the touch. “I noticed I often started seeing them masculine until
hey tapped my arm, then most felt more feminine.” (P11 [female]) . Four participants did not think
heir ratings changed before and after touch, and one participant did not provide an answer. 

 ROBOTHANDS: AN ONLINE DATABASE AND PREDICTIVE MODELS FOR ROBOT 

HANDS 

o inform the design of robotic hands for social robots, we aimed to build predictive models that
ould estimate user impressions for a new hand from its design features. Thus, we first identified
 set of design features for the hands (e.g., number of fingers), then coded all the hands with their
esign features and user ratings in a database. We used this database to build a set of regression
odels that predict user ratings for the hands. Finally, we built an online interface for the database
nd the predictive models in order to facilitate designers’ access and use of our results. 

.1 Coding Design Features of the Hands and Creating a Database 

e identified 15 design features for the hands that could help predict user ratings and coded the
eatures for all the hands. Three authors initially agreed on a coding scheme for the hands. Two
uthors individually coded a random 20% subset of the hands ( n = 16 ). The two authors then met
nd discussed the disagreements, clarified the definitions, and merged or divided the features.
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Table 3. Design features of the robot hands, their range of values, and definitions in our dataset 

Hand Feature Value Note 

Shape of 
Fingertip 

Pointy, Round, Square, Other, N/A N/A if there are no fingers in the hand. 

Color Schemes Cool, Warm, Mixed (cool + warm), 
Black, White, Gray, Brown 

List of all noticeable color schemes in the 
hand. 

Size Baby, Kid, Adult, Large Sizes scaled w.r.t a medium-sized mug: 0 < 
baby < 0 . 75 , 0 . 75 ≤ kid < 1 . 5 , 1 . 5 ≤ adult 
< 2 . 25 , and large ≥ 2 . 25 +. 

Mechanics 
Visible 

Yes, No Yes, if wires, motors, tendons, pipes, etc., are 
visible. 

Has a Thumb Yes, No Thumb should be apart from the other fingers 
and opposable to them. 

Number of 
Segments in a 
Finger 

0, 1, 2, . . . The maximum number of segments in a 
finger. A finger has 2+ segments if it has a 
movable joint. All fingers have at least one 
segment. 

Commercial 
Product 

Yes, No Yes, if the hand is a commercial product. 

Even Finger 
Spacing 

Yes, No, N/A Yes, if the spacing is even between fingers. 
N/A if the hand has less than three fingers. 
Human hand has uneven finger spacing. 

Rigid Yes, No Yes, if parts of the hand cannot move. 

Material Metal, Plastic, Rubber, Other List of all visible materials in the hand. 

Has a Palm Yes, No Palm is the area between fingers and the 
wrist. To have a palm, the hand must have at 
least one finger, and the finger(s) must be 
attached parallel to the palm. 

Material 
Softness 

Soft, Hard, Mixed (soft and hard) Mixed if both types of materials are visible. 

Number of 
Fingers 

0, 1, 2, 3, 4, 5, . . . Fingers are the terminal members of the hand 
that resemble or function like a human finger 
(e.g., grasping) 

Texture Yes, No Yes, if individual segments of the hand have a 
visible texture. 

Multicolor Yes, No Yes, if there are multiple colors in the hand. 
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ext, the same two authors coded another 15% of the hands ( n = 11 ). The inter-coder agreement
core was 92%. One of the authors coded the rest of the hands. These authors did not have ac-
ess to the ratings collected during the online study prior to coding the hands. This process led
o 15 design features for each hand (Table 3 ). Our focus was on features that can be discerned
y a layperson rather than the technical specifications of the hands. Thus, 11 features refer to
he visual appearance of the hand, two describe the materials, and one refers to its grasping
unctionality. We also included whether the hand is a commercial product or not (e.g., research
rototype). 
Next, we built a database of the 73 hands, their design features, and user ratings. For each hand,
e included a name and a link to a reference publication or website. Furthermore, we included the
5 design features for each hand as well as the average user ratings on the 17 semantic differential
cales. This database provided the basis for training the predictive models. 
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Fig. 10. Contributions of the design features (columns) to the 17 regression models (rows) and the R 
2 , root 

mean square error (RMSE), and F-statistic for each model. All the regression models are statistically signif- 
icant ( p < 0 . 002 ). Higher saturation denotes a higher feature weight (0–30). Feature weights are the sum 

of the absolute values of the feature coefficients in the regression models (e.g., The absolute values of the 
coefficients for Baby, Kid, Adult, and Large are summed to present the contribution of the Size feature to 
the models). The rows and columns are ordered from high to low values of R 

2 and feature contributions, 
respectively. 
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.2 Constructing Predictive Models 

e developed 17 multiple linear regression models (one for each rating scale) to predict the user
atings for the 73 hands from their design features. First, we converted the categorical features
nto binary representations using a one-hot-encoding scheme. Next, we identified the top design
eatures for each rating scale by applying forward and backward stepwise regression on the 1,460
20 users × 73 hands) ratings in our dataset. The results of this feature selection step provided the
esign features that could help predict each of the user ratings. Finally, we trained a regression
odel for each of the 17 user ratings. 
Figure 10 presents the R 

2 values, root mean squared error (RMSE), and selected design features
or predicting the user ratings on each of the rating scales. Over 81% of the variance among par-
icipants’ impressions on Humanlike, Intelligent, and Capable ratings is explained by the design
eatures of the hands ( R 

2 ≥ 0 . 81 ). Also, over 68% of the variance in the Humanlike, Intelligent,
nd Capable ratings is accounted for by the design features ( R 

2 ≥ 0 . 68 ). For seven other rating
cales, over 50% of the variance in the user ratings is explained by the design features of the hands
 R 
2 > 0 . 5 ). Finally, less than 50% of the variance in the Excited, Safe, and Dominant ratings can
e explained by the design features ( R 

2 < 0 . 5 ). For all the hands, the RMSE over the 17 ratings
s below 10 on a 0–100 rating scale. This error is smaller than the standard deviation of the user
atings for each hand in the online study ( std = 22 . 85 ). 
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.3 Analyzing Important Hand Features 

ur last research question asks what design features can predict user ratings of the hands (RQ4).
e structure this section around the design features (instead of the user ratings), so that designers
an check the effect of a single design feature on the user ratings. We order the design features
ased on how many user ratings each feature helps predict. For each design feature, we denote
his number after the feature name. 

Shape of Fingertip (16 Models). The shape of finger/gripper tip helps predict the hand score for
6 (out of 17) rating scales. A round or pointy tip for the fingers is positively associated with
he Humanlike, Capable, and Intelligent ratings. A round fingertip also increases user comfort to
andover objects. Hands with a square fingertip have lower scores on the Interesting, Feminine,
nd Mature scales, and the users tend to feel less Excited and more Dominant if touched by these
ands. Other fingertip shapes have lower values for Humanlike, Nice, Mature, Friendly, and Trust-
orthy ratings. Also, the users feel less Happy or comfortable to Be Touched, do Handover, or
e Nearby them. When the shape of fingertip is not applicable (i.e., the hand does not have any
ngers, such as a suction cup), the user ratings for Mature, Excited, and Comfortable To Touch the
and decrease. Only the predictions for the Safe scale did not depend on the fingertip shape. 

Color Scheme (15 Models). The range of skin tone colors, coded as brown in our database, are
ositively linked to the Humanlike, Nice, Interesting, and Safe ratings. A mix of cool and warm
olors lower the Humanlike and Mature scores and increase the Friendly, Happy, and Dominant
atings. Black and gray colors lower the Feminine rating, warm colors (but not skin tone) decrease
he Safe rating, while cool colors increase the Intelligent score. Interestingly, the white color has
 negative impact on the perception of how Nice, Friendly, and Trustworthy the hand is and how
appy and comfortable people feel to have physical interactions (To Touch, Be Touched, Handover,
earby) with it. 

Size (14 Models). The adult hand size increases the Capable, Mature, and Intelligent scores, and
t lowers the Feminine and Comfortable To Touch scores. Hands with the kid size are perceived as
ess Mature, and the users feel less Excited after being touched by these hands. The baby hand size
s perceived less Nice, Safe, Friendly, and Trustworthy than the hands with other sizes, and people
eel less Happy and comfortable to have physical interactions with it. The baby hand sizes in our
atabase either had a rigid design or were among the soft manipulators with nuanced working
echanisms. Both designs were negatively evaluated by the users. 

Mechanics Visible (12 Models). Visible wires and motors make the hand less Humanlike, Nice,
afe, Feminine, Friendly, and Trustworthy. Also, the users feel less Happy, Dominant, and Com-
ortable to have physical interactions with the hand compared to when no mechanics are visible. 

Has a Thumb (12 Models) . Hands with a thumb are perceived as more Interesting, Capable, Safe,
eminine, Mature, Friendly, Intelligent, and Trustworthy than those without a thumb. Also, having
 thumb improves how Happy and Comfortable the users are To Touch, Be Touched, or Be Nearby
he hand. 

Number of Finger Segments (11 Models). Hands with more finger segments are rated as more
apable and Mature but also less Nice, Feminine, Friendly, and Trustworthy. The users are less
appy and less Comfortable to have physical interactions with the hand (To Touch, Be Touched,
andover, Nearby) compared to the hands with fewer segments. 

Commercial Product (11 Models). In our models, the commercial hands scored higher than the
esearch prototypes on the Nice, Interesting, Capable, Mature, Friendly, Intelligent, Trustworthy,
appy, Comfortable To Touch, Handover, and Nearby user ratings. 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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Finger Spacing (10 Models). Uneven spacing of fingers (e.g., human hand) is positively linked to
he Nice, Mature, and Friendly ratings. The uneven spacing also increases scores on feeling Dom-
nant and Comfortable to have physical interactions with the robotic hand. Even finger spacing
e.g., in grippers) lowers the Nice rating. When this feature is not applicable (i.e., the hand does
ot have any fingers), the hand is perceived as less Interesting and Safe to users. 

Rigid (9 Models). Hands that cannot close or move their fingers score low on Nice, Interest-
ng, Capable, Mature, Intelligent, and Trustworthy ratings. The Comfort To Touch, Handover, or
earby ratings are lower for these hands, too. 

Materials (7 Models). Hands with metal components get higher scores on Capable and Mature
ating scales and lower scores on the Humanlike, Feminine, Friendly, and Happy ratings compared
o hands with other materials. Rubber hands get high scores on Humanlike and Mature, while plas-
ic hands get lower Mature ratings. Hands with other materials get lower scores on the Feminine
nd Comfortable to be Nearby ratings. 

Has a Palm (3 Models), Material Softness (3 Models), and Number of Fingers (3 Models). Having a
alm has a high weight on the Humanlike score (i.e., its coefficient is 24.5 out of 30). However, hav-
ng a palm lowers the Mature and Comfortable to Be Touched by the Hand ratings. Soft materials
ncrease the Humanlike score, while hard materials increase the Intelligent and Excited ratings.
ands with more fingers get higher scores on the Excited rating and a lower score on the Safe
nd Comfortable to be Nearby ratings. Surprisingly, the other models do not rely on the number
f fingers in their predictions. 

Visible Texture (2 Models) and Multicolor (1 Model). Hands without a visible surface texture get
ower values on the Interesting and Capable ratings compared to those with a visible texture.
ands without a Multicolor feature get lower Feminine ratings compared to the hands with this
eature. 

.4 Introducing the RobotHands Interface 

e created an online visualization, available at https://robothands.org , to facilitate access to the
obotHands dataset and predictive models. The code for the interface is adapted from the open-
ource code by the Locomotion Vault project [ 24 ]. 
The RobotHands interface provides five main functionalities: (1) The Home page provides a

ummary of the project together with links for downloading the dataset of 73 hands and the larger
et of 378 hands; (2) On the Gallery tab, users can browse the 73 hands with their images and full
atabase record; (3) The Similarity tab presents the hands along the three PCA dimensions. This
iew allows users to see trends in user ratings of the hands and find similar hands based on overall
ser ratings; (4) With the Filters , one can search the database for a subset of design features or
ser ratings; (5) On the Prediction tab, designers can get a quantitative estimate of user ratings for
 new hand by entering its design features. 

 DISCUSSION 

elow, we discuss findings from the two studies in light of prior work and provide guidelines for
esigning or customizing robot hands for positive user ratings. We reflect on the limitations of the
ork and suggest avenues for future research. 

.1 Reflections on Study Results 

esults of our online study suggest that Comfortableness , Interestingness , and Industrialness of
he hands capture variations in the user ratings of existing robot hands. These results are most
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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elated to a recent study by Carpinella et al. on user perception of social robots [ 20 ]. Specifically,
arpinella et al. found that three factors of competence, warmth, and comfort can describe user
valuation of robots [ 20 ]. The Comfortableness dimension in our results (D1) is in line with
he comfort factor reported by Carpinella et al. The Interestingness dimension (D2) is linked to the
atings of Interesting, Intelligent, Capable, Humanlike, and Mature for the hands. We conjecture
hat this dimension is related to the competence factor in the previous work. Our analysis does not
how the warmth factor that was reported by Carpinella et al. The Industrialness dimension (D3) in
ur study is negatively linked to the Feminine ratings and is positively related to the ratings of Ma-
urity and Capability. While we are not aware of previous studies that show this factor for robots,
he negative link between Feminine ratings and the Mature and Capable ratings may reflect some
f the reported prejudice in evaluating people based on their gender in male-dominated areas [ 25 ].
Results from the in-lab study suggest that the visual evaluation of robot hands may be robust

o physical presence and touch interaction. With 40 participants, we did not find any significant
ifference between user ratings in the online setting and the in-lab visual condition (RQ2). Simi-
arly, we did not find a significant difference between the in-lab visual and in-lab touch conditions
ith 20 participants (RQ3). These sample sizes are consistent with previous studies in haptics and
RI [ 30 , 52 , 54 , 59 ], but we cannot completely rule out the impact of physical presence and touch
n user ratings. In other words, a larger study may have found a statistically significant difference.
hus, our results must be considered as a first exploratory study on these aspects rather than a
efinitive answer. On the other hand, the effect sizes for the experimental setting and rating con-
itions in our study are small for all the statistical tests, suggesting that the practical significance
f these factors, even if the results were statistically significant, may be small. One interpretation
or the lack of statistical difference in the ratings could be that the user judgment of the hands
id not change in the same way across the participants after the touch. In other words, the par-
icipants differed in their expectations of how the hands would feel in the vision condition. Thus,
hile the ratings have changed for individual participants after touch, the change in perception
as not robust across all the participants. Our results are in line with haptics and HRI research that
hows people can infer tactile sensations and their affective associations through vision [ 12 , 35 ,
2 , 59 , 60 ]. On the other hand, our results are in contrast with studies that show the importance
f social touch in HRI and statistically significant change in user perception or behavior across
ll the participants. The work of Shiomi et al. is relevant in particular [ 54 ]. Shiomi et al. ran a
etween-subject study with three conditions: (1) observe a robot, (2) touch a robot, and (3) touch a
obot and the robot touches back. With 11 participants in each condition, Shiomi et al. found that
he participants rated the robot as friendlier when the robot touched them back. The contrasting
esults between their work and ours could be due to the touch interaction, perceived autonomy of
he robot, or cultural aspects of touch. Shiomi et al. used a stroking gesture, which is commonly
ssociated with an affective intent. Also, Shiomi et al. used a humanoid robot that spoke with
he participants and appeared fully autonomous. Finally, Shiomi et al.’s study was conducted in
apan. We conjecture that the perceived intent and autonomy of the robot and cultural factors may
ediate the effect of touch on user evaluation of robots. 

.2 Implications for Robot Hand Design 

he design features selected for the regression models provide guidelines for predicting user
atings of robot hands. Specifically, feature values similar to the human hand create positive
mpressions (i.e., higher values on the rating scales). For example, the round fingertip, brown color,
dult hand size, having a thumb, and uneven finger spacing increase the scores for the majority
 ≥11 ) of the user ratings. A notable exception is the number of fingers, which does not have much
nfluence on user ratings. Thus, designers can use fewer or more fingers based on the technical
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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onsiderations of the target domain. Also, having a palm increases the score for Humanlike and
educes Mature and Comfort to Be Touched ratings, but it has little effect on the other ratings.
ore finger segments are also associated with higher Capable and Mature ratings, and adding
isible surface texture improves Interesting and Capable ratings. On the other hand, some features
reate negative impressions (i.e., lower user ratings) and should be avoided. For example, the
hite color is frequently used in designing social robots, but our data suggest it is perceived
egatively by users. Fingertips that are not round or pointy can also create negative impressions. 
Some of the hand features, such as color scheme and surface texture, can be easily modified by
esigners. Others, including the shape of fingertips, size, surface materials, and visibility of the
and mechanics, can be optimized for both user experience and functionality if these features are
onsidered at the design stage. For example, a round fingertip is linked to positive user impressions
nd can also have good dexterity and sensing [ 26 ]. Finally, design features such as if the hand is
igid, if it has a palm, or the number of segments in each finger can fundamentally change the
echnical specifications. Thus, these features pose a tradeoff for design. 
The RobotHands dataset can further facilitate the selection and design of robot hands. At the
ost basic level, one can explore the variety of existing designs in the database before choosing or
uilding a hand. When using an existing robot, HRI designers and researchers can look up the user
atings of its end effector or a similar design in the database. With this knowledge, the designers can
ecide to customize the hand or account for the user perception ratings in their studies. Designers
an check the overall trends in user ratings in the Similarity tab or use the predictive models to
btain a quantitative estimate for a new design. 

.3 Limitations and Future Work 

ur work has a few main limitations that can be examined in future studies. First, we did not in-
estigate the effect of grasping and motion parameters on user perceptions of the hands. This was
 pragmatic choice. The existing videos of the 73 robot hands in Study I had different viewpoints
nd demonstrated different object interactions. These differences could unfairly bias user evalua-
ion. Thus, we decided to use images and edit them for consistency in the presentation. In Study
I, we controlled all the motion parameters to only investigate the impact of the hand. A future
irection would be to systematically study the impact of hand motion parameters and object in-
eractions on user ratings of the hands. Second, the curated robot hand images in our database had
ome variations (e.g., different presentation angles for the hands). While we attempted to make the
mages consistent by removing their backgrounds and objects, we could not find existing images
hat showed all the hands in the same angles and poses. Our database was not large enough to
nalyze the effect of these variations on the user impressions of the hands. Future work can sys-
ematically vary the presentation of a subset of the hands and assess their impact on user ratings
or the hands. Third, the 17 rating scales in our studies may have limited participant responses to
redefined qualities. We opted for a structured questionnaire to be able to chart user impressions
f a large variety of robot hands. A complementary approach would be to conduct open-ended in-
erviews with a smaller subset of representative hands. Such studies have been used to shed light
n nuances of user experience with other technological artifacts [ 41 ]. Also, using a custom ques-
ionnaire makes it hard to compare our results with previous studies of robots. While we could not
nd an appropriate validated questionnaire for our work, our results can inform the development
f a validated instrument for robot hands in the future. Fourth, our results mostly reflect the per-
eption of American and European users ( >75% of the participants) who opted to participate in our
tudy. Future studies can investigate whether the same trends hold for other cultures and for those
ith a negative attitude toward robots. Finally, our design features and predictive models need to
e validated with a larger number of robot hands. In our work, we used two coders for assigning
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023. 
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he hand features and developed regression models with a feature selection scheme to mitigate
he possibility of overfitting to the current dataset. Thus, the models and design features that we
resented in this article need to be tested and validated on a larger set of robot hands in the future.
Another interesting avenue for future work is user perception of prosthetic hands. Our initial ob-

ervations suggest that existing prosthetic hand designs are a subset of the robot hands in our data-
ase but with more variation in colors and graphical patterns. For example, prosthetic users may
ave passive limbs, grippers, five-fingered designs, or activity-specific tools as a hand. In our stud-
es, we explicitly asked users to imagine that the hands in our database belong to a robot rather than
 human. Future work can investigate how an observer’s perception of the hand and touch inter-
ctions can change when a robotic hand is embodied or controlled by a human rather than a robot.

 CONCLUSION 

e chart user impressions of existing robot hands in two user studies. Our results suggest that
eople may form robust visual impressions of the hands that do not easily change with touch.
hese rated impressions can be estimated based on the visual and haptic features of the hands.
e provide practical design guidelines that can improve the user experience of robots without
ignificantly changing their technical complexity. We present our data and predictive models in
he RobotHands online interface to facilitate the selection and design of future robot hands by
esearchers and practitioners. 
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