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Designing robotic hands has been an active area of research and innovation in the last decade. However,
little is known about how people perceive robot hands and react to being touched by them. To inform hand
design for social robots, we created a database of 73 robot hands and ran two user studies. In the first study,
160 online users rated the hands in our database. Variations in user ratings mostly centered on the perceived
Comfortableness, Interestingness, and Industrialness of the hands. In a second lab-based study, users evaluated
seven physical hands and had similar ratings to results from the online study. Furthermore, we did not find
a significant difference in user ratings before and after the users were touched by the hands. We provide
regression models that can predict user ratings from the hand features (e.g., number of fingers) and an online
interface for using our robot hand database and predictive models.
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1 INTRODUCTION

Hundreds of robotic hands have been designed in the last decades. For example, the humanoid
robot, Pepper, has a five-fingered hand with articulated joints [9]. NAO uses a similar design but
with only three fingers and no palm [1]. Other robots, such as the PR2 and Baxter, have metal
grippers and/or suction cups [2, 5]. A growing number of soft manipulators are designed with
novel materials and working principles [53]. For example, Homberg et al., developed a silicon-
based pneumatic gripper that can comply with a wide range of object shapes [34]. New designs
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Fig. 1. Capturing user impressions of a diverse set of robot hands. (A) A collage of the 73 robotic hands in
our database. (B) In an online study, users rated images of the robot hands. (C) In a lab-based study, users
evaluated seven physical hands before and after being touched by the hands. User ratings showed similar
trends between the online and in-lab settings and before and after touch.

appear every year focusing on dexterous manipulation of objects and performance metrics [13,
53].

Robotic hands are often used in collaborative settings with humans. For example, Baxter and PR2
can work on assembly and manipulation tasks with users [33, 48] or engage in social touch (e.g.,
hand clapping, hugging) [15, 27]. The soft gripper by Homberg et al., has been attached to Baxter
and trained to grasp a range of household objects [34]. Socially interactive robots can use hand
gestures or direct touch to convey emotion and intent in education, therapy, or service tasks [19,
23, 38, 45]. In these settings, users may merely observe the hand or interact with it through touch.

However, little is known regarding how people perceive different robotic hands, and how they
respond to touch interactions with the hands. Despite the vast design space of robotic hands, little
effort has been devoted to studying their design features (e.g., number of fingers) and how these
features affect user impression. Recently, human-robot interaction (HRI) researchers have adopted
online platforms such as Amazon Mechanical Turk for large-scale studies with users [39, 51]. Yet,
we do not know if user perception of robot hands in an online study would be similar to a physical
experiment where the robot hands are present in close proximity to the user. Furthermore, no data
exists on how the user impressions may change if the hands contact the user’s body. To support
the increasing adoption of robots in social settings and guide the design of future robot hands, we
set forth to answer the following questions:

e RQ1. How do laypeople perceive subjective qualities of existing robot hands?

e RQ2.Do user ratings of the hands differ when collected online vs. an in-lab setting?
With this question, we investigate the impact of physical presence [18, 23] in evaluation of
robot hands.

e RQ3. Do user ratings change after being touched by the hands? This question is
motivated by past studies that suggest that touch interactions with a robot can improve
user acceptance and behavior toward the robot [30, 54].

e RQ4. What design features of the hands (e.g., number of fingers) can predict user
ratings?

To address these questions, we reviewed existing robotic hands and ran two studies to capture
lay users’ visual and touch experience with these hands (Figure 1). We first compiled a large set of
robot hands from commercial and research venues and then selected 73 hands that represented the
variations in the set. In an online study, 160 users evaluated images of the hands on 17 semantic dif-
ferential rating scales. A principal component analysis of the ratings showed that three qualities of
the hand Comfortableness, Interestingness, and Industrialness can describe variations in user ratings
of the hands (RQ1). Next, we ran an in-lab study to further investigate if the in-person evaluation
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of the hands differ from the online results (RQ2) and how user evaluation of the hands is influenced
by touch (RQ3). The participants rated seven prototype hands before and after receiving four short
taps on their forearm from each hand. Our results did not show a statistically significant difference
between user ratings of the hands in the lab and online. Also, we did not find a significant differ-
ence between the participants’ ratings before and after the participants were touched by the robot
hands. To inform the design of robot hands, we created a database of the 73 robot hands and coded
their design features (e.g., number of fingers, color scheme). We trained 17 linear regression models
to predict user ratings from the hand features. The shape of the fingertip, color scheme, and hand
size were among the top predictors for most (>14) of the regression models, while the visible sur-
face texture, number of fingers, and existence of a palm only contributed to a few (<3) predictions.
We provide an online interface to the database and the predictive models and discuss implications
of our findings for future work on robotic hands.

The contributions of the article are as follows:

e a database of 73 robot hands with 15 design features (e.g., number of fingers) and 17 user
ratings (e.g., humanlike) per hand

o three subjective qualities (Comfortableness, Interestingness, and Industrialness) that describe
variations in user ratings of robot hands

e comparisons of user ratings for robot hands based on images, physical hands in the lab,
and physical hands after touch

e 17 regression models that can predict user ratings and an analysis of the models’ most
predictive design features

o the RobotHands online interface for browsing the database and predicting user ratings for
new hands.!

2 RELATED WORK

We review the literature on designing robotic hands and present findings on user evaluation of
robot appearance and robotic touch. In this article, we use robot “hand,” “end effector,” and “ma-
nipulator” interchangeably.

2.1 Designing Robot Hands

Existing robotic end effectors vary based on many design features. One of the earliest robotic
hands was a two-fingered parallel jaw gripper that is still in use for many applications. Some de-
signs closely replicated a human hand with articulated fingers and a palm [22] or were inspired by
animals [40]. For example, similar to fish, some robotic end effectors use suction for grasping and
moving objects [5]. Others may closely resemble a tool such as a cup holder or a hook [3]. The ma-
terials and working mechanisms of the hands have also evolved over the years. Early manipulators
were composed of rigid parts and electrical motors [13]. Later efforts have incorporated soft elas-
tic materials (e.g., electroactive polymers) in designing parts of the hand or the whole hand [53].
Soft manipulators tend to be smaller due to the actuation limitations of their materials [13]. Past
studies have supported and evaluated the wide variety of hand designs according to performance
considerations such as weight, speed, ease of design and control, and robustness in interacting
with a wide range of objects [13, 53].

Human-robot interaction (HRI) researchers often use existing robot hands in their studies [33,
46, 54, 60]. As an exception, a few recent studies customized hands of commercial robots to improve
user comfort in touch interactions with the robot. Fitter et al., placed boxing pads over the Baxter’s

http://robothands.org/.
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grippers so that users can clap hands with the robot as part of their physical exercise games [28].
Zamani et al. designed a five-fingered flat hand for the Sawyer robot to study the impact of motion
parameters (e.g., speed) on user evaluation of a robot-initiated tapping gesture [61]. The main
motivation for designing a custom hand was to measure the applied force, but the authors also
noted the addition of a silicone layer for user comfort. Another study used a similar design but
with rubber pads instead of silicone [27]. These studies relied on the intuition of the researchers
in their design and mainly focused on the material softness. We investigate how the materials and
other design features of the hand can influence user ratings.

2.2 User Impression of Robot Appearance

People can form mental models of a robot and its capabilities based on its appearance [31, 42, 50,
55]. In a study by Powers and Kiesler, people perceived an anthropomorphic advisor robot with a
short chin length to be more sociable, and they were more likely to follow its advice compared to
a robot with a longer chin [50]. Li et al. compared a machine-like robot with an animal-like and a
human-like robot in a study and found that the machine-like robot was less likeable than the other
two robots [42].

Recent crowdsourced studies on large collections of social robots have found generalizable
trends in user impressions of robots. Reeves et al. collected 300 social robots and showed that
people evaluate and stereotype robots, similar to their impressions of humans, along two primary
dimensions of warmth and competence [51]. Phillips et al. investigated the human likeness of 200
robots based on their images [49]. Kalegina et al. compiled a database of 176 robots with pro-
grammable faces and coded variations in their facial features (e.g., existence of eyelashes) [39].
Based on two studies with 12 and 17 robot faces, Kalegina et al. provided guidelines on how dif-
ferent facial features impact user ratings. These studies used images of the robots to collect user
ratings on Amazon Mechanical Turk. Similarly, we use the Mechanical Turk to collect user rat-
ings of a large set of robot hands. Our focus is on a single body part instead of the whole robot.
Therefore, our database lists different types of hands for a robot (e.g., vacuum cup gripper and
parallel jaw gripper for Baxter [5]) as separate entries. We also include hand prototypes that are
not embedded in existing robots.

Many of the above studies investigated features that contributed to user ratings, but almost
none provided a predictive model for user ratings. One exception is the work of Phillips et al.,
who developed a linear regression model for predicting the human likeness of robots. Phillips
et al. included the model in an online tool together with their ABOT database [49]. Inspired by
their work, here we present regression models for predicting user ratings of new robot hands and
investigate the most predictive hand features for the models.

Finally, HRI researchers have proposed questionnaires for capturing the user impression of
robots. The Godspeed questionnaire and the Robotic Social Attributes Scale (RoSAS) are the
most frequently used instruments in the literature [11, 20]. The Godspeed questionnaire has
24 Likert-scale items that capture the user ratings of anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety of robots. The Godspeed questionnaire was developed
based on a literature review of prior HRI questionnaires and related empirical studies, but the
authors did not attempt to validate the Godspeed questionnaire. Later, Carpinella et al. developed
the RoSAS and validated it in a series of online studies with descriptions of robots or images of
robot faces. RoSAS is a 18-item questionnaire that captures the perceived warmth, competence,
and comfort with a robot. These questionnaires capture user ratings of a robot, but the questions
do not include any items about a robot’s limb or user reactions to physical interactions with
the robot. Thus, we used a custom questionnaire with items from the Godspeed and RoSAS
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questionnaires as well as additional items to capture user ratings of robotic hands and their
emotions and comfort in physical interactions with the hands.

2.3 Touch Interactions with Robots

Past research suggests that physical interactions with a robot can impact user impressions and be-
havior toward the robot. Shiomi et al. showed that users rated a robot as friendlier, performed more
actions, and spent more time on a repetitive task if the users touched the robot beforehand [44, 54].
The effect was even larger when the robot actively touched the participants back. Block et al. found
that users felt more understood and trusted a robot more after receiving a hug from the robot [14].
A study by Fukuda et al. showed that receiving a touch from the robot during an unfair proposal
in a game setting can inhibit the perception of robot unfairness [30]. To check if these findings
hold for a robot limb, we tested whether user ratings of different hands changed after the hands
touched the participants.

Others have investigated factors that influence acceptance and affective appraisal of a robotic
touch. Chen et al. found that users had higher acceptance of a robot-initiated touch if the intent
was instrumental (e.g., cleaning the participant’s hand) rather than affective (e.g., providing com-
fort) [21]. Teyssier et al. studied how the type of touch (e.g., tapping) and its amplitude, force, and
velocity are linked to the perceived pleasantness and intensity of touch [57]. Type of touch did
not have a clear link to user ratings, whereas all the other factors influenced the ratings. Similarly,
Zamani et al. varied parameters of a tapping gesture and found that force had a significant impact
on arousal and dominance ratings [61]. Based on these findings, we used a tapping gesture with a
preset force and velocity in our in-lab study.

While touch studies usually need physical contact, the literature suggests that users can infer
some aspects of a tactile experience through vision. In particular, there is high correspondence
between visual and tactile evaluations of material roughness and hardness [12, 58]. The same
patterns hold for texture evaluation in the visual and tactile modalities [59]. Other studies showed
that people can also visually infer affective qualities of materials and vibrations [29, 52]. In tactile
HRI, a recent study found that user pleasantness ratings for videos of a stroking sensation peaked
at 3 cm/s, similar to ratings of a physical stroking experience [60]. We reflect on results of our
in-lab study in relation to this correspondence between visual and tactile evaluation.

3 STUDY I - THE PERCEPTUAL SPACE OF ROBOT HANDS

To investigate the perceptual space of robot hands (RQ1), we collected a representative set of 73
hands from industry and academia, designed a custom questionnaire, and ran an online user study
on Amazon Mechanical Turk.

3.1 Compiling Representative Robot Hands

Collecting a Large Set of Hands. We use a broad definition for robot hands to capture a large
variety of designs. Specifically, our definition includes robotic end effectors that can pick up, hold,
or manipulate objects. We also include robot parts that are located at a place that is normally
associated with a hand (e.g., end of a robot arm) or have the appearance of an animal or human
hand. The first part of this definition covers the wide range of robotic grippers [53] and suction
cups [5]. The second part covers hands with rigid designs such as those in the KASPAR [36] or
the CuDDler [43] robots. We exclude robotic limbs that are only used for locomotion (e.g., [4]) as
well as exoskeletons [16]. Also, we exclude graphical renderings of robot hands [32] or hands that
are shown in animations or movies. This definition covers a wide range of designs that have the
functionality or appearance of a hand but keeps the hand selection focused on existing physical
designs.
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Fig. 2. Example of an edited image in Study I. The image shows the PR2 gripper and its size w.r.t a medium-
sized mug [2].

Using this definition, we collected 371 robot hands from existing robot databases and review
papers. The authors examined all the robots in the following three databases: (1) IEEE Robots
database [7] which has 232 robots, (2) Stanford Social Robot Collection [10, 51] with 342 robots,
and (3) ABOT (Anthropomorphic roBOT) database [6, 49] with 251 robots. The second and third
databases were recently developed by HRI researchers with the aim to compile a comprehensive
collection of robots. We listed all the robots that had a hand according to our definition. If a robot
had multiple hand designs (e.g., Baxter [5]), we added all the designs to our list. This led to 130,
124, and 85 unique hands from these three sources, respectively. Finally, we added 32 new designs
by examining all the hands presented in recent review papers on robotic manipulators [13, 53].

Selecting Representative Designs. We chose 73 robot hands that captured the design variation
in the larger set of hands. All four authors separately identified a subset of the 371 hands that
the authors deemed to represent the variations in the appearance and working mechanisms of all
the hands in the original set. In particular, we paid attention to the number of fingers, materials,
rigid vs. moving parts, working mechanism, and colors of the hands. Next, the authors merged
their choices in a meeting. We included all the hands selected by four (n = 10 hands) or three
authors (n = 25). We discussed the hands selected by one or two authors and reached a consensus
on which ones are distinct and should be included in the final set. We added 26 and 12 hands that
were selected by two authors and one author, respectively.

Preparing Robot Hand Images. We divided the 73 hand models into 8 subsets and prepared their
images for the study. One of the authors grouped the hands with an overall goal of having a
variety of hand designs (e.g., number of fingers, colors) in each of the eight sets. Each set included
the edited images of nine unique hands as well as the PR2 gripper for comparison [2]. For each
robot hand, we prepared a single image with a white background showing the hand in one or two
poses and included a mug or a coin as a scale reference (Figure 2). For the majority of the hands,
we found one neutral open pose and one closed or figurative pose (n = 49 out of 73 hands). If one
of these two poses was not available online (n = 5), we included two images from different angles
(e.g., palmar and dorsal sides of the hand). If the hand was rigid (n = 13) or if only one pose was
available online (n = 6), we included one image of the hand.

3.2 Designing a Custom Questionnaire

Since no established questionnaire exists for a robotic limb, we designed a custom questionnaire
based on past studies of robot appearance and touch interaction. We also used a set of demographic
questions from prior work.

Robot Hand Questionnaire. We aim to capture user impressions of a hand or a robot with this
hand as well as user emotions and comfort in interacting with the hand. Our questionnaire has
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17 semantic differential ratings on a 0-100 scale. While no consensus exists in the literature on the
appropriate range for a rating scale, we use the 0-100 scale to regard the data as interval rather
than ordinal in our analysis. Specifically, one can apply parametric statistical analysis methods
(e.g., ANOVA, linear regression) to analyze the ratings on this scale. Our choice of scale is also in
line with the prior studies on user ratings of robots [39, 49]. Ten of the ratings are about quali-
ties of the hand (e.g., humanlike) or a robot with this hand (e.g., intelligent). Eight out of the ten
ratings are from the Godspeed questionnaire [11], RoSAS [20], and a recent study on user per-
ception of robot faces [39]. While a core principle of the Godspeed and RoSAS questionnaires is
that of increasing internal reliability, using a large number of ratings from these questionnaires
would incur increased study fatigue in the participants. Thus, we employed a subset of items from
these questionnaires to capture user ratings of robots. The Creepy - Nice scale is from the IEEE
Robots database [7]. We added the Boring - Interesting rating based on internal discussions. We
also included three ratings to capture users’ emotion(s) if the users are touched by the robot [17].
Past studies have used custom statements to assess user comfort in physical interactions with
robots [21, 61]. Thus, we added four ratings to capture user comfort when touching the robot
hand, being touched by the hand, passing or receiving objects from the hand, and being present
near the robot hand. Similar to Kalegina et al. [39], we also asked respondents to provide a descrip-
tive name for the hand and to indicate suitable jobs for it. Table 1 presents all the questions, their
shorthand for the rest of the paper, and their literature references. We denote the shorthand that
corresponds to the 17 user ratings with capitalization (e.g., Humanlike) in the rest of this article.

The questionnaire displayed the hands from one of the eight sets in a random order. Each page
showed the edited image of a robot hand at the top and asked the participants to indicate if there
is a robot hand and/or object in the image. Next, the participant answered the questions in Table 1
for that hand. As an attention test, we added an extra rating for two of the robot hands in the ques-
tionnaire and asked the participants to set its value to “very uncomfortable (0)”. We also included
a dummy blue image instead of a robot hand as an attention test.

Demographic Questionnaire. The demographic questionnaire asked about the participants’ age,
gender, and the country where they grew up. We also asked them to rate their familiarity with
robots on the following scale: (1) None: I have no experience with robots; (2) Novice: I have seen
some commercial robots; (3) Beginner: I have interacted with some commercial robots; (4) Interme-
diate: Thave done some designing, building, and/or programming of robots; (5) Expert: I frequently
design, build, and/or program robots. Finally, we used the Negative Attitude Toward Robots Scale
(NARS) to capture variations between users in their beliefs and feelings toward robots [46, 47].
NARS has three subscales capturing negative attitudes toward interacting with robots (S1), so-
cial influence of robots (52), and emotional communication with robots (S3). We included the first
subscale from NARS (S1), as it was the most relevant for the evaluation of robot hands.

3.3 Running an Online Study

We administered the survey online through the Amazon Mechanical Turk. The criteria for eligible
turkers were having more than 5,000 approved hits and a hit rate of 99% or more. The participants
needed to confirm that they are 18 years or older, have normal or corrected to normal vision, and
understand English at least at the B2 level. We recruited a total of 168 participants. We removed 8
participants who did not pass our attention tests, resulting in 20 responses for each of the eight sets.

The majority of the participants were from the United States (122), followed by India (15), Brazil
(13), Italy (5), Canada (2), Australia (1), England (1), and Turkey (1). The participants self-identified
as man (n = 66), woman (93), or nonbinary (1). The majority rated their familiarity with robots
as novice (65) or beginner (57), followed by no familiarity (23), intermediate (11), or expert (4).
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Table 1. The questionnaire used in the studies. The second and third columns show
the acronyms we use for the user ratings in the rest of the paper and citations
to the origin of the ratings/questions, respectively

Question Shorthand Reference
Give a descriptive name to the robot hand. - [39]
This robot hand is ...

Machinelike - Humanlike Humanlike [11, 39]
Creepy - Nice Nice [7]
Boring - Interesting Interesting -
Incapable - Capable Capable [20]
Dangerous - Safe Safe [20]
A robot with this hand is ...

Masculine - Feminine Feminine [39]
Childlike - Mature Mature [39]
Unfriendly - Friendly Friendly [11, 39]
Unintelligent - Intelligent Intelligent [11, 39]
Untrustworthy - Trustworthy Trustworthy [39]
If this robot touches me, I would feel ...

Unhappy - Happy Happy (17]
Calm - Excited Excited [17]
Submissive - Dominant Dominant [17]

I feel [Uncomfortable - Comfortable] to ...

Touch this robot hand. To Touch -
Be touched by this robot hand. Be Touched -
Pass or receive objects from this robot hand. Handover -

If this robot hand interacts with objects near me. Nearby -
Which jobs or roles will this robot be suitable for? - [39]
(Select all that apply)

Education, Entertainment, Healthcare (nursing, rehabilitation),
Home, Industrial (factory), Research, Service (hotel, restaurant,
shops), Security (surveillance, security guard), Other (please specify)

Similarly, the majority of the participants in each set rated their familiarity with robots as novice
or beginner, followed by no familiarity, intermediate, or expert. The NARS scores were measured
on a scale from 6 (the lowest) to 30 (the highest) for a negative attitude toward robots. The mean of
the participant scores was 11.75 (std = 4.88), indicating positive to neutral attitudes toward robots.

3.4 Results

We present a low-dimensional perceptual space for the hands and summarize its correlations with
the selected applications for the hands.

RQ1. How do laypeople perceive subjective qualities of existing robot hands?

We derived a perceptual space for the hands from the user ratings. The 17 rating scales showed
strong correlations (r(72) > .5, p < .0001) for around 60% of the bi-variate correlations. Figure 3
presents the distribution of the mean user ratings for the 73 robot hands with example hands from
the dataset that fall on the extremes of each rating scale. One can see a few hands (from the 73 in our
dataset) fall at the extremes of several rating scales. To obtain a low-dimensional representation of
user ratings, we applied Principal Component Analysis (PCA) to the average ratings for the robot

ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 35. Publication date: April 2023.



First-Hand Impressions: Charting and Predicting User Impressions of Robot Hands 35:9

GLEMGQeMEmM@@emyyy
WX ALEYRTA AR 4222’

GEERSEEERT LT

Humanlike  Nice Interesting Capable  Safe  Feminine Mature  Friendly Intelligent Trustworthy Happy  Excited Dominant Be Touched ToTouch Handover Nearby

'?f A 7@#1%1757??11
A < -~ A E

SPNNDPe @I DPI®RDRTT
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Fig. 4. Scree plot from principal component analysis (PCA) on the average user ratings on the 17 rating
scales for the 80 hands. Three components have eigen values above 1.

hands. The PCA yields three dimensions (principle components) that had eigenvalues greater than
1 (Figure 4) and together explained 86.13% of the total variance (Table 2). Following the convention
in the previous HRI studies [20, 49], we consider values higher than 0.5 as strong loadings and
include them in the interpretation of the PCA components. After the Varimax rotation, the first
dimension (or component) reveals strong loadings (>.50) for eleven ratings including user comfort
To Touch, user comfort to Be Touched, Friendly, Safe, user feeling Happy, Trustworthy, Nice, user
comfort to be Nearby, user comfort to Handover, user feeling Dominant, and Intelligent ratings.
These ratings correspond to the positive feelings of comfort and safety in interacting with the hand.
Thus, we label this dimension as Comfortableness. The second dimension has strong loadings for
six ratings including Interesting, user feeling Excited, Intelligent, Capable, Humanlike, and Mature.
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Table 2. Principal components loading matrix after varimax rotation.
Loadings above 0.5 are in bold [20, 49]

Rating Scales PC1 PC2 PC3
Comfortableness Interestingness Industrialness
[User comfort] To Touch .96 .16 .06
[User comfort to] Be Touched .95 .21 —-.06
Friendly 94 .19 .20
Safe 91 .06 —.21
[User feeling] Happy .90 .34 -.07
Trustworthy .88 .38 .19
Nice .87 .21 .16
[User comfort to be] Nearby .86 34 .31
[User comfort to] Handover .84 .36 .33
[User feeling] Dominant .66 -.23 -.25
Interesting .30 .82 .22
[User feeling] Excited -.07 .82 11
Intelligent .51 .70 42
Capable 41 .66 .56
Humanlike .49 .64 —.24
Feminine .26 —.04 -.90
Mature .09 .54 74
Eigenvalue 10.16 3.41 1.07
% Variance 59.75 20.08 6.30

These ratings correspond to the user interest and perception of the capability of the hand. We label
this dimension as Interestingness. Dimension 3 has strong loadings for three ratings of Feminine,
Mature, and Capable. Also, D3 has low (<.10) or negative loadings for user feeling Happy, user
feeling Dominant, Safe, user comfort To Touch, and user comfort to Be Touched. In addition, the
D3 values show a strong linear correlation with the number of times the participants selected
“Industrial” as a suitable application category for each hand (r(72) = .79, p < .0001 - Figure 6).
These loadings and the correlation result suggest a category of industrial hands that are capable
of assembling objects, but they are not inviting users for touch interaction. Thus, we label this
dimension as Industrialness, i.e., the quality or state of being industrial.

Figure 5 depicts these three dimensions with images of the robot hands. Moving from low to
high values on D1 and D2 (i.e., bottom left to top right corner of Figure 5(a)), the hands increasingly
resemble the human hand and have several fingers or joints. Interestingly, the bottom left corner of
the space (i.e., low comfort and interest) is empty suggesting that the users found the hands either
comfortable and safe or interesting. The majority of grippers and static hands have negative values
on the Interestingness dimension (D2). The hands with positive values on D3 (i.e., Industrialness)
have metal components, whereas those with negative D3 values have softer materials (e.g., silicon,
plastic, and fur), bright colors, and/or a static or rigid configuration (Figure 5(b)).

Discussion. In the above PCA space, some of the 17 ratings load on more than one PCA dimen-
sion. For example, the Intelligent ratings have strong loadings (>.5) on two dimensions. In such
cases, it is common to try alternative rotation methods (e.g., oblique rotation) to obtain a solution
with the least cross-loadings and/or delete items that load on multiple dimensions. We applied
various orthogonal and oblique rotations to the PCA solution. The obtained solutions from these
methods had similar number of cross-loadings and only the items with the cross-loadings changed
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Fig. 5. The four-dimensional representation of user ratings for the 73 robot hands from principal component
analysis (PCA).

in the results. Thus, we decided to retain the Varimax solution that applies an orthogonal rotation
to the PCA space and is commonly used in the literature. Furthermore, we decided to retain all
the 17 rating scales since the purpose of this research is to chart the user ratings of robot hands
and their similarities and differences with a low-dimensional space rather than developing a ques-
tionnaire for robot hands. Studies that focus on questionnaire development usually employ a large
number of items (e.g., over 40) which can allow for better separation of the factors. Thus, we keep
all the 17 ratings in the PCA solution to represent the contributions of all the ratings to the three
resulting dimensions.

Suitable Application Categories for the Hands. To further chart user perception of the hands, we
counted the number of times that the participants selected an application category for each robot
hand. Figure 6 shows the correlations between the frequency of the selected applications for each
hand and the hand positions on the three PCA dimensions. PCA dimension 1 (i.e., Comfortableness)
has high positive correlations (r(72) > .5, p < .0001) with the frequency of selecting Education,
Healthcare, Home, Service, and the total frequency of applications selected for the hands (i.e., All
Applications). In other words, with an increase in the Comfortablenss of the hand (D1), the hands
are perceived to be more suitable for these applications. PCA dimension 2 (i.e., Interestingness)
has high correlations with Healthcare (r(72) = .55, p < .0001) and total number of applications
for the hand (r(72) = .52, p < .0001). PCA dimension 3 (i.e., Industrialness) has high correlations
with Industry (r(72) = .79, p < .0001) and Security (r(72) = .57, p < .0001) selections. This result
suggests that people regard the hands with high masculine and mature ratings to be suitable for
these applications.

4 STUDY II - THE IMPACT OF PHYSICAL PRESENCE AND TOUCH

Our next study examined whether the results of the online study are applicable to an in-person
experience of robot hands (RQ2), and if the user ratings change after being touched by the hand
(RQ3). To answer these questions, we prepared seven robot hand prototypes and collected user
evaluations of them via online and in-lab experiments.
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Fig. 6. Correlation matrix showing the relationship between the frequency of selected application categories
and PCA dimensions.
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Fig. 7. The seven hands used in Study II. (A) Existing robot hands with various design features from Study
1. (B) The corresponding hand prototypes that we used in Study Il. From left to right, we call the prototypes
“human replica,” “soft gripper,” “furry hand,” “metal skeleton,” “hard gripper,” “black plastic,” and “suction
cup” in our results.

4.1 Seven Robot Hand Prototypes

We chose seven distinct hands with different numbers of fingers, materials, and working
mechanisms from Study I and prepared prototypes with a similar look and feel (Figure 7(A)). Three
of the hands have five fingers resembling a human hand but with different materials (Hands 1, 4,
and 6). We included two grippers, one with soft materials, three fingers, and a pneumatic actua-
tion mechanism (Hand 2) and the other one with hard components, two fingers, and mechanical
actuation (Hand 5). Finally, we included a static furry hand (Hand 3) and a suction cup (Hand 7).
Next, we prepared seven prototypes, aiming to make them similar to the selected hands in visual
appearance and haptic properties (Figure 7(B)). For Hands 1, 3, and 7, we bought a silicon replica of
the human hand used for jewelry display, a 40-mm Bellows Vacuum Suction Cup, and a teddy bear,
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Fig. 8. The setup for the in-lab experiment. The left and right images show the in-lab visual and in-lab touch
conditions, respectively. The participant’s face is blurred to preserve anonymity.

respectively. We call these hands “human replica,” “suction cup,” and “furry hand” in the results.
For Hand 2, we silicone-moulded the three fingers and the center cube, 3D printed the base, and
attached plastic tubes to the fingers. We call this hand “soft gripper”. For Hand 4, we bought an
anatomical skeleton model, sprayed it with silver, and wrapped a metal thread around the fingers
to give it a metallic appearance and feel. We could not source a metal gripper for Hand 5. Instead,
we used the TinkerKit Braccio Robot gripper [56] that we had in the lab. While the TinkerKit hand
does not closely resemble the PR2’s design, it has the appearance of a two-fingered gripper with
hard materials and metal screws. We call this hand “hard gripper”. We replicated Hand 6 using a
fabrication model from InMoov, an open-source 3D-printed robot [8]. We called this prototype the
“black plastic” hand in the results. For all the hands, we 3D printed a wrist to allow attachment to
external hardware.

4.2 Online Evaluation of the Hand Images

We evaluated the seven prototypes using Amazon Mechanical Turk. The procedure was the same
as in Study L. For each hand, we prepared an image showing the hand from two angles and scaled
them relative to the mug image. We also added the PR2 hand and used the same attention tests as
in Study L

Twenty-two workers responded to the survey. We removed two responses that did not pass the
attention tests. The participants (13 female, 7 male) were between 22 and 61 years old. They were
from the United States (12), India (4), Brazil (1), France (1), Italy (1), and the United Kingdom (1).
In terms of prior experience with robots, 1 self-identified as none, 7 as novice, 7 as beginner, 4 as
intermediate, and 1 as expert. The mean of the NARS scores was 12.4 (std = 5.89) on a scale of
6-30, suggesting that, overall, the participants had positive to neutral attitudes toward interacting
with robots.

4.3 In-Lab Evaluation of the Hands

We ran a lab-based experiment to collect user ratings of the physical hands after the users saw the
hands and were touched by them (Figure 8). We call these conditions in-lab visual and in-lab touch
in the rest of this article.

Study Design. We had two main considerations in our study design. First, we included the seven
hands as well as the in-lab visual and touch conditions as within-subjects factors. The main reason
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for this decision was to allow us to detect any effect, if it exists, despite the variations in
subjective ratings (the standard deviation of ratings in Study I was 22.85 on a 0-100 scale). Second,
we randomized the presentation order of the seven hands, but the in-person visual condition al-
ways preceded the in-person touch condition in our study. We did not counterbalance the order of
these two conditions, since the experience of being touched by a robot hand cannot be erased once
it is felt. In other words, it was not possible to counterbalance the two conditions in a meaningful
way. Furthermore, this order reflects a natural human-robot interaction where, in most cases, a
touch interaction happens only after seeing the robot.

To prevent participants from remembering their responses from the in-lab visual evaluation,
we asked them to complete a short cognitive task before the touch condition. We used a comput-
erized version of the 2-back task for this purpose. The participant saw a sequence of letters and
had to indicate if the current letter matched the one from two steps earlier in the sequence. The
2-back task is a variation of the n-back task, which is commonly used for assessing or engaging
the working memory [37]. We used the task as a filler to flush the participant’s working memory
before the in-lab touch condition.

Hardware Setup and Questionnaire. We attached the hands to a UR5e robot arm and programmed
a tapping gesture (Figure 8). The wrist connector for each hand could slide in and out of a
3D-printed attachment on the UR5e. The robot arm was controlled via the Robot Operating Sys-
tem (ROS). We programmed the tapping gesture as four up/down movements with 1.5 newtons of
force and speed of 16 cm/s. This gesture was designed based on a recent study showing that robot-
initiated tapping with these movement parameters can induce emotion associations in users [57].
We adopted these gesture parameters to study if variations in the robot hand can impact the user
perception and emotion association.

The questionnaire was similar to that used in Study I with a few changes (Table 1). For evalua-
tion of the physical hands, we removed the robot hand images. Also, we added three open-ended
questions at the end to ask about factors that contributed to (1) the participant’s ratings of the
hand, (2) their emotion ratings, and (3) any change in their ratings before and after the touch.

Procedure. The experiment was advertised through mailing lists, social media posts, and flyers
over the University of Copenhagen’s campus. The experimental protocol was approved by the
ethics board of the university. Each session took between 45 and 90 minutes, and the participants
received gifts equal to $23 USD as compensation. At the start, the participants filled out the de-
mographic questionnaire and received a short training on the 2-back task. Then, the experimenter
moved the robot to a fixed position for calibration purposes. She then measured the participant’s
left forearm, marked the 1/3 distance from the participant’s elbow, and instructed the participant
to align this mark with preset marks on the table. The experimenter also elevated the participant’s
forearm until it reached a preset height.

Next, the participants evaluated the hands one at a time. For each hand, the participants filled
out the questionnaire after seeing the hand (in-lab visual condition). We encouraged the partic-
ipants to look at the hand from different angles, but they could not touch the hand. Then, the
participants completed one round of the 2-back task, the robot hand tapped their left forearm, and
the participants evaluated the hand again (in-lab touch condition). At the end of the session, the
participants answered the three open-ended questions.

Participants. We recruited 20 new participants (12 female, 7 male, and 1 nonbinary) between 22
and 60 years old. They were from northern Europe (14), Germany (2), Hungary (1), Spain (1), Russia
(1), and Argentina (1). For prior experience with robots, 7 self-identified as none, 4 as novice, 5 as
beginner, 4 as intermediate, and 0 as expert. The mean of the NARS scores was 12.3 (std = 4.53),
suggesting that the participants had positive to neutral attitudes toward interacting with robots.
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4.4 Analysis

To analyze the results, we calculated the hand scores along the three dimensions of Comfortable-
ness, Interestingness, and Industrialness derived from Study I. We chose to compute these scores for
two reasons. First, running ANOVAs on the 17 rating scales would increase the chance of type I
error and using family-wise error correction methods would result in a very small alpha value.
Second, individual items on a multi-item questionnaire often have noise. An established practice
for dealing with multi-item questionnaires in the literature is to run statistical analysis on the de-
rived components from dimensionality reduction as the derived dimensions are more robust to
noise than the individual items [20, 49].

Following the procedure in prior work [20, 49], we computed the three derived ratings by av-
eraging the ratings across high-loading items for each of the PCA components (Table 2). This
measure is simple to calculate and interpret. Furthermore, the scores computed with this method
for the 73 robot hands in Study I showed strong correlations with the PCA scores (Comfort-
ableness, r(72) = .94, p < .0001; Interestingness, r(72) = .83, p < .0001; Industrialness, r(72) = .82,
p < .0001). Thus, similar to prior work, we used this average score as an efficient measure for
computing the hand scores along the three dimensions in the rest of our analysis.

4.5 Results

Below, we compare the ratings in the online and in-lab settings and for the in-lab visual and
touch conditions using & = 0.05 as the significance level. We also summarize comments from the
participants.

RQ2. Do user ratings of the hands differ when collected online vs. an in-lab setting?

We ran three separate ANOVAs on the derived ratings for the Comfortableness, Interestingness,
and Industrialness as dependent variables and the seven hands (within-subjects) and the online
and in-lab visual settings (between-subjects) as independent variables. Since the participants were
different in the online and in-lab settings, we regarded the experimental setting as a between-
subject factor. All three ANOVAs showed significant main effects of the robot hand (p < .000).
Since we had selected and designed the hand prototypes to vary in their design features (e.g.,
number of fingers) and user ratings, we do not further discuss these significant effects.

The ANOVAs did not show a significant effect of the experimental setting or any interaction
effect. Thus, we conjecture that the derived ratings were not significantly different between the
online vs. in-lab settings in our study (Figure 9). The effect sizes for the online vs. in-lab settings
were small (partial ? < 0.01) for all three derived ratings, suggesting limited-to-no practical sig-
nificance of the experimental setting on user evaluation of the hands in our study.

RQ3. Do user ratings change after being touched by the hands?

We ran two-way repeated-measure ANOVAs on the ratings derived for Comfortableness, Interest-
ingness, and Industrialness as dependent variables and the rating condition (in-lab visual vs. touch)
and the robot hands (7 levels) as within-subjects factors. The three ANOVAs showed significant
main effects of the robot hand (p < .000). Similar to RQ2, we do not further discuss these effects.

User ratings did not show a significant effect of the rating condition (i.e., in-lab visual vs. touch)
in our study. The effect sizes for the rating condition were small (partial ? < 0.01) for all the three
derived ratings, suggesting limited-to-no practical significance of touch on the user ratings.

Qualitative Comments. The participants also answered three questions about factors that con-
tributed to (1) their ratings of the hand, (2) emotion ratings, and (3) any change in their ratings
before and after the touch. The participant responses to questions 1 and 2 referred to the visual
appearance, haptic feel, and materials and texture of the hands as well as their perceived capa-
bility. The majority of the participants noted that the visual appearance affected their judgment
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Fig. 9. User ratings for the three derived ratings of Comfortableness, Interestingness, and Industrialness in
Study Il for the online, in-lab visual, and in-lab touch conditions. The Comfortableness, Interestingness, and
Industrialness ratings are calculated by averaging the ratings across high-loading items for each of the PCA
components in Table 2 [20].

of the robot hands (n = 15 and 17 participants for questions 1 and 2). Here, the participants
mentioned color, size, human likeness, visibility of the mechanical parts, or associations with
movies or other familiar objects. About half of the participants mentioned softness, hardness, pres-
sure, or temperature (n = 10 and 11). Several participants indicated that the material and texture
of the hands impacted their ratings (n = 7 and 3). Finally, some stated that the perceived capability
of the robot hands influenced their judgment (n = 6 and 5).

In contrast to the quantitative results, 15 (out of 20) participants stated that their ratings changed
for some or all the robot hands after the touch. ‘T noticed I often started seeing them masculine until
they tapped my arm, then most felt more feminine.” (P11 [female]). Four participants did not think
their ratings changed before and after touch, and one participant did not provide an answer.

5 ROBOTHANDS: AN ONLINE DATABASE AND PREDICTIVE MODELS FOR ROBOT
HANDS

To inform the design of robotic hands for social robots, we aimed to build predictive models that
could estimate user impressions for a new hand from its design features. Thus, we first identified
a set of design features for the hands (e.g., number of fingers), then coded all the hands with their
design features and user ratings in a database. We used this database to build a set of regression
models that predict user ratings for the hands. Finally, we built an online interface for the database
and the predictive models in order to facilitate designers’ access and use of our results.

5.1 Coding Design Features of the Hands and Creating a Database

We identified 15 design features for the hands that could help predict user ratings and coded the
features for all the hands. Three authors initially agreed on a coding scheme for the hands. Two
authors individually coded a random 20% subset of the hands (n = 16). The two authors then met
and discussed the disagreements, clarified the definitions, and merged or divided the features.
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Table 3. Design features of the robot hands, their range of values, and definitions in our dataset

Hand Feature Value Note

Shape of Pointy, Round, Square, Other, N/A N/A if there are no fingers in the hand.

Fingertip

Color Schemes Cool, Warm, Mixed (cool + warm), List of all noticeable color schemes in the
Black, White, Gray, Brown hand.

Size Baby, Kid, Adult, Large Sizes scaled w.r.t a medium-sized mug: 0 <

baby < 0.75, 0.75 < kid < 1.5, 1.5 < adult
< 2.25, and large > 2.25+.

Mechanics Yes, No Yes, if wires, motors, tendons, pipes, etc., are

Visible visible.

Has a Thumb Yes, No Thumb should be apart from the other fingers
and opposable to them.

Number of 0,1,2, ... The maximum number of segments in a

Segments in a finger. A finger has 2+ segments if it has a

Finger movable joint. All fingers have at least one
segment.

Commercial Yes, No Yes, if the hand is a commercial product.

Product

Even Finger Yes, No, N/A Yes, if the spacing is even between fingers.

Spacing N/A if the hand has less than three fingers.
Human hand has uneven finger spacing.

Rigid Yes, No Yes, if parts of the hand cannot move.

Material Metal, Plastic, Rubber, Other List of all visible materials in the hand.

Has a Palm Yes, No Palm is the area between fingers and the

wrist. To have a palm, the hand must have at
least one finger, and the finger(s) must be
attached parallel to the palm.

Material Soft, Hard, Mixed (soft and hard) Mixed if both types of materials are visible.

Softness

Number of 0,1,2,3,4,5, ... Fingers are the terminal members of the hand

Fingers that resemble or function like a human finger
(e.g., grasping)

Texture Yes, No Yes, if individual segments of the hand have a

visible texture.

Multicolor Yes, No Yes, if there are multiple colors in the hand.

Next, the same two authors coded another 15% of the hands (n = 11). The inter-coder agreement
score was 92%. One of the authors coded the rest of the hands. These authors did not have ac-
cess to the ratings collected during the online study prior to coding the hands. This process led
to 15 design features for each hand (Table 3). Our focus was on features that can be discerned
by a layperson rather than the technical specifications of the hands. Thus, 11 features refer to
the visual appearance of the hand, two describe the materials, and one refers to its grasping
functionality. We also included whether the hand is a commercial product or not (e.g., research
prototype).

Next, we built a database of the 73 hands, their design features, and user ratings. For each hand,
we included a name and a link to a reference publication or website. Furthermore, we included the
15 design features for each hand as well as the average user ratings on the 17 semantic differential
scales. This database provided the basis for training the predictive models.
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Fig. 10. Contributions of the design features (columns) to the 17 regression models (rows) and the R?, root
mean square error (RMSE), and F-statistic for each model. All the regression models are statistically signif-
icant (p < 0.002). Higher saturation denotes a higher feature weight (0-30). Feature weights are the sum
of the absolute values of the feature coefficients in the regression models (e.g., The absolute values of the
coefficients for Baby, Kid, Adult, and Large are summed to present the contribution of the Size feature to
the models). The rows and columns are ordered from high to low values of R? and feature contributions,
respectively.

5.2 Constructing Predictive Models

We developed 17 multiple linear regression models (one for each rating scale) to predict the user
ratings for the 73 hands from their design features. First, we converted the categorical features
into binary representations using a one-hot-encoding scheme. Next, we identified the top design
features for each rating scale by applying forward and backward stepwise regression on the 1,460
(20 users x 73 hands) ratings in our dataset. The results of this feature selection step provided the
design features that could help predict each of the user ratings. Finally, we trained a regression
model for each of the 17 user ratings.

Figure 10 presents the R? values, root mean squared error (RMSE), and selected design features
for predicting the user ratings on each of the rating scales. Over 81% of the variance among par-
ticipants’ impressions on Humanlike, Intelligent, and Capable ratings is explained by the design
features of the hands (R? > 0.81). Also, over 68% of the variance in the Humanlike, Intelligent,
and Capable ratings is accounted for by the design features (R? > 0.68). For seven other rating
scales, over 50% of the variance in the user ratings is explained by the design features of the hands
(R? > 0.5). Finally, less than 50% of the variance in the Excited, Safe, and Dominant ratings can
be explained by the design features (R? < 0.5). For all the hands, the RMSE over the 17 ratings
is below 10 on a 0-100 rating scale. This error is smaller than the standard deviation of the user
ratings for each hand in the online study (std = 22.85).
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5.3 Analyzing Important Hand Features

Our last research question asks what design features can predict user ratings of the hands (RQ4).
We structure this section around the design features (instead of the user ratings), so that designers
can check the effect of a single design feature on the user ratings. We order the design features
based on how many user ratings each feature helps predict. For each design feature, we denote
this number after the feature name.

Shape of Fingertip (16 Models). The shape of finger/gripper tip helps predict the hand score for
16 (out of 17) rating scales. A round or pointy tip for the fingers is positively associated with
the Humanlike, Capable, and Intelligent ratings. A round fingertip also increases user comfort to
Handover objects. Hands with a square fingertip have lower scores on the Interesting, Feminine,
and Mature scales, and the users tend to feel less Excited and more Dominant if touched by these
hands. Other fingertip shapes have lower values for Humanlike, Nice, Mature, Friendly, and Trust-
worthy ratings. Also, the users feel less Happy or comfortable to Be Touched, do Handover, or
be Nearby them. When the shape of fingertip is not applicable (i.e., the hand does not have any
fingers, such as a suction cup), the user ratings for Mature, Excited, and Comfortable To Touch the
hand decrease. Only the predictions for the Safe scale did not depend on the fingertip shape.

Color Scheme (15 Models). The range of skin tone colors, coded as brown in our database, are
positively linked to the Humanlike, Nice, Interesting, and Safe ratings. A mix of cool and warm
colors lower the Humanlike and Mature scores and increase the Friendly, Happy, and Dominant
ratings. Black and gray colors lower the Feminine rating, warm colors (but not skin tone) decrease
the Safe rating, while cool colors increase the Intelligent score. Interestingly, the white color has
a negative impact on the perception of how Nice, Friendly, and Trustworthy the hand is and how
Happy and comfortable people feel to have physical interactions (To Touch, Be Touched, Handover,
Nearby) with it.

Size (14 Models). The adult hand size increases the Capable, Mature, and Intelligent scores, and
it lowers the Feminine and Comfortable To Touch scores. Hands with the kid size are perceived as
less Mature, and the users feel less Excited after being touched by these hands. The baby hand size
is perceived less Nice, Safe, Friendly, and Trustworthy than the hands with other sizes, and people
feel less Happy and comfortable to have physical interactions with it. The baby hand sizes in our
database either had a rigid design or were among the soft manipulators with nuanced working
mechanisms. Both designs were negatively evaluated by the users.

Mechanics Visible (12 Models). Visible wires and motors make the hand less Humanlike, Nice,
Safe, Feminine, Friendly, and Trustworthy. Also, the users feel less Happy, Dominant, and Com-
fortable to have physical interactions with the hand compared to when no mechanics are visible.

Has a Thumb (12 Models). Hands with a thumb are perceived as more Interesting, Capable, Safe,
Feminine, Mature, Friendly, Intelligent, and Trustworthy than those without a thumb. Also, having
a thumb improves how Happy and Comfortable the users are To Touch, Be Touched, or Be Nearby
the hand.

Number of Finger Segments (11 Models). Hands with more finger segments are rated as more
Capable and Mature but also less Nice, Feminine, Friendly, and Trustworthy. The users are less
Happy and less Comfortable to have physical interactions with the hand (To Touch, Be Touched,
Handover, Nearby) compared to the hands with fewer segments.

Commercial Product (11 Models). In our models, the commercial hands scored higher than the
research prototypes on the Nice, Interesting, Capable, Mature, Friendly, Intelligent, Trustworthy,
Happy, Comfortable To Touch, Handover, and Nearby user ratings.
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Finger Spacing (10 Models). Uneven spacing of fingers (e.g., human hand) is positively linked to
the Nice, Mature, and Friendly ratings. The uneven spacing also increases scores on feeling Dom-
inant and Comfortable to have physical interactions with the robotic hand. Even finger spacing
(e.g., in grippers) lowers the Nice rating. When this feature is not applicable (i.e., the hand does
not have any fingers), the hand is perceived as less Interesting and Safe to users.

Rigid (9 Models). Hands that cannot close or move their fingers score low on Nice, Interest-
ing, Capable, Mature, Intelligent, and Trustworthy ratings. The Comfort To Touch, Handover, or
Nearby ratings are lower for these hands, too.

Materials (7 Models). Hands with metal components get higher scores on Capable and Mature
rating scales and lower scores on the Humanlike, Feminine, Friendly, and Happy ratings compared
to hands with other materials. Rubber hands get high scores on Humanlike and Mature, while plas-
tic hands get lower Mature ratings. Hands with other materials get lower scores on the Feminine
and Comfortable to be Nearby ratings.

Has a Palm (3 Models), Material Softness (3 Models), and Number of Fingers (3 Models). Having a
palm has a high weight on the Humanlike score (i.e., its coefficient is 24.5 out of 30). However, hav-
ing a palm lowers the Mature and Comfortable to Be Touched by the Hand ratings. Soft materials
increase the Humanlike score, while hard materials increase the Intelligent and Excited ratings.
Hands with more fingers get higher scores on the Excited rating and a lower score on the Safe
and Comfortable to be Nearby ratings. Surprisingly, the other models do not rely on the number
of fingers in their predictions.

Visible Texture (2 Models) and Multicolor (1 Model). Hands without a visible surface texture get
lower values on the Interesting and Capable ratings compared to those with a visible texture.
Hands without a Multicolor feature get lower Feminine ratings compared to the hands with this
feature.

5.4 Introducing the RobotHands Interface

We created an online visualization, available at https://robothands.org, to facilitate access to the
RobotHands dataset and predictive models. The code for the interface is adapted from the open-
source code by the Locomotion Vault project [24].

The RobotHands interface provides five main functionalities: (1) The Home page provides a
summary of the project together with links for downloading the dataset of 73 hands and the larger
set of 378 hands; (2) On the Gallery tab, users can browse the 73 hands with their images and full
database record; (3) The Similarity tab presents the hands along the three PCA dimensions. This
view allows users to see trends in user ratings of the hands and find similar hands based on overall
user ratings; (4) With the Filters, one can search the database for a subset of design features or
user ratings; (5) On the Prediction tab, designers can get a quantitative estimate of user ratings for
a new hand by entering its design features.

6 DISCUSSION

Below, we discuss findings from the two studies in light of prior work and provide guidelines for
designing or customizing robot hands for positive user ratings. We reflect on the limitations of the
work and suggest avenues for future research.

6.1 Reflections on Study Results

Results of our online study suggest that Comfortableness, Interestingness, and Industrialness of
the hands capture variations in the user ratings of existing robot hands. These results are most
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related to a recent study by Carpinella et al. on user perception of social robots [20]. Specifically,
Carpinella et al. found that three factors of competence, warmth, and comfort can describe user
evaluation of robots [20]. The Comfortableness dimension in our results (D1) is in line with
the comfort factor reported by Carpinella et al. The Interestingness dimension (D2) is linked to the
ratings of Interesting, Intelligent, Capable, Humanlike, and Mature for the hands. We conjecture
that this dimension is related to the competence factor in the previous work. Our analysis does not
show the warmth factor that was reported by Carpinella et al. The Industrialness dimension (D3) in
our study is negatively linked to the Feminine ratings and is positively related to the ratings of Ma-
turity and Capability. While we are not aware of previous studies that show this factor for robots,
the negative link between Feminine ratings and the Mature and Capable ratings may reflect some
of the reported prejudice in evaluating people based on their gender in male-dominated areas [25].

Results from the in-lab study suggest that the visual evaluation of robot hands may be robust
to physical presence and touch interaction. With 40 participants, we did not find any significant
difference between user ratings in the online setting and the in-lab visual condition (RQ2). Simi-
larly, we did not find a significant difference between the in-lab visual and in-lab touch conditions
with 20 participants (RQ3). These sample sizes are consistent with previous studies in haptics and
HRI [30, 52, 54, 59], but we cannot completely rule out the impact of physical presence and touch
on user ratings. In other words, a larger study may have found a statistically significant difference.
Thus, our results must be considered as a first exploratory study on these aspects rather than a
definitive answer. On the other hand, the effect sizes for the experimental setting and rating con-
ditions in our study are small for all the statistical tests, suggesting that the practical significance
of these factors, even if the results were statistically significant, may be small. One interpretation
for the lack of statistical difference in the ratings could be that the user judgment of the hands
did not change in the same way across the participants after the touch. In other words, the par-
ticipants differed in their expectations of how the hands would feel in the vision condition. Thus,
while the ratings have changed for individual participants after touch, the change in perception
was not robust across all the participants. Our results are in line with haptics and HRI research that
shows people can infer tactile sensations and their affective associations through vision [12, 35,
52, 59, 60]. On the other hand, our results are in contrast with studies that show the importance
of social touch in HRI and statistically significant change in user perception or behavior across
all the participants. The work of Shiomi et al. is relevant in particular [54]. Shiomi et al. ran a
between-subject study with three conditions: (1) observe a robot, (2) touch a robot, and (3) touch a
robot and the robot touches back. With 11 participants in each condition, Shiomi et al. found that
the participants rated the robot as friendlier when the robot touched them back. The contrasting
results between their work and ours could be due to the touch interaction, perceived autonomy of
the robot, or cultural aspects of touch. Shiomi et al. used a stroking gesture, which is commonly
associated with an affective intent. Also, Shiomi et al. used a humanoid robot that spoke with
the participants and appeared fully autonomous. Finally, Shiomi et al.’s study was conducted in
Japan. We conjecture that the perceived intent and autonomy of the robot and cultural factors may
mediate the effect of touch on user evaluation of robots.

6.2 Implications for Robot Hand Design

The design features selected for the regression models provide guidelines for predicting user
ratings of robot hands. Specifically, feature values similar to the human hand create positive
impressions (i.e., higher values on the rating scales). For example, the round fingertip, brown color,
adult hand size, having a thumb, and uneven finger spacing increase the scores for the majority
(>11) of the user ratings. A notable exception is the number of fingers, which does not have much
influence on user ratings. Thus, designers can use fewer or more fingers based on the technical
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considerations of the target domain. Also, having a palm increases the score for Humanlike and
reduces Mature and Comfort to Be Touched ratings, but it has little effect on the other ratings.
More finger segments are also associated with higher Capable and Mature ratings, and adding
visible surface texture improves Interesting and Capable ratings. On the other hand, some features
create negative impressions (i.e., lower user ratings) and should be avoided. For example, the
white color is frequently used in designing social robots, but our data suggest it is perceived
negatively by users. Fingertips that are not round or pointy can also create negative impressions.

Some of the hand features, such as color scheme and surface texture, can be easily modified by
designers. Others, including the shape of fingertips, size, surface materials, and visibility of the
hand mechanics, can be optimized for both user experience and functionality if these features are
considered at the design stage. For example, a round fingertip is linked to positive user impressions
and can also have good dexterity and sensing [26]. Finally, design features such as if the hand is
rigid, if it has a palm, or the number of segments in each finger can fundamentally change the
technical specifications. Thus, these features pose a tradeoff for design.

The RobotHands dataset can further facilitate the selection and design of robot hands. At the
most basic level, one can explore the variety of existing designs in the database before choosing or
building a hand. When using an existing robot, HRI designers and researchers can look up the user
ratings of its end effector or a similar design in the database. With this knowledge, the designers can
decide to customize the hand or account for the user perception ratings in their studies. Designers
can check the overall trends in user ratings in the Similarity tab or use the predictive models to
obtain a quantitative estimate for a new design.

6.3 Limitations and Future Work

Our work has a few main limitations that can be examined in future studies. First, we did not in-
vestigate the effect of grasping and motion parameters on user perceptions of the hands. This was
a pragmatic choice. The existing videos of the 73 robot hands in Study I had different viewpoints
and demonstrated different object interactions. These differences could unfairly bias user evalua-
tion. Thus, we decided to use images and edit them for consistency in the presentation. In Study
II, we controlled all the motion parameters to only investigate the impact of the hand. A future
direction would be to systematically study the impact of hand motion parameters and object in-
teractions on user ratings of the hands. Second, the curated robot hand images in our database had
some variations (e.g., different presentation angles for the hands). While we attempted to make the
images consistent by removing their backgrounds and objects, we could not find existing images
that showed all the hands in the same angles and poses. Our database was not large enough to
analyze the effect of these variations on the user impressions of the hands. Future work can sys-
tematically vary the presentation of a subset of the hands and assess their impact on user ratings
for the hands. Third, the 17 rating scales in our studies may have limited participant responses to
predefined qualities. We opted for a structured questionnaire to be able to chart user impressions
of a large variety of robot hands. A complementary approach would be to conduct open-ended in-
terviews with a smaller subset of representative hands. Such studies have been used to shed light
on nuances of user experience with other technological artifacts [41]. Also, using a custom ques-
tionnaire makes it hard to compare our results with previous studies of robots. While we could not
find an appropriate validated questionnaire for our work, our results can inform the development
of a validated instrument for robot hands in the future. Fourth, our results mostly reflect the per-
ception of American and European users (>75% of the participants) who opted to participate in our
study. Future studies can investigate whether the same trends hold for other cultures and for those
with a negative attitude toward robots. Finally, our design features and predictive models need to
be validated with a larger number of robot hands. In our work, we used two coders for assigning
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the hand features and developed regression models with a feature selection scheme to mitigate
the possibility of overfitting to the current dataset. Thus, the models and design features that we
presented in this article need to be tested and validated on a larger set of robot hands in the future.

Another interesting avenue for future work is user perception of prosthetic hands. Our initial ob-
servations suggest that existing prosthetic hand designs are a subset of the robot hands in our data-
base but with more variation in colors and graphical patterns. For example, prosthetic users may
have passive limbs, grippers, five-fingered designs, or activity-specific tools as a hand. In our stud-
ies, we explicitly asked users to imagine that the hands in our database belong to a robot rather than
a human. Future work can investigate how an observer’s perception of the hand and touch inter-
actions can change when a robotic hand is embodied or controlled by a human rather than a robot.

7 CONCLUSION

We chart user impressions of existing robot hands in two user studies. Our results suggest that
people may form robust visual impressions of the hands that do not easily change with touch.
These rated impressions can be estimated based on the visual and haptic features of the hands.
We provide practical design guidelines that can improve the user experience of robots without
significantly changing their technical complexity. We present our data and predictive models in
the RobotHands online interface to facilitate the selection and design of future robot hands by
researchers and practitioners.
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