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Abstract— Utilizing autonomous drones or unmanned aerial
vehicles (UAVs) has shown great advantages over preceding
methods in support of urgent scenarios such as search and
rescue (SAR) and wildfire detection. In these operations, search
efficiency in terms of the amount of time spent to find the target
is crucial since with time the survivability of the missing person
decreases or wildfire management becomes more difficult with
disastrous consequences. In this work, we consider the scenario
where a drone is intended to search and detect a missing person
(e.g., a hiker or a mountaineer) or a potential fire spot in a
given area. To obtain the shortest path to the target, a general
framework is provided to model the problem of target detection
when the target’s location is probabilistically known. To this
end, two algorithms are proposed: Path planning and target
detection. The path planning algorithm is based on Bayesian
inference and the target detection is accomplished by using a
residual neural network (ResNet) trained on the image dataset
captured by the drone as well as existing pictures and datasets on
the web. Through simulation and experiment, the proposed path
planning algorithm is compared with two benchmark algorithms.
It is shown that the proposed algorithm significantly decreases
the average time of the mission.

Note to Practitioners—This article is motivated by the need for
an efficient path-planning algorithm for drones during specific
SAR operations. In particular, situations where someone is lost
in a snow-covered hike and a fire spot that is in its initial
levels are of interest. In fact, since the target location is not
known, it is required that the UAV be able to efficiently search
the entire area until it finds the target in the shortest possible
time. The proposed Bayesian framework along with the ResNet
learning algorithm shows an efficient performance in terms of
average time duration and accuracy, respectively. The framework
developed in this paper can be extended to a multi-UAV scenario
where UAVs coordinate to optimize the overall performance.

Index Terms— Autonomous drones, unmanned aerial vehicles
(UAVs), search and rescue (SAR), fire detection, path planning,
machine learning.
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I. INTRODUCTION

A
UTONOMOUS drones or unmanned aerial vehicles
(UAVs) offer numerous advantages over conventional

human-intervened target detection methods. These advantages
include rapid deployment, autonomous mobility capability,
low cost, and the ability to reach hard-to-access areas. In a
typical scenario, UAVs are deployed in an area of interest to
perform sensory operations, collect evidence of the presence
of a target, and report their findings to a remote ground station
or rescue team [1], [2].

However, to detect objects in these scenarios using learning
algorithms, especially neural networks, large and relevant
datasets are required [3]. On the other hand, to decrease
the detection and rescue operation’s delay, it is essential to
design time-efficient path planning algorithms for the UAVs
which is not as straightforward as other operations such as
object tracking, package delivery, imaging, etc., as the object’s
location is not known, or it is stochastically known.

This paper considers scenarios in which an autonomous
drone is deployed to detect targets in a region, with a focus
on two specific systems as examples: (1) A UAV can be
employed to locate a missing individual, such as a mountain
climber who may have become stranded due to an avalanche
or snowfall, and may require urgent assistance. This scenario
is referred to as the search and rescue (SAR) operations.
(2) The UAV is deployed in a forest area in surveillance
mode to detect a potential fire spot.1 This scenario is re-
ferred to as fire surveillance. Both applications are of great
interest [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17].

When a drone is used to search for a lost person or a
potential fire spot, it is critical that the target is located as
quickly as possible. Any delays in finding the target can
decrease the person’s chance of survival or make wildfire
management more challenging. Therefore, the top priority is
to minimize detection time.

Furthermore, in such operations, the drone uses its camera to
monitor the area and find the target. Since the target objects are
relatively small and often camouflaged within the environment,
it is very important that a detection algorithm can accurately
recognize the target from its surroundings. A typical aerial
image of a snow-covered area is shown in Figure 1 where

1In this paper, the fire is assumed to be in its initial state. Therefore, it is
treated as a point object and no propagation model has been considered for
the fire.
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Fig. 1. An example of an aerial image from a snowy mountain with a person
at the bottom right corner.

a person is also located at the bottom right corner of the
picture.

Therefore, in this paper, a path-planning algorithm for a
drone is developed to find the shortest path to the target while
the location of the target is not deterministically known. Using
prior knowledge of the target location’s distribution, the path
planning algorithm covers the whole area in order to detect
the target, while the drone will follow the chosen path and
collect data for processing.

A Machine learning (ML) technique is implemented to
quickly and accurately detect the target. Specifically, a residual
neural network (ResNet) is utilized in which the dataset used
for the training and validation is a combination of the existing
datasets as well as pictures taken by the drone where in the
case of fire surveillance, mostly include small fire spots or
smoke in a rural area with other objects around (spare). This
is because the goal is to achieve early detection when the fire
is in its initial stages.

The most similar works to this paper are [18], [19], [20]
where UAVs are used to detect fire locations. While these
works share some similarities, such as the target location is
not known, there are indeed differences: In this paper, we pro-
pose a path planning algorithm based on the target location
probability distribution updates using which will help the
algorithm to find the target in the shortest amount of time. This
has not been considered in the previous works. Furthermore,
in addition to a detailed analysis of the problem, we conducted
experiments to demonstrate the superior performance of our
proposed algorithm in practice.

The contributions of this paper are as follows:
• An end-to-end setup for early fire detection or a SAR

operation is considered where a UAV is looking for a
target. The target’s location is not known or is known only
probabilistically. Using the target’s location probability
distribution, the proposed method minimizes the target
detection time among the baseline approaches.

• We have developed a general framework to model and an-
alyze the problem of finding a target through the shortest
path when the location is probabilistically known. First,
a Bayesian framework is utilized to estimate the target
location. Then, using the sliding windowing technique
for the path planning problem a suboptimal solution is
obtained.

• Using ResNet, a target detection algorithm is designed
with an accuracy of greater than 91% for the training
and validation pictures taken from the existing datasets
and images generated by the drone.

• Through simulation, the proposed path planning
algorithm is compared with two benchmark algorithms
and it is shown that the proposed algorithm significantly
decreases the average time of the mission and the energy
consumption of the drone in the two types of probability
maps considered.

• Through experimentation, the proposed framework is
applied to a fire detection scenario where it is shown
that the proposed algorithm outperforms the benchmark
algorithms in terms of time spent to find the target and
the energy consumption of the drone.

• Our code and other relevant materials can be accessed
online.2

The rest of the paper is organized as follows: in Section II,
related works are provided. In Section III, a simplified sce-
nario, a Naive algorithm, and the proposed system model are
presented. In Section IV, the proposed algorithm and machine
learning architecture are provided. Section V provides the
simulation and experimental results, and Section VI concludes
the paper.

II. RELATED WORK

UAV-based target detection and target tracking have been
increasingly attracting attention in civil applications [21],
[22], [23], [24], [25], [26], [27]. Meanwhile, there have been
numerous proposals for utilizing UAVs in SAR operations in
recent years, from post-natural or human-made disasters such
as earthquakes and explosions to offshore SAR operations in
oil-rigs platforms and monitoring wildfire spread rate [28],
[29], [30]. In the sequel, we will specifically review studies
that have investigated problems involving UAVs in wildfire
and SAR operations.

SAR and wildfire detection operations can be investigated
from different points of view, e.g., object detection, optimal
routing, optimal resource allocation, etc. Generally speaking,
the majority of works in these scenarios have been allotted
to develop efficient and accurate object detection algorithms,
for example, see [3], [9], [31], [32], [33], [34], and [35]
where different image datasets were used to train the learning
algorithms.

A. Target Detection

In recent years, the use of UAVs for wildfire detection
has garnered significant attention, e.g., [36], [37], [38], [39],
and [40] where different methods of imaging and detection
such as color and motion features, Infrared images, and
smoke sensors along with different learning paradigms were
employed. In [41], in order to use a smaller dataset and reduce
the computational complexity, the authors proposed to use a
pre-trained mobileNetV2 architecture to implement transfer
learning. Recently, millimeter-wave radar sensing has been

2https://github.com/RushivArora/Incendium-Autonomae, and https://github.
com/RushivArora/Incendium-Data
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TABLE I

SUMMARY OF NOTATIONS

employed for target positioning in [42]. Furthermore, a multi-
UAV-based target positioning problem has been investigated
in [43] where the target location is estimated based on the
UAVs group measurements.

B. UAV Path Planning

In terms of UAV path planning [44] and [45] address
minimal route design and energy consumption estimation,
respectively. For multiple UAV collaborations, [46] proposes
a layered SAR algorithm to minimize mission time and
maximize rescues. Trajectory planning for persistent surveil-
lance is discussed in [47] for fixed-wing drones, while [48]
considers covertness in trajectory planning for mobile object
surveillance with UAVs. Additionally, [49] and [50] address
multi-robot task allocation problems for SAR missions using
UAVs and unmanned ground vehicles. Path planning for a
UAV to maximize the number of ground vehicles covered
to be informed about an existing fire has been investigated
in [51]. Finally, [18] utilizes a genetic algorithm to optimize a
rectangular path for a patrolling UAV, [19] uses a Levy flight
model to identify the target location, and [20] leverages the
Pareto Monte Carlo Tree Search (PMCTS) to design the most
informative exploratory searching path. We have conducted
a performance comparison of our algorithm and the PMCTS
developed in [52].

C. Coordination and Task Allocation

In wildfire management, a coordination problem was con-
sidered in [53] where UAVs were used along with unmanned
ground vehicles (UGVs) to fight the fire front. Furthermore,
investigating the optimal UAV coalition to fully cover the area,
spectrum sharing plus cell assignment, and the optimal number
of UAV and IoT devices for a maximum detection probability
are the other problems that have been considered in wildfire
management where the location of the fire is known [54], [55],
[56], [57].

A list of notations and their definition used in the rest of
the paper is presented in Table I.

III. SCENARIO AND SYSTEM MODEL

A. Simplified Settings and Intuition

In this part, the intuition behind the problem considered in
this paper is elaborated. In fact, through a simplified scenario
and a Naive algorithm, it is shown that there is a need
to provide a general algorithm that is capable of efficiently
finding the target when the location is stochastically known.

To this end, a scenario is considered where a target
(e.g., a lost hiker or a fire spot) needs to be found within
an area S ¢ R

2 partitioned into roughly equal cells. The
location of the target known probabilistically is somewhere
among the cells, i.e., its PDF is known or can be estimated
through information sources. If no information is available,
a uniform PDF would be assumed. A UAV is employed to
fly over the region and search for the target based on the
given PDF. The UAV uses its camera to monitor the area and
detect the target. It is crucial that the target is found within
the shortest amount of time, as any delay in finding the target
could have irrecoverable and disastrous consequences. Thus,
the most important goal is to minimize the detection time.

Intuitively, to find the target as soon as possible, one would
be interested in visiting the cells with a higher probability
sooner. However, this implementation is challenging as the
search path must be a continuous path suitable for UAV’s
flying. Besides, the path must be chosen to be efficient in
terms of energy consumption. Hence, an important question is
whether visiting the cells simply based on their probabilities
from the highest to the lowest one leads to an efficient path
planning algorithm in terms of detection time or not. Through
the following examples, a few insights are provided on the
above question.

• Simplified Scenario:

Consider a drone is supposed to find a target in an area par-
titioned into cells denoted by index i where i = 1, 2, . . . ,M .
The missed detection probability denoted by ed is defined as
the probability that the drone has reported no target while the
target is indeed in the cell. We also define the false alarm
probability as the probability that the object is reported as
detected while it is not true and we show it by e f . Initially,
no false alarm is considered, i.e., e f = 0. In this simplified
scenario, the time required to be passed when the drone is
traveling from its current cell to another one is not considered.
In other words, the time amount passed from one cell to any
other cell is exactly one unit of time regardless of the distance
between the two cells.

The random variable that the target is in cell i is denoted
by I . In other words, pi = P(I = i) denotes the probability
that the target exists in cell i . Furthermore, without loss of
generality, it is assumed that p1 g p2 g, . . . ,g pM . The
assumptions for the simplified scenario are summarized as
below:

• One UAV is deployed for the operation.
• The probabilities of cells are of the form p1 g

p2 g, . . . ,g pM .
• The UAV simply visits the cells considering the proba-

bilities order.
• No probabilities update is considered.
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With this scenario and the idea that intuitively the most
probable cells are selected first to search in, the UAV is
assumed to choose the cells with respect to their probabilities.
In this case, it’s important to note that the probability of
detection remains the same in every cell (ed) and isn’t affected
by the other cells. In other words, it is independent of the other
cells. With these assumptions, the UAV visits i-th cell at times
ti = Mk+i , where k = 0, 1, . . . , and i = 1, 2, . . . ,M . This is
because the UAV will start over again to look for the target in
the same order if it has not detected anything in the previous
round and so on. If the amount of time spent by the drone to
find the target is represented by T , with this scenario in hand,
the average time is obtained in the following lemma.

Lemma 1. The average time of the simplified scenario is
obtained as

E[T ] = M

(

1

1 − ed

− 1

)

+ E[I ], (1)

where E[.] denotes the expectation.
Proof: For the proof, first note that given I = i , the

random variable T can be written as

T | (I = i) = M(Y − 1)+ i, (2)

where Y ∼ Geometric(1 − ed). Now from the linearity of
expectation, it is concluded that

E[T |I = i] = M

(

1

1 − ed

− 1

)

+ i, (3)

and from the law of total expectation, E[T ] can be obtained
as below

E[T ] = E[E[T |I = i]] = M

(

1

1 − ed

− 1

)

+ E[I ]. (4)

□

Using Lemma 1, E[T ] can be obtained for the worst case
scenario where p1 = p2, . . . , pM = 1

M
. In fact, for the worst-

case scenario, E[T ] is as follows

E[T ] = M

(

1

1 − ed

− 1

)

+
M + 1

2
(5)

=
M(1 + ed)

2(1 − ed)
+

1

2
. (6)

Equation (6) is actually an upper bound for E[T ], since given
any distribution for I , E[I ] is bounded as below

1 f E[I ] f
M + 1

2
. (7)

If e f ̸= 0, whenever a false alarm happens, it can be
assumed that the cell is searched by a backup team and since it
was a false alarm and nothing is found, an excess delay of 1 f

is added to the operation’s time. Hence, given I = i and Y =

k, the false alarm delay denoted by Zk is a Binomial random
variable i.e., Zk ∼ Binomial((k − 1)(M − 1) + i − 1, e f ).
Therefore, T = Zk + (k − 1)M and,

P(Y = k|I = i) = P(T = Zk + (k − 1)M + i |Y = k, I = i).

(8)

Finally, since Y and I are independent, the expectation of T

is obtained as

E[T ] = E[E[T |Y, I ]] (9)

= ((E[Y ] − 1)(M − 1)+ E[I ] − 1)1 f e f

+ (E[Y ] − 1)M + E[I ] (10)

=

((

1

1 − ed

− 1

)

(M − 1)+ E[I ] − 1

)

1 f e f

+

(

1

1 − ed

− 1

)

M + E[I ], (11)

where (10) is obtained by inserting T = (Y − 1)(M − 1) +

I − 1 and taking the expectations with regard to Y and I ,
respectively, and (11) is obtained as Y ∼ Geometric(1 − ed).
Hence, we note that the first term in (11) represents the delay
added by the false alarm.

The simplified scenario has two main problems: First, it is
not optimal in terms of E[T ] since at each time that it visits a
cell and if nothing is detected, it chooses its next destination
simply considering the same probability order. Whereas when
the UAV does not detect the target in the cell with the
highest probability, the probabilities of cells need to be updated
according to the ed . The second problem is that it does not
consider a continuous trajectory. In fact, it virtually assumes
that the UAV simply jumps from its current cell to the cell with
the next highest probability which is not feasible in practice.

In this paper, these problems are addressed by proposing a
path-planning method based on updating the probabilities after
each observation.

Before going to the next section, another problem is pre-
sented which occurs when the probabilities are not updated but
the amount of time required to detect the algorithm matters.

• Naive Algorithm:

Now assume that the PDF is a bimodal Gaussian distribution
shown in 2(a). In the Naive algorithm, the drone visits the
cells based on the cells’ probabilities from the highest to the
lowest one without a probability update. The assumptions for
this scenario are listed below:

• One UAV is deployed for the operation.
• The probabilities of cells follow a bimodal Gaussian

distribution
• The UAV simply visits the cells considering the proba-

bilities order.
• No probabilities update is considered.
The first 300 visits are shown in 2(b). As can be seen, the

drone spends most of its flight time between the two peaks and
misses detecting other regions resulting in a highly inefficient
path-planning algorithm.

It can be seen that neither the simplified scenario nor
the Naive algorithm, although intuitive, can provide efficient
performance.

In the next sections, the system model is presented in more
detail.

B. Scenario and Assumptions

Suppose a drone is in charge of finding a missing person or
a fire spot in the area. The area is divided into a grid of cells,
each of which has a probability of the target existing in it. Note
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Fig. 2. UAV’s path based on naive algorithm for a bimodal gaussian PDF.

that this probability, in the case of finding the missing person,
can be obtained from utilizing some interpretation of the miss-
ing person’s behavior, and in the case of detecting the wildfire,
can be obtained from the analysis of the area. In particular,
by considering hiking trail maps in the former and noticing the
vegetation coverage, and recognizing frequently visited areas
in the latter, prior information can be obtained. In this regard,
in [58] the authors estimate a risk/occupancy value for each
cell of the area using different sources of data. Therefore,
considering a PDF for the object location is potentially a valid
assumption that leads to a more efficient detection algorithm.
Nevertheless, if there is no prior information available, the
initial probability is assumed to follow a uniform distribution
across the region.

Now to efficiently detect a target, two collaborating
algorithms are developed: The first algorithm is the object
detection algorithm using ML. And the second one is the path
planning algorithm, the input of which is the output of the ML
algorithm.

It is assumed that the UAV visits one cell at each time
step t . Hence it takes one time-step to go from one cell to
one of its neighbors. It is also assumed that if detection is
reported at a cell, the rescue team will search that cell to find
the target. Note that the delay induced by the rescue team is not
considered. If there is no target, a false alarm will be reported
and the probabilities are updated accordingly. The detection
process will continue until the UAV’s energy is depleted or the
target is found. Note that during the path planning algorithm,
cells may be visited multiple times since the probabilities are
updated regularly.

The problem considered in this paper could be thought
of as a variation of the traveling salesman problem and is
known to be NP-Hard [59]. Finding a globally optimal solution
requires considering each possible action and each possible

Fig. 3. Projected areas with overlaps. The centers of the rectangles are the
path waypoints.

observation, which implies that the cost of a solution grows
exponentially with the number of cells and actions. Hence, the
sliding window technique with a length of W is used to find
a sub-optimal path from the current location.

The general idea of the path planning algorithm is to search
the most likely cells first; however, there is a trade-off between
the time to reach a cell and the success probability of visiting
that cell. The idea is that visiting the cell with the maximum
probability may be less attractive than visiting the adjacent
cells because it takes a long time to fly to the cell that has the
maximum probability, but it may slightly improve the success
rate. Therefore, we design a windowing-based path planning,
the details of which will be discussed in Section IV-B.

C. Area Decomposition

In the first step, the area should be segmented through an
approximate cellular decomposition. In this method, the area
is divided into rectangles, and a point is placed in the center
of each rectangle. The UAV is assumed to fully cover the cell
when it reaches that particular point. The size of the rectangles
is calculated from the field of view (FOV) of the camera.

The camera’s FOV is the area covered by UAV’s camera
when it is flying at altitude H . The size (w, l) of the projected
area can be obtained by the following equations

w = 2H. tan
(³

2

)

, (12)

l = 2H. tan

(

´

2

)

, (13)

where ³ and ´ are the vertical and horizontal angles of the
camera, respectively.

Therefore, the area of interest is decomposed into a
sequence of rectangles, which is denoted by Ci where
1 f i f M . Then, the drone must be programmed to fly over
each subregion’s center. The complete path is then stored as a
list of coordinates, called waypoints, and the drone moves from
one waypoint to the next until it finds the missing object or it
is out of energy. To cover the area completely, projected areas
must overlap as shown in Figure 3. The amount of overlap
can be chosen and can vary on each side. The horizontal and
vertical overlaps are denoted as rx and ry , respectively.

At every UAV flight time step, the camera footprint of the
search area is treated as a glimpse. This way, the search area
can be discretized, and the UAV path-planning problem can
be modeled as a discrete combinatorial optimization problem.

D. System Model

Since there is uncertainty and randomness in the operation
(i.e., the location of the target is not predetermined, and

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 01,2025 at 20:11:12 UTC from IEEE Xplore.  Restrictions apply. 



3490 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

could follow a known or unknown statistical distribution), it is
essential to consider a probabilistic view. More specifically, let
the underlying probability space be represented as (�,F, P),
where �, F , and P represent the sample space, the event
space, and the probability function, respectively.

The main assumptions for the system model are as below:
• One UAV is deployed for the operation.
• The probabilities of cells follow an arbitrary distribution

model.
• The UAV visits the cells based on probability orders while

considering the time constraint.
• Probability update is considered.
Now the first step is to determine the probabilistic map

which combines all available information including past expe-
riences. Each cell i where i = 1, 2, . . . ,M in the probabilistic
map has a probability of P(Ii ) which shows the probability
that the target exists in that cell. Thus, with this definition,
it is concluded that

M
∑

i=1

P(Ii ) = 1. (14)

It is assumed that first, the drone makes a new observation at
time step t and then the ML algorithm determines whether the
target is in the captured image or not. In this regard, Di denotes
the target detection random variable by the ML algorithm upon
visiting the cell i .

Note that even if the drone captures an image of the
target, it is possible that the object will not be detected, such
possibilities are referred to as missed detection probability

which is denoted by ed and is defined as

P(Dc
i |Ii ) = ed , (15)

where Ii shows the existence of the target in i-th cell and Dc
i

shows the no-detection event in the cell i . Missed detection
may be due to the inefficiency of the detection algorithm or a
defect in the camera.

On the other hand, it is possible that the detection algorithm
misidentifies the object in the image captured by the UAV.
These possibilities are referred to as false alarm probability

which is denoted by e f and defined as

P(Di |I
c
i ) = e f , (16)

where I c
i shows the nonattendance of the target in the i-th cell

and Di shows the detection of the target in the i-th cell.
In the next section, the probability updating framework and

the path planning algorithm are provided.

IV. PROBABILITY UPDATING AND PATH

PLANNING ALGORITHM

A. Updating Target Detection Probabilities

To update the detection probabilities for the cells, the
Bayesian rule is utilized using the information obtained from
observations. At each time step t , the conditional updated
probability at cell i is obtained as below:

P(Ii |D
c
i ) =

P(Dc
i |Ii )P(Ii )

P(Dc
i )

(17)

=
P(Dc

i |Ii )P(Ii )

P(Dc
i |Ii )P(Ii )+ P(Dc

i |I
c
i )P(I

c
i )
, (18)

where (18) is obtained using the law of total probability. Now,
using (15) and (16), one can obtain

P(Ii |D
c
i ) =

ed pi

ed pi + (1 − e f )(1 − pi )
(19)

=
ed pi

bi

, (20)

where pi
△
= P(Ii ) and bi

△
= ed pi + (1−e f )(1− pi ). Similarly,

the probability map is updated for other cells, i.e., 1 f j f M

where j ̸= i , as below

P(I j |D
c
i ) =

P(Dc
i |I j )P(I j )

P(Dc
i )

(21)

=
(1 − e f )p j

bi

. (22)

Therefore, after visiting the i-th cell and conditioned on Dc
i ,

from (20) and (22), we conclude that the probability of each
cell are updated as below:

P(I j ) =











pi

ed

bi

j = i

p j

1 − e f

bi

j ̸= i.
(23)

B. Windowing-Based Path Planning Algorithm

Now the details of the proposed path-planning algorithm
are provided in the sequel. The goal of this algorithm is to
minimize the average time of finding the target denoted as
E[T ]. Assume that Bt denotes the target detection at time
step t . Therefore, ft defined as the probability that the target
is detected for the first time at time step t , can be obtained as
follows

ft =
(

1 − P
(

Bc
t |B

c
1:t−1

))

t−1
∏

j=1

P
(

Bc
j |B

c
1: j−1

)

. (24)

Note that in (24), the term
(

1 − P
(

Bc
t |B

c
1:t−1

))

is the proba-
bility that the target is detected at time step t , while the rest is
the probability that the target has not been detected until time
step t . Assuming no false detection is reported from the ML
algorithm, the expectation of the number of steps required to
detect the target can be obtained as

E[T ] =

∞
∑

t=1

t. ft , (25)

where t ∈ N is the number of time steps to detect the target
for the first time.

Note that this problem is a variation of the traveling
salesman problem and is known to be NP-Hard [59]. Finding a
globally optimal solution requires considering all the possible
actions and observations, which implies that the cost of a
solution grows exponentially with the number of cells and
actions. Rather than finding a globally optimal path, the
sliding window technique with length W is used to find the
sub-optimal path from the current location. It should be noted
that in order not to compromise the global optimality of
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Fig. 4. Projected areas with overlaps. Centers of rectangles are the path
waypoints.

trajectory, after visiting each cell and updating the probability
map, the proposed algorithm again finds a sub-optimal path
with length W from the current location. In other words,
it is desirable to visit each cell of the window in a way
that minimizes the expected time of the target detection by
minimizing E[T ].

Note that if the target exists in the cells with almost an equal
probability, it is better to visit the cells in a zigzag manner
instead of prioritizing visiting the cell with the maximum
probability. In this case, it is easy to realize that the proposed
algorithm would take a long time while only improving the
success probability slightly.

In order to make a trade-off between the time to reach a
cell and the success probability of visiting that cell, W by W

cells are aggregated to form non-overlap regions. Therefore,
denoting by P(Rl) the probability of the target existing in the
region l, P(Rl) is obtained as

P(Rl) =

W 2
∑

k=1

p((l−1)W 2+k), (26)

where 1 f l f + M
W 2 , shows the number of regions. Note

that (26) is obtained by simply considering the probabilities
associated with the individual cells comprising a region as the
regions are non-overlapping.

The distance between the regions Rl and Rk denoted by
dRl ,Rk

is obtained from the distance between the centers of
these two regions. Figure 4 shows an area of interest parti-
tioned to 9 regions where each region includes 3×3 = 9 cells,
i.e., W = 3.

Let Rmax denote the region with the highest probability
among all the regions. In other words,

Rmax = arg max
l∈[1: M

W 2 ]

P(Rl). (27)

Furthermore, let Rlocal
max denote the region with the highest

probability among the adjacent regions of the current one

written as below

Rlocal
max = arg max

l∈A(Rc)
P(Rl), (28)

where Rc denotes the current region and A(Rc) is the set of
adjacent regions for the current region. Finally, let Rp ∈ A(Rc)

indicate the region located in a straight line between Rc and
Rmax. Now the next region, denoted by Rn is chosen as below:

Rn =







Rp
P(Rmax)

P
(

Rlocal
max

) >
dRc,Rmax

dRc,Rlocal
max

Rlocal
max Otherwise

. (29)

Note that by the next region, it is meant the next region
chosen as the next destination that the UAV is supposed to
fly to. It is obvious that in order to fly to the next region, the
UAV first may visit some middle cells in the subsequent time
steps.

Intuitively, with this comparison, it can be determined
whether flying to the region with the maximum probability is
attractive given the time it takes to get there or not. Therefore,
in this step, it is decided which region should be visited next.
This step will be repeated after W 2 observations.

After selecting the region, the cells’ order is investigated in
the selected region. If the cell index chosen to be visited at
time t is denoted by ot , the next cell index is denoted by ot+1

which is an adjacent cell of the current cell, ot , and can be
selected as below

ot+1 = arg min
a∈A(ot )

E[Ta], (30)

where A(ot ) is the set of adjacent cells for the current cell.
Furthermore, E[Ta] is obtained from the following equation

E[Ta] = PT |D E
[

T |Da:a+W

]

+ PT |Dc E
[

T |Dc
a:a+W

]

(31)

=

W
∑

i=1

ti pa+i + (M − W )

(

1 −

W
∑

k=1

pa+k

)

, (32)

where (31) is obtained from the law of total expectation in
which PT |D and PT |Dc are the probabilities and E

[

T |Da:a+W

]

and E
[

T |Dc
a:a+W

]

are the corresponding expectations. Also,
in (32), M is the maximum time to visit all the cells in
order. Therefore, one of the adjacent cells of the current cell
which minimizes (31) is chosen. Intuitively, this implies that
the cells with higher probabilities are visited more promptly.3

Algorithm 1 represents the proposed path-planning method for
target detection.

Also, Figure 5 demonstrates the block diagram for
Algorithm 1.

Lemma 2. Given there is an object in S and assuming ed +

e f < 1, Algorithm 1 converges to locate the object.

Proof: Assume that there is an object in S and ed +

e f < 1. We consider a cell i = k with the object in
it with initial probability pk and cells without the object,
i.e., i ̸= k with probability pi . Now we assume that the

3It is worth mentioning that there might be obstacles in the path to the next
cell determined by Algorithm 1. In this situation, collision avoidance has been
taken care of in the implementation phase where the UAV uses its sensors to
avoid accidents with obstacles.
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Algorithm 1 Path Planning
1: function PATHPLANNING(P, w, O,m)
2: Inputs:

P probabilistic map
w is window size
O start position
m is the location of the target

3: Output:

Time to find the target
4: Construct non-overlapping regions by each W × W

cells; call these regions: R1, R2, . . . ,RZ , Z = M
W 2

5: current.region = O

6: while no target is found do

7: for W 2 observations do

8: Among all straight paths from ot , select ot+1

that minimizes Eq. (31)
9: observation = Algorithm 2(ot , ot+1)

10: if observation ! = 0 then

11: Report to ground control station
12: end if

13: Update probability map using Eq. (23)
14: end for

15: Find the highest probability of all regions Rmax

16: if P(Rmax)

P(Rlocal
max )

>
dRc ,Rmax
d

Rc ,R
local
max

then

17: Rn = Rp

18: else

19: Rn = Rlocal
max

20: end if

21: end while

22: end function

UAV has visited cell i ̸= k and reported no detection. In this
case, the cells’ probabilities are updated according to the
Bayesian inference in (23). Hence, we have P(Ii ) = pi

ed

bi
,

and P(Ik) = pk
1−e f

bi
, i ̸= k. Note that since ed + e f < 1,

we obtain ed

bi
< 1 and 1−e f

bi
> 1 by which over time the former

weakens P(Ii ) and the latter amplifies P(Ik). Hence, there is
an ϵ where P(Ii )

P(Ik )
< 1 − ϵ, as T → ∞. Therefore, considering

a Markov chain with two states i = k and i ̸= k, and as
the algorithm chooses the cell with the higher probability, the
UAV visits i = k with a positive probability. In other words,
the i = k state is a recurrent state that is visited infinite
times, and at some point, the object is detected since the
probability of detection becomes a Geometric random variable
with parameter 1 − ed . □

Note that for the proof of Lemma 2, we consider the
worst-case scenario where T → ∞. However, we have shown
through simulation and experimentation that the algorithm
ends up finding the object in a reasonable running time.

So far, only the path planning algorithm has been developed
for which the inputs of the making decisions originated from
the ML algorithm. Therefore, the ML algorithm is developed
in the next section.

C. Machine Learning Architecture

Generally to solve intelligent decision-making problems,
deep neural networks are used since they not only can learn

Fig. 5. Block diagram of algorithm 1.

patterns from the raw data themselves but also are able to learn
the features automatically by adding more layers in order to
learn more complex features. However, they suffer from the
vanishing gradient problem [61], where the gradients become
vanishingly small when training using gradient-based methods
and back-propagation. In this regard, Residual Neural Network
(ResNet) introduced by He et al [62], is a class of deep
neural networks built for dealing with the vanishing gradient
problem, especially for image classification. ResNets approach
this problem by adding shortcut connections that skip one or
more layers, such that the input of the skipped layers is added
to the output of the skipped layers. As a result, it has obtained
a 3.57% error on the ImageNet test set as well as won first
place in the ImageNetdetection, ImageNet localization, COCO
detection, and COCO segmentation in the 2015 ILSVRC and
COCO competitions [63], [64]. Therefore, this paper utilizes
a ResNet architecture, details of which are provided in the
sequel.

1) Data: Experiments are conducted for fire and missing
person detection in snow. In the case of fire detection, the
dataset consists of 2646 images divided into 3 classes: Fire,
Smoke, and Spare. Spare is considered any other object that the
UAV might encounter such as trees, houses, and the ground.
Out of 2646, 987 are the Fire, 781 are the Smoke, and 818 are
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Fig. 6. The architecture of the ResNet. Visualization has been created using [60].

Spare. In the case of the lost hiker detection, the dataset con-
sists of 1400 images divided into 2 classes: a Snow-Covered

Victim, and Spare (any unwanted object such as trees, houses,
and snow-covered ground). Out of these 1400 images, 650 are
the Snow-Covered Victim and the rest are Spare. In both
datasets, roughly 15% of the images are taken by the drone at
heights between 15-30 meters during some preliminary flights
to help the model generalize better to the real world. The rest
of the images are carefully and manually selected from online
repositories and available datasets [65], [66] in a way that they
best represent different classes of the data in the real-world
setting as well.

Furthermore, for the validation procedure, an additional of
300 images are taken by the drone at a second location.
Finally, testing is performed at two other new locations.
In other words, different locations are used for the three
datasets - training, validation, and testing - to ensure that
the experiment is authentic and that the model is truly gen-
eralizing rather than overfitting to the training or validation
data.

2) Model: As discussed earlier, the model used in this paper
is a ResNet, the details of which are highlighted in Figure 6.
The designed ResNet has 6 convolution and 3 residual blocks,
or equivalently 12 convolutional layers, 12 activation layers,
and 6 pooling layers. Each convolutional block consists of
a sequential and ordered arrangement of a convolutional
layer, a batch normalization layer, rectified linearity activation
(ReLU) layer, and a maximum pooling layer. A residual block,
on the other hand, consists of two sequential convolutional
blocks (minus pooling) that are added to the input of the first
convolutional blocks.

3) Training & Validation: The model is trained for 8 epochs
using an Adam Optimizer and a learning rate scheduler with
the Cross-Entropy Loss Function. A detailed list of training
parameters has been provided in Table II. It is worth mention-
ing that a lower learning rate is preferred due to the nature of
the data as a larger learning rate would cause jumps around
the global minima.

Furthermore, since a small data set is used, several data
augmentation strategies such as manual feature extraction,
flipping, cropping, and zooming is applied during the training
process. In fact, while larger datasets are preferred for gen-
eralization, the data augmentation techniques have shown to
be successful in feature extraction and synthetically increasing
the size of the data.

TABLE II

SUMMARY OF TRAINING PARAMETERS

Fig. 7. Data normalization: The image on top represents the original image,
while the image below shows the normalized version.

The training process includes the following functions:

– Data normalization is used for training, validation, and
the implemented model on the drone. The image tensors
are normalized by subtracting the mean and dividing
by the standard deviation, both of which are calculated
separately. Data normalization highlights the essential
elements of the input image, making it easier for machine
learning classification. Figures 7 and 8 shows a sample
of the data normalization.
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Fig. 8. In addition to Data normalization, Data augmentation is applied to
the training data in order to increase new images in each epoch.

– Data Augmentation. Note that the size of the dataset
is smaller than many of the widely available datasets.
Hence, in order to avoid over-fitting and ensure that the
model generalizes well to the real world, the apparent
size of the dataset is increased using data augmentation.
To this end, the images are 1) padded on the right,
2) randomly cropped, and then 3) flipped with a fixed

probability. An example of data augmentation can be seen
in Figure 8.

– Batch normalization: The data is initially normalized
by subtracting the mean and dividing by the standard
deviation (Data normalization). Batch normalization takes
the same principle and applies it to each layer in the
neural network in order to further extract the features in
the outputs of each layer, before feeding it into the next
layer [67].

Besides, the machine learning model is trained for 30 seeds
and the validation accuracy, validation loss, and training loss
are recorded for each seed. The average validation accuracy at
the end of the 30 seeds is 93.8% while the average training and
validation losses are 0.5857 and 0.6061, respectively. Average
metrics vs epoch, with the standard deviation for confidence
intervals, are represented in Figure 9.

Table III, demonstrates the results collected on validation
data. In this table, Fire has the lowest accuracy and highest
precision. This is due to the size of the fire when conducting
the validation tests, where for safety, it has been kept small.

Besides, it can be seen that the Fire class has the highest
precision due to the fact that it has extremely few false alarms.
The Smoke class has fewer false alarms as well where it has a
precision of 0.91. The Spare class, on the other hand, has the
lowest precision since many misclassifications in Fire testing
are classified as Spare when the flames are not visible, giving
rise to a larger number of false alarms. The highest precision
for Fire and Smoke is advantageous as it is indicative of a

TABLE III

PRELIMINARY CLASSIFICATION METRICS FOR VALIDATION DATA. THE

LOW ACCURACY OF FIRE IS ATTRIBUTED TO THE SMALL FIRE SIZE

SELECTED FOR SAFETY REASONS. IT HAS BEEN INCREASED

SLIGHTLY LATER IN TESTING PRESENTED IN TABLE IV

TABLE IV

CLASSIFICATION METRICS FOR TESTING DATA

low number of false alarms. The Fire class has a lower recall,
while the Smoke and Spare classes have a significantly higher
recall which implies that the Fire class has a larger number
of missed detection while the Smoke and Spare classes do
not. The size of the fire has been increased slightly in the
experiments conducted for testing later presented in Table IV.

Finally, to find the ideal stopping point of training, an anal-
ysis of the misclassified images is conducted. It has been
observed that the misclassified images consisted only in case
of outliers, which particularly occurs when the different classes
share features. For example, cloud and smoke, or cloud and
white houses and snow share features. In this case, training
beyond involves overfitting to these outliers in the training
dataset which in turn leads to a decrease in the accuracy of
the validation data. Therefore, it is concluded that the efficient
stopping point is 8 epochs.

4) Testing: In the validation process, the lower recall for the
Fire class happens because it is difficult to view a campfire
because it is covered by logs and sticks. This is in contrast to
viewing the flames at an angle at which the flames are more
visible. To deal with the assumption that the lower accuracy
of the Fire is caused due to less visible flames, a significantly
larger controlled burn has been conducted in open burning
season (ending on May 1) and it is observed that an accuracy
of 93% is achieved for the Fire class with the metrics as seen
in Table IV.

In this table, due to the visible flames, it can be seen that the
metrics are improved. With a higher accuracy reported with
more visible flames, the prediction is that on an early forest
fire, which can be essentially larger than a campfire of 1 ft
tall, the algorithm even performs more desirably.

As mentioned earlier, to ensure the authenticity of the
experiment and avoid overfitting the training or validation data,
tests are conducted on new fire spots different from those
of training and validation. This also allows the measurement
of the generalization performance of the machine learning
method, presented in Table IV. Depending on the availability
and nature of the area surrounding the fire spot, a distur-
bance level is added to each testing image that measures
how much disturbance is being added from the surroundings.
For instance, when testing for Fire or Smoke, the drone
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Fig. 9. Training and Validation for the model over 30 seeds. The average values are plotted while the standard deviation is used for providing confidence
intervals. The plots included are (a) Validation accuracy vs epoch number and (b) Training and Validation loss vs epoch number.

TABLE V

ACCURACY OF TESTING DATA FOR SAR IN SNOW

camera is adjusted to display half or full of the surrounding
tree to confuse the machine learning algorithm to determine
whether the image is Smoke or Spare. Furthermore, this testing
has been conducted for varying amounts of environmental
disturbance.

It is worth mentioning that the largest distance for detecting
Fire has been measured to be 20.2 meters (66.3 feet) on the
firepit and 28 meters (91.86 feet) on the controlled fire, while
the highest distance for detecting Smoke has been 37 meters
(121.39 feet).

Table V presents the test results for the SAR operation con-
sidering two cases: with snowflakes and without snowflakes.
In the former, falling snow is superimposed into the images
to add noise and further test the model’s limits. Also, a com-
parison of ResNet and CNN has been provided in this table.
In this setting, in order to add diversity to the data and further
test the model, participants with five different clothes colors
were involved. The testing also involved the participants being
in different locations in the image to even being partially
present which the model has shown to be able to detect.
Furthermore, various amounts of snow on the ground have
been considered for the model testing, ranging from being
completely covered in snow to partial coverage. Finally, the
largest height for detecting a person has been measured to
be 24 meters (78.74 feet) with snowflakes and 27 meters
(88.58 feet) without snowflakes.

The entire machine learning algorithm is shown in more
detail in Algorithm 2. First, the UAV automatically flies from
the current location to the next location. Next, it will activate
the camera in shooting mode, resize the captured image, and

retrieve the resized image. Finally, the ML recognition runs
on the captured image and returns the detection class to
Algorithm 1.

Algorithm 2 Drone and ML Action
1: function DRONE AND ML ACTION(c, n)
2: Inputs:

c:= current location of the UAV
n:= next location of the UAV

3:

4: Output:

Target detection
5: Move UAV from location c to location n

6: if Fetch camera then

7: image = captured image from UAV
8: Run ML recognition(image)
9: return 0, 1, or 2 for Spare, Fire, or Smoke

10: else

11: return Fetch camera error
12: end if

13: end function

Figure 10 shows the block diagram of Algorithm 2.

D. Discussion on the Complexity Analysis

Before diving into our complexity analysis, we would like to
explain how the algorithm works. The algorithm begins with
the initialization of cell probabilities. The primary objective
is to optimize between two conflicting goals: the time taken
to reach a cell and the likelihood of successfully visiting it.
To this end, the algorithm selects regions in a way that it
decides between targeting the region with the highest success
probability, factoring in the time required to reach it, or di-
recting to adjacent regions, considering the lower probability
of success and shorter time required to reach that region. This
decision-making process, along with the continuously updated
probability map, continues to direct the next steps.
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Fig. 10. Block diagram of algorithm 2.

Now, for the complexity analysis, we note that the pro-
posed algorithm starts with M cells’ probability. In order
to make a tradeoff between the time to reach a cell and
the success probability of visiting that cell, W by W cells
are aggregated to form non-overlap regions. The first step
of the proposed algorithm is to find Rmax which represents
the highest probability among all the regions. Finding the
maximum probability and sorting it takes time proportional
to M

W 2 + log( M
W 2 ). However, since this only needs to be done

once, it does not significantly affect the overall computational
complexity. After finding Rmax, the algorithm should select the
next region to visit using Eq. (15). In the worst-case scenario,
we would need the UAV to visit every region and there are M

W 2

regions in total. This would result in a total of M
W 2 observations

of regions and a comparison operation according to Eq. (15).
In each region, we have to select the best adjacent cell using
Eq. (17) which takes time proportional to 9W . Then, we make
a new observation and run ML algorithm. Let td denote the
time needed to process the image using the ML algorithm.
After W 2 observations, we should update the probability map
and select the next region. Multiplying the probability map by
the observation/detection results also takes time proportional
to M

W 2 . That brings the overall complexity of M
W 2 repeats of

observations and updating the probability map to O(( M
W 2 )

2)

if the time complexity of updating the map is greater than
td + 9W .

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Camera Model

In order to obtain the numerical results through simulation
and experiments, a DJI Mavic 2 Zoom with a 4k camera shown
in Figure 11, has been used.

B. Power Consumption

One critical issue of UAV operation is the limited onboard
energy of UAVs, which renders energy-efficient UAV-based

Fig. 11. DJI Mavic 2 Zoom with a 4k camera.

operations particularly important. The UAV energy consump-
tion is in general composed of two main components, namely
the communication-related energy and the propulsion energy.
Depending on the size and payload of UAVs, the propul-
sion power consumption may be much more significant than
communication-related power. To this end, proper modeling
for UAV propulsion energy consumption is crucial. For a
rotary-wing UAV with speed V , the propulsion power con-
sumption can be expressed as [68]:

P(v) = P0

(

1 +
3v2

U 2
ti p

)

+ Pi

(√

1 +
v4

4v4
0

−
v2

2v2
0

)

1
2

+
1

2
d0ÈdAv

3, (33)

where P0 and Pi are constants representing the blade profile
power and induced power in hovering status, respectively.
Pi depends on the aircraft weight, air density È , and rotor
disc area dA, as specified in [68]. Also, Uti p denotes the tip
speed of the rotor blade, v0 is known as the mean rotor-induced
velocity in hovering, and d0 and s are the fuselage drag ratio
and rotor solidity, respectively.

Therefore, with a given trajectory q(t) where q(t) ∈ R2 and
0 f t f Tm , the propulsion energy consumption can be
expressed as

E(Tm, q(t)) =

∫ Tm

0
P(||v(t)||)dt, (34)

where ||v(t)|| is the instantaneous UAV speed.

C. Simulation Results

A 2 × 2 km2 search area is considered to investigate the
amount of time required to find the target. The algorithm is
evaluated using two different probability distributions: Gaus-
sian mixture and Gaussian-Uniform mixture distributions [69].
A drone starts flying from the left-bottom corner of the search
area. Table VI shows the average time to find the missing
target for three different algorithms. In fact, the proposed
algorithm is compared with two different algorithms: Zigzag
algorithm which is achieved via back and forth trajectories
in the search area [70]. And, the algorithm used in [71] in
which it approximates the probability distribution map using
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TABLE VI

AVERAGE TIME (SECONDS) TO FIND THE MISSING TARGET

TABLE VII

ENERGY CONSUMPTION (KJ) TO FIND THE MISSING TARGET

Fig. 12. The effect of W and M in the path planning algorithm.

the Gaussian mixture model (GMM) and plans UAV motions
heuristically using Gaussian probability density functions.
As can be seen, the proposed algorithm is able to find the target
in a shorter time in both distributions. Specifically, in the case
of Gaussian mixture distribution, it outperforms the Zigzag
algorithm 5 times faster.

The energy performance of the proposed algorithm is eval-
uated and compared to two other algorithms as well. To this
end, the power consumption model and parameters shown
in Equation (33) are used for all cases and the efficiency is
defined as the ratio of energy corresponding to the benchmark
algorithm to that of the proposed algorithm.

Figure 12 shows the effect of changing W and M in
the path planning algorithm where the location of the target
follows a Gaussian mixture distribution. The vertical axis
shows the performance ratio of the proposed algorithm to the
Zigzag algorithm. As can be seen, the performance ratio of
the proposed algorithm with respect to the Zigzag algorithm
improves with increasing W .

D. Experimental Results

For the experimental results, extensive experiments have
been conducted on the system to investigate end-to-end func-
tionality, detection accuracy, and algorithm efficiency. In a
real experiment, a scenario where the target is a fire spot

TABLE VIII

PARAMETERS VALUES IN EXPERIMENTAL EVALUATIONS

TABLE IX

EXPERIMENTAL RESULTS

is considered to be found within a large field of 234000SF.
The location of the fire follows a Gaussian-uniform mixture
distribution. We utilized Gaussian-Uniform distribution due to
its closer alignment with practical scenarios.

The drone flies at an altitude of 25m from the ground with
a speed of 20 m

s
. The boundary of the flight is selected based

on the search area. A summary of experiments parameters are
shown in Table VIII. The instruments of the UAV Control
Module are a phone and a UAV remote-control unit. With DJI
Go App and DJI SDK, one can set the flight missions of the
UAV and control its flight state. The search path for the flight
mission is generated using the probability map, and the drone
flies to each point as expected.

The limited energy and computational resources of the
drone require the utilization of a remote controller for move-
ment directives. Furthermore, it is required that the ground
controller receives the detected target’s information in a timely
and convenient manner so that it can take the corresponding
actions. Thus, the real-time transmission of the associated
information is crucial. Real-time transmission is realized both
in the UAV control algorithm and the detection algorithm.
With DJI Go App and DJI SDK, we can set the flight missions
of the UAV and control its flight state. In addition, the real-time
video can be displayed on the phone.

At each point of operation, the images are captured and
analyzed, then the probability map is updated based on the
new observation. The search algorithm finds the next point
based on the updated map. Table IX shows the average time
to find the target and the corresponding energy consumption
for our proposed algorithm and the Zigzag algorithm and the
one proposed in [71]. There have been 25 experiments for each
case. The average time was evaluated by measuring the amount
of time spent to detect the target successfully. The energy
consumption during the target detection mission was evaluated
by measuring the UAV battery level during the mission and at
the end of the mission.

VI. CONCLUSION

In this paper, a general framework was proposed for the
problem of object detection in which path planning and ma-
chine learning models are investigated. In particular, scenarios
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were considered in which objects such as a lost hiker in the
snow or a fire spot in a given area are intended to be detected.
Using a probability map, a path planning algorithm was
proposed based on the Bayesian inference so that the shortest
path leading to the object detection is designed. Along with the
path planning algorithm, a residual neural network was utilized
to capture the object. Since in the considered scenario, the
object is a person camouflaged in the snow or a fire spot in its
initial levels, a new dataset was developed besides the existing
ones, for training, validation, and testing of the neural network.
The results are verified through simulation and experiments.
It has been shown that the proposed method outperforms the
existing ones in terms of the average time spent to find the
object and the energy consumption of the drone. The present
work provides a proof of concept for SAR and fire detection
operations. Therefore, there are several avenues for future
work: One can apply other ML models such as ensemble
ML models, and investigate the existing trade-off between the
detection performance and running time as well as approaches
to improve this balance. Larger datasets are also of interest
to be exploited to consolidate the model’s generalization and
robustness. Furthermore, extending the proposed framework
for a multi-UAV setting is an interesting problem at the
analysis and practical levels. In this case, the complexity will
increase as efficient coordination among UAVs is required
for optimal operation. Another extension is to consider more
constraints such as communication cost and schedule of the
UAVs operation especially in a multi-UAV setting. Finally,
using datasets for different situations such as images taken at
night is another potential direction one can investigate.

APPENDIX

A. UAV Features

For this project, we chose the DJI Mavic 2 Zoom due to
its considerable array of features. Some of the most notable
features include:

• APAS 3.0 for Multidirectional Obstacle Avoidance.
• 4K Video and raw/HDR photos.
• 35-minute battery life.
• 10 km transmission distance and a maximum speed of

20 m/s.
• Waypoint selection for 99 waypoints with curved and

straight-line routes.
• Autonomously focusing and following a point of interest.
• Programming SDK and functionality with Windows,

Android, and iOS.
• Autopilot modes that allow for autonomous and dynamic

scheduling and determining the flight route.
• Return to home functionality to return to the initial start

point.
• Safety Features for loss of connection.
These features collectively contribute to the development

of an autonomous drone and pipeline. Some notes on these
features are:

• Even though there is a 99 waypoint limit on the waypoint
mission, intelligent programming tricks are applied to
override this limitation.

• The drone is equipped with a downward vision system
and an Infrared sensing system. DJI also provides a
thermal SDK for its more advanced drones (Zenmuse,
Mavic 2 Enterprise), which can be used to analyze
infrared images clicked by the downward infrared system.
While this can be used in conjunction with the ML
algorithm, it was not used for the purposes of this project.
This would, however, be a method of adding confidence
to the results.

• There are a total of seven Intelligent Flight Modes:
Hyperlapse, Quickshots, ActiveTrack (follow a moving
object), Point-of-Interest (hover or circle around a POI),
Waypoints, TapFly, and Cinematic.

• To ensure that the flight is safe for both, the drone
and the surrounding environment, the following features
are present to avoid disasters: Intelligent Smart-Battery,
Smart Return-to-Home (RTH), Low-power RTH, loss of
connection smart RTH, DJI Simulator, and emergency
pause.

B. Path-Planning

The distances between longitude and latitude are calculated
using the Haversine Formula, which gives the shortest distance
between two points on a sphere [72].

Note that the Earth is not spherical but rather ellipsoid
in shape which can lead to errors in distance calculations.
To minimize errors in the calculation of distances between two
points, the closest estimation to the radius of the Earth (had the
Earth been a sphere) in Massachusetts is selected. Depending
on the latitude, the value of the radius can be changed to obtain
more accurate results. Also, note that the radius of the Earth is
independent of longitude and only dependent on latitude. The
calculation of the geocentric radius given a geodetic latitude
is presented below

R(ϕ) =

√

(a2 cosϕ)2 + (b2 sinϕ)2

(a cosϕ)2 + (b sinϕ)2
, (35)

where R(ϕ) is the radius at the given geodetic latitude ϕ,
a = 6378137m is the equatorial radius, and b = 6378100m is
the polar radius.

In order to further account for the loss of accuracy in
calculating the distance, an accuracy rate of 90% is assumed
for the Haversine Formula. Adjustments were made to the
calculations to account for this accuracy assumption, and the
vertical and horizontal distances between the waypoints were
adjusted to be 90% of the calculated distances. This accuracy
rate was arbitrarily selected, and then tested in the field on the
calculated distance (without assumption) and traveled distance
(with assumption) for 100 distance measures to get an average
accuracy of 92.3 % with a standard deviation of ±4 %.
Finally, in order to ensure that the entire area is covered
as well as avoid any mistakes in the Haversine formula, the
diagonal FOV is subtracted by 3 degrees before performing
any distance/area calculations.
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C. Implementation

The implementation of the system involved combining
different components to create an end-to-end pipeline of
autonomous flight and fire detection.

The DJI SDK Timeline Mission was used to create this end-
to-end system. Timeline missions allow the user to schedule
a chain of Missions (DJIMission) and Actions (DJIMission-
Action) to be executed one after the other in the order
they were scheduled in. To program the autonomous flight a
combination of Waypoint Missions was used, while to program
the ML algorithm a custom Action was created by inheriting
the DJIMissionAction class. At first, the user is asked to
select four points to form a rectangular area that becomes the
boundary of the area they would like to survey. The user is also
given the option to adjust the flight height, speed, and zoom,
which in combination with the boundary is used to generate a
list of coordinates as the path for the autonomous flight. Each
coordinate in the path is then selected to be its own Waypoint
Mission, and therefore a path with n coordinates will be used
to create a Timeline with n Waypoint Missions. Since every
Waypoint Mission must consist of at least 2 waypoints, one
for the start and one for the finish, at each waypoint in the
point, the drone is programmed to ascend 0.5 meters above its
current altitude and then descend 0.5 meters back down. This
sequence creates a total of three waypoints for each Waypoint
Mission in the Timeline.

Each Waypoint Mission in the Timeline is programmed
with 3 actions to be executed in sequence once the drone
reaches the designated waypoint: 1) Rotate the gimbal pitch
to 90 degrees to make the camera face down, 2) Capture an
image utilizing the camera, and 3) Rotate the gimbal pitch to
0 degrees to orient the camera face in drone heading. These
captured images are accessed by the custom Mission Action
that was created to run the ML algorithm on each image. Each
custom action is scheduled right after each of the Waypoint
Missions, giving rise to n waypoint missions and n custom
actions that run alternatively in the Timeline.

The custom ML action inherits the DJIMissionAction class
which is the base class for all Mission Control Timeline
actions. The inheritance requires the creation and program-
ming of the following inherited functions: run, willRun,
pauseRun, and stopRun. For this project, only the run and
willRun functions were fully implemented while the others
were inherited and used to log into the console. The custom
ML action executes as follows: 1) Connect to the camera,
2) Download the image using Media Download, 3) Set the
camera back to shoot mode, 4) Resize the image to 256 × 512,
5) Run the ML recognition on the image, and 6) Update
the global variable that saves the results. All operations in
this chain are scheduled to be executed sequentially thereby
ensuring that none of them overlap.
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