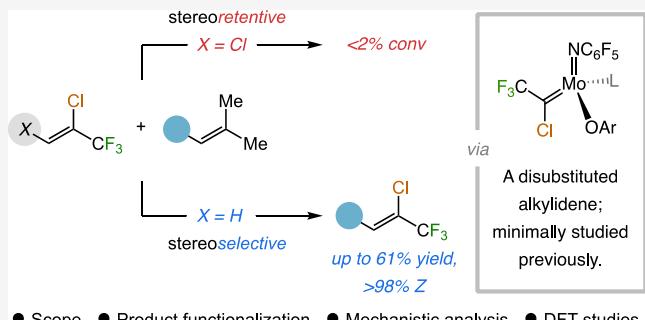


Synthesis of Z-gem-Cl,CF₃-Substituted Alkenes by Stereoselective Cross-Metathesis and the Role of Disubstituted Mo Alkylidenes

Qinghe Liu,^{II} Can Qin,^{II} Jing Wan,^{II} Binh Khanh Mai,^{II} Xin Zhi Sui, Haruki Kobayashi, Hossein Zahedian, Peng Liu,^{*} and Amir H. Hoveyda^{*}

Cite This: *J. Am. Chem. Soc.* 2024, 146, 22485–22497

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Stereochemically defined organofluorine compounds are central to drug discovery and development. Here, we present a catalytic cross-metathesis method for the synthesis of Z-trisubstituted olefins that contain a Cl- and a CF₃-bound carbon terminus. Notably, the process is *stereoselective*, which is in contrast to the existing stereoretention strategies that also involve a trisubstituted olefin as starting material. Reactions are catalyzed by a Mo monoaryloxide pyrrolide alkylidene, involve a trisubstituted alkene and *gem*-Cl,CF₃-substituted alkene, and are fully Z-selective. Catalytic cross-coupling can be used to convert the C–Cl bond of the trisubstituted olefin to C–B, C–D, and different C–C bonds. We elucidate the role of Cl,CF₃-disubstituted Mo alkylidenes. Experimental and computational (DFT) data show that in some instances a disubstituted alkylidene is formed and then transformed to a more active complex. In other cases, the Cl,CF₃-disubstituted alkylidene is a direct participant in a catalytic cycle. The studies described shed new light on the chemistry of high oxidation-state disubstituted alkylidenes—scarcely investigated entities likely to be pivotal to approaches for stereocontrolled synthesis of tetrasubstituted alkenes through olefin metathesis.

● Scope ● Product functionalization ● Mechanistic analysis ● DFT studies

1. INTRODUCTION

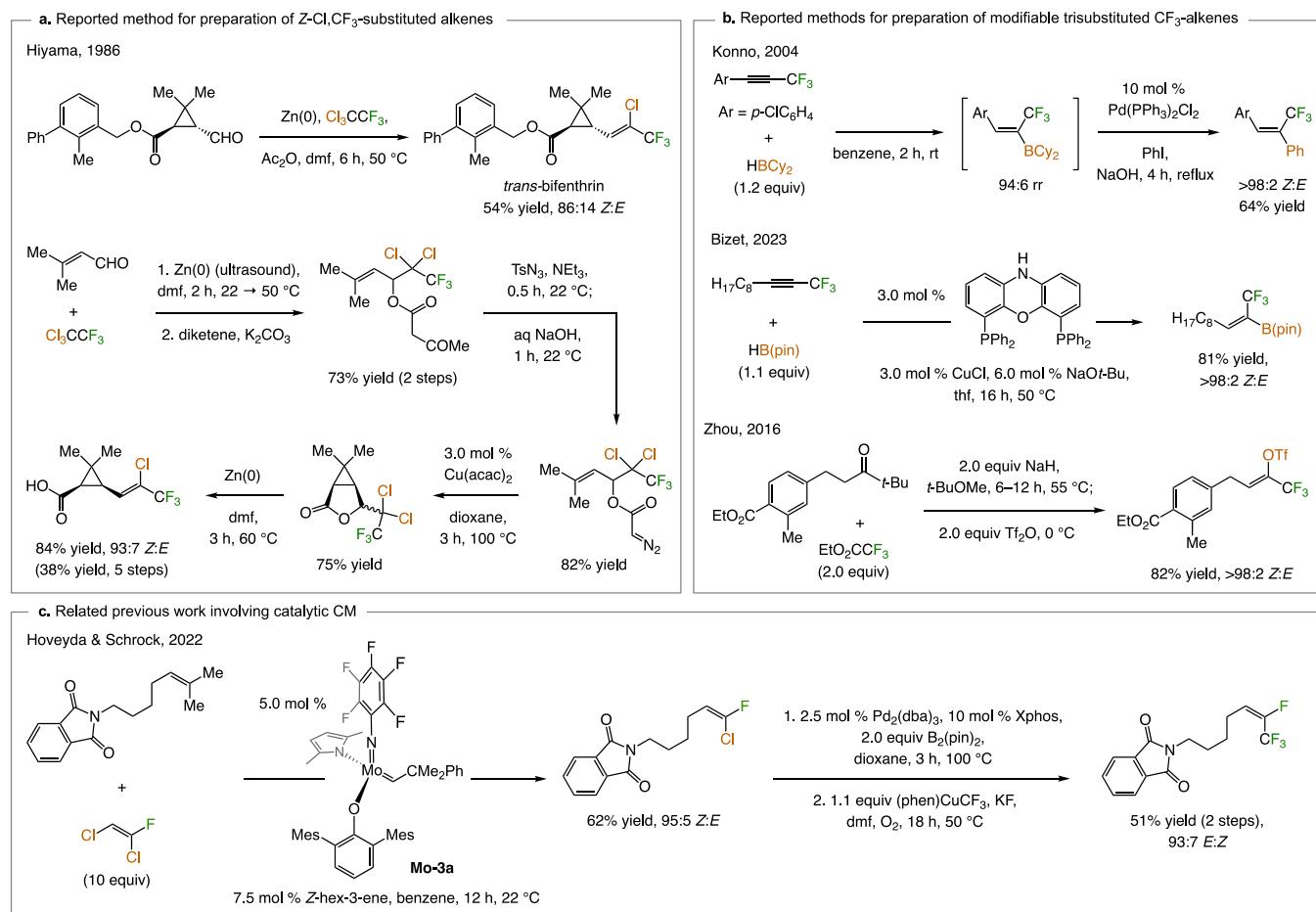
We will describe below the results of an investigation regarding the development of a cross-metathesis (CM) method for preparing Z-trisubstituted alkenes bearing a chloro and a trifluoromethyl terminus. Despite the involvement of a trisubstituted alkene, the optimal process turned out to be *stereoselective* and not *stereoretentive*, that is, unlike the approaches recently disclosed.^{1,2} Equally notable is the new light shed on the chemistry of Cl,CF₃-disubstituted Mo alkylidenes³ and their role in catalytic olefin metathesis.⁴ Information is scant regarding such organometallic entities, likely to be vital to the development of methods for synthesis of E- and Z-tetrasubstituted olefins.⁵

The importance of stereodefined organofluorine compounds aside,^{6,7} we were keen on exploring the limits of olefin metathesis reactions involving two trisubstituted alkenes.¹ We opted for stereodefined olefins bearing a *gem*-Cl,CF₃-substituted terminus as products. The value of these compounds is exemplified by *trans*-bifenthrin, two strategies for preparation of which were reported by Hiyama in 1986 (Scheme 1a).⁸ The routes commence with reductive coupling of an aldehyde and 1,1,1-trichloro-2,2,2-trifluoro ethane with one starting with a chiral cyclopropyl aldehyde. The resulting polyhalogenated alcohol was converted to the corresponding acetate and subjected to reductive cleavage, generating the insecticide. Alternatively, 3-methyl-crotonaldehyde was converted to an α -

diao ester. Intramolecular cyclopropane formation and reductive C–O bond cleavage then delivered the bifenthrin framework at higher Z:E ratio (Scheme 1a).

gem-Cl,CF₃-Substituted olefins may be converted to other stereodefined trisubstituted trifluoromethyl alkenes by catalytic cross-coupling (CC). Stereoselective protocols have been introduced for generating similar, modifiable alkenes (Scheme 1b). In many instances,⁹ such as those introduced by Konno et al.¹⁰ and Bizet and co-workers,¹¹ the starting point is a CF₃-substituted alkyne. In a procedure by Zhou et al.,¹² a ketone and ethyltrifluoroacetate were used. CM offers a complementary approach. Apropos, we had shown that a *gem*-F,CF₃-substituted olefin can be prepared by stereoretentive CM between a trisubstituted alkene and 1,2-dichloro-1-fluoroethene followed by CC (Scheme 1c).¹³ However, a C–F bond cannot be modified as easily as a C–Cl bond.

As noted, a key aspect of our studies turned out to be vis-à-vis the reactivity of disubstituted Mo alkylidenes. Monosubstituted alkylidenes and carbenes have thus far dominated the field. Little


Received: May 3, 2024

Revised: July 13, 2024

Accepted: July 15, 2024

Published: July 30, 2024

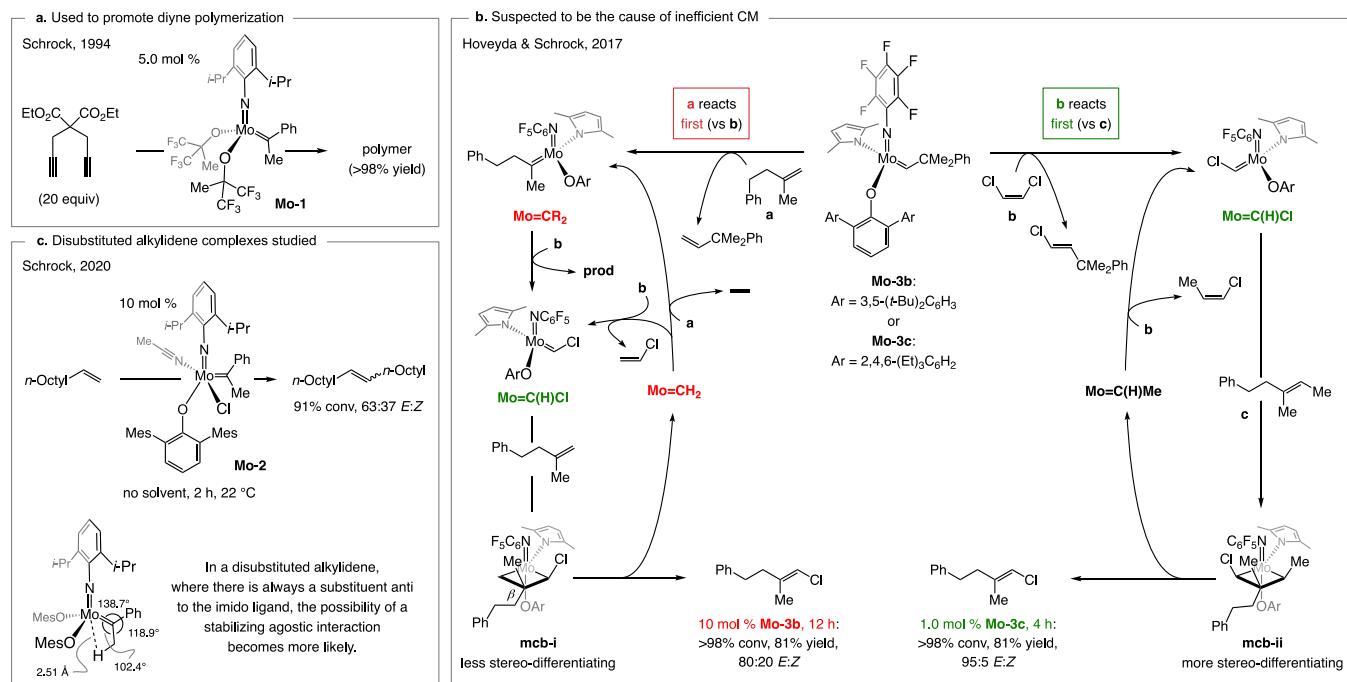
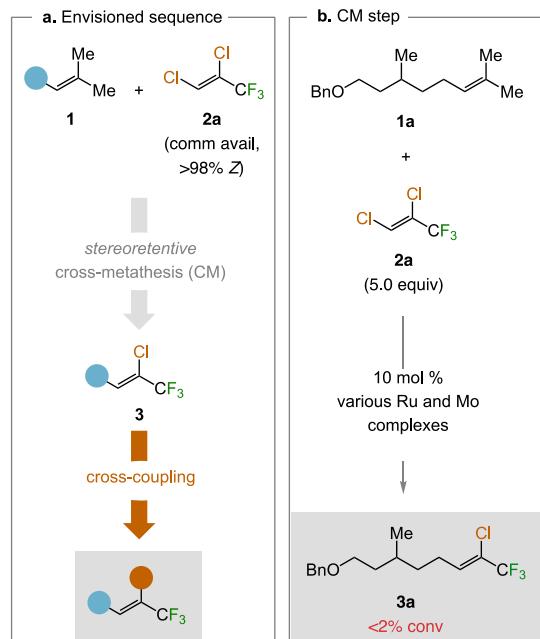
Scheme 1. State of the Art in Synthesis of Stereochemically Defined Trisubstituted Alkenes Bearing a CF_3 Moiety^a

^aacac, acetylacetone; dba, dibenzylideneacetone; Ts, 4-toluenesulfonyl; Tf, trifluoromethanesulfonyl; Mes, 2,4,6-Me₃C₆H₂; pin, pinacolato; phen, 1,10-phenanthroline; XPhos, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl; rr, regiosomeric ratio.

is known about the disubstituted variants, even when a transformation affords a trisubstituted alkene.¹⁴ Disubstituted Mo alkylidenes were first reported in 1994 by Schrock as initiators of diyne polymerization (Scheme 2a),¹⁵ an observation that was referred to as “surprising.” At the time, such complexes were believed to be catalytically inactive.

With the development of methods for synthesis of *E*- and *Z*-trisubstituted olefins (mainly by Mo catalysts) gaining steam,¹ the role of disubstituted alkylidenes has come under scrutiny. In 2017, we reported a study aimed at the development of a stereoretentive CM method¹⁶ for synthesis of stereodefined trisubstituted olefins (Scheme 2b). There, we dealt with the involvement of a disubstituted Mo alkylidene. We posited that the lower efficiency of the stereoselective cycle was on account of the transformation proceeding via a less reactive disubstituted Mo alkylidene ($\text{Mo}=\text{CR}_2$) and a relatively unstable methylidene ($\text{Mo}=\text{CH}_2$). Several years later, in 2020, Schrock reported the synthesis, characterization, and reactivity of several disubstituted Mo monoaryloxide chloride (MAC) and monoaryloxide pyrrolide (MAP) alkylidenes (Scheme 2c).¹⁷ Crystallographic data suggested that agostic interactions contribute to their diminished reactivity.

2. RESULTS AND DISCUSSION



2.1. Initial Stereoretentive Approach.

We began by following the tenets of stereoretentive olefin metathesis

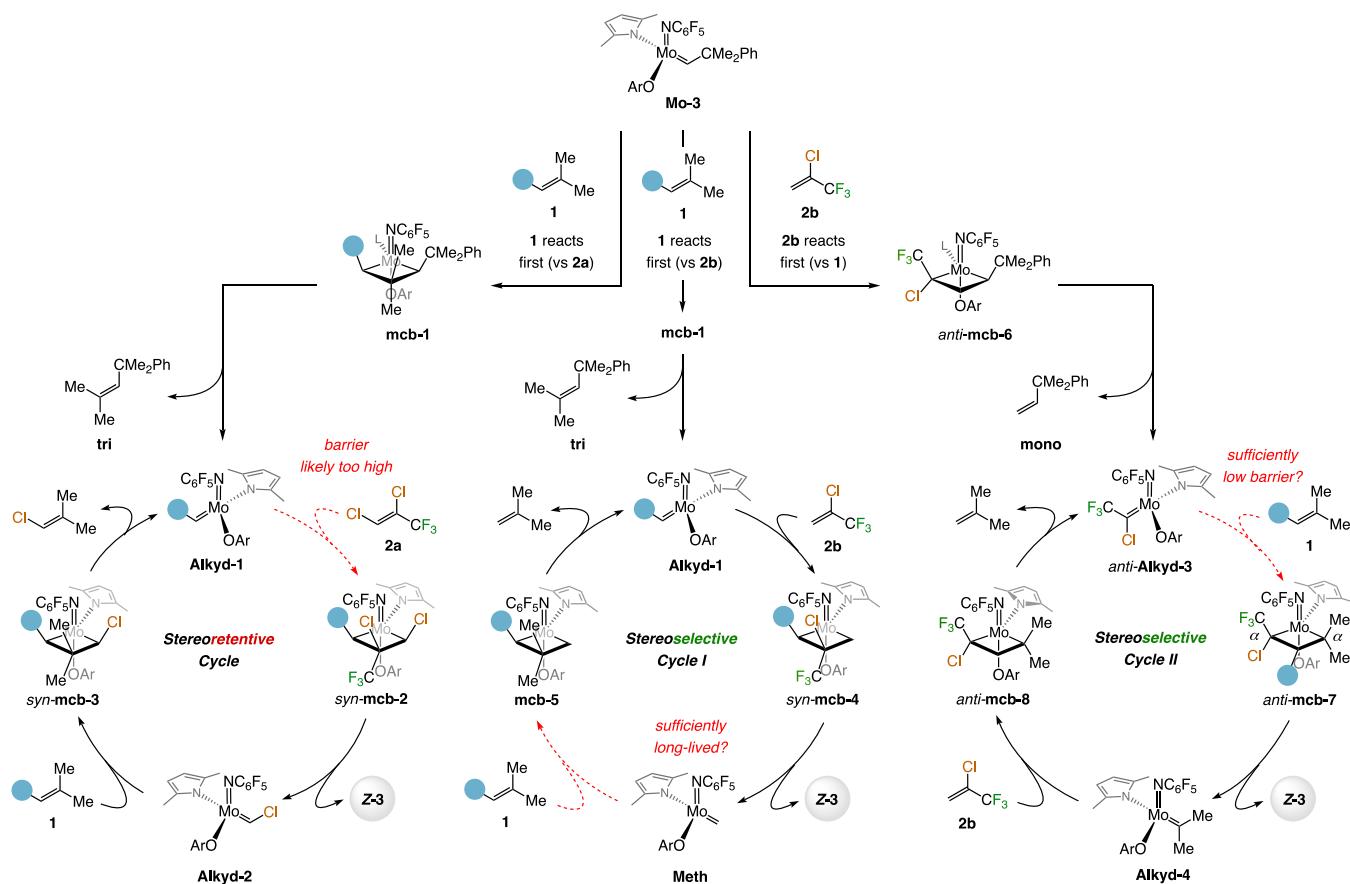
(Scheme 3a),^{1,16} namely that CM of alkenes **1** and purchasable **2a** would afford *gem*- Cl,CF_3 -substituted **3a**. A range of complexes were screened but none promoted CM (<2% **3a** as judged by ¹H NMR analysis; Scheme 3b; see the Supporting Information for additional details). This was regardless of the temperature (e.g., up to 45 °C; **2a** bp = 54 °C) or additives that could facilitate catalyst initiation (e.g., *Z*-butene).¹³

We thought that perhaps the larger size of **2a** and diminished Lewis basicity of its alkene (vs 1,2-dichloro-1-fluoroethene; see Scheme 1c) might be the issue. The more electron-rich **1** could react first, generating Alkyd-1 (Scheme 4, Stereoretentive Cycle), the reaction of which with **2a** would generate the densely substituted *syn*-mcb-2 and precursor to *Z*-**3**. However, this would likely be energetically prohibitive. Based on the previous studies,^{1,18} we expected that reaction of Cl-substituted alkylidene Alkyd-2 with **1** to start a new cycle via *syn*-mcb-3 would not be problematic.

2.2. Revised Stereoselective Approach. The rocky start led us to wonder if CM with the less hindered 1,1-disubstituted alkene **2b** (commercially available)—a stereoselective process—might be a better option. On one hand, the smaller and more π -Lewis basic **2b** (vs **2a**) would facilitate mcb formation. On the other hand, we would need to contend with the concerns that had led to the emergence of stereoretentive protocols in the first place. One issue was that the methylidene species¹⁹ (**Meth**; see Alkyd-1 → *syn*-mcb-4 → **Meth**; Stereoselective Cycle I, Scheme 4)

Scheme 2. Previous Findings Involving or Invoking Disubstituted Mo Alkylidene Complexes^a^aCM, cross-metathesis.Scheme 3. Initial Plan Involving Stereoretentive CM^a

^aReactions performed under N₂. Conversion (disappearance of 1a) determined by analysis of ¹H NMR spectra of unpurified mixtures (±2%). See the Supporting Information for details. CM, cross-metathesis.


would not be sufficiently long-lived. It was also unclear if the energy difference between *syn*-mcb-4 and its stereoisomer (Cl pointing toward the aryloxide ligand) would translate to much stereocontrol. In case 2b were to react first, the resulting disubstituted Mo alkylidene (*anti*-Alkyd-3, Stereoselective Cycle II) might turn out not to be sufficiently active. We were not sure

whether the reaction of *anti*-Alkyd-3 and 1 would efficiently deliver *anti*-mcb-7, which bears two fully substituted C α sites. Collapse of *anti*-mcb-7 would yield Alkyd-4, which would have to react with 2b to deliver a similarly congested *anti*-mcb-8.

The initial screening data were discouraging, as there was little or no CM with Ru-1–3, bisalkoxide Mo-4, or bisaryloxide Mo-5 (Scheme 5). We then observed 25% CM and complete stereocontrol with MAC (monoaryloxide chloride) complex Mo-6 (BPh₃ promotes pyridine dissociation and release of the active complex²⁰). MAP complexes afforded further improvement (Scheme 5). CM with Mo-3b delivered Z-3a in 61% yield (>98:2 Z:E). Conversion was reduced at lower loading (5.0 mol %: 51% conv, 27% CM) or with electron-deficient aryloxides Mo-3d–e. *p*-Methoxy-substituted Mo-3f was as effective as Mo-3b (>98:2 Z:E in all cases). The greater efficiency of the stereoselective approach (vs stereoretentive) was surprising and broached several mechanistic questions, the possible involvement of disubstituted Alkyd-3 being especially intriguing (see Scheme 4).

2.3. Scope. We settled on Mo-3b as the catalyst precursor (vs Mo-3f) because its preparation is more straightforward. Reactions were clean (Scheme 6a) and other than the desired product there was <10% 1,2-disubstituted olefin derived from homocoupling of trisubstituted olefin. We isolated 3a (69% conv, 61% CM) in 61% yield and >98:2 Z:E selectivity. At larger scale (1.0 mmol of 1a), the trisubstituted alkene product was obtained in 55% yield as a single isomer. Stereoselectivity was complete in all cases. The process tolerates a tertiary amine (3b), a carboxylic ester (3c–e and 3g–k), a phthalimide (3f), a carbamate (3g), and an α -thio-ester (3k). Reactions with a γ -branched trisubstituted alkene (3a, and 3j–l), one that contains a sizable moiety at C β (3m–n) or a β -branched substituent (3o) were reasonably efficient.

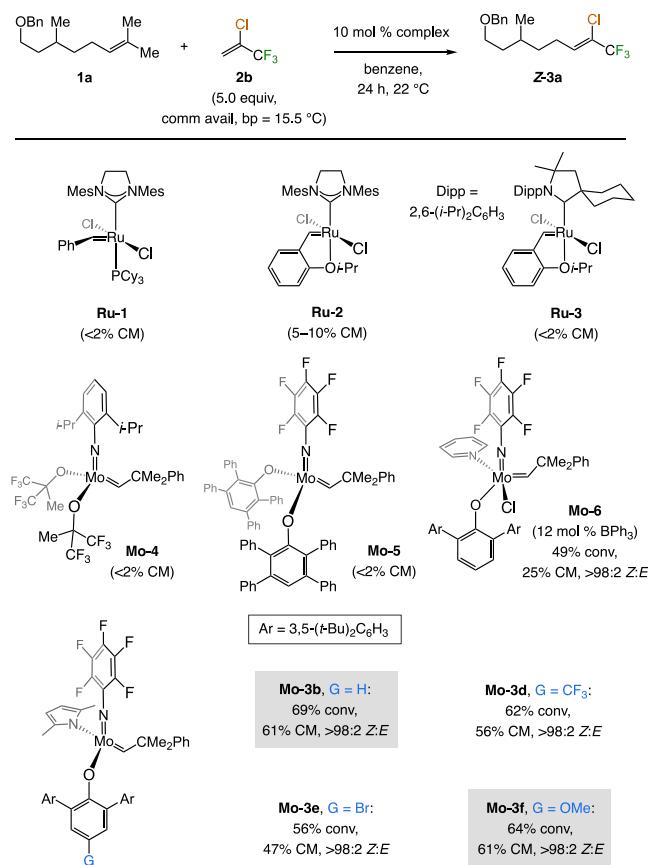
Steric strain impacted efficiency, as manifested by the inefficient reactions of α -branched alkene 1p (Scheme 6b),

Scheme 4. Initial Mechanistic Analysis^a

^amcb, Metallacyclobutane; meth, methyldiene complex.

prenyl-B(pin) **1q**, and aryl-substituted **1s–t**. The low reactivity of allylic ether **1r** shows that a proximal electron-withdrawing group and diminished alkene Lewis basicity can be detrimental. Based on previous studies, reactions between two trisubstituted olefins, including prenyl-B(pin) (**1q**), Z- or E-2-bromo-2-butene,²¹ and trisubstituted enoates²² can be efficient. Such variation, in the face of the lower substitution in **2b**, underscores the challenging nature of the present set of CM reactions.

Underscoring the difficulty of these transformations is the impact of a Lewis basic moiety on CM rate. For example, unlike carboxylic ester **3e** (see Scheme 6a), which was obtained in 51% yield (61% conv), in the case of **1u** and its more proximal ester moiety, there was 5% conversion to **3u** (Scheme 7a). The adverse influence of a coordinating moiety may be attributed to the formation of deactivated cyclic alkylidene complex **Mo-7**.²³ The equilibrium between **Mo-7** and **Mo-7'** might not allow sufficient amounts of the latter to be present in solution long enough to give CM a chance. The presence of a less Lewis basic boronic ester is less damaging: **3n** was isolated in 61% yield (see Scheme 6a).


We capitalized on the versatility of the C–B bond and converted **3n** to primary alcohol **3v** (Scheme 7b), which was transformed to **3u** (60% yield, 2 steps). The same may be applied to preparation of other stereodefined *gem*-Cl,CF₃-substituted olefins that cannot be obtained by CM directly. Stereoselective synthesis of **3w** is illustrative.

2.4. Product Modification. The C–Cl bond offers numerous functionalization possibilities (Scheme 8a). Boryl- (**4a**), alkyl- (**4b**), allyl- (**4c**), acyl- (**4d**), aryl- (**4e**), and

deuterium-substituted (**4f**) alkene derivatives were synthesized in 65–82% yield. There was no detectable loss of stereochemical purity. Catalytic CC of alkenyl-B(pin) **4a** with an alkenyl halide, including those obtained through CM, can be used for preparation of polyfluoro 1,3-dienes.¹³ Allyl-substituted olefins such as **4c** have been applied to synthesis of epothilone analogs.²⁴ Enones represented by **4d** can serve in various selective catalytic processes (e.g., hydrogenations,²⁵ conjugate additions,²⁶ ring formations²⁷). Isotopically labeled molecules (e.g., **4f**) are valuable to drug discovery and development.²⁸ There is also the possibility of catalytic regio- and enantioselective boryl substitution (Scheme 8b).²⁹ The conversion of **3e** to tetrasubstituted allylic boronate **5** is representative (63% yield, 91:9 er (enantiomeric ratio)).³⁰

2.5. Spectroscopic Detection of Cl,CF₃-Disubstituted Mo Alkylidenes. The possible formation of **Mo-7** and **Mo-7'** (see Scheme 7a) implied that an alkylidene generated from the trisubstituted olefin substrate might be involved. Still, this did not rule out the involvement of a Cl,CF₃-disubstituted Mo alkylidene (see iii, Scheme 4). While a disubstituted alkylidene could reduce the rate of CM, if *Stereoselective Cycle I* (Scheme 4) were operative and an unstable methyldiene species (**Meth**) involved, then its trapping by **2b** could prolong catalyst lifetime. We opted to explore whether disubstituted *anti*-Alkyd-3 is formed in the course of the CM transformation (Scheme 9).

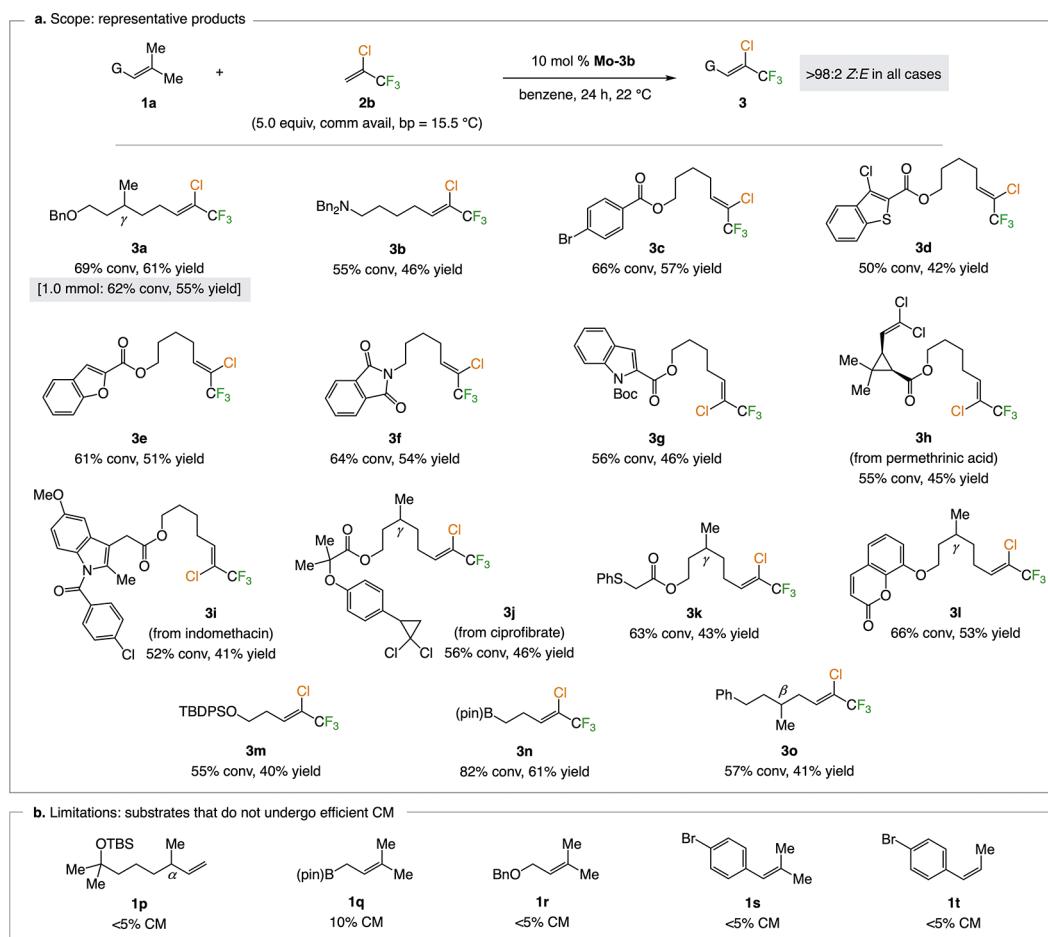
We first carried out an experiment with the hope of detecting the various Mo alkylidene species generated (Scheme 9; **1a**:**2b**:**Mo-3b** = 1.0:5.0:1.0). A singlet emerged immediately in the ¹⁹F NMR spectrum at -60.2 ppm (-70.2 ppm for **2b**), its

Scheme 5. Exploring the Feasibility of Stereoselective CM^a

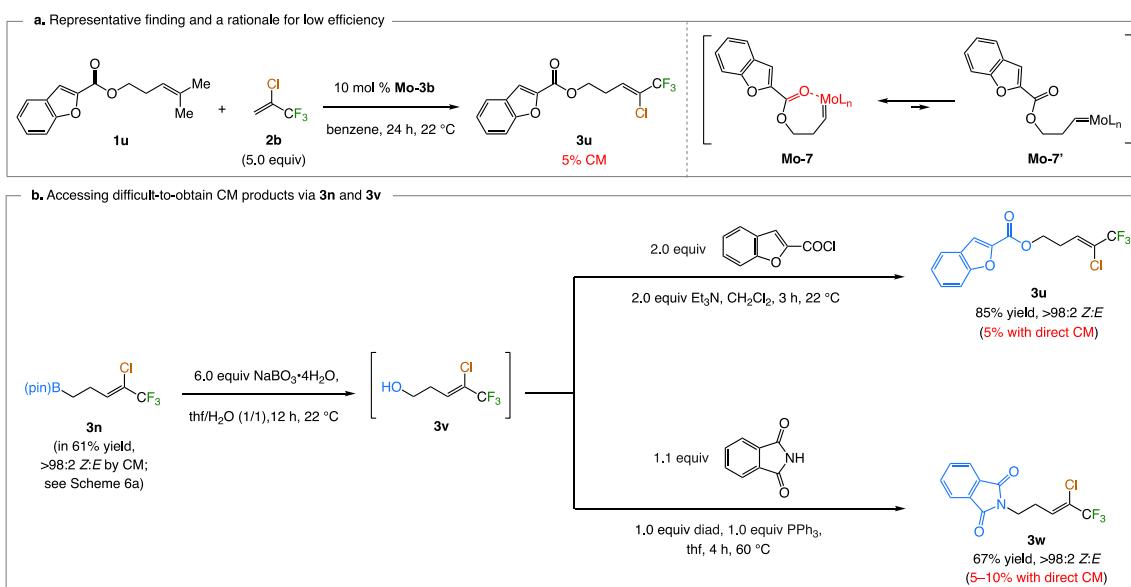
^aReactions performed under N_2 . Conversion (disappearance of **1a**) and *Z:E* ratios were determined by analysis of ¹H and ¹⁹F NMR spectra of unpurified product mixtures ($\pm 2\%$). Yield of purified products ($\pm 5\%$). See the *Supporting Information* for details. CM, cross-metathesis.

concentration increasing to 46 mol % after 6 h. A similar amount of the monosubstituted alkene (**mono**), marking catalyst initiation, was observed in the ¹H NMR spectrum (see **Figure S1** in the *Supporting Information*). Accordingly, we attributed the aforementioned peak in the ¹⁹F NMR spectrum to the CF_3 group of disubstituted alkylidene *anti*-Alkyd-3 (see the *Supporting Information* for full characterization details). To verify, we synthesized a sample of *anti*-Alkyd-3 by subjecting **Mo-3b** to 50 equiv of **2b** (40°C , 16 h; see below for further analysis). Formation of *anti*-Alkyd-3 was marked by the appearance of the aforementioned signals: a singlet at -60.2 ppm (3F_d), a doublet at -142.9 ppm (2F_c), a triplet at -151.4 ppm (1F_a), and a triplet of doublets at -161.8 ppm (2F_b).

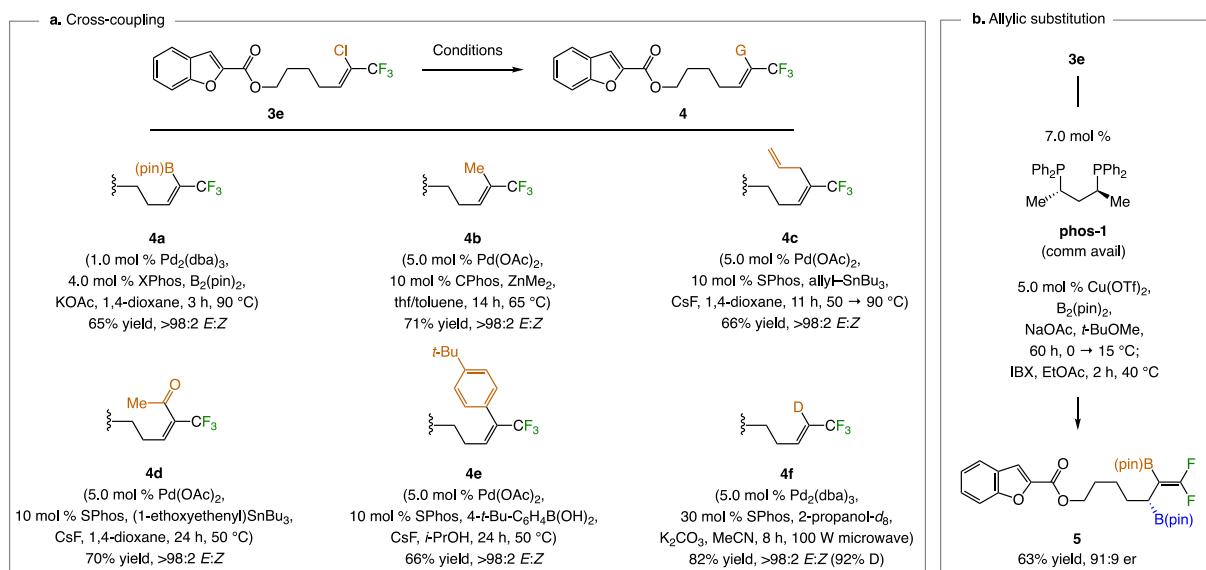
2.6. Concentration of the Disubstituted Alkylidene Is Time-Dependent. To probe the role of *anti*-Alkyd-3 further, we decided to investigate whether there is any variation in its concentration in the course of a catalytic process. The disubstituted alkylidene was detected early on (**Scheme 10**), and was present in solution in up to 7.5 mol % after 3 h, gradually diminishing and disappearing after 6 h. In the meantime, **Z-3a** was continuously being generated. To gain further insight, we would later perform DFT investigations (see below).


2.7. Synthesis and Characterization of Disubstituted Alkylidenes. As noted above, we were able to prepare *anti*-Alkyd-3 by subjecting **Mo-3b** with 50 equiv of **2b** (see **Scheme 9**). Nevertheless, attempts to isolate *anti*-Alkyd-3 were

unsuccessful. We therefore set our sights on a more readily isolable derivative, and chose to synthesize a more robust form of the disubstituted alkylidene. We were indeed able to synthesize its 2,2'-bipyridyl (bpy) adduct of *anti*-Alkyd-3, namely *anti*-Alkyd-5, by subjecting a solution of the former with 0.9 equiv of bipyridine. We isolated *anti*-Alkyd-3 in 36% yield as dark-brown solid (Route A, **Scheme 11a**). Furthermore, we prepared **Mo-6** in 84% yield by subjecting **Mo-3b** to pyridinium chloride (Route B, **Scheme 11a**). An authentic sample of *anti*-Alkyd-6 was then prepared in 35% yield through CM of **Mo-6** with **2b** (ZnCl_2 facilitates pyridine dissociation needed for CM; pyridine subsequently recoordinates to Mo). Analysis of the NMR spectra of *anti*-Alkyd-6 confirmed the foregoing assignments (**Scheme 11b**). The key data are as follows: (1) A triplet at -67.0 ppm in the ¹⁹F NMR spectrum, which we attribute to the CF_3 unit ($J_{\text{F-F}} = 6.0$ Hz, between CF_3 and F_o , confirmed by ¹⁹F-¹⁹F COSY). (2) A quartet at 282.3 ppm in the ¹³C NMR ($J_{\text{C-F}} = 40.7$ Hz) indicating that the CF_3 group is an alkylidene substituent. (3) There was no detectable alkylidene proton signal in the ¹H NMR spectrum.

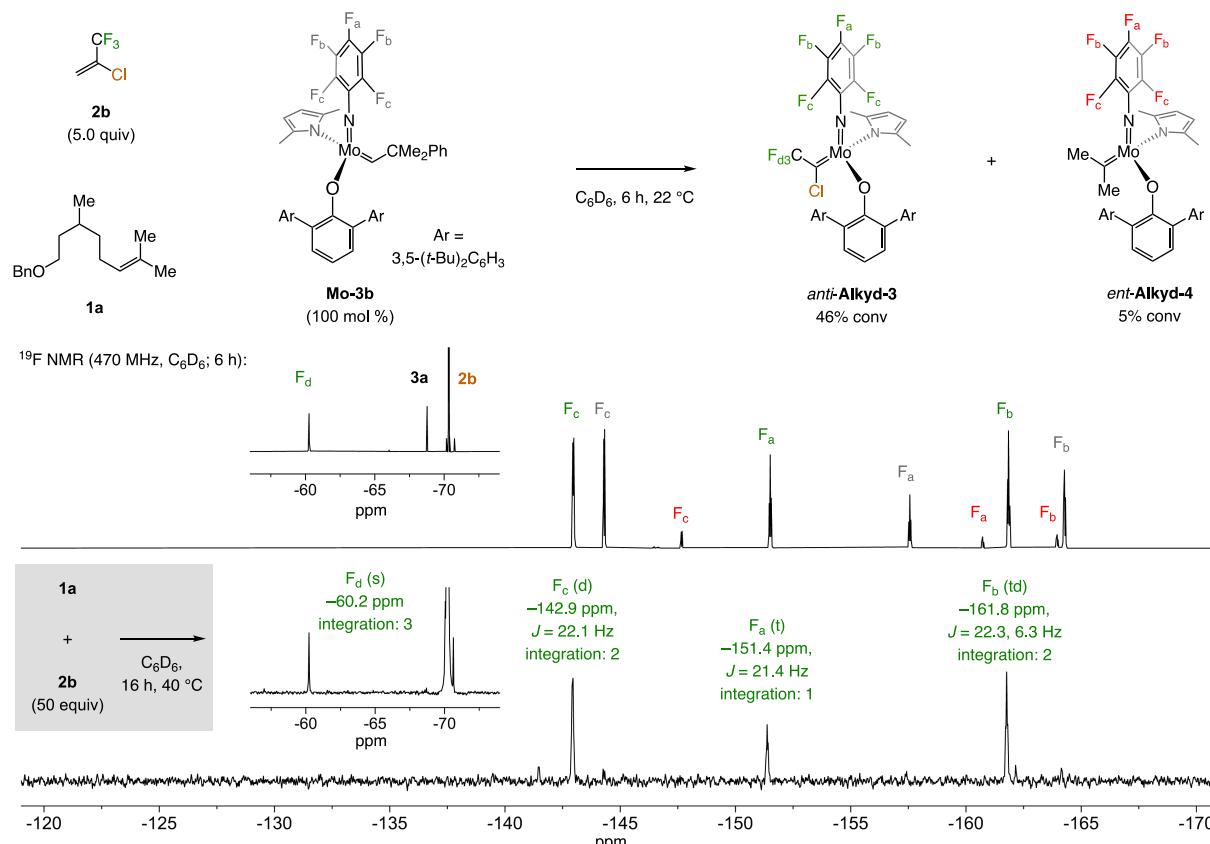

2.8. Involvement of Cl, CF_3 -Disubstituted Alkylidenes in CM. The next question was how exactly might a disubstituted Mo alkylidene be involved in the catalytic CM reaction (**Table 1**). To probe, we performed several experiments and obtained the following data: (1) *In situ* formed *anti*-Alkyd-3 promotes the conversion of **1a** and **2b** to **Z-3a** (entry 2, **Table 1**; 50% disappearance of **1a**, 28% conv to **Z-3a**), albeit less effectively than **Mo-3b** (entry 1; 53% disappearance of **1a**, 41% conv to **Z-3a**). (2) CM with isolated *anti*-Alkyd-5 was considerably less efficient (entry 3; 10% disappearance of **1a**, 6% conv to **Z-3a**). (3) CM was faster with MAC *anti*-Alkyd-6 than MAP *anti*-Alkyd-5 (entry 4; 50% disappearance of **1a**, 37% conv to **Z-3a**). (4) While disubstituted MAC alkylidene *anti*-Alkyd-6 is almost as effective as **Mo-3b** (entry 1 vs 4) both are more effective at promoting CM compared to neophylidene MAC complex **Mo-6** (entries 1 and 4 vs entry 5). Most importantly, these findings indicate that a disubstituted Mo alkylidene can enter the catalytic cycle. There are however other mechanistic implications (see below).

2.9. Computational Studies. **2.9.1. Productive Cycle and Role of Disubstituted Alkylidene Alkyd-3.** DFT studies (**Scheme 12**) indicated that a Mo-MAP complex reacts more readily with a trisubstituted olefin (via **mcb-1**) than **2b** (via *anti*-**mcb-6**). The resulting **Alkyd-1** was calculated to be more stable than *anti*-Alkyd-3 by 4.2 kcal/mol. These investigations also indicated that *anti*-Alkyd-3 is the favored isomer (i.e., Cl anti to the imido ligand; $\Delta G = 4.2$ vs 6.7 kcal/mol for *anti*- and *syn*-Alkyd-3, respectively). The bulkier CF_3 moiety (vs Cl) prefers to be oriented away from the more sizable aryloxide ligand (vs pentafluorophenylimido).


Reaction of **Alkyd-1** with **2b** can generate *syn*-**mcb-4** (*Cycle A*), which could productively collapse to give **prod** and **Meth** ($\Delta G = 3.2$ kcal/mol; see **Meth**, *Cycle A*, **Scheme 4**). There would be three options for **Meth** (aside from decomposition). (1) It could react with **2b** to afford *anti*-**mcb-10** (*Cycle B*; $\Delta G^\ddagger = 24.0$ kcal/mol). (2) It could be converted to *anti*-**mcb-11** ($\Delta G^\ddagger = 21.5$ kcal/mol). (3) It could merge with **1** to furnish **mcb-5** (*Cycle A*; $\Delta G^\ddagger = 14.2$ kcal/mol). DFT studies indicate that the last scenario is favored, leading to regeneration of **Alkyd-1**, release of 2-methylpropene, and completion of the productive *Cycle A*. As was mentioned, the relatively reactive and unstable **Meth** is in all likelihood the weak link in the entire process and a reason why 10 mol % Mo complex loading is necessary.

Scheme 6. Scope and Limitations of the Method^a

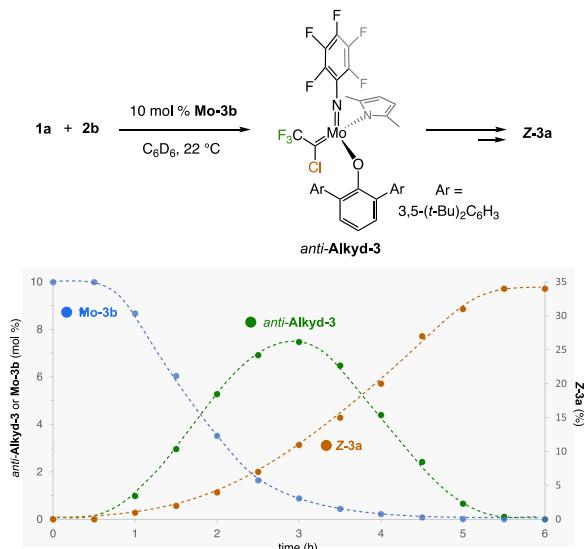
^aReactions performed under N₂ with 10 mol % Mo-3b, except for 3h, 3k and 3m, where 20 mol % complex was used. For 3n, the outcome with Mo-3e was somewhat better. Conversion (disappearance of 1) and Z:E ratios were determined by analysis of ¹H and ¹⁹F NMR spectra of unpurified product mixtures ($\pm 2\%$). Yields of purified products ($\pm 5\%$). See the Supporting Information for details. CM, cross-metathesis.


Scheme 7. Sensitivity of CM to a Proximal Lewis Basic Moiety and a Solution^a

^aReactions performed under N₂. Z:E ratios were determined by analysis of ¹H and ¹⁹F NMR spectra of unpurified product mixtures ($\pm 2\%$). Yields of purified products ($\pm 5\%$). See the Supporting Information for details. diad, Diisopropylazidocarboxylate; CM, cross-metathesis.

Scheme 8. Catalytic Diversification of CM Products^a

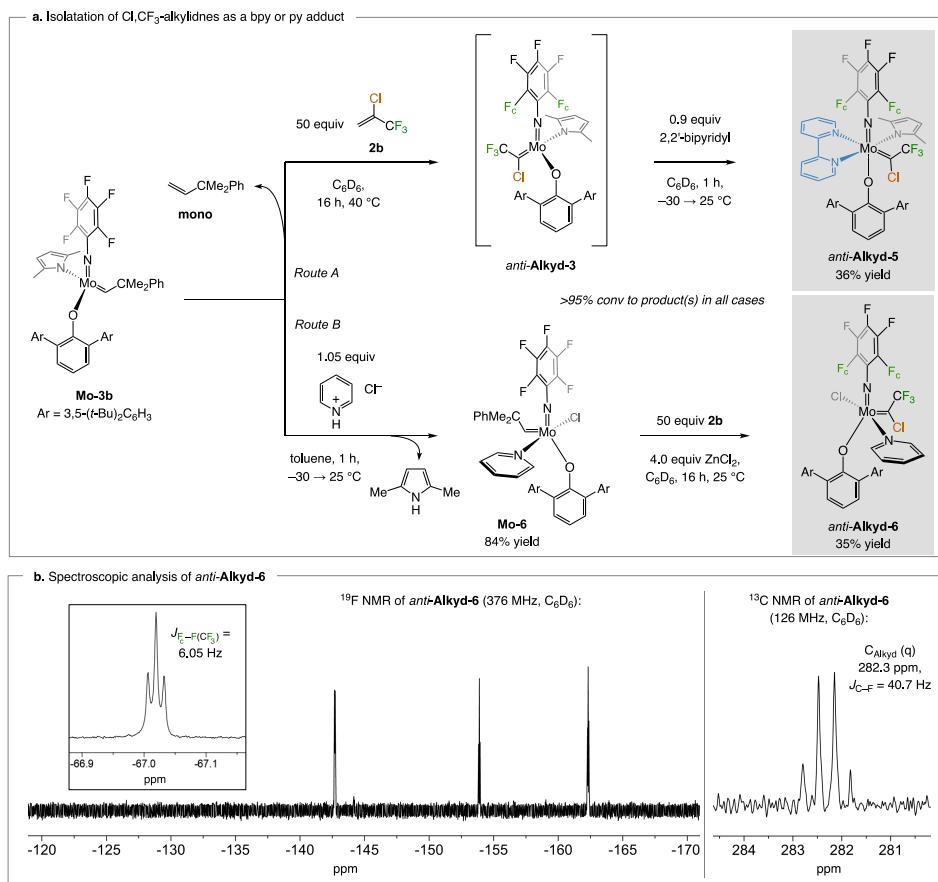
^aReactions performed under N_2 . ^bZ:E ratios were determined by analysis of ¹H and ¹⁹F NMR spectra of unpurified product mixtures ($\pm 2\%$).


^cYields of purified products ($\pm 5\%$). See the [Supporting Information](#) for details. CM, cross-metathesis; SPhos, 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl; XPhos, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl; CPhos, 2-dicyclohexylphosphino-2',6'-bis(*N,N*-dimethylamino)biphenyl; dba, dibenzylideneacetone; IBX, 2-iodoxybenzoic acid; er, enantiomeric ratio.

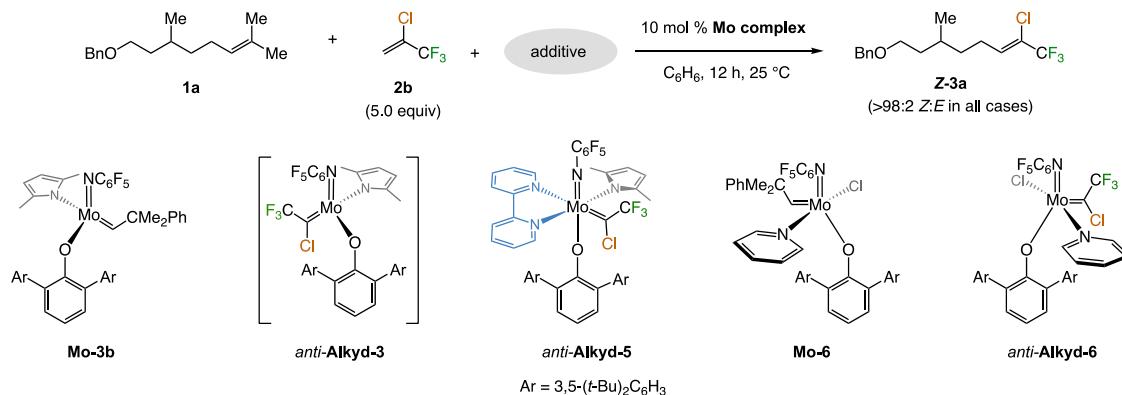
Scheme 9. Probing the Possible Involvement of Disubstituted Alkylidene *anti*-Alkyd-3^a

^aReactions performed under Ar in a J-Young NMR tube. Conversion was determined by analysis of ¹H and ¹⁹F NMR spectra of the reaction mixtures and normalized based on **1a** ($\pm 2\%$). See the [Supporting Information](#) for details.

Nonetheless, it appears that the facile reaction of **Meth** with the trisubstituted olefin to generate **mcb-5** is key to CM efficiency.

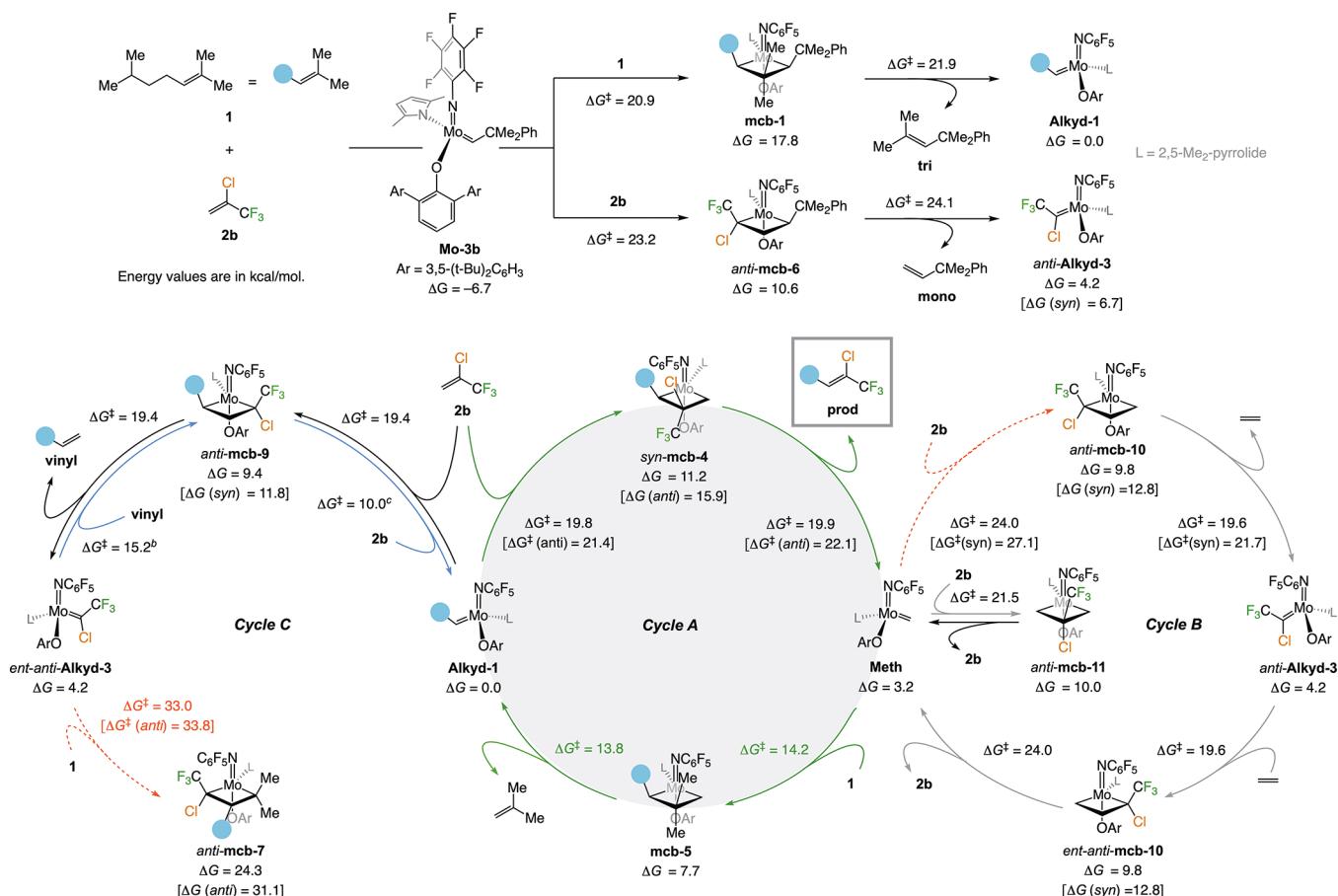

Early on in the process, there is some preference for **Alkyd-1** reacting with **2b** to afford **anti-mcb-9** (*Cycle C*; $\Delta G^\ddagger = 19.4 \text{ kcal/mol}$ vs 19.8 kcal/mol for **Alkyd-1** → **syn-mcb-4**), collapse of

Scheme 10. Formation and Consumption of *anti*-Alkyd-3^a


^aReactions performed under Ar in a J-Young NMR tube. Conversion was determined by analysis of ¹H and ¹⁹F NMR spectra of the unpurified mixtures and normalized based on **1a** ($\pm 2\%$). See the Supporting Information for details. CM, cross-metathesis.

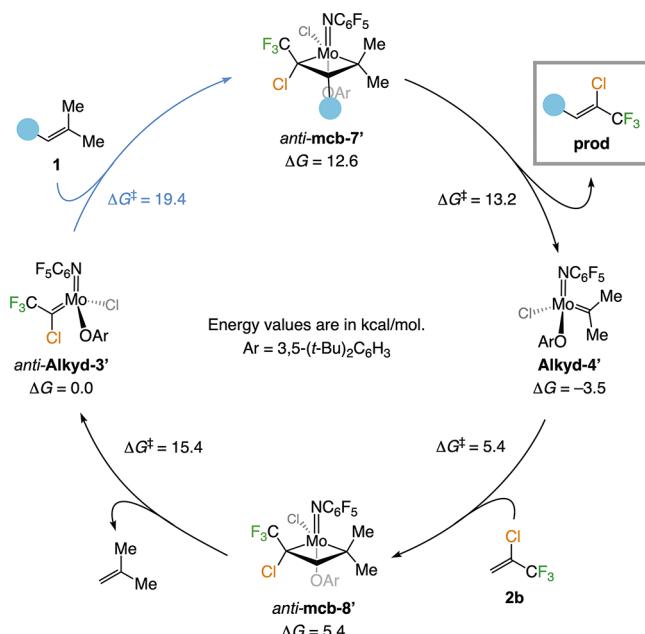
which would furnish monosubstituted alkene (vinyl) and *ent-anti*-Alkyd-3 ($\Delta G = 4.2$ kcal/mol). *ent-anti*-Alkyd-3 would have two options: react with vinyl to regenerate Alkyd-1 via *anti*-mcb-9 or react with the more abundant **1** to afford the highly substituted *ent-anti*-mcb-7 ($\Delta G^\ddagger = 33.0$ kcal/mol). The second possibility would be energetically more taxing. This explains why *anti*-Alkyd-3 was generated (likely via *anti*-mcb-9, Cycle A) and detected in the early phases of the process and then gradually consumed and reconverted to Alkyd-1 via *anti*-mcb-9 (likely through Cycle C). This also explains why *in situ* generated *anti*-Alkyd-3 promote CM more efficiently compared to *anti*-Alkyd-5 (see entries 2 and 3, Table 1). The alkene that is the byproduct of neophylidene initiation (mono) is available in the case of *anti*-Alkyd-3 and reaction between the two reforms Mo-3b via *anti*-mcb-6 ($\Delta G^\ddagger = 19.9$ kcal/mol, with regard to *anti*-Alkyd-3). In contrast, there is no mono when *anti*-Alkyd-5 is utilized and therefore it cannot enter the productive Cycle A.

Another finding of note is that *anti*-Alkyd-6 (see entry 4, Table 1) can be transformed to product Z-3a without a monosubstituted olefin also being present (i.e., *anti*-mcb-9 (L = Cl) in Scheme 12, Cycle C, can no longer be formed).³¹ This in all likelihood occurs through the catalytic cycle shown in Scheme 13. That is, the disubstituted alkylidene must be directly involved in productive CM and that a disubstituted MAC complex probably reacts with a trisubstituted olefin to furnish the congested *anti*-mcb-7' (Scheme 13). This was corroborated by the results of the DFT studies, showing that reaction of *anti*-


Scheme 11. Synthesis and Spectroscopic Characterization of Cl,CF₃-Disubstituted Mo-Alkyldenes^a

^aReactions performed under Ar. Conversion was determined by analysis of ¹H NMR spectra of unpurified product mixtures ($\pm 2\%$). Yields of purified products ($\pm 5\%$). See the Supporting Information for details.

Table 1. Activity of Cl,CF_3 -Disubstituted Mo-Alkyldenes^a


entry	Mo complex	additive (mol %)	conv (%) ^b	conv to Z-3a (%) ^b
1	Mo-3b	none	53	41
2	anti-Alkyd-3 ^c	none	50	28
3	anti-Alkyd-5	ZnCl_2 ; 40	10	6
4	anti-Alkyd-6	BPh_3 ; 12	50	37
5	Mo-6	BPh_3 ; 12	50	25

^aReactions performed under **Ar**. ^bConversion (disappearance of **1a**) and *Z:E* ratios were determined by analysis of ^1H NMR spectra of unpurified product mixtures ($\pm 2\%$). ^cIn situ generated anti-Alkyd-3 was prepared according to Scheme 11a (mixture with **2b** and **mono**). See the Supporting Information for details.

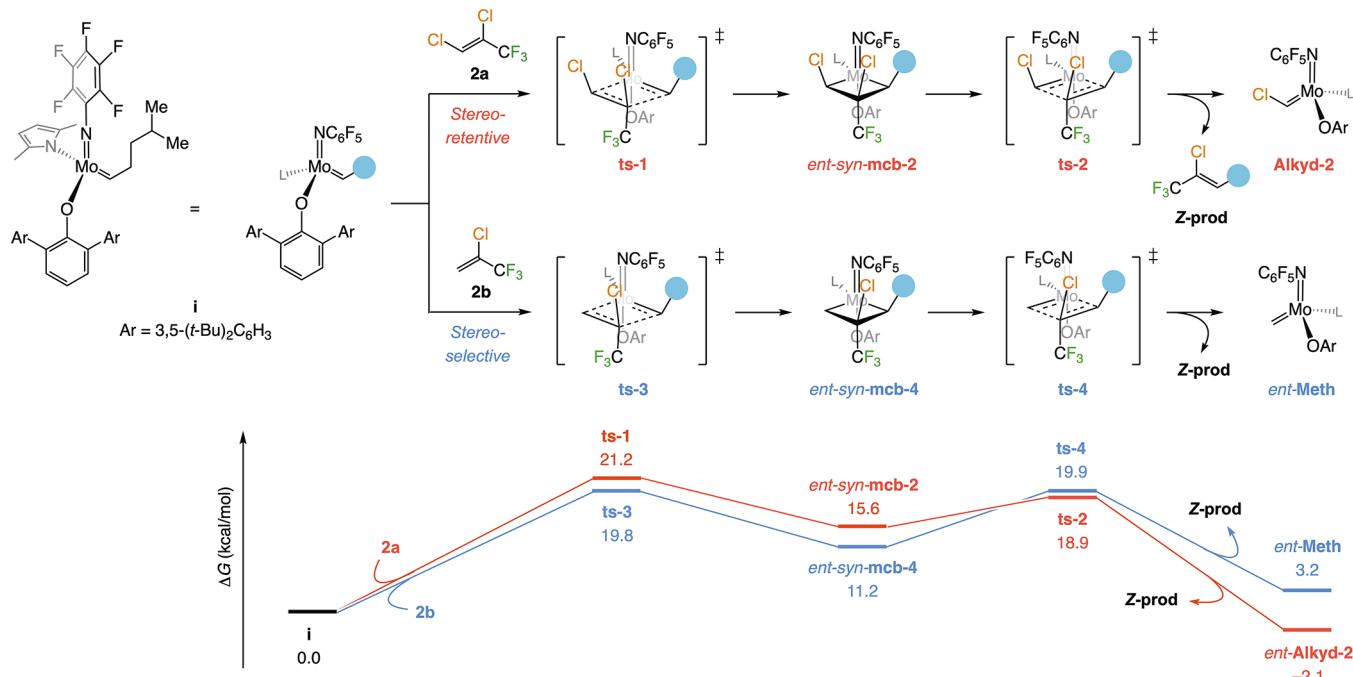
Scheme 12. Computational Studies: Different Cycle and the Role of a Cl,CF_3 -Disubstituted Mo-Alkyldenes (Alkyd-3)^a

^aComputational studies were performed at the M06/SDD(Mo)-6-311+G(d,p)/SMD(C_6H_6)//B3LYP-D3/SDD(Mo)-6-31G(d) level of theory. Unless otherwise noted, all Gibbs free energies are with respect to **Alkyd-1**. ^bWith respect to **anti-Alkyd-3**. ^cWith respect to **anti-mcb-9**. See the Supporting Information for details. mcb, metallacyclobutane.

Scheme 13. Direct Involvement of a Disubstituted Mo Complex^a

^aComputational studies were performed at the M06/SDD(Mo)-6-311+G(d,p)/SMD(C₆H₆)//B3LYP-D3/SDD(Mo)-6-31G(d) level of theory. All Gibbs free energies are with respect to *anti-Alkyd-3'*. See the Supporting Information for details. mcb, metallacyclobutane.

Alkyd-3' with **1** (Scheme 13) is more favored than that of *anti-Alkyd-3* (L = pyrrolide vs Cl; $\Delta G^\ddagger = 19.4$ vs 28.8 kcal/mol, respectively; see Cycle C, Scheme 12). This supports the notion that *anti-Alkyd-6* is more efficient at promoting CM than **Mo-6**,


probably because there is none of the less stable methyldiene intermediate generated in the case of the former complex.³¹

2.9.2. Energetic Attributes of CM Involving One versus Two Trisubstituted Alkenes. The lower efficiency of stereoretentive reactions with **2a**, as opposed to a stereoselective processes involving **2b**, is due to the higher barrier for formation of the mcb intermediates.³² But there is another angle to consider. A mcb with fewer substituents is more stable and probably cleaves less readily (Scheme 14). The highest barrier in the transformation with the **2b** is then the collapse of the more easily formed and less substituted *ent-syn*-mcb-4, with ts-4 representing the highest energy barrier. In contrast, in the reaction involving **2a** the turnover-limiting step involves ts-1 and is the formation of the more substituted *ent-syn*-mcb-2. Lowering the barrier to mcb formation with a less substituted reaction partner does not lead to more efficient CM per se. The collapse of the resulting less substituted and lower energy mcb must be sufficiently facile as well.

3. CONCLUSIONS

We have developed a CM method for synthesis of Z-trisubstituted olefins that contain Cl- and CF₃-substituted carbon. The products can be used to access a variety of stereodefined CF₃-substituted alkenes. The efficiency and stereoselectivity levels were unexpected as they contradicted the principles of stereoretentive olefin metathesis reactions.¹ Specifically, the present studies thus reveal that (1) A Mo methyldiene can react with a trisubstituted alkene fast enough for bimolecular decomposition to be circumvented. (2) The energy difference between two diastereomeric trisubstituted mcb intermediates containing a Cl,CF₃-disubstituted C β ($\Delta\Delta G^\ddagger = 2.2$ kcal/mol; see *syn*-mcb-4, Scheme 12) suffices for complete stereoselectivity.

Scheme 14. Key Distinction between Stereoretentive and Stereoselective Pathways^a

^aComputational studies were performed at the M06/SDD(Mo)-6-311+G(d,p)/SMD(C₆H₆)//B3LYP-D3/SDD(Mo)-6-31G(d) level of theory. See the Supporting Information for details. ts, transition state; mcb, metallacyclobutane.

The insights regarding disubstituted alkylidenes are noteworthy. We provide data illustrating that with the right blend of steric and electronic factors, here a Mo-MAC complex, a disubstituted alkylidene can react with a trisubstituted olefin or an electron-deficient alkene to generate a trisubstituted olefin via a densely functionalized mcb (see *anti*-mcb-7', **Scheme 13**). It remains to be seen whether catalysts can be identified that are capable of intermolecularly generating mcbs with a fully substituted $C\alpha$ and $C\beta$ —collapse of which would afford a tetrasubstituted alkene.

The findings described here foreshadow the emergence of methods for kinetically controlled olefin metathesis reactions that are stereoselective. Prior to these studies, the great majority of the available transformations furnishing a *Z*- or an *E*-trisubstituted alkene were either between a tri- and disubstituted or two trisubstituted olefins. This necessitated a catalyst to be sufficiently active in order to bring about the union of two sterically demanding substrates. It is perhaps not surprising that a situation has arisen where available catalysts are not able to promote a stereoretentive process. For the transformations described above, a stereoselective approach emerged was an adequate solution. At some point, however, new catalysts will likely be needed if stereodefined tetrasubstituted alkenes are to be obtained through olefin metathesis.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.4c06071>.

Experimental details for all reactions and analytic details for all products ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Authors

Peng Liu — Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States; orcid.org/0000-0002-8188-632X; Email: pengliu@pitt.edu

Amir H. Hoveyda — Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States; Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France; orcid.org/0000-0002-1470-6456; Email: hoveyda@bc.edu, ahoveyda@unistra.fr

Authors

Qinghe Liu — Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States; orcid.org/0000-0003-3125-7135

Can Qin — Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France

Jing Wan — Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Binh Khanh Mai — Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States; orcid.org/0000-0001-8487-1417

Xin Zhi Sui — Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Haruki Kobayashi — Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Hossein Zahedian — *Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France*

Complete contact information is available at:
<https://pubs.acs.org/10.1021/jacs.4c06071>

Author Contributions

¶ Q.L., C.Q., J.W., and B.K.M. contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is dedicated fondly to the memory of our friend and colleague, Professor Jeffery A. Byers. Financial support was provided by grants from the National Institutes of Health (R35 GM-130395 to A.H.H. and R35 GM-128779 to P.L.) and the European Union's Horizon 2020 research and innovation program (under Grant Agreement No. 1010554524 to A.H.H.). J.W. was supported by the Ministry of Education, Taiwan (Government Scholarship to Study Abroad) and as a Chia-Kuang (Frank) Tsung Graduate Fellow. H.K. is grateful to Central Glass Co., Japan for a sabbatical leave. The NMR facilities at Boston College are supported by NSF (CHE-2117246) and the NIH (1S10OD026910-01A1). Computational calculations were performed at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, supported by NSF award numbers OAC-2117681, OAC-1928147, and OAC-1928224.

■ REFERENCES

- (1) Hoveyda, A. H.; Qin, C.; Sui, X. Z.; Liu, Q.; Li, X.; Nikbakht, A. Taking olefin metathesis to the limit: stereocontrolled synthesis of trisubstituted alkenes. *Acc. Chem. Res.* **2023**, *56*, 2426–2446.
- (2) There are reported cases of stereoselective CM processes that afford a trisubstituted alkene but with a mono- and a 1,1-disubstituted olefin. For example, see: (a) Morrill, C.; Funk, T. W.; Grubbs, R. H. Synthesis of tri-substituted vinyl boronates via ruthenium-catalyzed olefin cross-metathesis. *Tetrahedron Lett.* **2004**, *45*, 7733–7736. (b) Raju, R.; Howell, A. R. Cross metathesis with strained exocyclic enones: synthesis of 3-alkylideneoxetan-2-ones from 3-methylenoexetan-2-ones. *Org. Lett.* **2006**, *8*, 2139–2141. (c) Moïse, J.; Arseniyadis, S.; Cossy, J. Cross-metathesis between α -methylene- γ -butyrolactone and olefins: a dramatic additive effect. *Org. Lett.* **2007**, *9*, 1695–1698. (d) Hodgson, D. M.; Angrish, D.; Erickson, S. P.; Kloesges, J.; Lee, C. H. Consecutive alkene cross-metathesis/oxonium ylide formation–rearrangement: synthesis of the anti-HIV agent hyperolactone C. *Org. Lett.* **2008**, *10*, 5553–5556. There are only two studies involving reactions between a tri- and a 1,1-disubstituted olefin, but the scope is limited and stereoselectivity are low; see: (e) Wang, Z. J.; Jackson, W. R.; Robinson, A. J. An efficient protocol for the cross-metathesis of sterically demanding olefins. *Org. Lett.* **2013**, *15*, 3006–3009. (f) Nouaille, A.; Panneccoucke, X.; Poisson, T.; Couve-Bonnaire, S. Access to trisubstituted fluoroalkenes by ruthenium-catalyzed cross-metathesis. *Adv. Synth. Catal.* **2021**, *363*, 2140–2147.
- (3) Schrock, R. R.; Hoveyda, A. H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. *Angew. Chem., Int. Ed.* **2003**, *42*, 4592–4633.
- (4) For development of kinetically controlled stereoselective olefin metathesis methods, see: (a) Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more. *Angew. Chem., Int. Ed.* **2010**, *49*, 34–44. (b) Shahane, S.; Bruneau, C.; Fischmeister, C. Z Selectivity: recent advances in one of the current major challenges of olefin metathesis.

ChemCatChem. **2013**, *5*, 3436–3459. (c) Hoveyda, A. H. Evolution of catalytic stereoselective olefin metathesis: from ancillary transformation to purveyor of stereochemical identity. *J. Org. Chem.* **2014**, *79*, 4763–4792. (d) Hoveyda, A. H.; Khan, R. K. M.; Torker, S.; Malcolmson, S. J. Catalyst-controlled stereoselective olefin metathesis. In *Handbook of Metathesis*; Grubbs, R. H.; Wenzel, A. G.; O’Leary, D. J.; Khosravi, E., Eds.; Wiley–VCH: Weinheim, 2015; Vol. 2, pp 503–562. (e) Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. *Angew. Chem., Int. Ed.* **2017**, *56*, 11024–11036. (f) Dawood, K. M.; Nomura, K. Recent developments in *Z*-selective olefin metathesis reactions by molybdenum, ruthenium, and vanadium catalysts. *Adv. Synth. Catal.* **2021**, *363*, 1970–1997.

(5) Olefin metathesis reactions that generate a tetrasubstituted alkene are uncommon and severely confined in scope. None are stereocontrolled. See: (a) Liang, Y.; Raju, R.; Le, T.; Taylor, C. D.; Howell, A. R. Cross-metathesis of α -methylene- β -lactams: the first tetrasubstituted alkenes by CM. *Tetrahedron Lett.* **2009**, *50*, 1020–1022. (b) White, D. E.; Stewart, I. C.; Seashore-Ludlow, B. A.; Grubbs, R. H.; Stoltz, B. M. A general enantioselective route to the chamigrene natural product family. *Tetrahedron* **2010**, *66*, 4668–4686. (c) Mukherjee, N.; Planer, S.; Grela, K. Formation of tetrasubstituted C–C double bonds *via* olefin metathesis: challenges, catalysts, and applications in natural product synthesis. *Org. Chem. Front.* **2018**, *5*, 494–516.

(6) For recent reviews, see: (a) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. *Chem. Rev.* **2015**, *115*, 826–870. (b) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of organic compounds: 10 years of innovation. *Chem. Rev.* **2015**, *115*, 9073–9174. (c) Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. *Chem. Rev.* **2018**, *118*, 3887–3964. (d) Butcher, T. W.; Amberg, W. M.; Hartwig, J. F. Transition-metal-catalyzed monoalkylarylation: strategies for the synthesis of alkyl fluorides by C–C bond formation. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202112251. (e) Paioti, P. H. S.; Gonsales, S. A.; Xu, S.; Nikbakht, A.; Fager, D. C.; Liu, Q.; Hoveyda, A. H. Catalytic and stereoselective transformations with easily accessible and purchasable allyl and alkenyl fluorides. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202208742.

(7) For select recent reviews, see: (a) Berger, A. A.; Völler, J.-S.; Budisa, N.; Koksch, B. Deciphering the fluorine code – the many hats fluorine wears in a protein environment. *Acc. Chem. Res.* **2017**, *50*, 2093–2103. (b) Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. *J. Med. Chem.* **2018**, *61*, 5822–5880. (c) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D. M.; Santi, C.; Ruzziconi, R.; Soloshonok, V. A. Fluorine-containing drugs approved by the FDA in 2018. *Chem.—Eur. J.* **2019**, *25*, 11797–11819. (d) Mei, H.; Remete, A. M.; Zou, Y.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V. A.; Han, J. Fluorine-containing drugs approved by the FDA in 2019. *Chin. Chem. Lett.* **2020**, *31*, 2401–2413. (e) Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. *iScience* **2020**, *23*, No. 101467.

(8) (a) Fujita, M.; Kondo, K.; Hiyama, T. Practical, stereocontrolled synthesis of polyfluorinated artificial pyrethroids. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 4385–4394. For a review, see: (b) Shimizu, M.; Hiyama, T. Modern synthetic methods for fluorine-substituted target molecules. *Angew. Chem., Int. Ed.* **2005**, *44*, 214–231.

(9) For a review article on strategies for synthesis of CF_3 -substituted alkenes from alkyne substrates, see: Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Recent developments in the trifluoromethylation of alkynes. *Chem.—Eur. J.* **2015**, *21*, 7648–7661.

(10) Konno, T.; Chae, J.; Tanaka, T.; Ishihara, T.; Yamanaka, H. A sequential highly stereoselective hydroboration and Suzuki–Miyaura cross-coupling reaction of fluoroalkylated internal acetylenes: a

practical one-pot synthesis of fluoroalkylated trisubstituted alkenes. *Chem. Commun.* **2004**, 690–691.

(11) Rummel, L.; Abd El Sater, M.; Blanchard, N.; Bizet, V. Copper-catalyzed regiodivergent borylation of fluorinated alkynes and palladium-catalyzed regiospecific Suzuki–Miyaura cross-coupling. *Synlett.* **2024**, *35*, 1107–1112.

(12) (a) Zhao, Y.; Zhou, Y.; Liu, J.; Yang, D.; Tao, L.; Liu, Y.; Dong, X.; Liu, J.; Qu, J. Synthesis of (*Z*)- α -trifluoromethyl alkenyl triflate: a scaffold for diverse trifluoromethylated species. *J. Org. Chem.* **2016**, *81*, 4797–4806. See also: (b) Zhang, C.; Li, D.; Zhao, Y.; Zhao, J.; Qu, J.; Zhou, Y. Base-free Suzuki–Miyaura coupling of (*Z*)-trifluoromethyl alkenyltriflates: an efficient approach to α -trifluoromethyl arelenes. *ChemistrySelect* **2020**, *5*, 13099–13102. For a review article on other related strategies, see: (c) Ref 9.

(13) Liu, Q.; Mu, Y.; Koenigter, T.; Schrock, R. R.; Hoveyda, A. H. Stereodefined alkenes with a fluoro-chloro terminus as a uniquely enabling compound class. *Nat. Chem.* **2022**, *14*, 463–473.

(14) For reviews on catalytic olefin metathesis, see: (a) Ref 4. (b) Hoveyda, A. H.; Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. *Nature* **2007**, *450*, 243–251. (c) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. *Chem. Rev.* **2010**, *110*, 1746–1787. (d) *Handbook of Metathesis*; Grubbs, R. H.; Wenzel, A. G.; O’Leary, D. J.; Khosravi, E., Eds.; Wiley–VCH: Weinheim, 2015.

(15) (a) Fox, H. H.; Wolf, M. O.; O’Dell, R.; Lin, B. L.; Schrock, R. R.; Wrighton, M. S. Living copolymerization of 1,6-heptadiyne derivatives using well-defined alkylidene complexes: polymerization mechanism, polymer structure, and polymer properties. *J. Am. Chem. Soc.* **1994**, *116*, 2827–2843. See also: (b) Schrock, R. R.; Luo, S.; Lee, J. C., Jr; Zanetti, N. C.; Davis, W. M. Living polymerization of (*o*-(trimethylsilyl)-phenyl)acetylene by molybdenum imido alkylidene complexes. *J. Am. Chem. Soc.* **1996**, *118*, 3883–3895. For earlier reports regarding disubstituted W alkylidenes, see: (c) McGinnis, J.; Katz, T. J.; Hurwitz, S. Selectivity in the olefin metathesis of unsymmetrically substituted ethylenes. *J. Am. Chem. Soc.* **1976**, *98*, 605–606. (d) Lee, S. J.; McGinnis, J.; Katz, T. J. Directional specificity and stereoselectivity in the metathesis of a trisubstituted olefin. *J. Am. Chem. Soc.* **1976**, *98*, 7818–7819.

(16) Nguyen, T. T.; Koh, M. J.; Mann, T. J.; Schrock, R. R.; Hoveyda, A. H. Synthesis of *E*- and *Z*-trisubstituted alkenes by catalytic cross-metathesis. *Nature* **2017**, *552*, 347–354.

(17) (a) Taylor, J. W.; Schrock, R. R.; Tsay, C. Molybdenum disubstituted alkylidene complexes. *Organometallics* **2020**, *39*, 658–661. For subsequent studies relating to preparation and characterization of disubstituted Mo alkylidene species, see: (b) Taylor, J. W.; Schrock, R. R.; Tsay, C. Synthesis of molybdenum imido 2-adamantylidene complexes through α hydrogen abstraction. *Organometallics* **2020**, *39*, 2304–2308. (c) Paul, B.; Schrock, R. R.; Tsay, C. Synthesis of molybdenum perfluorophenylimido 2-adamantylidene complexes. *Organometallics* **2021**, *40*, 463–466. (d) Boudjelou, M.; Zhai, F.; Schrock, R. R.; Hoveyda, A. H.; Tsay, C. Oxo-2-adamantylidene complexes of Mo(VI) and W(VI). *Organometallics* **2021**, *40*, 838–842.

(18) Koh, M. J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Direct synthesis of *Z*-alkenyl halides through catalytic cross-metathesis. *Nature* **2016**, *531*, 459–465.

(19) Hoveyda, A. H.; Liu, Z.; Qin, C.; Koenigter, T.; Mu, Y. Impact of ethylene on efficiency and stereocontrol in olefin metathesis: when to add it, when to remove it, and when to avoid it. *Angew. Chem., Int. Ed.* **2020**, *59*, 22324–22348.

(20) Use of the more Lewis acidic $\text{B}(\text{C}_6\text{F}_5)_3$ led to < 2% CM probably on account of catalyst decomposition.

(21) Koenigter, T.; Qin, C.; Mai, B. K.; Liu, Q.; Mu, Y.; Liu, P.; Hoveyda, A. H. Catalytic cross-metathesis reactions that afford *E*- and *Z*-trisubstituted alkenyl bromides: scope, applications, and mechanistic insights. *J. Am. Chem. Soc.* **2023**, *145*, 3774–3785.

(22) Qin, C.; Koenigter, T.; Zhao, F.; Mu, Y.; Liu, F.; Houk, K. N.; Hoveyda, A. H. *Z*-Trisubstituted α,β -unsaturated esters and acid

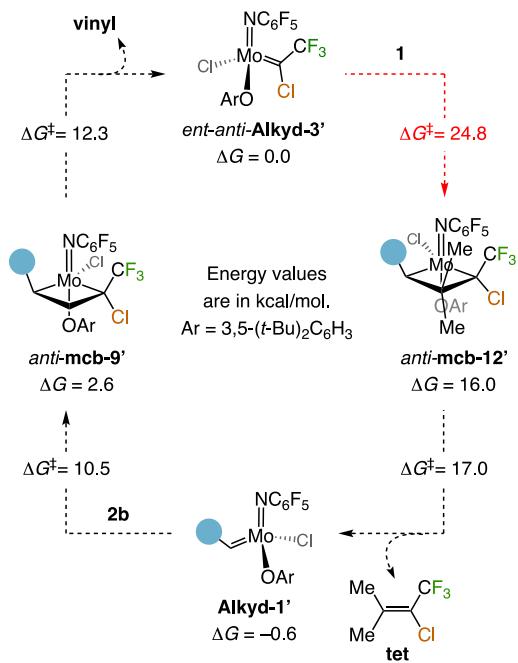
fluorides through stereocontrolled catalytic cross-metathesis. *J. Am. Chem. Soc.* **2023**, *145*, 3748–3762.

(23) (a) Fu, G. C.; Grubbs, R. H. The synthesis of nitrogen heterocycles via catalytic ring-closing metathesis of dienes. *J. Am. Chem. Soc.* **1992**, *114*, 7324–7325. (b) Fox, H. H.; Lee, J.-K.; Park, L. Y.; Schrock, R. R. Synthesis of five- and six-coordinate alkylidene complexes of the type $\text{Mo}(\text{CHR})(\text{NAr})[\text{OCMe}(\text{CF}_3)_2]_2\text{S}_x$ and their use as living ROMP initiators or Wittig reagents. *Organometallics* **1993**, *12*, 759–768. (c) Sattely, E. S.; Cortez, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. Enantioselective synthesis of cyclic amides and amines through Mo-catalyzed asymmetric ring-closing metathesis. *J. Am. Chem. Soc.* **2005**, *127*, 8526–8533.

(24) Rivkin, A.; Chou, T.-C.; Danishefsky, S. J. On the remarkable antitumor properties of fludelone: how we got there. *Angew. Chem., Int. Ed.* **2005**, *44*, 2838–2850.

(25) (a) Moser, R.; Bošković, Ž. V.; Crowe, C. S.; Lipshutz, B. H. CuH-Catalyzed enantioselective 1,2-reductions of α,β -unsaturated ketones. *J. Am. Chem. Soc.* **2010**, *132*, 7852–7853. (b) Peters, B. B. C.; Zheng, J.; Birke, N.; Singh, T.; Andersson, P. G. Iridium-catalyzed enantioconvergent hydrogenation of trisubstituted olefins. *Nat. Commun.* **2022**, *13*, 361.

(26) (a) Lee, K.; Hoveyda, A. H. Enantioselective conjugate silyl additions to cyclic and acyclic unsaturated carbonyls catalyzed by Cu complexes of chiral N-heterocyclic carbenes. *J. Am. Chem. Soc.* **2010**, *132*, 2898–2900. (b) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. Metal-free catalytic enantioselective C–B bond formation: (pinacolato)boron conjugate additions to α,β -unsaturated ketones, esters, Weinreb amides, and aldehydes promoted by chiral N-heterocyclic carbenes. *J. Am. Chem. Soc.* **2012**, *134*, 8277–8285.


(27) Nadano, R.; Fuchibe, K.; Ikeda, M.; Takahashi, H.; Ichikawa, J. Rapid and slow generation of 1-trifluoromethylvinyllithium: syntheses and applications of CF_3 -containing allylic alcohols, allylic amines, and vinyl ketones. *Chem.—Asian J.* **2010**, *5*, 1875–1883.

(28) Pirali, T.; Serafini, M.; Cargini, S.; Genazzani, A. A. Applications of deuterium in medicinal chemistry. *J. Med. Chem.* **2019**, *62*, 5276–5297.

(29) (a) Kojima, R.; Akiyama, S.; Ito, H. A copper(I)-catalyzed enantioselective γ -boryl substitution of trifluoromethyl-substituted alkenes: synthesis of enantioenriched γ,γ -*gem*-difluoroallylboronates. *Angew. Chem., Int. Ed.* **2018**, *57*, 7196–7199. (b) Gao, P.; Yuan, C.; Zhao, Y.; Shi, Z. Copper-catalyzed asymmetric defluoroborylation of 1-(trifluoromethyl)alkenes. *Chem.* **2018**, *4*, 2201–2211. (c) Akiyama, S.; Kubota, K.; Mikus, M. S.; Paioti, P. H. S.; Romiti, F.; Liu, Q.; Zhou, Y.; Hoveyda, A. H.; Ito, H. Catalytic enantioselective synthesis of allylic boronates bearing a trisubstituted alkenyl fluoride and related derivatives. *Angew. Chem., Int. Ed.* **2019**, *58*, 11998–12003. (d) Paioti, P. H. S.; del Pozo, J.; Mikus, M. S.; Lee, J.; Koh, M. J.; Romiti, F.; Torker, S.; Hoveyda, A. H. Catalytic enantioselective boryl and silyl substitution with trifluoromethyl alkenes: scope, utility, and mechanistic nuances of Cu–F β -elimination. *J. Am. Chem. Soc.* **2019**, *141*, 19917–19934.

(30) Fan, Z.; Ye, M.; Wang, Y.; Qiu, J.; Li, W.; Ma, X.; Yang, K.; Song, Q. Enantioselective copper-catalyzed sp^2/sp^3 diborylation of 1-chloro-1-trifluoromethylalkenes. *ACS Cent. Sci.* **2022**, *8*, 1134–1144.

(31) For **vinyl** to be formed **ent-anti-Alkyd-3'** must react with a trisubstituted alkene (**1**) via **anti-mcb-12'** and proceed via an energetically demanding formation of a tetrasubstituted alkene byproduct (**tet**), which was not detected.

(32) The energy differences for the highest energy barrier for the two pathways do not precisely correspond to the considerable rate difference observed. This is likely owing to the uncertainty in the DFT calculations, which rule out possibilities. For example, DFT investigations indicate that preferential collapse of **mcb-2** to the corresponding inactive square pyramidal complex (see ref 21) is not competitive with the formation of the desired CM product via **ts-4** ($\Delta G^\ddagger = 22.9$ kcal/mol). See the *Supporting Information* for details.