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Although aromatic rings are common elements in pharmaceutically active compounds,
the presence of these motifs brings several liabilities with respect to the developability
of adrug'. Nonoptimal potency, metabolic stability, solubility and lipophilicity in
pharmaceutical compounds can be improved by replacing aromatic rings with
non-aromatic isosteric motifs?. Moreover, whereas aromatic rings are planar and lack
three-dimensionality, the binding pockets of most pharmaceutical targets are chiral.
Thus, the stereochemical configuration of the isosteric replacements may offer an
added opportunity toimprove the affinity of derived ligands for target receptors.
Anotableimpediment to this approachis the lack of simple and scalable catalytic
enantioselective syntheses of candidate isosteres from readily available precursors.
Here we present a previously unknown palladium-catalysed reaction that converts
hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we
show that the shape of these nortricyclanes makes them plausible isosteres for meta
disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be
accomplished inan enantioselective fashion and subsequent transformation of the
boron group provides access to abroad array of structures. We also show that the
incorporation of nortricyclanes into pharmaceutical motifs can resultinimproved
biophysical properties along with stereochemistry-dependent activity. We anticipate
that these features, coupled with the simple, inexpensive synthesis of the functionalized
nortricyclane scaffold, will render this platform a useful foundation for the assembly

of new biologically active agents.

Bioactive compounds, from natural products to clinically relevant
activeingredients, often contain aromaticrings. The reasons for incor-
poration of this motif are multifold: (1) the rigidity of aromatic rings
often restricts available molecular conformations thereby lessening
the entropic cost for the aromatic ligand to bind to a target receptor;
(2) aromaticrings participate in unique non-covalent interactions that
can provide enhanced attraction to receptor binding pockets; and
(3) the methods used to attach substituents to aromatic rings include
efficient cross-coupling reactions’ that facilitate construction and
screening of diverse compound collections. These notable benefits are
counter-balanced by the ready oxidation of t-electron-rich aromatic
rings that can severely diminish metabolic stability*. Moreover, rela-
tive to their C(sp?®) counterparts, aromatic molecules have decreased
aqueous solubility’and increased log D (ref. 6). A particular challenge
arising from the increased lipophilicity of an aromatic compound is
that this feature increases off-target promiscuity’ that is problematic
fordrug development. To address this limitation, bicyclic hydrocarbon
frameworks have beenadvanced as C(sp®)-based isosteric replacements
for aromatic rings®, with the expectation that the saturated bicyclic
analogues might offer enhanced biophyscial properties while retaining

biological activity’. When appropriately designed, these molecular
scaffolds can retain the conformational restriction of the benzenoid
ring while simultaneously avoiding associated liabilities. Following
thismodel, anarray of small bicyclic motifs have been developed that
position substituents at a similar distance and with similar exit vectors
compared with substituted arenes, with selected examples of meta
benzeneisosteres shownin Fig.1a (refs. 10-22).

In the context of ligand development, two important features arise
when planar C(sp?)-based aromatic rings are replaced with C(sp®)-based
bicyclicisosteres. The first is that of retaining the efficient, reliable,
modaular and scalable synthesis techniques that accompany mod-
ern catalytic cross-coupling methods. The second issue is that of
three-dimensional shape. Evenif theisostere positionsits substituents
in amanner that would superimpose them onto those of an aromatic
nucleus, the tetrahedral nature of the saturated carbon centresin the
isostere automatically resultsin a three-dimensionality thatis absent
fromthe flataromatic ring system. As the preponderance of biologically
relevant receptorsare chiral, the handedness of anonsymmetricisos-
tere may either enhance orimpede the binding of the derived ligand to
its cognate receptor'®*. The way MK-5108 binds to the inactive DFG-out
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Fig.1|Saturated bicycloalkanes asisosteric replacements for aromatic
rings. a, Selected recent examples of metabenzeneisosteres. b, The kinase
inhibitor MK-5108 bound to the chiral binding pocketin the kinase domain
of AurA. ¢, Structural comparison of a meta disubstituted arene and
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state of the mitotic kinase Aurora Aisillustrative®*. When bound, the
meta disubstituted arene in MK-5108 is sandwiched in a hydrophobic
pocket with Leul39 positioned 3.9 A above the arene (carbon-to-carbon
distance) and Gly216 3.5 A below (Fig. 1b). Thus, when anonsymmetric
benzene isostere occupies this binding pocket, it would be expected
to fit better if it occupies more volume in the upper region of the
receptor rather than the lower. Such alock-and-key fit of ligands to
their complementary receptors can resultin enhanced specificity and
ligand promiscuity has been shown to diminish as the number of chiral
centres in a compound increases’. From this vantage point, it is clear
that methods are needed to control the absolute configuration of the
overallmolecular ensemble. Inthis report, we describe areaction that
retains all the practical advantages of contemporary cross-coupling and
that allows conversion of simple starting materials into enantiomeri-
cally enriched 3,5-disubstituted nortricyclane frameworks (Fig. 1c). Of
note, comparison of the metrical parameters of the nortricyclane with
those of benzene show that carbons 3 and 5 are equidistant with the
meta carbons of benzene. Moreover, the exit vectors for connection
to substituents at carbons 3 and 5 have an angle between them that is
nearly the same as in benzene (127° versus 120°), and the vectors are
essentially co-planar as in the aromatic framework. Last, the process
that we describe for the production of 3,5-disubstituted nortricyclanes
occurs by aheretofore unknown catalytic reaction. This reaction occurs
with low loadings of a chiral palladium complex and delivers malle-
able boron-containingisosteres, holding marked potential for further
modification.

The bicyclic norbornadiene skeleton (1; Fig. 1d) has provided an
instructive framework for studying the nature of non-classical car-
bocations and for probing the ability of homoconjugation to stabi-
lize organic structures and influence the course of their chemical
reactions?*?. Owing to the through-space interaction between the
two Ti-bonds, the conversion of the bicyclo[2.2.1] framework to
nortricyclanes (that is, 2) readily occurs on the addition of suitable
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electrophilic reagents®. Similar electrophilic activation of bicyclic
organometallics (thatis, 3) canresultinring-closing C-Cbond forma-
tion to furnish the nortricyclane skeleton (4) (ref. 29). In contrast to
these stoichiometric reactions, we herein demonstrate that a catalytic
synthesis of nortricyclanes operates when the mercury salts used in
the synthesis of 2and 4 are replaced with substoichiometric quantities
of palladium complexes in conjunction with an organic electrophile.
Thereaction that occurs resultsinring closure with the concomitant
addition of the organic electrophile to the bicyclic framework. An
important finding for the application of this reaction to the modular
construction of enantiomerically enriched meta benzene isosteres
is that the cyclization occurs with meso diboron substrate 5, a com-
pound thatis shelf-stable and readily available on a multigram scale.
Reaction of 5 delivers anortricyclane 6 that retains one boronic ester
functional group, apart from the newly appended organic substitu-
ent (E). After optimization of the reaction (conditions, ligand struc-
ture), it was found that a wide array of enantiomerically enriched
boron-containing nortricyclanes can be prepared in excellent yield
and enantioselectivity.

Development of the Pd-catalysed reaction

In the presence of catalytic quantities of Pd(OAc), and chiral biaryl-
monophosphine ligand L1 (ref. 30) (Fig. 2), diboron substrate 5 and
organic electrophiles engage in catalytic enantioselective ring clo-
sure to nortricyclanes. With simple substituted aryl bromides, the
reaction occurs in high yield and enantioselectivity. The products
from both electron-deficient (11, 12) and electron-rich (13, 15) elec-
trophiles can be readily obtained, although selectivity is diminished
with astrongelectron-withdrawing nitroarene electrophile (16). Also
of note, heterocyclic electrophiles were found to engage in the reaction
(products 20-23). With respect to practical features, it merits men-
tion that unprotected anilines and phenols do not seem to interfere
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with the process and that extension to non-aromatic electrophiles
(24, 25) seems promising. Practical application of the nortricyclane
synthesis necessitates procedures that operate on a large scale as
well as functional group transformations that effectively replace
the remaining boronic ester in the catalytic reaction product. With
regardsto thefirst aspect, it was found that the bis(boronate) substrate
5 could be prepared on a multigram scale directly from inexpensive
commercially available norbornadiene and B,(pin), (Fig. 2b, (1)). The
reaction of 5 could be conducted on a 5 mmol scale and, so long as
the reaction time is extended to 24 h, could be accomplished in good
yield with only 0.5 mol% of palladium complex (Fig. 2b, (2)). As the
transformations in Fig. 2cindicate, the boronic esterin product 7 can
be replaced stereospecifically by Zn-based catalytic cross-coupling®
(26), Cu-catalysed allylation and carboxylation® (27 and 28), direct
amination® (29), homologation® (30) or conversion to the derived
alcohol (31).

B(pin) % B(pin) Me\(\ﬁb&pln H\ﬁb B(pin)

23 (60 °C, 24 h)
94%y 98:2 er.

CO,Me MeO \/: [
| NHBoc

26,92%y \ V

24 (60 °C, 14 h)
72%y, 69:31 e.r.

25 (60 °C, 14 h)
56% vy, 66:34 e.r.

29,57%y

\Wh PMP\}%B(W" _e> % o

27,90% y / \ 30,94%y
MeO
Z | ONF |
X CO,Me N OH
28,87%y 31,>98% y

multigram-scale synthesis of meso bis(boronate) substrate 5and its conversion
to7.The prices shown are from Ambeed for B,(pin), and Sigma-Aldrich for
norbornadiene. ¢, Transformations of boron-containing nortricyclane 7.
Conditions: a: t-BuLi then Zn(OAc),; G3-PdCPhos, Ar-Br. b: t-BuLi, then 20 mol%
CuCN, 2,3-dichloropropene. c: -BuLi, then 20 mol% CuCN, methyl chloroformate.
d: MeONH,, n-BuLi; then Boc,0. e: n-BuLi, CH,BrCl. f:NaOH, H,0,.

Study of reaction mechanism

Mechanistic experiments provide insight into a likely pathway that
leads to the product from substrate-derived cyclic ate complex 32
(Fig. 3a), a compound that has precedent from previous studies in
our lab*?¢, The density functional theory calculations were used to
determinethe free energy profile of reaction paths originating froma
palladium-olefin complex (GSO) that would be obtained by oxidative
additionbetween LPd(0) and an electrophile, followed by association
with 32. In one route (path A, red), carbopalladation of the alkene
(TS1a) delivers Pd(Il) intermediate GS1a, which might then undergo
an uncommon displacement of palladium(ll) (refs. 37,38) by TS2ain
which the organoboron serves as a nucleophile to simultaneously
expel and reduce the metal. Alternatively (path B, blue), on bind-
ing to Pd(ll), the alkene may become sufficiently electrophilic that
nucleopalladation® by TS1b may generate GS1b, with direct reductive
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AG* = 0.7 kcal mol™!

elimination then delivering the product. Calculationsindicate that the
carbopalladation pathway is lower in energy, with the olefin migratory
insertion to give GS1a occurring by a much lower barrier compared
with the nucleopalladation step (0.7 kcal mol™ versus 18.7 kcal mol ™).
From GS1a, dissociation of bromide allows the ring-closing reduc-
tive displacement of Pd(Il) to occur with an accessible 19.4 kcal mol™
barrier by TS2a (Fig. 3¢c). Of note, calculation of the C kinetic iso-
tope effects that would arise from TS1a (ref. 40) matches well with
those determined experimentally by the Singleton method* (Fig. 3b).
Most notably, palladium-catalysed coupling of 5 exhibits a negligi-
ble KIE at C2, which is consistent with the carbopalladation-based
mechanism but not the nucleopalladation pathway. Further mech-
anistic evidence in support of the carbopalladation pathway can
be found in the Supplementary Information. According to these
experiments, the carbopalladation step is enantio-determining
and computational studies were undertaken to elucidate the origin
of enantioinduction. As shown in Fig. 3d, the calculated structure
of the transition state leading to the minor product stereoisomer
places the CH, bridge of the bicycloheptane motif directly under
the sterically encumbered anthracene ring system, whereas the
conformation of the transition state for the major isomer avoids
thisinteraction.

Biophysical and biochemical properties

To determine whether nortricyclane frameworks are suited for use
in bioactive molecules, both enantiomers of 33 were prepared as
chiral isosteric analogues of the fatty acid amide hydrolase (FAAH)
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inhibitor URB597 (refs. 42,43) and subjected to analysis (Fig. 4a).
Of note, although the isosteric analogues have similar molecular
weight as URB597, they have 10-fold increased solubility in the aque-
ous buffer while maintaining comparable lipophilicity (a log D).
Apart from these positive attributes, the isosteric analogues exhibit
measurably increased metabolic stability relative to URB597 as deter-
mined by mouse liver microsomal assay. To probe for the effect of
chirality onbiological activity, compounds (R,S)-33 and (S,R)-33 were
compared by quantitative activity-based protein profiling experi-
ments (for complete details, see the Supplementary Information).
Mouse-brain homogenates were treated with varying concentrations
of each compound before exposure to the serine hydrolase-directed
activity-based probe fluorophosphonate (FP)-biotin. FP-labelled
proteins were enriched on streptavidin beads and analysed by quan-
titative tandem mass tagging (TMT)-based mass spectrometry**. Of
note, although (R,5)-33 and (S,R)-33 were not as potent as URB597,
theisosteric analogues retained the ability to inhibit FAAH and show
different potencies: (R,S)-33 exhibits an IC,, 0of 0.50 uM, whereas that
for (§,R)-33 is more than 4 uM. Furthermore, the incorporation of
the isosteres did not alter the proteome-wide selectivity of URB597,
as both isosteres maintained high selectivity for FAAH over 23 other
detected serine hydrolases.

In a second comparative analysis, the enantiomeric tricyclanes
(S,R)-34 and (R,S)-34 were prepared as analogues of the Hedgehog
(Hh) pathway* inhibitor, sonidegib*® (Fig. 4b). Aberrant Hedgehog
signalling has beenimplicatedin certaintypes of cancer, and sonidegib
inhibits activation of this pathway by interacting with the associated
signal transducer, Smoothened (SMO). Comparison of stereoisomeric
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isosteres 34 was conducted by three independent IC;, determinations
using a dual luciferase assay in Shh-LIGHT2 cells¥, and it was found
that the enantiomeric sonidegib analogues inhibit Hh signalling with
submicromolar potencies (ICs, = 0.50 pM and 0.20 pM for the (S,R)-
34 and (R,S)-34, respectively), and with a modest, at best (P=0.26),
difference in activity for the two stereoisomers. Overall, the prelimi-
nary analysis of the nortricyclaneisosteresis in line with expectations:
replacement of arenes with C(sp®)-based isosteres results in a10-fold
to 50-foldimprovementinsolubility, probably as aresult of increased
solvation of the C(sp®) analogues as suggested in refs. 48,49. Of note,
the stereochemistry-dependent activity of nortricyclane isosteres (33
and 34) seemstoreinforce the notion that shape matters whenbinding
to biological targets, and it is notable that differences in activity are
detected even withisosteric analogues that have not been reoptimized
to bind their target receptors. We can anticipate that as chiral ligands
are fine-tuned for affinity, the absolute stereochemistry of the isostere
is likely to become increasingly important.

In summary, catalytic enantioselective nortricyclane synthesis
provides an efficient entry into chiral metabenzene bioisosteres, and
the chirality of the tricyclic motif plays a partin the shape-dependent
binding of the derived ligands with their target receptors. The ease
and robustness of the catalytic synthesis, combined with the bio-
physical properties of nortricyclanes should provide opportunities
for pharmaceutical development. Although further exploration of
the tricycloheptane skeleton seems warranted, further study of the
unique catalytic process that leads to its formation—especially the
C-Cbond-forming reductive displacement of Pd(Il)—may provide new
strategies for reaction development.
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Randomization | Randomization is not relevant to our SHH signaling experiments. All samples in these assays were treated uniformly and subjected to the
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Blinding The SHH signaling experiments were not blinded because the quantitative results are not subject to human biases. For hydrolase assays,
blinding was not performed in this study as the proteomics measurements were collected and analyzed by computer software.
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Cell line source(s) Shh-LIGHT2 cells: This NIH-3T3 cell-derived line was provided by Phil Beachy (Stanford University). The generation of this line
is described in Taipale et. al., Nature (2000) 406:1005-1009.

Authentication We confirmed SHH ligand-dependent activation of the firefly luciferase reporter in this line. No further authentication was
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals One C57BI/6 strain, 12-week-old female mouse was used in this study. Frozen C57BL/6J mouse brains were purchased from The
Jackson Laboratory.

Wild animals Wild animals are not involved in this study.
Field-collected samples  The study did not involve any field-collected samples.

Ethics oversight The use of the animal was approved by Stanford University Administrative Panel on Laboratory Animal Care (Protocol Number
14145).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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