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Measurements acquired on batteries in the form of time signals such as voltage-time and capacity-time to assess their cyclability
performance can be supplemented by examining their frequency-domain response. This allows one to determine the global
characteristics of the signals and the battery, but not the local behavior, which is very important for determining for example battery
fading. In this study we examine the short-time Fourier transform for time-frequency deconstruction of galvanostatic charge/
discharge signals of lithium-sulfur batteries, taken as an example. The results displayed in terms of spectrograms show how the
frequency content of such signals (e.g. charge and voltage time series) evolve with the lifetime of the batteries allowing the
detection of critical changes in the response that may lead to fading and eventually default.
© 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ad07ad]
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Considering the ever-growing demand and usage of electro-
chemical energy storage devices and systems, their importance in
our daily lives cannot be overestimated.1 Batteries and super-
capacitors of different types and chemistries, geometries and sizes
are omnipresent around us, and can be found in virtually all
consumer electronics, in portable medical devices, electric vehi-
cles, uninterrupted power supplies, and emergency backup
systems.2–5 As such, from an electrical perspective, the types of
loads expected to be powered by these devices vary widely from
high-power demanding loads to high-energy demanding ones, from
constant current, voltage or power loads to others with intermittent
dynamics, and therefore with different temporal and frequency
features.6–8 Furthermore, these devices are intrinsically dissipative
and time-evolving systems.9 For the case of batteries for instance,
capacity fading is known to be due to thermal dissipation and the
existence of irreversibilities of different nature, such as electrolyte
decomposition and evaporation, chemical mixing, formation of
new phases, and volumetric expansion which all cause continuous
and unavoidable performance decay.10–12 Similarly, undesirable
redox reactions in supercapacitors especially when over-charged or
over-heated lead to the degradation of the electrodes and release of
detached particles into the electrolyte, which in turn cause the
reduction of effective surface area of the electrodes and increased
obstruction of ions movement. In addition, internal over-pressure
due to the formation of gaseous species can cause electric contact
loss which accelerates the wear-out and even explosion of the
cell.13–15 Hence, time representations of the electrical signals of
batteries and supercapacitors are usually insufficient to fully
describe their long-term cycling performance as they just present
how the signal’s amplitude changes in the course of time. That is
why frequency-domain analysis is commonly employed as a
supplementary analytical tool which tells us how often these
amplitude changes take place. We recall that frequency-domain
analysis of signals is nothing but an indirect way of looking at the
same time-domain signals using time-to-frequency transformations
such as the Fourier transform, Laplace transform, or other similar
techniques. However, with the frequency-domain impedance spec-
troscopy technique for instance, all temporal information of the
signal is lost given that the analysis is not associated with any
particular instant in time. The same can be said when

thecharacterization is performed in the time domain using galvano-
static charging and discharging for example, which does not
provide any information about the frequency behavior. In other
words, while these two dual representations enable the under-
standing of the global characteristics of signals in one domain or
another, but separately, they are not suitable for analyzing local
properties, especially when the device’s response exhibits time-
evolving frequency contents.16

This leads us to the motivation behind this work in which we
apply joint time-frequency analytical tools to time-domain electrical
signals of lithium-sulfur (Li-S) batteries (taken as an example)
especially when one is interested in evaluating the performance of
the device under cyclic operation. Cyclability is especially relevant
for applications in which the energy storage device is required to
undergo hundreds or thousands of sequences of deep discharges
followed by recharge to maximum capacity,17–19 such as in
consumer devices and load leveling systems. Such tests are usually
performed by subjecting the device to extended cycling of square
wave (power, current or voltage) signals with control on the lower
and upper voltage limits, and then observing the capacity retention
vs cycle number and variation of internal resistance.20 Charging
using constant current-constant voltage (CC-CV) input and dischar-
ging via constant power is also a commonly used scheme for long
term performance tests of these devices. Furthermore, the coulombic
efficiency, which is calculated as the ratio of discharged capacity by
the stored capacity for each cycle, can be used as an indicator of how
reversible the process is. For the case when the charge and discharge
are performed at the same current rate, the coulombic efficiency is
also equal to ratio of discharge time by the charge time for each
cycle. Because of ageing and degradation of performance as outlined
above, the amounts of stored or released charge between the two
voltage limits are reduced with the increase of cycles, and therefore
the signals are not periodic with a constant frequency anymore, but
rather time-variant. In other words, the time durations of cycles keep
decreasing as the device is being charged and discharged, which
makes plots vs cycle number not representative of the full picture. A
joint time-frequency analysis is more appropriate to monitor and
understand the dynamics of the devices in these conditions. To the
best of our knowledge, apart from a brief introduction of the
technique in a previous work of ours,21 this is the first report on
time-frequency decomposition and analysis of battery signals in
response to constant current charge/discharge (between two voltage
limits) until complete capacity fading.zE-mail: aallagui@sharjah.ac.ae
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There are several techniques for representing a one-dimensional
time-domain signal in the combined two-dimensional time-fre-
quency plane. These methods can be linear or nonlinear, parametric
or nonparametric, etc., and include for instance the short-time
Fourier transform (STFT), the wavelet transforms, the Hilbert
method, the Wigner-Ville method, and others.22 We note that many
time-frequency analyses result inevitably in some loss of signal,
which makes it not possible to reconstruct the original time series
signal perfectly from the results of the time-frequency decomposi-
tion. However, new qualitative and/or quantitative knowledge of
the characteristics of the signal are probably more important than
being able to revert back to the original perfectly. In other words,
while some signal may be lost in the computational process, new
information can be gained about the original signal. Our focus in
this study is to introduce the concept for characterizing the cyclic
electrical behavior of batteries via the Fourier-type time-frequency
analysis which is the classical method of time-frequency analysis.
It has been found very helpful for analyzing nonstationary seismic
signals, sound and speech signals, physiological signals linked to
the cerebral activity and the cardiac system, Raman spectra, etc.
16,23 We focus on the response of Li-S batteries to successive
constant current charging/discharging sequences between two
lower and upper voltage limits in order to visualize the signals of
certain electrical quantities (voltage and charge) in the form of a
time-frequency map from which one can detect or estimate any
remarkable behavior. Optimization to reduce, for instance, inter-
ference and improve the readability of the maps is not the purpose
of this study.

Theory and Methods

Battery data.—The joint time-frequency decomposition of time-
domain signals x(t) (e.g. charge and voltage time series in response
to symmetric galvanostatic charge/discharge between two voltage
limits) by STFT will be applied on data collected from Li-S
batteries, fabricated and assembled as follows. First, the cathode
material was prepared by mixing together 63% of sulfur, 32% of
carbon, and 5% of binder. Cathode slurry of different sulfur loadings
was doctor blade-coated on aluminum foil, and then dried at 60 °C.
For the anodic side, we used a 250 μm thick lithium foil. A
polypropylene membrane was employed as a separator. As for the
electrolyte, it was prepared by dissolving 1 mol L−1 of lithium bis
(trifluoromethanesulfonyl)imide (LiTFSI) and 0.1 mol L−1 of
lithium nitrate (LiNO3) in a mixture of 1,3-Dioxolane (DOL)/1,2-
Dimethoxyethane (DME) (1:1 v/v) solution. Coin cells type CR2032
were assembled inside a glove box filled with argon gas, and
subsequently cycled with symmetric galvanostatic charge/discharge
waveforms.

In this study, two battery cells with different sulfur loadings were
tested at different (initial) C-rates. The C-rate are estimated based on
the theoretical capacity of 1675 mAh/g-sulfur. The actual sulfur
loading was determined by thermogravimetric analysis (TGA). Li-S
cells with 3.40 mg cm−2 loading were cycled at a C-rate of C/5 for
both charge and discharge sequences. Other cells prepared with
sulfur loading of 4.20 mg cm−2 were tested at a C-rate of C/10 for
both charge and discharge. All cells were cycled within the voltage
window of 1.80–3.00 V. We applied the same C-rate of galvano-
static charge and discharge as it provides voltage and capacity
signals relatively easy to interpret in the joint time-frequency
domain. But in principle, non-symmetric waveforms can also be
evaluated.

Short-time Fourier transform.—In this section we review the
basics of the STFT, which is considered to be the classical technique
that allows a signal representation in the time-frequency plane. The
STFT of a signal x t L2 ( ) ∈ ( ) is defined using an analysis window
g(t) by the linear transformation:16,24

t f x t g t t e dtSTFT , 1x
g j ft2∫ *( ) = ( ′) ( ′ − ) ′ [ ]π

−∞

∞
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which is the Fourier transform (defined as

X f x t e dtj ft2∫( ) ≔ ( ) π
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∞ − ) of the windowed signal, i.e. the product

x t g t t( ′) *( ′ − ). It is clear that while x(t) is a function of time t, its
t fSTFT ,x

g( ) is a function of both time t and frequency f. The
associated reconstruction or synthesis formula is:
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with the condition that g t t dt 1∫ γ*( ′) ( ′) ′ =
−∞

∞
.16,24 The analysis

window g(t) is (generally) an even, real-valued function concen-
trated around time zero where it is maximum, and its Fourier
transform is (generally) concentrated around the zero frequency
where it is maximum. The window suppresses the signal x(t) outside
a certain region, and its Fourier transform yields a local spectrum.24

Moreover, g(t) is supposed to be normalized in L2 ( ) (i.e.

E g t dt 1g
2∫= ∣ ( )∣ =

∞

∞
), and with compact support. The term

g t t e j ft2( ′ − ) π ′ represents the collection of all time and frequency
translations of the window g or the family of time-frequency atoms
which are localized in the time-frequency plane in
[t−Δtg/2; t+Δtg/2]× [f−Δfg/2; f+Δfg/2], where Δtg and Δfg
are the time and frequency spreads.16 It is known from Heisenberg
uncertainty principle that it is not possible to maximize both the
temporal resolution and frequency resolution simultaneously.
Choosing a narrow time window for good time resolution implies
a poor frequency resolution, and vice versa, a wide time window and
thus poor time resolution implies improved frequency resolution.
The lower limit on the area of the rectangle representing the time-
frequency localization of an atom is given by the inequality
ΔtgΔfg ⩾ 1/(4π).16

Since the STFT of the signal is complex-valued in general, we
often use the spectrogram for display purposes, as we show below.
From t fSTFT ,x

g( ), the energy of x t L2 ( ) ∈ ( ) can be calculated
from : 16

E x t dt t f df dtSTFT , 3x x
g2 2∫ ∫ ∫= ∣ ( )∣ = ∣ ( )∣ [ ]
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∞
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where the squared magnitude of the STFT of x(t), i.e.:

S t f t f, STFT , 4x
g

x
g 2( ) = ∣ ( )∣ [ ]

is the spectrogram of x(t). It defines a time-frequency map of the
signal and can be viewed as a quantity measuring at each instant a
spectral density of local energy of x(t). A schematic illustration of
the different computational steps needed to obtain the spectrogram
of a signal using STFT is shown in Fig. 1.

All signal processing methods and associated graphs presented in
this work were carried out and plotted using MATLAB ver. R2019b
(with Signal Processing Toolbox) on a personal computer, MacBook
Pro, 2.2 GHz 6-Core Intel Core i7.

Results and Discussion

Li-S battery at C/10 rate.—Results and analysis of data obtained
on the Li-S battery subjected to initial C/10 charging/discharging
rates are shown in Fig. 2. The data were processed as-is without the
application of any pre-conditioning algorithms of the type
smoothing, filtering or detrending for example.

First, we show in Figs. 2a–2c the current (steps of 1 and −1 mA),
capacity (in mA.h) and voltage (in V) time series at different days of
measurements, i.e. at the beginning (up to the end of day 2) and
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close to the end of the battery lifetime (around days 16-18), and at a
certain point in time in between (around days 12-14). The time step
of excitation and measurement was set to 5 s. We can see
qualitatively from the figures that the frequency of charging/
discharging current waveform applied on the battery, with the
resulting capacity and voltage signals increase slightly with time.
This is the result of gradual capacity fading of the battery. Although
the changes are minimum for this case, such types of signals are
globally non-periodic, and are described as time-varying or nonsta-
tionary signals because their frequency content varies with time.
Figure 2d illustrates such changes in terms of accumulated capacities
during the charge and discharge sequences as a function of cycle
number. It is clear that the rates of changes of capacities are
relatively slow until the very end of the cyclic lifetime of the battery
where an abrupt collapse in capacity can be observed. We note here
that the durations of successive cycles of charge/discharge cannot be
constant, and thus information about the time is lost from such types
of representations. Plots of the autocorrelation functions of the three
time series signals of current, capacity and voltage defined as :26

r k
x t x x t k x

5T t
T k

t
T x t x

T

1
1

1

2[ ] =
∑ ( [ ] − ¯)( [ + ] − ¯)

∑
[ ]=

−

=
( [ ] − ¯)

are shown in Fig. 2e for up to a lag k= 200 (time step is 5 s). Here
{x1, x2,…,xT} are the T successive values of the measured current,

capacity or voltage time series, and x T x tt
T1

1¯ = ∑ [ ]−
= is the sample

mean. The decrease in the samples autocorrelation coefficients
values from one as the lag k is increased is another way to visualize
that the measured electrical signals are nonstationay in time.

The frequency content of these signals (not the change in
frequency content with time) can be assessed from a spectral point
of view using the discrete Fourier transform (DFT, via Fast Fourier
Transform (FFT) algorithm) applied to the entirety of the signals,
knowing again that such technique does not allow an assignment of
spectral components to time. The spectral representation of a signal
X(f) indicates which frequencies are present in the time-domain
signal x(t) with their relative magnitudes, the minimum and
maximum frequencies and the bandwidth resulting from their
difference.22 In Fig. 2f, we plot the power spectra in dB vs frequency
from 0 to 100 mHz for the current, charge and voltage records. The

results indicate that, on top of the very low frequencies close to zero
Hz associated with the fundamental frequencies of the quasi-square
wave current input, triangular-like capacity and the associated
voltage signal, higher frequency contents are also present. Such
high-frequency parts of the signal gain in magnitude as the battery is
charged/discharged faster and faster as we get close to its lifetime
limit. However, no quantitative indication of how the frequency
content of the signals changes with time can be derived from the
traditional Fourier analysis, which is in general an important
information for nonstationary signals. This is because the traditional
Fourier transform requires the variables t and f to be mutually
exclusive, and the evaluation of one value for X(f) at a frequency f
requires the knowledge of x(t) for all values of t (recal l that

X f x t e dtj ft2∫( ) ≔ ( ) π
−∞

∞ − ), i.e. time is integrated out of X(f). But in

our case, there is a time-dependency of the signal frequency
spectrum, or equivalently time-dependency of the signal autocorre-
lation function as shown in Figs. 2a- 2c and in Fig. 2f, respectively.

Again, because of the mentioned-above limitations of separate
time-domain or frequency-domain representations in analyzing
nonstationary signals, we present in Figs. 2g–2i the STFT spectro-
gram representations (discrete version of Eq. 4) of current, capacity
and voltage time series of the battery under test. The spectrogram is
a three-dimensional graph wherein the x-axis represents time, y-axis
represents frequency and the colored map represents the joint time-
frequency power of the signal in dB (each pixel of area ΔtgΔfg is
assigned a color). A cross-section at a constant t should show the
frequencies present at the time t, and a cross section at a constant f
should show the times at which the frequency f is present. In a way,
the spectrogram representation consists of stitched DFT results after
being applied to a number of adjacent slices of time series data
similar to those shown in the three subfigures, Figs. 2a–2c. Each of
these short sub-signals, assumed to be stationary in their respective
time frames, are multiplied with an appropriate window in order to
reduce the effect of leakage due to the time truncation of the signal,
and then DFT is applied to each segment. Again, Fig. 1 illustrates the
sequences of computational steps for STFT time-frequency decom-
position. For the computation of the results shown in Figs. 2g- 2i the
time resolution is set to 4.83 min, with a frequency resolution of
5 mHz and using a approximate of a Hann window
(leakage= 0.85).16,25 These values for the time and frequency
resolutions were obtained after several trials, and are deemed fine
enough to resolve (and display in the spectrograms) possible changes
in the signals under test. Overall, the STFT spectrograms in this case
do not show a distinctive variability in the time-frequency power
representation as the battery is being continuously charged and
discharged. Each slice in time from zero till day 18.9 appears to be
similar to the next, which is expected and justified by the slowly
varying profile of capacity vs cycle number plotted in Fig. 2d. The
highest power concentration is observed for the very close-to-dc
frequencies corresponding to the quasi-square waveform of the
current and the resulting charge and voltage signal. Some vertical
ridges at different higher frequency points can also be seen, which
correspond to the changes in magnitudes of some DFT components
as illustrated by Fig.2e. From this point of view, and using the
spectrogram settings above, one cannot easily assess the capacity
fade dynamics of this battery or predict in advance when a failure is
to be expected.

However, a zoom between 18.959 and 18.963 on the x-axis (in
days) shows the expected abrupt change in frequency content for all
current, charge and voltage spectrograms (Figs. 2j–2l). The change
occurred in a way such as now (between day 18.961 and 18.962)
higher frequency components are contributing to the signals, which
means that the battery’s charge and discharge sequences are
happening faster and faster, and thus less amount of energy storage
and delivery. This instance in time points out to the transition from
the quasi-flat response observed in most of Fig. 2d to the complete
depletion and death of the battery that took place over the last two or
three cycles of operation.

Figure 1. Flowchart of the computational steps for obtaining the spectro-
gram t fSTFT ,x

g 2∣ [ ]∣ of a time-domain signal x[t] via the short-time Fourier
transform (STFT).
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We should note at this point that establishing explicit connections
between the time-frequency maps of system-level electrical signals
and the common physical phenomena associated with capacity fade
in Li-S batteries (e.g. active material loss from the cathode,
irreversible sulfur species formation, parasitic reactions like the
shuttle mechanism, and chemical reactions leading to self-discharge)
is not straightforward and requires further detailed investigations.

Li-S battery at C/5 rate.—In a similar way for time-domain,
frequency-domain and time-frequency domain data analysis presented
above, the results obtained from the second battery tested for this
study, i.e. Li-S with C-rate of C/5, are summarized in Fig. 3. Much
different from the case of Li-S battery charged/discharged at C/10,
time-domain plots (time step is 10 s in this case) of current (between
2.47 and −2.47 mA), charge and voltage (Figs. 3a–3c) and their

Figure 2. Experimental and computational results for the Li-S battery charged/discharged at C/10 rate between 1.80 and 3.00 V: (a), (b) and (c) Current (in mA),
capacity (mA.h) and voltage (in V) time series collected at different time intervals. (d) Charge and discharge capacities as a function of cycle number. In (e) we
show plots of autocorrelation coefficients of current, capacity and voltage signals for up to a lag of 200 pts (time step is 5 s), and in (f) the power spectrum of the
full current, capacity and voltage signals using Kaiser windowing,25 leakage = 50%. STFT spectrograms of the full signal of (g) current, (h) capacity and (i)
voltage; Frequency resolution = 5 mHz, Time resolution 4.83 min,= Overlap percent = 50 %, leakage = 0.85 (approximates windowing the data with a Hann
window25). (j), (k) and (l) are spectrograms (g), (h) and (i) respectively zoomed close to the end of the battery lifetime.
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respective correlation functions plots (Fig. 3e) indicate a clear
nonstationarity of the data, and a more noticeable change of frequency
content with time. Looking at the data reported in Figs. 3b and 3c
compared to the data of day 1 (Fig. 3a), there is no doubt that the
battery is getting close to its limit in terms of energy storage and
delivery capability. The capacity in Fig. 3c is practically zero. The
same conclusions can be drawn from the spectral power plots
(Fig. 3f), wherein components from a relatively wide frequency
bandwidth away from dc are contributing with stronger magnitudes
for the three time series signals. Charge/discharge capacities vs cycle
number (see Fig. 3d) confirm these observations, but again with loss
of temporal information on the battery dynamics given that the
duration of successive cycles gets shorter and shorter with time.

The STFT spectrograms shown in Figs. 3g–3i using the same
computational settings as for Figs. 2g–2i clearly demonstrate for this
battery how the current, capacity and voltage time series start to
drastically change from about 40 d of charge/discharge onward,
which is an indicative sign of gradual cell capacity degradation. This
was not the case for the Li-S battery charged/discharged at C/10
which suddenly reached its lifetime limit without prior warning.
However, readjusting and optimizing the frequency and time
resolutions (i.e. different time-frequency maps) would allow one to

capture easier any changes in behavior. These parameters are left to
the user or an automated routine to define depending on the wanted
precision in determining any change of dynamics of the battery.
Looking closely at the capacity spectrogram in Fig. 3 h, we observe
that from day 40 and beyond all frequency components are weakly
represented which correspond to the relatively flat spectrum of the
very low value of capacity centered at about 0.006 mAh. Just before
day 40, one can observe a gradual decrease in the power assigned to
the low frequencies, say from 0 to 5–6 mHz, which can be used as a
metric to determine the change in state-of-health and capacity
degradation of the battery. The same conclusions can be drawn
from the analysis of the current and voltage spectrograms.

Conclusion and Outlook

Time-domain representations of electrical quantities such as
voltage or charge, or frequency-domain impedance characterization
of batteries cannot show the change in frequency content with time,
and thus the evolution dynamics of the battery behavior as it is being
used. However, this is an important information to know in order to
detect any anomaly in its response or determine at what point in time
the battery starts transitioning toward critical health situations. We

Figure 3. Experimental and computational results for the Li-S battery charged/discharged at C/5 rate between 1.80 and 3.00 V: (a), (b) and (c) Current (in mA),
capacity (mA.h) and voltage (in V) time series collected at different time intervals. (d) Charge and discharge capacities as a function of cycle number. In (e) we
show plots of autocorrelation coefficients of current, capacity and voltage signals for up to a lag of 200 pts (time step is 5 s), and in (f) the power spectrum of the
full current, capacity and voltage signals using Kaiser windowing,25 leakage = 50%. STFT spectrograms of the full signal of (g) current, (h) capacity and (i)
voltage; Frequency resolution = 5 mHz, Timeresolution 4.83 min= , Overlap percent = 50 %, leakage = 0.85 (approximates windowing the data with a Hann
window25).
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presented in this study how the joint time-frequency analysis of
nonstationary time series applied on data collected from two Li-S
batteries (taken as examples) can be used as a reliable tool for
accurate monitoring of their state of health, state of charge, and
capacity degradation. We used the standard STFT as a decomposi-
tion technique of 1D time-domain signals into 2D time-frequency
maps, and the STFT spectrogram (squared modulus of the STFT) for
data processing and interpretation. But in principle other time-
frequency mapping operators such as the continuous wavelet trans-
form can be applied. The spectrograms, with certain temporal and
frequency resolutions, provide meaningful features on the battery
behavior that cannot be otherwise detected from separate time or
frequency analyses of the signals. For instance, for the case of the
Li-S battery operated at C/5 rate in this study, the capacity spectro-
gram shows a gradual decrease in the power assigned to the low
frequencies below 5 mHz, which can be used as a quantitative
measure to assess the actual characteristics of the battery.
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