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Abstract

The Euler equation of an ideal (i.e. inviscid incompressible) fluid can be regarded,
following V.Arnold, as the geodesic flow of the right-invariant L2-metric on the group
of volume-preserving diffeomorphisms of the flow domain. In this paper we describe
the common origin and symmetry of generalized flows, multiphase fluids (homogenized
vortex sheets), and conventional vortex sheets: they all correspond to geodesics on certain
groupoids of multiphase diffeomorphisms. Furthermore, we prove that all these problems
are Hamiltonian with respect to a Poisson structure on a dual Lie algebroid, generalizing
the Hamiltonian property of the Euler equation on a Lie algebra dual.

Contents

1 Introduction 2
1.1 Groupoid framework for generalized flows . . . . . . . . . . . . . . . . . . . . . 3
1.2 Groupoid setting for multiphase fluids . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Lie groupoids and algebroids 8
2.1 Lie groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Dual Lie algebroids as Poisson vector bundles . . . . . . . . . . . . . . . . . . . 10
2.4 Euler-Arnold equations on Lie algebroids . . . . . . . . . . . . . . . . . . . . . 11

3 Kinematics of multiphase fluids 12
3.1 The Lie groupoid of multiphase diffeomorphisms . . . . . . . . . . . . . . . . . 13
3.2 The Lie algebroid of multiphase vector fields . . . . . . . . . . . . . . . . . . . . 14
3.3 The dual algebroid and its tangent space . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Poisson bracket on the dual algebroid . . . . . . . . . . . . . . . . . . . . . . . 17

4 Dynamics of multiphase fluids 20
4.1 Geodesic and Hamiltonian framework for multiphase fluids . . . . . . . . . . . 20
4.2 Potential solutions as geodesics on the space of multiphase densities . . . . . . 22

5 Groupoid of generalized flows 24

6 Open problems 27

7 Appendix: Dynamics of classical vortex sheets 28

∗Department of Mathematics, University of Arizona; e-mail: izosimov@math.arizona.edu
†Department of Mathematics, University of Toronto; e-mail: khesin@math.toronto.edu

1

ar
X

iv
:2

20
6.

01
43

4v
3 

 [m
at

h.
D

G
]  

12
 O

ct
 2

02
3



Bibliography 29

1 Introduction

Classical hydrodynamics deals with an ideal (i.e. inviscid incompressible) fluid, whose motion
is described by the Euler equation. In this paper we consider a broader setting of multiphase
fluids and generalized flows. A multiphase fluid consists of several fractions that can freely
penetrate through each other without resistance and are constrained only by the conservation
of total density. Such flows arise, in particular, in connection with vortex sheets in an ideal
fluid, i.e. hypersurfaces of discontinuity in fluid velocity with different speed of fluid layers on
different sides of the hypersurface. By relaxing the condition of a sharp border between the
layers one obtains homogenized vortex sheets [5], which allow mixing of the two parts of the
fluid, rather than separating them by a hypersurface. Such homogenized vortex sheets can
be thought of as examples of multiphase flows. Beyond the vortex sheet setting, multiphase
fluids arise e.g. in plasma physics and chemistry.

Of particular interest are multiphase fluids with continuum of phases (or generalized flows),
introduced by Y. Brenier [6]. One can think of them as flows in which every fluid particle
spreads into a cloud thus moving to any other point of the manifold with certain probability
(we define this precisely below), see Figure 1. While, according to A. Shnirelman [17], a
shortest curve on the group of volume-preserving diffeomorphisms does not exist between
some pairs of maps, generalized flows of Brenier do allow such a shortest solution for a large
class of diffeomorphisms.

In this paper we describe the common origin and symmetry of both multiphase fluids
(equivalently, homogenized vortex sheets) and generalized flows (fluids with continuum of
phases): they both correspond to geodesics on certain groupoids of multiphase diffeomor-
phisms. Groupoids can be thought of as groups with partially defined multiplication. We
also present the Hamiltonian framework for them by describing the corresponding dynamics
as Euler-Arnold flows for right-invariant energy metrics on the groupoid. In other words, we
prove that generalized flows are Hamiltonian for the corresponding Poisson structure on the
dual Lie algebroid, generalizing Lie-Poisson structures.

Recall that in 1966 Arnold proved that the Euler equation for an ideal fluid describes the
geodesic flow of a right-invariant metric on the group of volume-preserving diffeomorphisms of

Figure 1: Trajectories of particles in one-dimensional analogues of generalized flows corresponding to
(a) continuum of phases for the flip of the interval [0, 1] and (b) a multiphase flow with two phases for
the interval-exchange map r0, 1{2s Ø r1{2, 1s; see [2].
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the flow domain [1]. This insight turned out to be indispensable for the study of geometry and
topology of fluid flows, Hamiltonian properties and conservation laws in hydrodynamics, as
well as a powerful tool for obtaining sharper existence and uniqueness results for Euler-type
equations [2]. However, such objects as the above-mentioned multiphase fluids or general-
ized flows do not fit into Arnold’s approach. In the paper [12] on classical vortex sheets
in incompressible flows we introduced the language of Lie groupoids in hydrodynamics. In
the present paper we demonstrate its universality by extending Arnold’s framework to other
Lie groupoids with one-sided invariant metrics, thus treating generalized flows (which did
not allow any group interpretation before) and vortex sheets on the same footing, as well as
developing a groupoid-theoretic description for many fluid dynamical settings.

1.1 Groupoid framework for generalized flows

Recall that the hydrodynamical Euler equation for an incompressible fluid filling a closed
compact Riemannian manifold M is the following evolution law on the velocity field u:

Btu` ∇uu “ ´∇p ,

supplemented by the divergence-free condition div u “ 0 on M . The pressure function p is
defined uniquely modulo an additive constant by those conditions. This setting also extends
to manifolds with boundary, as well as non-compact manifolds (such as Rn), by imposing
appropriate boundary or decay conditions. Arnold’s theorem sheds light on the origin of this
equation:

Theorem 1.1 (Arnold [1]). The Euler equation can be regarded as an equation of the geodesic
flow on the group SDiffpMq of volume-preserving diffeomorphisms of M with respect to the
right-invariant metric given at the identity of the group by the squared L2-norm of the fluid’s
velocity field (i.e., the fluid kinetic energy1).

This theorem provides an attractive way to construct Euler solutions as shortest curves, i.e.
geodesics, joining two volume-preserving diffeomorphisms of M . However, in [17] Shnirelman
proved that not all pairs of such diffeomorphisms admit a shortest curve connecting them.
This variational problem was “cured” by Brenier [6], who introduced the space of generalized
fluid flows and proved the existence in that space of a shortest curve joining any two volume-
preserving diffeomorphisms from a large class.

Generalized flows satisfy the following equations:
"

Btpρauaq ` div pρaua b uaq ` ρa∇p “ 0 , (1a)

Btρa ` div pρauaq “ 0 , (1b)

along with the constraint
ş

A ρa da “ 1. Here ua P VectpMq is the fluid velocity field, depending
on an additional parameter a belonging to a certain measure space A. One can think of A
as enumerating fractions of the fluid, with ua being the velocity of a particular fraction.
Likewise ρa P C8pMq is the mass density of the fraction with label a P A. The pressure
function p P C8pMq is common for all fractions.

Remark 1.2. Using (1b) one can rewrite (1a) in the form similar to the classical Euler
equation:

Btua ` ∇uaua “ ´∇p. (2)

1The L2-metric is twice the kinetic energy of the fluid, which leads to a simple time rescaling, and we will
not be mentioning this throughout the paper.
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The above form is given for consistency with [6], and it also simplifies the derivation of
equation for the pressure function.

Namely, the pressure can be obtained from the velocities ua and densities ρa as follows.
Integrating (1b) over the space A we get the condition

div p

ż

A
ρauadaq “ 0, (3)

which can be thought of as an analog of the condition div u “ 0 for the classical Euler equation.
Further, taking the divergence of(1a), integrating over A, and using (3) we get

∆p “ ´div

ż

A
div pρaua b uaq da, (4)

which is a Poisson equation and hence has a unique solution for the pressure function, up to
an additive constant.

Theorem 1.3 (= Theorem 5.3). The Euler equations (1) for a generalized flow are geodesic
equations for the right-invariant L2-metric on (source fibers of) the Lie groupoid GDiffpMq

of generalized diffeomorphisms. Equivalently, the Euler equations (1) are the groupoid Euler-
Arnold equations corresponding to the L2-metric on the algebroid GVectpMq.

The Lie groupoid GDiffpMq of generalized diffeomorphisms is a natural generalization of
the group SDiffpMq of volume-preserving diffeomorphisms. (Just like the latter arises from
“integrating” the condition div u “ 0 on fluid velocities, the groupoid GDiffpMq “integrates”
equation (3).) The definition of that groupoid is as follows. Its base is the space GDenspMq

of generalized densities, i.e. sets of densities µµµ :“ tµa P DenspMq | a P Au such that all µa are
positive, have prescribed masses ca, i.e.

ż

M
µa “ ca, (5)

and together constitute the fixed volume form volM on M , i.e.
ş

A µa da “ volM at each point
of M (in particular,

ş

A cada “
ş

M volM ). One can think of those densities as a set A of different
fractions of an incompressible fluid, penetrating through each other without resistance. Such
a generalized density µµµ can also be interpreted as a doubly stochastic measure µa ^ da on the
direct product M ˆA. The relation between densities µa and functions ρa introduced above
is µa “ ρavolM . In particular, the condition

ş

A µa da “ volM is equivalent to the constraint
ş

A ρa da “ 1.
The elements of GDiffpMq are triples pϕϕϕ ;µµµ,µµµ1q where ϕϕϕ :“ tϕa P DiffpMq | a P Au

is a generalized diffeomorphism, and µµµ,µµµ1 P GDenspMq are generalized densities such that
ϕϕϕ˚µµµ “ µµµ1 component-wisely, i.e. ϕa˚µa “ µ1

a for each a P A. The multiplication of such triples
is defined by the natural composition, pψψψ ;µµµ1,µµµ2qpϕϕϕ ;µµµ,µµµ1q :“ pψψψϕϕϕ ;µµµ,µµµ2q .

The infinitesimal object corresponding to this Lie groupoid is the Lie algebroid GVectpM q

describing the space of velocities for a generalized fluid. It is a vector bundle over GDenspM q

with the following structure. Its fiber over µµµ P GDenspMq is the space GVectpM,µµµq that
consists of generalized vector fields on M of the form uuu :“ tua | a P Au with ua P VectpMq

that are “divergence-free” with respect to the generalized volume form:
ş

A Luaµa da “ 0
(the latter equation is equivalent to (3)). The vector bundle GVectpMq carries additional
structures, namely a bracket on sections and a so-called anchor map, see Section 5. These
structures endow the dual bundle GVectpMq˚ with a Poisson structure. Equations (1) are
Hamiltonian with respect to that structure:
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Theorem 1.4 (=Theorem 5.2). The Euler equations (1) for a generalized flow written on the
dual GVectpMq˚ of the algebroid are Hamiltonian with respect to the natural Poisson structure
on the dual algebroid and the Hamiltonian function given by the L2 kinetic energy.

The above two theorems provide the group-theoretic and Hamiltonian frameworks for
generalized flows.

Remark 1.5. The smoothness of the groupoid and algebroid is understood below in the
Fréchet C8 setting. Similarly, one can consider the setting of Hilbert manifolds modeled on
Sobolev Hs spaces for sufficiently large s, s ą dimM{2 ` 1, cf. [11].

Remark 1.6. Theorem 1.4 remains valid if we exclude the condition (5) from the definition of
the groupoid. That condition is added for technical reasons (specifically, to make the groupoid
transitive, see Definition 2.3 below) and does not affect equations (1). Indeed, preservation of
masses

ş

M µa is just a consequence of those equations.

1.2 Groupoid setting for multiphase fluids

In this section we discuss the “discrete version” of generalized flows, namely, multiphase flows
on a Riemannian manifold M . Such flows appear in [5] in the context of homogenized vortex
sheets and are governed by the following equations:

#

Btuj ` ∇ujuj “ ´∇p ,
Btρj ` div pρjujq “ 0 .

(6)

Here ρ1, . . . , ρn P C8pMq are mass densities of n phases of the fluid subject to the constraint
řn

j“1 ρj “ 1, the vector fields u1, . . . , un P VectpMq are the corresponding fluid velocities, and
the pressure p P C8pMq is common for all phases. These equations can be thought of as
a discrete analogue of (1), which becomes particularly transparent upon rewriting equation
(1a) in the form (2). Conversely, we can rewrite the first equation in (6) in the form

Btpρjujq ` div pρjuj b ujq ` ρj∇p “ 0.

Furthermore, the second equation implies

div
n

ÿ

j“1

ρjuj “ 0, (7)

which results in the following equation for the pressure, cf. (4):

∆p “ ´div
n

ÿ

j“1

div pρiui b uiq.

The Lie groupoid MDiffpMq underlying equations (6) is a discrete version of the groupoid
GDiffpMq. Its base is the space MDenspM q of multiphase densities, i.e. n-tuples of densities
µµµ :“ pµ1, ..., µnq satisfying the conditions that all densities µi are positive and sum to a
fixed density volM everywhere on M , while their total masses are given by a fixed n-tuple of
constants c1, . . . , cn P R. These densities can be thought of as densities of different mutually
penetrating fractions of the fluid, subject only to the total incompressibility condition.

Now the elements of our Lie groupoid MDiffpMq are n-tuples of diffeomorphisms of M
preserving the property of incompressibility of multiphase densities, i.e. the set of tuples
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pϕϕϕ ;µµµ,µµµ1q :“ pϕ1, ..., ϕn;µ1, ..., µn, µ
1
1, ..., µ

1
nq with multiphase forms µµµ,µµµ1 P MDenspMq such

that the multiphase diffeomorphism ϕϕϕ push-forwards one of them to the other, ϕϕϕ˚µµµ “ µµµ1

component-wisely. The multiplication in MDiffpMq is defined in the same way as for
GDiffpMq.

The corresponding Lie algebroid MVectpMq is the space of possible velocities of the mul-
tiphase fluid. It is a vector bundle over MDenspM q where the fiber of MVectpMq over
µµµ P MDenspMq is the space MVectpM,µµµq which consists of multiphase vector fields on M
“divergence-free” with respect to the multiphase volume form, i.e. vector fields of the form
uuu :“ pu1, ..., unq, where ui P VectpMq are such that

řn
j“1 Lujµj “ 0.

Theorem 1.7 (=Theorem 4.4). The Euler equations (6) for a multiphase fluid flow are
geodesic equations for the right-invariant L2-metric on (source fibers of) the Lie groupoid
MDiffpMq of multiphase volume-preserving diffeomorphisms. Equivalently, they are groupoid
Euler-Arnold equations corresponding to the L2-metric on the algebroid MVectpMq.

For the case of a flat space M the geodesic (although not the group) nature of homogenized
vortex sheets (i.e. multiphase flows) was established in [14, Proposition 6]. One can see that
the standard hydrodynamical Euler equation is a particular case of the above multiphase
equations with only one phase, n “ 1. Furthermore, equations (6) can be described within
the Hamiltonian framework:

Theorem 1.8 (=Theorem 4.2). The Euler equations (6) for a multiphase flow written on
the dual MVectpMq˚ of the algebroid are Hamiltonian with respect to the natural Poisson
structure on the dual algebroid and the Hamiltonian function given by the L2 kinetic energy.

This theorem is an analogue of the Hamiltonian property of the Euler-Arnold equation on
the dual to a Lie algebra with respect to the Lie-Poisson structure.

Return to the metric properties of the groupoid Euler-Arnold equation. Given any initial
density µµµ P MDenspMq, consider the subset MDiffpMqµµµ Ă MDiffpMq of multiphase diffeo-
morphisms which push µµµ forward to another multiphase density (a so-called source fiber of
the groupoid MDiffpMq). That set is equipped with an L2-metric. At the same time, there
is a natural metric x , yMDens on the space MDenspM q of multiphase densities induced by the
well known Wasserstein metric. The connection between those two metrics is described by
the following result.

Theorem 1.9 (=Theorem 4.7). For any multiphase density µµµ P MDenspMq the groupoid
target mapping trg : pMDiffpMqµµµ, x , yL2q Ñ pMDenspMq, x , yMDensq is a Riemannian submer-
sion. In particular, horizontal geodesics on MDiffpMqµµµ project to geodesics on MDenspMq.
Those geodesics correspond to potential solutions of the system (6).

In particular, this result implies a geodesic description of potential solutions to (6), cf.
[14, Proposition 7]. These potential solutions have the form uuu “ p∇f1, ...,∇fnq in M , see
Figure 2. The Wasserstein-type metric x , yMDens is apparently related to the metric between
vector densities described recently in [8, 9].

One of the byproducts of the groupoid approach is the following generalized Kelvin’s
theorem. Namely, define the multiphase vorticity ωωω :“ duuu5 for an n-tuple of vector fields
uuu P MVectpMq as the component-wise vorticity n-tuple, i.e. ωj :“ du5

j with u5
j standing for

the 1-forms metric-dual to the vector fields uj .

Corollary 1.10 (=Corollary 4.5). For a multiphase fluid the vorticity is “frozen into the flow”
in the generalized sense: Btωωω ` Luuuωωω “ 0, that is the vorticity of each phase is transported by
the corresponding velocity field: Btωj ` Lujωj “ 0 .

6



idµµµ
uuu “ ∇fff

µµµ

ξξξ “ ´Luuuµµµ

trg

MDenspMq

MDiffpMqµµµ

SDiffµµµpMq

Figure 2: Riemannian submersion for the groupoid. Here SDiffµµµpMq :“ tϕϕϕ | ϕ˚
i µi “ µiu is

the group of volume-preserving multiphase diffeomorphisms, and uuu is a horizontal vector field
projecting to ξξξ “ ´Luuuµµµ. The latter can be regarded as the velocity of the multiphase density
µµµ, and xξξξ, ξξξyMDens “ xuuu,uuuyL2 .

We would like to emphasize that in the classical Euler equation, the vorticity (along
with circulations in a non-simply-connected M) fully determine the velocity field. In the
multiphase setting the situation is different: in particular, there are nontrivial solutions with
zero vorticity and zero circulation. The reason is in the different geometry of symplectic leaves
for the corresponding Poisson bracket. Indeed, in the group setting these leaves are coadjoint
orbits in g˚ of the corresponding group, while in the case of an algebroid one has the group
action only in the kernel bundle of the corresponding anchor map (and in its dual bundle).
The corresponding symplectic leaves are obtained by taking the inverse images of the orbits
for the action under the projection of A˚ into that dual bundle, cf. [12]. We hope to return
to this description in a future publication.

1.3 Structure of the paper

The rest of the paper is a detailed discussion of objects involved in the above theorems, along
with proofs of those theorems. We start with the discrete case (Theorems 1.7 - 1.9). It is
discussed in Sections 3 and 4 (while in Section 2 we recall basics of the groupoid and algebroid
theory). The continuous case (Theorems 1.3 and 1.4) is discussed in Section 5. The proofs in
that case are very similar to the discrete situation, so we only discuss necessary modifications.

Several open problems and suggested in Section 6. It is worth mentioning that the groupoid
approach above may also allow one to give a geometric description for yet another equivalent
point of view on generalized flows, taken by Brenier [4] and Shnirelman [18] (see also [2,
Section IV.7]), as probabilistic measures on the space of parametrized continuous paths in the
flow domain. It would be also interesting to describe the group and Hamiltonian picture for
vector and matrix densities in [8, 9] and the surprising appearance of the general relativity
equation for matrix measures in [7].

Acknowledgements. We are indebted to the MFO Institute in Oberwolfach, Germany
and its program of Research in Pairs, where this work was completed. We are also grateful to
the anonymous referee for various suggestions improving the exposition. A.I. was supported
by NSF grant DMS-2008021. B.K. was partially supported by an NSERC Discovery grant.
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2 Lie groupoids and algebroids

In this section we briefly recall basic facts about Lie groupoids and algebroids (details can be
found, e.g., in [10, 15]).

2.1 Lie groupoids

Definition 2.1. A groupoid G Ñ B is a pair of sets, B (the base of the groupoid) and G (the
groupoid itself), endowed with the following structures:

1. Two maps src, trg : G Ñ B, called source and target respectively.

2. Partial binary operation pg, hq ÞÑ gh on G which is defined for all pairs g, h P G such
that srcpgq “ trgphq and has the following properties:

(a) The source of the product is the source of the right factor: srcpghq “ srcphq, while
the target of the product is the target of the left factor: trgpghq “ trgpgq.

(b) Associativity: gphkq “ pghqk whenever any of those expressions is well-defined.

(c) Identity: for any x P B, there exists an element idx P G such that idtrgpgq ¨ g “

g ¨ idsrcpgq “ g for every g P G.

(d) Inverse: for any g P G, there exists an element g´1 P G such that g´1g “ idsrcpgq

and gg´1 “ idtrgpgq.

A groupoid G Ñ B is called a Lie groupoid if G, B are manifolds, the source and target are
submersions, and the maps pg, hq ÞÑ gh, x ÞÑ idx, and g ÞÑ g´1 are smooth. (The domain of
the multiplication map is tpx, yq P GˆG | srcpxq “ trgpyqu. The submersion property of source
and target ensures that this set is a submanifold of G ˆ G, so smoothness of multiplication is
well-defined.)

Example 2.2. (a) Any Lie group G is a Lie groupoid over a point.

(b) For any smooth manifold B, the set G :“ B ˆ B is a Lie groupoid over B, called the
pair groupoid. The source and target are defined by srcpx, yq “ x, trgpx, yq “ y, while
the product is given by py, zqpx, yq :“ px, zq.

(c) Let B be a smooth manifold, and let G be a Lie group acting on B. Then the action Lie
groupoid G˙B Ñ B is defined as follows. The points of G˙B are triples pg;x, yq, where
x, y P B, g P G, and gx “ y. The source map is given by srcpg;x, yq :“ x, the target is
trgpg;x, yq :“ y, and the multiplication is defined by ph; y, zqpg;x, yq :“ phg;x, zq .

Definition 2.3. A groupoid G Ñ B is called transitive if for any x, y P B there exists g P G
such that srcpgq “ x and trgpgq “ y.

For example, an action groupoid G ˙ B is transitive if and only if the G-action on B is
transitive.

Definition 2.4. Let G Ñ B be a groupoid. Then the source fiber Gx of G corresponding to
x P B is the set Gx :“ tg P G | srcpgq “ xu.

For instance, for an action groupoid G˙B, any source fiber is canonically identified with
the group G.
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idx

idy

x

Gx

G

right

shifts

src

trg

B

B

Figure 3: A groupoid G Ñ B. The vertical projection is the source map src : G Ñ B,
the horizontal projection is the target map trg : G Ñ B, while horizontal arrows are right
translations. A section of the algebroid is a collection of vertical vectors attached to the
diagonal src “ trg.

2.2 Lie algebroids

The infinitesimal object corresponding to a Lie groupoid is a Lie algebroid.

Definition 2.5. A Lie algebroid A over a manifold B is a vector bundle A Ñ B endowed
with a Lie bracket r , s on smooth sections and a vector bundle map #: A Ñ TB, called the
anchor, such that for any two smooth sections ζ, η of A and any smooth function f P C8pBq,
one has rζ, fηs “ f rζ, ηs ` pL#ζfqη .

The Lie algebroid A Ñ B corresponding to a Lie groupoid G Ñ B is constructed as follows.
The fiber of A over x P B is the tangent space to the source fiber Gx at the identity idx. The
anchor map on that fiber is defined as the differential of the target map trg : Gx Ñ B, while
the bracket on sections is defined as follows. Every section of A can be uniquely extended to
a right-invariant vector field on G tangent to source fibers, and the correspondence between
such vector fields and sections of A is a vector space isomorphism (see Figure 3). This allows
one to define the bracket of sections of A as the Lie bracket of the corresponding right-
invariant vector fields (which is again a right-invariant vector field tangent to source fibers,
and, therefore, corresponds to a section of A).

Example 2.6. For Lie groupoids of Example 2.2, the corresponding algebroids are:

(a) The Lie algebra g of the group G, considered as a Lie algebroid over a point. The
anchor map is trivial, while the bracket on sections (which are simply elements of g) is
just the bracket on g.

(b) The tangent bundle TB of B. The corresponding bracket on sections is the standard
Lie bracket of vector fields, while the anchor map is the identity.

(c) The action Lie algebroid g ˙B, where g is the Lie algebra of the group G. As a vector
bundle, g ˙ B is a trivial bundle over B with fiber g. The anchor map g ˙ B Ñ TB is
defined for an element pu, xq P g ˙ B by #pu, xq “ ρupxq, where ρu is the infinitesimal
generator of the G-action corresponding to u P g. The bracket of sections is given by

rζ, ηspxq :“ rζpxq, ηpxqsg ` pL#ζηqpxq ´ pL#ηζqpxq , (8)

9



where r , sg is the bracket in g, and the derivatives L#ζη, L#ηζ are defined by identifying
sections of g ˙B with g-valued functions on B.2

Definition 2.7. A Lie algebroid A Ñ B is called transitive if the anchor map is surjective.

The Lie algebroid associated with a transitive Lie groupoid is transitive.

2.3 Dual Lie algebroids as Poisson vector bundles

Recall that the dual space g˚ of any Lie algebra g carries a natural linear Poisson structure.
This result extends to the algebroid setting: the dual of a Lie algebroid is a Poisson vector
bundle.

Definition 2.8. A Poisson vector bundle E Ñ B is a vector bundle whose total space E
is endowed with a fiberwise linear Poisson structure, i.e. a Poisson structure such that the
bracket of any two fiberwise linear functions is again a fiberwise linear function.

Two basic examples of Poisson vector bundles are a vector space endowed with a linear
Poisson structure (which is a Poisson vector bundle over a point), and the cotangent bundle
of a manifold B. These Poisson vector bundles are dual, respectively, to Lie algebroids g and
TB from Examples 2.6(a) and 2.6(b). For general Lie algebroids, one has the following result.

Proposition 2.9. The dual bundle3 A˚ Ñ B of any Lie algebroid A Ñ B has a natural
structure of a Poisson vector bundle. The Poisson structure on A˚ is uniquely determined by
requiring that for arbitrary fiberwise linear functions ζ, η and an arbitrary fiberwise constant
function f , one has tζ, ηu :“ rζ, ηs, tζ, fu :“ L#ζf . Here we identify fiberwise linear functions
on A˚ with sections of A, and fiberwise constant functions on A˚ with functions on the base B.

In what follows, we will need the following explicit formula for the Poisson structure on a
Lie algebroid dual.

Proposition 2.10. [3] Let A be a Lie algebroid. Then, for any α P A˚ and for any smooth
functions f, g P C8pA˚q, one has

tf, gupαq “ xα, rdF fpα̂q, dF gpα̂qsy ` L#dF fpαq

`

g ˝ α̂ ´ xα̂, dF gpα̂qy
˘

´L#dF gpαq

`

f ˝ α̂ ´ xα̂, dF fpα̂qy
˘

,
(9)

where α̂ is an arbitrary section of A˚ extending α, and dF fpαq, dF gpαq P A are fiber-wise
differentials of f and g at α (i.e. differentials restricted to the tangent space of the fiber of
α P A˚).

This formula can be used as a definition in the infinite-dimensional case. Although for
general infinite-dimensional algebroids it is not even clear why this expression makes sense, we
prove it below by obtaining an explicit formula in the setting of multiphase diffeomorphism
groupoids.

2It is useful to compare this bracket to that of a semidirect product Lie algebra g̃ :“ g˙B, where the group
of the Lie algebra g acts on a vector space B (e.g. the Lie algebra for the group of affine transformations of B,
the semidirect product of linear transformations and translations). The Lie bracket of g̃ between two elements
pu, αq, pv, βq P g ˙ B is pru, vsg, aduβ ´ advαq .

3If the fibers of A are infinite-dimensional, then the fibers of A˚ consist of sufficiently regular functionals
on fibers of A. In the hydrodynamical setting we will make this precise below.
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Also note that for an action algebroid (see Example 2.6c) formula (9) becomes

tf, gupαq “ xα, rdF fpαq, dF gpαqsy ` qpf, gq ´ qpg, fq, (10)

where
qpf, gq :“ xα,L#dF fpαqd

F gpα̂qy ` L#dF fpαq

`

g ˝ α̂ ´ xα̂, dF gpα̂qy
˘

. (11)

2.4 Euler-Arnold equations on Lie algebroids

Let A Ñ B be a finite- or infinite-dimensional Lie algebroid, and let I : A Ñ A˚ be an
invertible bundle morphism. (In the infinite-dimensional case one needs to consider the smooth
dual bundle A˚, similarly to consideration of smooth duals of infinite-dimensional Lie algebras,
cf. [2]. In the hydrodynamical setting we define this smooth dual in detail in Section 3.) We
call such I an inertia operator. An inertia operator I defines a metric on A given by

xu, vyA :“ xIpuq, vy

for any u, v in the same fiber of A. Since the inertia operator I is invertible, one also has a
dual metric on A˚:

xα, βyA˚ :“ xI´1pαq, βy “ xI´1pαq, I´1pβqyA

for any α, β in the same fiber of A˚. Consider also a function H P C8pA˚q defined by

Hpαq :“
1

2
xα, αyA˚ @α P A˚.

Definition 2.11. The Hamiltonian equation associated with the Poisson structure on A˚ and
the function H is called the groupoid Euler-Arnold equation corresponding to the metric x , yA.

Example 2.12. When A is a Lie algebra, we obtain the standard notion of an Euler-Arnold
equation on a Lie algebra dual. When A “ TB is the tangent bundle of a manifold B, the
Euler-Arnold equation is the geodesic equation on B. (The latter is, of course, a second order
equation on B, but it becomes first order – specifically, the algebroid Euler-Arnold equation
– if we interpret it as an equation on TB.)

Remark 2.13. In the case when the algebroid A is associated with a certain Lie groupoid
G, solutions of the Euler-Arnold equation can be interpreted as geodesics of a right-invariant
source-wise (i.e. defined only for vectors tangent to source fibers) metric on G. In the transitive
case those solutions can also be thought of as geodesics on any source fiber Gx.

Furthermore, an Euler-Arnold equation on a transitive algebroid A Ñ B always gives rise
to a certain geodesic flow on the base B. Indeed, let A Ñ B be a Lie algebroid. Then, since
the anchor map #: A Ñ TB is an algebroid morphism, the dual map #˚ : T ˚B Ñ A˚ is
Poisson. Note that if, moreover, the algebroid A is transitive, then #˚pT ˚Bq is a symplectic
leaf in A˚. Indeed, if A is transitive, then the Poisson map #˚ is injective, while the image
of a closed injective Poisson map of a symplectic manifold is always a symplectic leaf.

Proposition 2.14. Let A Ñ B be a transitive Lie algebroid, and let x , yA be a positive-
definite metric on A for an invertible inertia operator I : A Ñ A˚. Assume also4 that for this
metric x , yA there is an orthogonal decomposition A “ Ker# ‘ pKer#qK. Then the following
holds:

4Note that this property is automatic in the finite-dimensional case.
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1. The pullback of the groupoid Euler-Arnold flow corresponding to the metric x , yA from
the symplectic leaf #˚pT ˚Bq to T ˚B is the geodesic flow for a certain metric x , yB on
B. Explicitly, for any x P B and any ζ, η P TxB, the metric x , yB reads

xζ, ηyB “ x#´1pζq,#´1pηqyA , (12)

where #´1 : TB Ñ pKer#qK is the inverse for the restriction of the anchor map to
pKer#qK.

2. Assume, in addition, that the algebroid A corresponds to a certain transitive groupoid G.
Then, for every x P B, the target mapping trg : pGx, x , yGq Ñ pB, x , yBq is a Riemannian
submersion. (Here the metric x , yG on Gx is defined using the identification between
metrics on A and right-invariant source-wise metrics on G, see Remark 2.13.)

For the proof see [12].

Example 2.15. Let M be a Riemannian manifold. Consider the natural transitive action
of its diffeomorphism group DiffpM q on the space DenspM q of densities on M of unit total
mass, and let DiffpM q ˙DenspMq be the corresponding action groupoid (see Example 2.2(c)).
Define a metric on the corresponding action algebroid VectpMq ˙ DenspMq by setting

xu, vyL2 :“

ż

M
pu, vqµ

for u, v lying in the fiber of VectpM q ˙ DenspMq over µ P DenspMq. (Recall that the fibers
of VectpMq ˙ DenspMq are identified with the Lie algebra VectpMq, see Example 2.6(c).)
Then, according to Remark 2.13, for any µ P DenspMq, there is a corresponding metric on the
source fiber pDiffpMq ˙ DenspMqqµ “ DiffpMq. It is an L2-type metric on DiffpM q, and there
is a Riemannian submersion of that metric onto Wasserstein metric on DenspMq, see [16] and
Remark 4.8 below.

Example 2.16. Another example is given by the metric on the space VSpMq of vortex sheets
in a manifold M , discussed in [12, 14] and in Appendix below. In that case one considers
the Lie groupoid DSDiffpMq of volume-preserving diffeomorphisms of a manifold M that
are discontinuous along a hypersurface. Its Lie algebroid DSVectpMq Ñ VSpMq consists of
velocities of the fluid with a vortex sheet: given a vortex sheet Γ, the corresponding velocities
are discontinuous vector fields on M of the form u “ χ`

Γu
` ` χ´

Γu
´, where χ`

Γ , χ
´
Γ are the

indicator functions of connected components D˘
Γ of M z Γ, and u˘ are smooth divergence-

free vector fields on D˘
Γ such that the restrictions of u` and u´ to Γ have the same normal

component, see appendix. There is a Riemannian submersion from an L2 metric on DSDiffpMq

to a metric on the space of classical vortex sheets, cf. [12, 14].

3 Kinematics of multiphase fluids

In this section, M is a compact connected manifold without boundary endowed with a volume
form volM .
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3.1 The Lie groupoid of multiphase diffeomorphisms

In this subsection, we define the Lie groupoid MDiffpMq of volume-preserving multiphase
diffeomorphisms. This groupoid (or, more precisely, any of its source fibers) can be viewed as
the configuration space of a fluid with several phases penetrating through each other. The
conditions defining the groupoid MDiffpMq can be seen as integration of the corresponding
infinitesimal equation (7), just like the group of volume-preserving diffeomorphisms arises
from “integrating” the divergence-free condition on the corresponding velocity field u.

The base of the groupoid MDiffpMq is, by definition, the space MDenspMq of multiphase
densities, i.e. the space of n-tuples µµµ :“ pµ1, ..., µnq, where each µi P DenspMq is a density
(top-degree form) on M , satisfying the following conditions:

1.
řn

j“1 µj “ volM .

2. µj ą 0 for all j “ 1, ..., n everywhere on M .

3.
ş

M µj “ cj for fixed constants c1, . . . , cn P R (such that
řn

j“1 cj “
ş

M volM ).

These densities can be thought of as densities of different fractions of the fluid, that can
penetrate through each other without resistance, subject only to the total incompressibility
condition. The case of two densities, n “ 2, supported on two different sides of the separating
hypersurface Γ Ă M corresponds to the regular vortex sheet Γ for an incompressible flow in
M . This case belongs to the closure of our space of positive densities. The general case with
densities pµ1, ..., µnq corresponds to a multiphase fluid where different phases can percolate
through each other.

The elements of MDiffpMq are n-tuples of diffeomorphisms of M preserving the above
property of incompressibility of multiphase densities, i.e. the set of tuples pϕϕϕ ;µµµ,µµµ1q :“
pϕ1, ..., ϕn;µ1, ..., µn, µ

1
1, ..., µ

1
nq with multiphase forms µµµ,µµµ1 P MDenspMq such that the multi-

phase diffeomorphism ϕϕϕ push-forwards one of them to the other, ϕϕϕ˚µµµ “ µµµ1 component-wisely.
The source and the target of pϕϕϕ ;µµµ,µµµ1q are, by definition, µµµ and µµµ1 respectively. The multipli-
cation in MDiffpMq is given by composition of diffeomorphisms:

pψψψ ;µµµ1,µµµ2qpϕϕϕ ;µµµ,µµµ1q :“ pψψψϕϕϕ ;µµµ,µµµ2q .

Remark 3.1. The groupoid MDiffpMq Ñ MDenspMq is a transitive Lie-Fréchet groupoid.
The proof of the Lie-Fréchet property is the standard consideration similar to that for groups
of diffeomorphisms, cf. [12]. One can consider a more general case of densities µj ě 0 on
M , in which case the groupoid is not necessarily transitive. The latter case covers that of
the usual vortex sheets Γ Ă M , corresponding to the indicator densities supported on two
different sides of MzΓ, see Appendix.

Since MDiffpMq is a Lie-Fréchet groupoid, it follows that the corresponding algebroid is
well-defined as a Fréchet vector bundle over MDenspMq with a bracket and anchor on smooth
sections. We describe this algebroid in detail in the next section.

Remark 3.2. One can also consider the groupoid MDiffpMq in the category of Hilbert man-
ifolds modeled on Sobolev Hs spaces for sufficiently large s, s ą dimM{2 ` 1, similarly to,
e.g., [11] or [13, Remark 3.3]. Note also that if n “ 1, i.e. we have a one-phase fluid, with the
groupoid MDiffpMq becoming the group SDiffpMq of µ-preserving diffeomorphisms of M .

Remark 3.3. Note that if we drop the requirement that the densities µj sum to volM in
the definition of the groupoid MDiffpMq, we obtain the definition of the action groupoid
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DiffpMqn ˙ DenspMqn, which is the product of n copies of the action groupoid DiffpMq ˙

DenspMq (see Example 2.2(c)) corresponding to the natural action of the group DiffpMq

on the space of densities DenspM q. So, the action groupoid DiffpM qn ˙ DenspMqn comes
with a subgroupoid MDiffpMq. The subgroupoid MDiffpMq inherits certain properties of the
ambient action groupoid. In particular, the brackets in the algebroids corresponding to these
groupoids are given by the same formulas.

3.2 The Lie algebroid of multiphase vector fields

In this subsection we describe the Lie algebroid MVectpMq Ñ MDenspMq corresponding to
the Lie groupoid MDiffpMq. This algebroid serves as the space of velocities for a multiphase
fluid.

Theorem 3.4. The Lie algebroid MVectpMq Ñ MDenspMq corresponding to the groupoid
MDiffpMq is as follows:

1. The fiber of MVectpMq over µµµ :“ pµ1, ..., µnq P MDenspMq is the space MVectpM,µµµq

which consists of multiphase vector fields on M of the form uuu :“ pu1, ..., unq, where
uj P VectpMq are such that

ÿn

j“1
Lujµj “ 0 (13)

(in other words, the multiphase vector field is “divergence-free” with respect to the mul-
tiphase volume form).

2. The anchor map #: MVectpM,µµµq Ñ TµµµMDenspMq is given by the negative Lie deriva-
tive,

uuu :“ pu1, ..., unq ÞÑ ´Luuuµµµ :“ p´Lu1µ1, ...,´Lunµnq .

3. Let U, V be sections of MVectpMq. Then their algebroid bracket is

rU, V spµµµq “ rUpµµµq, V pµµµqs ` L#UpµµµqV ´ L#V pµµµqU , (14)

where the first summand in the right-hand side is the usual Lie bracket of vector fields
on M .

Remark 3.5. The derivative L#UpµµµqV is a multiphase vector field defined by

L#UpµµµqV :“
d

dt |t“0
V pµµµptqq ,

where µµµptq is any smooth curve in MDenspM q with µµµp0q “ µµµ and the tangent vector at µµµ
given by #Upµµµq. That derivative does not have to lie in MVectpM,µµµq, but belongs to the
bigger space VectpMqn :“ tpu1, ..., unq | uj P VectpMqqu of n-tuples of vector fields on M with
no condition (13).

Remark 3.6. Note that the first term on the right-hand side of (14) is not an element
of MVectpM,µµµq. Indeed, for two multiphase vector fields uuu and vvv satisfying

ř

i Lujµj “
ř

i Lvjµj “ 0, their (component-wise) Lie bracket does not necessarily have this property.
However, the last two terms do not have this property either (see Remark 3.5) and compensate
the first term.
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Remark 3.7. The Lie algebroid MVectpM q is a subalgebroid in the action algebroid
VectpMqn ˙ DenspMqn of smooth multiphase vector fields without restrictions acting on vol-
ume multiphase forms (see Remark 3.3). Because of that the bracket in MVectpM q automat-
ically has form (14) (cf. Example 2.6(c)). However, MVectpMq is not an action algebroid. In
particular, the fibers of MVectpMq are not closed under the Lie bracket of vector fields (see
Remark 3.6) and hence do not have any natural Lie algebra structure.

Proof of Theorem 3.4. We begin with the first statement. By definition, the fiber of
MVectpMq over µµµ consists of tangent vectors at idµµµ P MDiffpMq to curves of the form
pϕϕϕptq;µµµ,µµµptqq, where µµµp0q “ µµµ and ϕϕϕp0q “ pid, . . . , idq. The tangent vector to such a curve is
an n-tuple of vector fields

uj “
d

dt |t“0
ϕjptq P VectpMq .

Also note that
ÿn

j“1
ϕjptq˚µj “

ÿn

j“1
µjptq “ volM .

Differentiating this relation with respect to t at t “ 0, we get (13), as needed.
Conversely, given any n-tuple of vector fields uj P VectpMq satisfying (13), one can con-

struct a curve ϕϕϕptq in the source fiber MDiffpMqµµµ whose tangent vector at idµµµ coincides with
uuu. So, the fiber of MVectpM q over µµµ is indeed the space MVectpM,µµµq.

To prove the second statement we need the following.

Lemma 3.8. The tangent space TµµµMDenspMq is the space of multiphase top-degree forms
ξξξ “ pξ1, ..., ξnq satisfying the following conditions:

1.
řn

j“1 ξj “ 0 on M .

2.
ş

M ξj “ 0 for each i “ 1, . . . , n.

Proof. These are infinitesimal versions of the conditions
ř

i µj “ volM and
ş

M µj “ cj respec-
tively.

Now, we compute the anchor map (one can also get the formula for the anchor map
using that our algebroid is a subalgebroid in the action algebroid, see Remark 3.7). Let
uuu P MVectpMqµµµ. Consider a curve pϕϕϕptq;µµµ,µµµptqq P MDiffpMqµµµ where µµµptq :“ ϕϕϕptq˚µµµ and
whose tangent vector at idµµµ is uuu. Then, by definition of the anchor map for the algebroid of
a Lie groupoid, we have

#uuu “
d

dt |t“0
trgpϕϕϕptqq “

d

dt |t“0
ϕϕϕptq˚µµµ “ ´Luuuµµµ ,

as desired.
Finally, the last statement of the theorem follows from the fact that our algebroid is a

subalgebroid in the action algebroid (see Remark 3.7) and formula (8) for the action algebroid
bracket. Thus, Theorem 3.4 is proved. l
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3.3 The dual algebroid and its tangent space

In this subsection, we describe the dual of the Lie algebroid MVectpMq. This space can be
viewed as the space of momenta for a multiphase fluid.

As the dual of MVectpMq, we consider the “smooth dual bundle” defined as follows.

Definition 3.9. The smooth dual MVectpM,µµµq˚ of the space MVectpM,µµµq is the space of
linear functions f : MVectpM,µµµq Ñ R that admit a smooth density, which means that there
exist smooth 1-forms α1, . . . , αn such that

fpuuuq “
ÿn

j“1

ż

M
αjpujqµj (15)

for all uuu P MVectpM,µµµq.

Formula (15) defines a surjective linear map π : Ω1pMqn Ñ MVectpM,µµµq˚: each collection
pα1, . . . , αnq P Ω1pMqn is mapped to a linear function on MVectpM,µµµq defined by (15).

Proposition 3.10. The kernel of the map π : Ω1pMqn Ñ MVectpM,µµµq˚ consists of n-tuples
of the form pdf, . . . , dfq, where f P C8pMq. Therefore, we have an isomorphism

MVectpM,µµµq˚ :“ Ω1pMqn{δpdC8pMqq,

where δ : Ω1pMq Ñ Ω1pMqn is the diagonal embedding δpαq “ pα, . . . , αq.

Proof. First observe that δpdC8pMqq Ă Kerπ. This is due to condition (13):

xpdf, . . . , dfq,uuuy “
ÿn

j“1

ż

M
dfpujqµj “ ´

ÿn

j“1

ż

M
f ^ Lujµj

“ ´

ż

M
f ^

ÿn

j“1
Lujµj “ 0 .

So, the map π : Ω1pMqn Ñ MVectpM,µµµq˚ descends to a surjective linear map

π : Ω1pMqn{δpdC8pMqq Ñ MVectpM,µµµq˚.

We need to show that the latter is injectibe. This is based on the following.

Proposition 3.11. For any choice of a Riemannian metric on M , any coset rαααs P

Ω1pMqn{δpdC8pMqq has a unique (“co-closed”) representative ααα P Ω1pMqn such that

d˚
ÿn

j“1
ρjαj “ 0 , (16)

where ρj :“ µj{volM .

Proof. This is equivalent to saying that for any ααα P Ω1pMqn there exists a function f P

C8pMq, unique up to an additive constant, such that

d˚
ÿn

j“1
ρjpαj ` dfq “ 0 ô d˚

´

df `
ÿn

j“1
ρjαj

¯

“ 0 ô ∆f “ ´d˚
ÿn

j“1
ρjαj .

This is a Poisson equation on f whose solution is unique up to an additive constant, as
needed.
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Returning to the proof of Proposition 3.10, given rαααs P Ω1pMqn{δpdC8pMqq, rαααs ‰ 0,
consider its representative ααα satisfying (16) for some Riemannian metric on M . Then the
multiphase vector field ααα7 satisfies (13), so ααα7 P MVectpM,µµµq. Furthermore, we have

@

πprαααsq,ααα7
D

“
ÿn

j“1

ż

M

´

α7

j , α
7

j

¯

µj ą 0 ,

and hence πprαααsq ‰ 0. So π is indeed injective, as needed.

In what follows we make an identification MVectpM,µµµq˚ » Ω1pMqn{δpdC8pMqq. Accord-
ingly, the smooth dual of the algebroid MVectpMq is the trivial vector bundle

MVectpMq˚ “
ď

µµµPMDenspMq
MVectpM,µµµq˚ “

`

Ω1pMqn{δpdC8pMqq
˘

ˆ MDenspMq.

over the space of multiphase densities MDenspM q.
An important property of the smooth dual MVectpM,µµµq˚ “ Ω1pMqn{δpdC8pMqq is that

this subspace of the full dual space “separates points”, meaning that for any non-zero uuu P

MVectpM,µµµq there exists rαααs P MVectpM,µµµq˚ such that xrαααs,uuuy ‰ 0 (indeed, one can take
ααα :“ uuu5). This is equivalent to saying that MVectpM,µµµq injects into the dual of its smooth
dual, which is needed for the Poisson bracket on MVectpMq˚ to be well-defined. This Poisson
bracket is described in the next section. For this we describe the tangent and cotangent spaces
to MVectpMq˚. First we note that since MVectpM q˚ is a trivial vector bundle, we have the
following natural splitting of its tangent space.

Proposition 3.12. There is a natural splitting

Trαααs,µµµMVectpMq˚ » MVectpM,µµµq˚ ‘ TµµµMDenspMq . (17)

3.4 Poisson bracket on the dual algebroid

In this section we show that formula (9) gives a well-defined Poisson bracket on MVectpMq˚.
For this we need to describe the cotangent space to MVectpMq˚ and we start by defining the
cotangent space to the base, T ˚

µµµMDenspMq.

Definition 3.13. The smooth cotangent space T ˚
µµµMDenspMq is the quotient

C8
0 pMqn { δpC8

0 pMqq, where C8
0 pMq :“ C8pMq {R, and δ : C8

0 pMq Ñ C8
0 pMqn is the

diagonal embedding h ÞÑ ph, . . . , hq. The pairing between a coset rfff s P C8
0 pMqn { δpC8

0 pMqq

and a tangent vector ξξξ P TµµµMDenspMq (i.e. a collection pξ1, . . . , ξnq of top-degree forms on
M such that

řn
j“1 ξj “ 0, see Lemma 3.8) is given by

xrfff s, ξξξy :“
ÿn

j“1

ż

M
fjξj .

(The right-hand side does not depend on the choice of a representative fff P rfff s thanks to the
zero sum condition on ξξξ. The integral

ş

M fjξj is well-defined for fj P C8
0 pMq since

ş

M ξj “ 0.)

Now we define the cotangent space to MVectpMq˚ by dualizing splitting (17).

Definition 3.14. Let prαααs,µµµq P MVectpMq˚. Then the smooth cotangent space to MVectpMq˚

at prαααs,µµµq is
T ˚

rαααs,µµµMVectpMq˚ :“ MVectpM,µµµq ‘ T ˚
µµµMDenspMq , (18)

where the second summand is the smooth cotangent space.
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Further, we define the notion of a differentiable function on MVectpM q˚. Roughly speak-
ing, a function is differentiable if it has a differential belonging to the smooth cotangent
space.

Definition 3.15. A function F : MVectpMq˚ Ñ R is differentiable if there exists a section dF
of the smooth cotangent bundle T ˚MVectpMq˚ such that for any smooth curve prαααsptq, µptqq

in MVectpMq˚ one has

d

dt
F prαααsptq,µµµptqq “ xdF prαααsptq,µµµptqq , p

d

dt
rαααsptq,

d

dt
µµµptqqy .

Using splitting (18), we decompose dFprαααsq for rαααs P MVectpM,µµµq˚ into the fiber and
base parts:

dF prαααs,µµµq “
`

dFF prαααs,µµµq , dBF prαααs,µµµq
˘

,

where

dFF prαααs,µµµq P MVectpM,µµµq , dBF prαααs,µµµq P T ˚
µµµMDenspMq “ C8

0 pMqn { δpC8
0 pMqq.

Theorem 3.16. Let F1,F2 : MVectpMq˚ Ñ R be differentiable functions. Then their Poisson
bracket reads

tF1,F2u “ PpdF1, dF2q ,

where the value of the Poisson tensor P on two cotangent vectors

puuu, rfff sq, pvvv, rgggsq P T ˚
rαααs,µµµMVectpMq˚ “ MVectpM,µµµq ‘ T ˚

µµµMDenspMq

at a point prαααs,µµµq P MVectpMq˚ is

Prαααs,µµµ ppuuu, rfff sq, pvvv, rgggsqq “
ÿn

j“1

ż

M

`

´dαjpuj , vjq ` Lujgj ´ Lvjfj
˘

µj . (19)

Here ααα P Ω1pMqn is an arbitrary representative of the coset rαααs.

Remark 3.17. Equivalently, this bracket can be written in the form, similar to a Lie-Poisson
bracket with additional terms:

Prαααs,µµµ ppuuu, rfff sq, pvvv, rgggsqq

“
ÿn

j“1

ż

M

`

αipruj , vjsq ` Lvj

`

iujαj ´ fj
˘

´ Luj

`

ivjαj ´ gj
˘˘

µj .
(20)

Proof of Theorem 3.16. Formulas (19) and (20) are equivalent to each other. To see this,
rewrite the first term in (20) using the formula iru,vs “ rLu, ivs. So, it suffices to derive (20).

Since the bracket (14) on sections of MVectpMq has the same form as for an action
algebroid, we can compute the Poisson bracket in the dual using formula (10). This gives

tF1,F2u prαααs,µµµq “ xααα,
“

dFF1prαααs,µµµq, dFF2prαααs,µµµq
‰

y ` qpF1,F2q ´ qpF2,F1q, (21)

Here and below the pairing x , y between multiphase forms and multiphase vector fields is
given by (15), and the commutator of multiphase vector fields is defined component-wisely.
To compute the qpFk,Flq terms we extend rαααs to a constant section A : MDenspMq Ñ

MVectpMq, Apµµµq :“ rαααs of the trivial vector bundle MVectpMq˚. Also, let Uk be the sec-
tion of MVectpMq given by Uk :“ dFFkpAq. Then formula (11) gives

qpFk,Flq :“ xααα,L#UkpµµµqUly ` L#Ukpµµµq pFl ˝Aq ´ L#UkpµµµqxA,Uly. (22)
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Now, take any curve µµµkptq P MDenspMq such that µµµkp0q “ µµµ, and the tangent vector to
µµµkptq at µµµ is #Ukpµµµq. Then, using that A is a constant section, we get

L#Ukpµµµq pFl ˝Aq “
d

dt
|t“0FlpApµµµkptqqq “ xdBFlprαααs,µµµq,#Ukpµµµqy. (23)

Further, we have

L#UkpµµµqxA,Uly “
d

dt |t“0
xApµµµkptqq, Ulpµµµkptqqy “

d

dt |t“0

ÿn

j“1

ż

M

´

iUlpµµµkptqqj
αj

¯

µkptqj

“
ÿn

j“1

ż

M

ˆ

i d
dt |t“0

Ulpµµµkptqqj
αj

˙

µkptqj `
ÿn

j“1

ż

M

´

iUlpµµµkptqqj
αj

¯ d

dt |t“0
µkptqj

“
@

ααα,L#UkpµµµqUl

D

`
@

iUlpµµµqααα,#Ukpµµµq
D

.

Substituting this, along with (23), into (22), we get

qpFk,Flq :“
@

dBFlprαααs,µµµq ´ iUlpµµµqααα,#Ukpµµµq
D

.

Finally, plugging this into (21) and using that Ulpµµµq “ dFFlprαααs,µµµq, one gets (20).

Corollary 3.18. The Hamiltonian operator

P7

rαααs,µµµ : T ˚
rαααs,µµµMVectpMq˚ Ñ Trαααs,µµµMVectpMq˚

corresponding to the Poisson bracket on MVectpMq˚ is given by

puuu, rfff sq ÞÑ p´riuuudαααs ´ rdfff s,´Luuuµµµq . (24)

(Note that the coset rdfff s of dfff in Ω1pMqn{dC8pMq does not depend on the choice of a
representative fff in the coset rfff s P C8

0 pMqn{C8
0 pMq.)

Proof. By definition, we have

xpvvv, rgggsq,P7

rαααs,µµµpuuu, rfff sqy “ Prαααs,µµµ ppuuu, rfff sq, pvvv, rgggsqq

“
ÿn

j“1

ż

M

`

´dαjpuj , vjq ` Lujgj ´ Lvjfj
˘

µj

“ x´riuuudαααs ´ rdfff s, vvvy ´ xLuuuµµµ, rgggsy.

The result follows.

Remark 3.19. Using Proposition 4.6 below, the Hamiltonian operator (24) can be rewritten
in terms of the anchor map #: MVectpM q Ñ TMDenspMq, as follows:

puuu, rfff sq ÞÑ p´riuuudαααs ´ #˚rfff s,#uuuq,

which agrees with the corresponding operator for the motion of vortex sheets, see [12, Corol-
lary 6.27].
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4 Dynamics of multiphase fluids

4.1 Geodesic and Hamiltonian framework for multiphase fluids

In this section, M is a compact connected oriented manifold without boundary endowed with
a Riemannian metric p , q and the corresponding Riemannian volume form volM . We define a
metric x , yL2 on the Lie algebroid MVectpMq as follows: for uuu,vvv P MVectpM,µµµq, one has

xuuu,vvvyL2 :“
ÿn

j“1

ż

M
puj , vjqµj . (25)

Proposition 4.1. 1. The inertia operator I associated with the L2-metric x , yL2 on
MVectpMq takes values in the smooth dual MVectpMq˚. For uuu P MVectpM,µµµq, one
has Ipuuuq “ ruuu5s, where

uuu5 :“ pu5
1, . . . , u

5
nq,

u5
j denotes the 1-form dual to the vector field uj with respect to the Riemannian metric

p , q on M , and ruuu5s stands for the coset of uuu5 in Ω1pMqn { δpdC8pMqq.

2. The inertia operator I : MVectpMq Ñ MVectpMq˚ is an isomorphism of vector bundles.

Proof. By definition of the inertia operator, for uuu,vvv P MVectpM,µµµq, one has

xIpuuuq, vvvy “ xuuu,vvvyL2 “
ÿn

j“1

ż

M
puj , vjqµj “

ÿn

j“1

ż

M
ivju

5
j µj .

This means that the functional Ipuuuq coincides with the functional represented by the coset of
uuu5 P Ω1pMqn, proving the first statement.

The second statement, i.e. invertibility of the inertia operator, is equivalent to say-
ing that the equation ruuu5s “ rαααs has a unique solution uuu P MVectpM,µµµq for any coset
rαααs P MVectpM,µµµq˚. Written in terms of the form ααα :“ uuu5, the condition uuu P MVectpM,µµµq

translates to (16). (Indeed, the defining condition (13) of MVectpM,µµµq is equivalent to (7),
which, in turn, is equivalent to (16) since the divergence of a vector field is the same as the
co-differential of its metric dual form.) So, the result follows from Proposition 3.11. Explicitly,
we have I´1prαααsq “ ααα7, where ααα is the coset representative satisfying (16).

Since the inertia operator is invertible, we also obtain an L2-metric on MVectpMq˚, and
the corresponding Euler-Arnold Hamiltonian

H prαααs,µµµq :“
1

2

ÿn

j“1

ż

M
pαj , αjqµj ,

where ααα P rαααs is a representative satisfying (16).

Theorem 4.2. The Euler-Arnold equation corresponding to the L2-metric on MVectpMq

written in terms of a coset rαααs P MVectpM,µµµq˚ reads
$

&

%

Btrαααs ` riuuudααα `
1

2
diuuuαααs “ 0 , (26a)

Btµµµ “ ´Luuuµµµ , (26b)

where ααα P rαααs is the representative satisfying (16), and uuu :“ ααα7 P MVectpM,µµµq. It is a
Hamiltonian equation on the algebroid dual MVectpMq˚ with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.
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Remark 4.3. Note that for a single phase fluid (n “ 1), the equations (26) are equivalent to
Btrαs ` riudαs “ 0, and therefore to the Euler equation Btrαs ` Lurαs “ 0.

Proof of Theorem 4.2. It suffices to compute dHprαααs,µµµq and apply the Hamiltonian operator.
Let prαααspsq,µµµpsqq be an arbitrary smooth curve in MVectpMq˚ “ pΩ1pMqn { δpdC8pMqqq ˆ

MDenspMq with rαααsp0q “ rαααs and µµµp0q “ µµµ. Let also αααpsq P rαααspsq be the representative
satisfying (16). Then

d

ds |s“0
Hprαααspsq,µµµpsqq “

1

2

d

ds |s“0

ÿn

j“1

ż

M
pαjpsq, αjpsqqµjpsq

“ xuuu,
d

ds |s“0
rαααspsq y `

1

2

ÿn

j“1

ż

M
pαjpsq, αjpsqq

d

ds |s“0
µjpsq ,

implying that

dFHprαααs,µµµq “ uuu, dBHprαααs,µµµq “
1

2
rpααα,αααqs .

Now, to get (26), it suffices to apply the Hamiltonian operator (24), ending the proof.

Theorem 4.4. The Euler-Arnold equations corresponding to the L2-metric on MVectpMq

written in terms of the fluid velocities uuu :“ I´1prαααsq P MVectpMq read

"

Btuj ` ∇ujuj “ ´∇p, (27a)

Btµj “ ´Lujµj , (27b)

where the pressure p P C8pMq is common for all phases and is defined uniquely up to an
additive constant by equations (27) supplemented by the condition

ÿn

j“1
Lujµj “ 0. (28)

Equivalently, equations (27) describe the velocity along a geodesic for the L2 metric on a
source fiber of the groupoid MDiffpMq.

Proof. Equation (27b) was already established by Theorem 4.2, so it suffices to derive (27a).
The latter rewrites as

Btαj ` iujdαj `
1

2
diujαj “ df ,

where ααα P rαααs is the representative satisfying (16), and f P C8pMq does not depend on i.
Equivalently, this can be written as

Btαj ` Lujαj ´
1

2
diujαj “ df .

Taking the metric dual vector field and applying the formula pLuu
5 ´ 1

2dpu, uqq7 “ ∇uu, we
get

Btuuu` ∇uuuuuu “ ∇f ,

which is equivalent to (27a) for p “ ´f .
Now, we show that the pressure p can be expressed, using conditions (27) and (28), in

terms of velocity fields uj and densities µj (up to an additive constant). Let ρj :“ µj{volM .
Then, from (27a), we get

´∇p “ ´

´

ÿn

j“1
ρj

¯

∇p “ ´
ÿn

j“1
ρj∇p “

ÿn

j“1
ρjpBtuj ` ∇ujujq.
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Taking divergence, we get

´∆p “ div
ÿn

j“1
ρjpBtuj ` ∇ujujq. (29)

Furthermore, (28) can be rewritten as

div
ÿn

j“1
ρjuj “ 0,

so (29) rewrites as

´∆p “ div
ÿn

j“1
pρj∇ujuj ´ pBtρjqujq. (30)

Also, (26b) is equivalent to
Btρj “ ´div pρjujq,

so (30) becomes

´∆p “ div
ÿn

j“1
pρj∇ujuj ` div pρjujqujq,

cf. (4). This is a Poisson equation on p, so the function p is indeed uniquely determined by
uj , µj up to an additive constant. (Note that for n “ 1 the second term in the right-hand side
vanishes and one gets the standard equation for the pressure ´∆p “ div∇uu.)

Recall that for a fluid velocity field u, the corresponding vorticity is the 2-form ω :“ du5.
For an n-tuple of vector fields uuu P MVectpMq, the vorticity is an n-tuple

ωj :“ du5
j .

Corollary 4.5 (Generalized Kelvin’s theorem). For a multiphase fluid, the vorticity of each
phase is transported by the corresponding velocity field:

Btωj ` Lujωj “ 0 .

Proof. Take the exterior derivative of both sides in (26a).

In particular, vorticities remain in the same diffeomorphism class during the Euler-Arnold
evolution. Furthermore, solutions for potential initial conditions remain potential for all times,
as they correspond to the vanishing initial vorticity, which always remains zero thanks to the
corollary above. In the next section we discuss properties of potential solutions in detail.

4.2 Potential solutions as geodesics on the space of multiphase densities

Now, we apply Proposition 2.14 to obtain a geodesic description of potential solutions.

Proposition 4.6. Let rfff s P T ˚
µµµMDenspMq (recall that the latter space is

C8
0 pMqn{δpC8

0 pMqq). Then its image under the map #˚ : T ˚
µµµMDenspMq Ñ MVectpM,µµµq˚

is given by

#˚rfff s :“ rdfff s.

(Note that the coset rdfff s of dfff in Ω1pMqn{δpdC8pMqq does not depend on the choice of a
representative fff in the coset rfff s P C8

0 pMqn{δpC8
0 pMqq.)
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Proof. Let rfff s P T ˚
µµµMDenspMq, and let uuu P MVectpM,µµµq. Then

x#˚rfff s,uuuy “ xrfff s,#uuuy “ ´
ÿn

j“1

ż

M
fj Luj µj “

ÿn

j“1

ż

M
piujdfjqµj “ xdfff,uuuy .

The result follows.

It follows that the vector field vvv :“ I´1p#˚rfff sq “ I´1prdfff sq has the multiphase gradient
form vvv “ ∇fff :“ p∇f1, ...,∇fnq. This means that the symplectic leaf #˚pT ˚MDenspMqq Ă

MVectpMq˚ is metric dual to velocity fields of potential motions of a multiphase fluid.

Theorem 4.7. 1. Potential solutions of equations (27) of a multiphase fluid are geodesics
of a metric x , yMDens on MDenspMq induced by the product Wasserstein metric on the
ambient space Densc1pMq ˆ ¨ ¨ ¨ ˆ DenscnpMq, where DenscpMq is the space of positive
smooth densities on M with total mass c.

2. For any multiphase density µµµ P MDenspMq the groupoid target mapping
trg : pMDiffpMqµµµ, x , yL2q Ñ pMDenspMq, x , yMDensq is a Riemannian submersion, see
Figure 2. Here x , yL2 is the restriction of the right-invariant source-wise metric on
MDiffpMq corresponding to the L2-metric on MVectpMq.

Remark 4.8. Recall that the Wasserstein metric on the space DenscpMq of densities of fixed
total volume c on M is defined as follows: for any tangent vector ξ P TµDenscpMq its square
length is

xξ, ξyW :“ inf t xu, uyL2 | u P VectpMq, Luµ “ ξu “ x∇f,∇fyL2 ,

where f P C8pMq is such that L∇fµ “ ξ.

Proof of Theorem 4.7. We first prove the existence of a metric x , yMDens with desired prop-
erties, and then show that it is induced by the Wasserstein metric. To prove existence,
we use Proposition 2.14. To apply that proposition we need to show that MVectpM q “

Ker# ‘ pKer#qK. Take any uuu P MVectpM,µµµq. Consider functions fff “ pf1, ..., fnq satisfying
Lujµj “ L∇fjµj (construction of such functions boils down to the solution of the Poisson
equation div ρj∇fj “ div ρjuj on fj). Then one has

uuu “ puuu´ ∇fffq ` ∇fff. (31)

Notice that Luj´∇fjµj “ 0, so uuu´∇fff P Ker#. Furthermore, Ker# consists of all multiphase
vector fields uuu P MVectpM,µµµq which satisfy the divergence-free condition Lujµj “ 0 and hence
are orthogonal to multiphase gradients with respect to the metric (25). In particular, we have
∇fff P pKer#qK. Thus we obtain a decomposition MVectpMq “ Ker# ‘ pKer#qK, and hence,
by Proposition 2.14, a metric x , yMDens with the listed properties.

To show that the metric x , yMDens is induced by the Wasserstein metric, observe from (31)
that the map #´1 : TµµµMDenspMq Ñ pKer#qK is given by #´1pξξξq “ ∇fff where the multiphase
function fff is found from the requirement ξj “ L∇fjµj . Plugging this into (12), we see that
the metric x , yMDens computed on any ξξξ P TMDenspMq is indeed the product Wasserstein
metric, as needed.

Recall that MDiffpM,µµµq is the configuration space of a multiphase fluid. The motion of
the fluid follows the geodesics of the x , yL2-metric on the space MDiffpMq. Potential solutions
thus correspond to horizontal (with respect to the target mapping) geodesics.
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Remark 4.9. The metric x , yMDens constructed above can also be defined as follows:

xξξξ, ξξξyMDens “ inf txuuu,uuuyL2 | uuu P MVectpM,µµµq, #uuu “ ξξξu

for any ξξξ P TµµµMDenspMq. This directly follows from its Riemannian submersion property.

Remark 4.10. The Riemannian metric on MDenspM q makes the latter into a metric space
with the distance between multiphase densities µµµ and µ̃µµ satisfying the following inequality:

dist2MDenspµµµ, µ̃µµq ě

n
ÿ

j“1

dist2W pµj , µ̃jq ,

where distW is the Wasserstein distance on DenspM q. In particular, the distance function
distMDens is non-degenerate (i.e. distMDenspµµµ, µ̃µµq ą 0 whenever µµµ ‰ µ̃µµ).

5 Groupoid of generalized flows

The above consideration can be extended to the case of “continuous” index i, i.e. to multiphase
flows where phases are enumerated by a continuous parameter a which belongs to a measure
space A. Below we adapt all the above definitions and statements to that setting, while the
proofs are valid mutatis mutandis.

Consider a closed compact manifold M with a fixed volume form volM and a measure
space A with a fixed function ca : A Ñ R. The base of the Lie groupoid GDiffpMq of volume-
preserving generalized diffeomorphisms is the space GDenspMq of generalized densities, i.e.
sets of densities µµµ :“ tµa P DenspMq | a P Au satisfying the conditions: all µa are positive,
have prescribed masses ca, i.e.

ş

M µa “ ca, and they together constitute the volume form
volM , i.e.

ż

A
µa da “ volM (32)

at each point of M . (Here and in what follows we assume that the dependence of all objects
on a P A is such that the integrals below are well-defined. A particular example of such a
setting is described in Remark 5.1.) Now one can think of those densities as a set A of different
fractions of an incompressible fluid, penetrating through each other without resistance.

The elements of GDiffpMq are sets of diffeomorphisms ϕϕϕ :“ tϕa P DiffpMq | a P Au of
M preserving the above property of incompressibility of generalized densities, i.e. the set
of tuples pϕϕϕ ;µµµ,µµµ1q :“ tpϕa;µa, µ

1
aq | a P Au with generalized forms µµµ,µµµ1 P GDenspMq such

that ϕϕϕ˚µµµ “ µµµ1 component-wisely, i.e. ϕa˚µa “ µ1
a for each a P A. The source, target and

multiplication (i.e. composition) of such triples is given exactly as before.
Similarly, the space of velocities for a generalized fluid, i.e. the Lie algebroid GVectpMq Ñ

GDenspMq corresponding to the Lie groupoid GDiffpMq, is a vector bundle with the following
structure. Its fiber of GVectpM q over µµµ P GDenspMq is the space GVectpM,µµµq that consists
of generalized vector fields on M of the form uuu :“ tua | a P Au with ua P VectpMq that
are “divergence-free” with respect to the generalized volume form:

ş

A Luaµa da “ 0. The
corresponding anchor map #: GVectpM,µµµq Ñ TµµµGDenspMq is given by the negative Lie
derivative, uuu ÞÑ ´Luuuµµµ :“ t´Luaµa | a P Au , and the algebroid bracket is given by the same
formula (14). The tangent space TµµµGDenspMq is the space of generalized forms ξξξ satisfying
the two conditions:

ş

A ξa da “ 0 on M and
ş

M ξa “ 0 for all a P A (cf. Lemma 3.8).
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Remark 5.1. In the case when A is a manifold and the dependence of all objects on a P A is
smooth, the above setting can also be reformulated as follows. Consider compact manifolds
M and A with fixed volume forms volM and volA respectively. The base of the Lie groupoid
GDiffpMq is the space GDenspM q of doubly stochastic measures on M ˆ A with everywhere
positive smooth density, i.e. volume forms µµµ P DenspM ˆ Aq such that pπM q˚µµµ “ volM
and pπAq˚µµµ “ volA, where πM and πA are projections to M and A respectively. The above
description of GDenspM q is then recovered by viewing a doubly stochastic measure µµµ as a
collection of measures µa parametrized by a P A which have fixed volumes (defined by the
measure volA) and add up to the measure volM .

The elements of the groupoid GDiffpMq in this language are horizontal diffeomorphisms
ϕϕϕ P DiffpM ˆ Aq which take one doubly stochastic measure to another. More precisely,
GDiffpMq is the set of triples pϕϕϕ ;µµµ,µµµ1q where ϕϕϕ P DiffpMˆAq is of the form px, aq ÞÑ pϕapxq, aq

and maps µµµ P GDenspMq to µµµ1 P GDenspMq, i.e. ϕϕϕ˚µµµ “ µµµ1.
The Lie algebroid GVectpMq Ñ GDenspMq corresponding to the Lie groupoid GDiffpMq

is a vector bundle with the following structure. Its fiber of GVectpM q over µµµ P GDenspMq is
the space GVectpM,µµµq that consists of vector fields uuu P VectpMˆAq which are horizontal (i.e.
tangent to fibers of the projection πA) and “divergence-free” in the sense that pπM q˚Luuuµµµ “ 0 .

The anchor map #: GVectpM,µµµq Ñ TµµµGDenspMq in the algebroid GVectpM q is given
by the negative Lie derivative, uuu ÞÑ ´Luuuµµµ , and the algebroid bracket is given by the same
formula (14). The tangent space TµµµGDenspMq is the space of top-degree forms ξξξ on M ˆ A
such that pπM q˚ξξξ “ 0 and pπAq˚ξξξ “ 0.

Returning to the general case of a measure space A, the smooth dual GVectpM,µµµq˚ of the
space GVectpM,µµµq is defined as the quotient

GVectpM,µµµq˚ :“ Ω1pMqA{δpdC8pMqq ,

where Ω1pMqA stands for functions A Ñ Ω1pMq. The elements of GVectpM,µµµq˚ are cosets

rαααs :“ tαa ` df | f P C8pMqu,

where all 1-forms αa P Ω1pMq in one coset differ by the same function differential. The pairing
between a coset rαααs P GVectpM,µµµq˚ and a generalized vector field uuu P GVectpM,µµµq is given
by the formula:

xrαααs,uuuy :“

ż

A

ż

M
αapuaqµa da.

As before, the dual algebroid is the total space

GVectpMq˚ :“
ď

µµµPGDenspMq
GVectpM,µµµq˚ ,

which is a trivial vector bundle over the space of generalized densities GDenspMq.
The dual algebroid is a Poisson bundle, and the Poisson bracket on this space is given by

a formula analogous to (19). As a corollary, we obtain the Hamiltonian operator

P7

rαααs,µµµ : T ˚
rαααs,µµµGVectpMq˚ Ñ Trαααs,µµµGVectpMq˚

corresponding to the Poisson bracket on GVectpMq˚ given by the same formula (24):

puuu, rfff sq ÞÑ p´riuuudαααs ´ rdfff s,´Luuuµµµq .
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To describe geodesics on the space of generalized solutions we equip the manifold M with
a Riemannian metric p , q whose Riemannian volume form is volM . As before, to simplify
the exposition, M is a compact connected oriented manifold without boundary, although the
results extend to noncompact M by imposing appropriate decay assumptions.

The x , yL2 metric on the Lie algebroid GVectpMq is as follows: for uuu,vvv P GVectpM,µµµq,
one has

xuuu,vvvyL2 :“

ż

A

ż

M
pua, vaqµa da. (33)

The inertia operator I : GVectpMq Ñ GVectpMq˚ associated with this L2-metric on
GVectpMq is as follows. For uuu P GVectpM,µµµq one has Ipuuuq “ ruuu5s, where uuu5 :“ tu5

a | a P Au.
Here u5

a is the 1-form metric-dual to the vector field ua on M , and ruuu5s stands for the coset
of uuu5 in Ω1pMqA { δpdC8pMqq.

The corresponding Euler-Arnold Hamiltonian on GVectpMq˚ is

H prαααs,µµµq :“
1

2

ż

A

ż

M
pαa, αaqµa da,

where ααα P rαααs is a representative satisfying the following co-closedness type condition:

d˚

ż

A
ρaαa da “ 0 , (34)

for ρa :“ µa{volM (this is just the condition (3) written in terms of the multiform ααα “ uuu5).
With this adjustment of notations the following theorem literally repeats Theorem 4.2 and
provides the Hamiltonian framework for generalized flows:

Theorem 5.2. The Euler-Arnold equation for generalized flows corresponding to the L2-
metric on GVectpMq written in terms of a coset rαααs P GVectpM,µµµq˚ reads

#

Btrαααs ` riuuudααα ` 1
2diuuuαααs “ 0 ,

Btµµµ “ ´Luuuµµµ ,

where ααα P rαααs is the representative satisfying (34), and uuu :“ ααα7 P GVectpM,µµµq. It is a
Hamiltonian equation on the algebroid dual GVectpMq˚ with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.

Let us rewrite explicitly the Euler-Arnold equations in terms of fluid velocities of general-
ized flows.

Theorem 5.3. The Euler-Arnold equations corresponding to the L2-metric on GVectpMq

written in terms of the fluid velocities uuu and density ρa “ µa{volM coincide with generalized
flow equations (1.13) - (1.15) of [6]:

"

Btpρauaq ` div pρaua b uaq ` ρa∇p “ 0, (35a)

Btρa ` div pρauaq “ 0, (35b)

subject to the constraint
ş

A ρa da “ 1, where the pressure p P C8pMq is common for all phases
and is defined uniquely up to an additive constant by these equations.

Equivalently, the generalized flow equations (35a)-(35b) describe the velocity along a
geodesic for the L2 metric on a source fiber of the groupoid GDiffpMq.
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Proof. The constraint
ş

A ρa da “ 1 follows from (32) and the definition ρa “ µa{volM of the
density function. Using Theorem 5.2 and the same argument as in the proof of Theorem 4.4,
one gets the equations

"

Btua ` ∇uaua “ ´∇p, (36a)

Btµa “ ´Luaµa. (36b)

Clearly, (36b) is equivalent to (35b), so it only remains to derive (35a). Using (35b) and
(36a), we obtain

Btpρauaq “ pBtρaqua ` ρapBtuaq “ ´div pρauaqua ´ ρap∇uaua ` ∇pq

“ ´pdiv pρauaqua ` ∇ρauauaq ´ ρa∇p “ ´div pρaua b uaq ´ ρa∇p ,

where the last equality follows from the identity div pub vq “ div puqv ` ∇uv. Thus, (35a) is
equivalent to (36a), as required.

Remark 5.4. The quantity mmm :“ ρρρuuu5 “ tρau
5
a | a P Au has the physical meaning of the

momentum. In terms of momentum the metric (33) assumes a simpler form xuuu,vvvyL2 “
ş

A

ş

M mapvaq volM da and the equations (35a)-(35b) are often written on ma, cf. [6].

6 Open problems

Arnold’s original insight in [1] uncovered the geometry behind the hydrodynamic Euler equa-
tion: for an ideal fluid confined to a fixed domain the Euler equation describes the geodesic flow
for the energy metric on the Lie group of volume-preserving diffeomorphisms of that domain.
The analytical part of this approach is due to Ebin and Marsden [11] who proved short-time
existence in the setting of Sobolev spaces Hs, where s is sufficiently large (s ą dimM{2 ` 1).

The present paper can be regarded as an analog of Arnold’s take by providing the geometric
framework of Lie groupoids, instead of Lie groups, for the Euler equation for multiphase fluids
and generalized flows. We hope that it will encourage the appearance of necessary analytical
setting, in the form of existence theorems in appropriate Sobolev or tame Fréchet spaces.

Here we summarize several open problems motivated by the groupoid approach:

– Provide an analytic framework and existence theorems for the Euler equation for mul-
tiphase fluids and generalized flows, extending the Ebin–Marsden setting [11] from groups to
groupoids of diffeomorphisms.

– There are (at least) two different definitions of generalized flows, both suggested by
Y. Brenier: the one discussed above, as a continuum version of multiphase flows [5, 6],
and the other via probabilistic measures on the space of all parametrized continuous paths
X “ Cpr0, 1s;Mq satisfying the incompressibility and finiteness of action conditions [4], see
also [2, 18]. Their equivalence is intuitively assumed but, to the best of our knowledge, not
written up. Once it is formally established, it would open new ways of applying groupoids in
probabilistic settings.

– There is a natural semigroup of continuous maps, in which fluid particles are allowed
to collide and stick to each other. In that setting compositions of maps are well-defined but
inversion is not, cf. [6], which seems to be an appropriate framework for the description of
shock waves in fluids. While there seem to be a projection from the diffeomorphism groupoid
to the semigroup of maps, the corresponding Hamiltonian picture for the semigroup is rather
obscure.
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– In the appendix below we give a groupoid description of vortex sheets [12], which can
be thought of as the limiting case for the relaxed problem of evolution of homogenized vortex
sheets or miltiphase flows, see [5, 14]. It would be interesting to obtain a rigorous treatment
of this limiting procedure in the Lagrangian and Hamiltonian setting.

– Finally, it would be interesting to apply the framework of Euler-Arnold equations on Lie
groupoids, along with the corresponding Hamiltonian framework on Lie algebroid duals, to
other problems in mathematical physics, both in finite and infinite dimensions. This approach
seems natural in the situations where the group symmetry is not available, e.g. fluids with
dynamic boundary, a rigid body moving in a manifold, etc.

7 Appendix: Dynamics of classical vortex sheets

Classical vortex sheets can be thought of as a particular case (or, rather, as belonging to a
closure) of multiphase fluids where the densities are indicator functions of open sets separated
by a hypersurface in a manifold M , see [12, 14]. Namely, the multiphase Lie groupoid in that
case becomes the Lie groupoid DSDiffpMq of volume-preserving diffeomorphisms of M that are
discontinuous along a hypersurface. The elements of the groupoid DSDiffpMq are quadruples
pΓ1,Γ2, ϕ

`, ϕ´q, where Γ1,Γ2 P VSpMq are hypersurfaces (vortex sheets) in M confining the
same total volume, while ϕ˘ : D˘

Γ1
Ñ D˘

Γ2
are volume-preserving diffeomorphisms between

connected components of M z Γi denoted by D`
Γi
, D´

Γi
. The multiplication of the quadruples

in DSDiffpMq is given by the natural composition of discontinuous diffeomorphisms and is
shown in Figure 4.

The corresponding Lie algebroid DSVectpMq Ñ VSpMq is the space of possible velocities
of a fluid with a vortex sheet, defined as follows. Given a vortex sheet Γ, the corresponding
velocities are discontinuous vector fields on M of the form u “ χ`

Γu
``χ´

Γu
´, where χ`

Γ , χ
´
Γ are

indicator functions of the connected components D˘
Γ of M z Γ, and u˘ are smooth divergence-

free vector fields on D˘
Γ which have the same normal component on Γ. The map from such

vector fields u to their normal components on Γ is the anchor map # of the corresponding
algebroid. Via the general procedure described above one defines a right-invariant L2-metric
on this groupoid and constructs an analogue of the geodesic Euler-Arnold equation.

Theorem 7.1 ([12]). The Euler-Arnold equation corresponding to the L2-metric on the alge-
broid DSVectpMq coincides with the the Euler equation for a fluid flow discontinuous along a
vortex sheet Γ Ă M :

$

’

&

’

%

Btu
` ` ∇u`u` “ ´∇p`,

Btu
´ ` ∇u´u´ “ ´∇p´,

BtΓ “ #u ,

(37)

Γ1

D`
Γ1

D´
Γ1

Γ2D`
Γ2

D´
Γ2

Γ3

D`
Γ3

D´
Γ3

ϕ`

ϕ´

ψ`

ψ´

Figure 4: Elements of the groupoid DSDiffpMq and their composition rule.
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where u “ χ`
Γu

` ` χ´
Γu

´ is the fluid velocity, div u˘ “ 0, and p˘ P C8pD˘
Γ q are functions

satisfying the continuity condition p`|Γ “ p´|Γ.
Equivalently, Euler equations (37) are geodesic equations for the right-invariant L2-metric

on (source fibers of) the Lie groupoid DSDiffpMq of discontinuous volume-preserving diffeo-
morphisms.

The above consideration also defines a metric on the space VSpMq of vortex sheets, while
the target map is a Riemannian submersion of the L2-metric on the groupoid of discontinuous
diffeomorphisms to the metric on VSpMq, see [12, 14].

Remark 7.2. The multiphase groupoid studied in Section 3.1 can be regarded as a relaxed
version of the vortex sheet groupoid as follows. Given a hypersurface Γ Ă M we define the
multiphase density µµµ :“ pµ`, µ´q as a pair of indicator densities µ˘ “ χ˘volM for indicator
functions χ˘ of the connected components D˘

Γ of M z Γ, and therefore satisfying the condition
µ` ` µ´ “ volM on M . Now, for a groupoid element pϕϕϕ ;µµµ,µµµ1q :“ pϕ`, ϕ´;µ`, µ´, µ

1
`, µ

1
´q

the pair of diffeomorphisms ϕ˘ on M satisfying ϕ˘˚µ˘ “ µ1
˘ for indicator densities µ1

˘

representing the connected components D˘
Γ1 of M z Γ1 boils down to a pair of volM -preserving

diffeomorphisms sending, respectively, D˘
Γ to D˘

Γ1 , i.e. Γ to Γ1 while preserving the volume
form volM on M .

One can see that the definitions of the corresponding algebroids, their brackets and an-
chor maps, as well as the corresponding Poisson structures and Hamiltonian equations are
consistent with taking this relaxed version and lead to the relation between the Euler equa-
tions (6) and (37). It would be interesting to formally establish the convergence for the relaxed
solutions to the classical solutions with vortex sheets, cf. Section 6.
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