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Geometry of generalized fluid flows

Anton Izosimov* and Boris Khesin'

Abstract

The Euler equation of an ideal (i.e. inviscid incompressible) fluid can be regarded,
following V.Arnold, as the geodesic flow of the right-invariant L2-metric on the group
of volume-preserving diffeomorphisms of the flow domain. In this paper we describe
the common origin and symmetry of generalized flows, multiphase fluids (homogenized
vortex sheets), and conventional vortex sheets: they all correspond to geodesics on certain
groupoids of multiphase diffeomorphisms. Furthermore, we prove that all these problems
are Hamiltonian with respect to a Poisson structure on a dual Lie algebroid, generalizing
the Hamiltonian property of the Euler equation on a Lie algebra dual.
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1 Introduction

Classical hydrodynamics deals with an ideal (i.e. inviscid incompressible) fluid, whose motion
is described by the Euler equation. In this paper we consider a broader setting of multiphase
fluids and generalized flows. A multiphase fluid consists of several fractions that can freely
penetrate through each other without resistance and are constrained only by the conservation
of total density. Such flows arise, in particular, in connection with vortex sheets in an ideal
fluid, i.e. hypersurfaces of discontinuity in fluid velocity with different speed of fluid layers on
different sides of the hypersurface. By relaxing the condition of a sharp border between the
layers one obtains homogenized vortex sheets [5], which allow mixing of the two parts of the
fluid, rather than separating them by a hypersurface. Such homogenized vortex sheets can
be thought of as examples of multiphase flows. Beyond the vortex sheet setting, multiphase
fluids arise e.g. in plasma physics and chemistry.

Of particular interest are multiphase fluids with continuum of phases (or generalized flows),
introduced by Y. Brenier [6]. One can think of them as flows in which every fluid particle
spreads into a cloud thus moving to any other point of the manifold with certain probability
(we define this precisely below), see Figure 1. While, according to A.Shnirelman [17], a
shortest curve on the group of volume-preserving diffeomorphisms does not exist between
some pairs of maps, generalized flows of Brenier do allow such a shortest solution for a large
class of diffeomorphisms.

In this paper we describe the common origin and symmetry of both multiphase fluids
(equivalently, homogenized vortex sheets) and generalized flows (fluids with continuum of
phases): they both correspond to geodesics on certain groupoids of multiphase diffeomor-
phisms. Groupoids can be thought of as groups with partially defined multiplication. We
also present the Hamiltonian framework for them by describing the corresponding dynamics
as Euler-Arnold flows for right-invariant energy metrics on the groupoid. In other words, we
prove that generalized flows are Hamiltonian for the corresponding Poisson structure on the
dual Lie algebroid, generalizing Lie-Poisson structures.

Recall that in 1966 Arnold proved that the Euler equation for an ideal fluid describes the
geodesic flow of a right-invariant metric on the group of volume-preserving diffeomorphisms of

Figure 1: Trajectories of particles in one-dimensional analogues of generalized flows corresponding to
(a) continuum of phases for the flip of the interval [0, 1] and (b) a multiphase flow with two phases for
the interval-exchange map [0,1/2] < [1/2,1]; see [2].
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the flow domain [1]. This insight turned out to be indispensable for the study of geometry and
topology of fluid flows, Hamiltonian properties and conservation laws in hydrodynamics, as
well as a powerful tool for obtaining sharper existence and uniqueness results for Euler-type
equations [2]. However, such objects as the above-mentioned multiphase fluids or general-
ized flows do not fit into Arnold’s approach. In the paper [12] on classical vortex sheets
in incompressible flows we introduced the language of Lie groupoids in hydrodynamics. In
the present paper we demonstrate its universality by extending Arnold’s framework to other
Lie groupoids with one-sided invariant metrics, thus treating generalized flows (which did
not allow any group interpretation before) and vortex sheets on the same footing, as well as
developing a groupoid-theoretic description for many fluid dynamical settings.

1.1 Groupoid framework for generalized flows

Recall that the hydrodynamical Euler equation for an incompressible fluid filling a closed
compact Riemannian manifold M is the following evolution law on the velocity field u:

oru+ Vyu =—Vp,

supplemented by the divergence-free condition divu = 0 on M. The pressure function p is
defined uniquely modulo an additive constant by those conditions. This setting also extends
to manifolds with boundary, as well as non-compact manifolds (such as R"™), by imposing
appropriate boundary or decay conditions. Arnold’s theorem sheds light on the origin of this
equation:

Theorem 1.1 (Arnold [1]). The Euler equation can be regarded as an equation of the geodesic
flow on the group SDiff (M) of volume-preserving diffeomorphisms of M with respect to the
right-invariant metric given at the identity of the group by the squared L?>-norm of the fluid’s
velocity field (i.e., the fluid kinetic energy').

This theorem provides an attractive way to construct Euler solutions as shortest curves, i.e.
geodesics, joining two volume-preserving diffeomorphisms of M. However, in [17] Shnirelman
proved that not all pairs of such diffeomorphisms admit a shortest curve connecting them.
This variational problem was “cured” by Brenier [6], who introduced the space of generalized
fluid flows and proved the existence in that space of a shortest curve joining any two volume-
preserving diffeomorphisms from a large class.

Generalized flows satisfy the following equations:

{ Ot(patta) + div (patia ® ug) + poVp =0, (1a)
Orpa + div (pauq) =0, (1b)

along with the constraint § 4 Pada = 1. Here u, € Vect(M) is the fluid velocity field, depending
on an additional parameter a belonging to a certain measure space A. One can think of A
as enumerating fractions of the fluid, with u, being the velocity of a particular fraction.
Likewise p, € C*(M) is the mass density of the fraction with label a € A. The pressure
function p e C*(M) is common for all fractions.

Remark 1.2. Using (1b) one can rewrite (la) in the form similar to the classical Euler
equation:
Ortg + Vy,uq = —Vp. (2)

'The L?-metric is twice the kinetic energy of the fluid, which leads to a simple time rescaling, and we will
not be mentioning this throughout the paper.



The above form is given for consistency with [6], and it also simplifies the derivation of
equation for the pressure function.

Namely, the pressure can be obtained from the velocities u, and densities p, as follows.
Integrating (1b) over the space A we get the condition

div ( L patiada) = 0, (3)

which can be thought of as an analog of the condition div u = 0 for the classical Euler equation.
Further, taking the divergence of(1a), integrating over A, and using (3) we get

Ap = —div f div (pata ® ug) da, (4)
A

which is a Poisson equation and hence has a unique solution for the pressure function, up to
an additive constant.

Theorem 1.3 (= Theorem 5.3). The Euler equations (1) for a generalized flow are geodesic
equations for the right-invariant L?-metric on (source fibers of) the Lie groupoid GDiff (M)
of generalized diffeomorphisms. Equivalently, the Euler equations (1) are the groupoid Euler-
Arnold equations corresponding to the L?-metric on the algebroid GVect(M).

The Lie groupoid GDiff (M) of generalized diffeomorphisms is a natural generalization of
the group SDiff(M) of volume-preserving diffeomorphisms. (Just like the latter arises from
“integrating” the condition divu = 0 on fluid velocities, the groupoid GDiff (M) “integrates”
equation (3).) The definition of that groupoid is as follows. Its base is the space GDens(M)
of generalized densities, i.e. sets of densities p := {yu, € Dens(M) | a € A} such that all p, are
positive, have prescribed masses cg, i.e.

jM o = Ca, (5)

and together constitute the fixed volume form voly; on M, i.e. S 4 Mada = volys at each point
of M (in particular, §, cuda = §,, volpr). One can think of those densities as a set A of different
fractions of an incompressible fluid, penetrating through each other without resistance. Such
a generalized density g can also be interpreted as a doubly stochastic measure pg A da on the
direct product M x A. The relation between densities p, and functions p, introduced above
is f1q = pgvolps. In particular, the condition § 4 Ma da = volyy is equivalent to the constraint
§ 4 Pada =1

The elements of GDiff (M) are triples (¢;u,pu’) where ¢ := {p, € Diff(M) | a € A}
is a generalized diffeomorphism, and p,pu’ € GDens(M) are generalized densities such that
o.p = p' component-wisely, i.e. @guptq = pl, for each a € A. The multiplication of such triples
is defined by the natural composition, (¢¥;p’',u”)(¢;p,p1') = (Yo ;pu, p").

The infinitesimal object corresponding to this Lie groupoid is the Lie algebroid GVect(M )
describing the space of velocities for a generalized fluid. It is a vector bundle over GDens(M)
with the following structure. Its fiber over p € GDens(M) is the space GVect(M, ) that
consists of generalized vector fields on M of the form u := {u, | a € A} with u, € Vect(M)
that are “divergence-free” with respect to the generalized volume form: § 4 Lugtada = 0
(the latter equation is equivalent to (3)). The vector bundle GVect(M) carries additional
structures, namely a bracket on sections and a so-called anchor map, see Section 5. These
structures endow the dual bundle GVect(M)* with a Poisson structure. Equations (1) are
Hamiltonian with respect to that structure:



Theorem 1.4 (=Theorem 5.2). The Euler equations (1) for a generalized flow written on the
dual GVect(M)* of the algebroid are Hamiltonian with respect to the natural Poisson structure
on the dual algebroid and the Hamiltonian function given by the L? kinetic energy.

The above two theorems provide the group-theoretic and Hamiltonian frameworks for
generalized flows.

Remark 1.5. The smoothness of the groupoid and algebroid is understood below in the
Fréchet C* setting. Similarly, one can consider the setting of Hilbert manifolds modeled on
Sobolev H* spaces for sufficiently large s, s > dim M /2 + 1, cf. [11].

Remark 1.6. Theorem 1.4 remains valid if we exclude the condition (5) from the definition of
the groupoid. That condition is added for technical reasons (specifically, to make the groupoid
transitive, see Definition 2.3 below) and does not affect equations (1). Indeed, preservation of
masses SM g 18 just a consequence of those equations.

1.2 Groupoid setting for multiphase fluids

In this section we discuss the “discrete version” of generalized flows, namely, multiphase flows
on a Riemannian manifold M. Such flows appear in [5] in the context of homogenized vortex
sheets and are governed by the following equations:
&gu]' + Vuju]‘ = —Vp, (6)
é’tpj + div (pj’LLj) =0.

Here p1, ..., pn € C*(M) are mass densities of n phases of the fluid subject to the constraint
Z?Zl p;j = 1, the vector fields uy, ..., uy, € Vect(M) are the corresponding fluid velocities, and
the pressure p € C*(M) is common for all phases. These equations can be thought of as
a discrete analogue of (1), which becomes particularly transparent upon rewriting equation
(1a) in the form (2). Conversely, we can rewrite the first equation in (6) in the form

de(pjuj) + div (pjuj @ uj) + pjVp = 0.

Furthermore, the second equation implies

div Z piuj =0, (7)
j=1

which results in the following equation for the pressure, cf. (4):

Ap = —div Z div (piu; ® u;).
j=1

The Lie groupoid MDiff (M) underlying equations (6) is a discrete version of the groupoid
GDiff(M). Its base is the space MDens(M ) of multiphase densities, i.e. n-tuples of densities
p o= (p1,..., bn) satisfying the conditions that all densities p; are positive and sum to a
fixed density volys everywhere on M, while their total masses are given by a fixed n-tuple of
constants ¢y, ..., ¢, € R. These densities can be thought of as densities of different mutually
penetrating fractions of the fluid, subject only to the total incompressibility condition.

Now the elements of our Lie groupoid MDiff (M) are n-tuples of diffeomorphisms of M
preserving the property of incompressibility of multiphase densities, i.e. the set of tuples



(D, 1) i= (D1, ees Oy 11y «ovy oy 1] -vy pil,) With multiphase forms p, p’ € MDens(M) such
that the multiphase diffeomorphism ¢ push-forwards one of them to the other, ¢ u = p’
component-wisely. The multiplication in MDiff (M) is defined in the same way as for
GDiff (M).

The corresponding Lie algebroid MVect (M) is the space of possible velocities of the mul-
tiphase fluid. It is a vector bundle over MDens(M) where the fiber of MVect(M) over
p € MDens(M) is the space MVect(M, p) which consists of multiphase vector fields on M
“divergence-free” with respect to the multiphase volume form, i.e. vector fields of the form
u := (U1, ..., uy), where u; € Vect(M) are such that 37, Ly;pj = 0.

Theorem 1.7 (=Theorem 4.4). The FEuler equations (6) for a multiphase fluid flow are
geodesic equations for the right-invariant L?-metric on (source fibers of) the Lie groupoid
MDift (M) of multiphase volume-preserving diffeomorphisms. Equivalently, they are groupoid
Euler-Arnold equations corresponding to the L?>-metric on the algebroid MVect(M).

For the case of a flat space M the geodesic (although not the group) nature of homogenized
vortex sheets (i.e. multiphase flows) was established in [14, Proposition 6]. One can see that
the standard hydrodynamical Euler equation is a particular case of the above multiphase
equations with only one phase, n = 1. Furthermore, equations (6) can be described within
the Hamiltonian framework:

Theorem 1.8 (=Theorem 4.2). The Euler equations (6) for a multiphase flow written on
the dual MVect(M)* of the algebroid are Hamiltonian with respect to the natural Poisson
structure on the dual algebroid and the Hamiltonian function given by the L? kinetic energy.

This theorem is an analogue of the Hamiltonian property of the Euler-Arnold equation on
the dual to a Lie algebra with respect to the Lie-Poisson structure.

Return to the metric properties of the groupoid Euler-Arnold equation. Given any initial
density p € MDens(M), consider the subset MDiff (M), < MDiff(M) of multiphase diffeo-
morphisms which push p forward to another multiphase density (a so-called source fiber of
the groupoid MDiff(M)). That set is equipped with an L?-metric. At the same time, there
is a natural metric (, )Mpens on the space MDens(M ) of multiphase densities induced by the
well known Wasserstein metric. The connection between those two metrics is described by
the following result.

Theorem 1.9 (=Theorem 4.7). For any multiphase density p € MDens(M) the groupoid
target mapping trg: (MDIff(M),, (,)r2) — (MDens(M),{, )MDens) s a Riemannian submer-
sion. In particular, horizontal geodesics on MDiff(M), project to geodesics on MDens(M).
Those geodesics correspond to potential solutions of the system (6).

In particular, this result implies a geodesic description of potential solutions to (6), cf.
[14, Proposition 7]. These potential solutions have the form u = (Vfi,...,Vf,) in M, see
Figure 2. The Wasserstein-type metric {, )Mmpens 1S apparently related to the metric between
vector densities described recently in [8, 9].

One of the byproducts of the groupoid approach is the following generalized Kelvin’s
theorem. Namely, define the multiphase vorticity w := du’ for an n-tuple of vector fields
u € MVect(M) as the component-wise vorticity n-tuple, i.e. w; := du?- with ug standing for
the 1-forms metric-dual to the vector fields u;.

Corollary 1.10 (=Corollary 4.5). For a multiphase fluid the vorticity is “frozen into the flow”
in the generalized sense: dw + Lyw = 0, that is the vorticity of each phase is transported by
the corresponding velocity field: Oywj + Ly;w; = 0.
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Figure 2: Riemannian submersion for the groupoid. Here SDiff, (M) := {¢ | ¢} i = p;} is
the group of volume-preserving multiphase diffeomorphisms, and u is a horizontal vector field
projecting to & = —Lyp. The latter can be regarded as the velocity of the multiphase density

M, and <£7E>MDens = <’U,,U>L2.

We would like to emphasize that in the classical Euler equation, the vorticity (along
with circulations in a non-simply-connected M) fully determine the velocity field. In the
multiphase setting the situation is different: in particular, there are nontrivial solutions with
zero vorticity and zero circulation. The reason is in the different geometry of symplectic leaves
for the corresponding Poisson bracket. Indeed, in the group setting these leaves are coadjoint
orbits in g* of the corresponding group, while in the case of an algebroid one has the group
action only in the kernel bundle of the corresponding anchor map (and in its dual bundle).
The corresponding symplectic leaves are obtained by taking the inverse images of the orbits
for the action under the projection of A* into that dual bundle, cf. [12]. We hope to return
to this description in a future publication.

1.3 Structure of the paper

The rest of the paper is a detailed discussion of objects involved in the above theorems, along
with proofs of those theorems. We start with the discrete case (Theorems 1.7 - 1.9). It is
discussed in Sections 3 and 4 (while in Section 2 we recall basics of the groupoid and algebroid
theory). The continuous case (Theorems 1.3 and 1.4) is discussed in Section 5. The proofs in
that case are very similar to the discrete situation, so we only discuss necessary modifications.

Several open problems and suggested in Section 6. It is worth mentioning that the groupoid
approach above may also allow one to give a geometric description for yet another equivalent
point of view on generalized flows, taken by Brenier [4] and Shnirelman [18] (see also [2,
Section IV.7]), as probabilistic measures on the space of parametrized continuous paths in the
flow domain. It would be also interesting to describe the group and Hamiltonian picture for
vector and matrix densities in [8, 9] and the surprising appearance of the general relativity
equation for matrix measures in [7].

Acknowledgements. We are indebted to the MFO Institute in Oberwolfach, Germany
and its program of Research in Pairs, where this work was completed. We are also grateful to

the anonymous referee for various suggestions improving the exposition. A.l. was supported
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2 Lie groupoids and algebroids

In this section we briefly recall basic facts about Lie groupoids and algebroids (details can be
found, e.g., in [10, 15]).

2.1 Lie groupoids

Definition 2.1. A groupoid G = B is a pair of sets, B (the base of the groupoid) and G (the
groupoid itself), endowed with the following structures:

1. Two maps src, trg: G — B, called source and target respectively.

2. Partial binary operation (g,h) — gh on G which is defined for all pairs g,h € G such
that src(g) = trg(h) and has the following properties:

(a) The source of the product is the source of the right factor: src(gh) = src(h), while
the target of the product is the target of the left factor: trg(gh) = trg(g).

(b) Associativity: g(hk) = (gh)k whenever any of those expressions is well-defined.

(c) Identity: for any x € B, there exists an element id, € G such that idygg) - g =
g idgre(g) = g for every g € G.

(d) Inverse: for any g € G, there exists an element g~ € G such that g~'g = idgre(g)
and gg~! = 1dgrg(g)-

A groupoid G 3 B is called a Lie groupoid if G, B are manifolds, the source and target are
submersions, and the maps (g, h) ~ gh, x + id,, and g — ¢g~! are smooth. (The domain of
the multiplication map is {(x,y) € Gx G | src(z) = trg(y)}. The submersion property of source
and target ensures that this set is a submanifold of G x G, so smoothness of multiplication is
well-defined.)

Example 2.2. (a) Any Lie group G is a Lie groupoid over a point.

(b) For any smooth manifold B, the set G := B x B is a Lie groupoid over B, called the
pair groupoid. The source and target are defined by src(z,y) = z, trg(x,y) = y, while
the product is given by (y, 2)(x,y) := (z, 2).

(c) Let B be a smooth manifold, and let G be a Lie group acting on B. Then the action Lie
groupoid G x B =3 B is defined as follows. The points of G x B are triples (g; z,y), where
x,y € B, g € G, and gx = y. The source map is given by src(g; z,y) := z, the target is
trg(g; x,y) := y, and the multiplication is defined by (h;y, 2)(g;x,y) := (hg; x, 2) .

Definition 2.3. A groupoid G =2 B is called transitive if for any x,y € B there exists g € G
such that src(g) = x and trg(g) = y.

For example, an action groupoid G x B is transitive if and only if the G-action on B is
transitive.

Definition 2.4. Let G =3 B be a groupoid. Then the source fiber G, of G corresponding to
x € B is the set G, := {g € G | src(g) = z}.

For instance, for an action groupoid G x B, any source fiber is canonically identified with
the group G.
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Figure 3: A groupoid G 3 B. The vertical projection is the source map src: G — B,
the horizontal projection is the target map trg: G — B, while horizontal arrows are right
translations. A section of the algebroid is a collection of vertical vectors attached to the
diagonal src = trg.

2.2 Lie algebroids

The infinitesimal object corresponding to a Lie groupoid is a Lie algebroid.

Definition 2.5. A Lie algebroid A over a manifold B is a vector bundle A — B endowed
with a Lie bracket [,] on smooth sections and a vector bundle map #: A — T'B, called the
anchor, such that for any two smooth sections ¢, 7 of A and any smooth function f € C*(B),

one has [¢, fn] = f[¢,n] + (Lucfn.

The Lie algebroid A — B corresponding to a Lie groupoid G 3 B is constructed as follows.
The fiber of A over x € B is the tangent space to the source fiber G, at the identity id,. The
anchor map on that fiber is defined as the differential of the target map trg: G, — B, while
the bracket on sections is defined as follows. Every section of A can be uniquely extended to
a right-invariant vector field on G tangent to source fibers, and the correspondence between
such vector fields and sections of A is a vector space isomorphism (see Figure 3). This allows
one to define the bracket of sections of A as the Lie bracket of the corresponding right-
invariant vector fields (which is again a right-invariant vector field tangent to source fibers,
and, therefore, corresponds to a section of A).

Example 2.6. For Lie groupoids of Example 2.2, the corresponding algebroids are:

(a) The Lie algebra g of the group G, considered as a Lie algebroid over a point. The
anchor map is trivial, while the bracket on sections (which are simply elements of g) is
just the bracket on g.

(b) The tangent bundle T'B of B. The corresponding bracket on sections is the standard
Lie bracket of vector fields, while the anchor map is the identity.

(¢) The action Lie algebroid g x B, where g is the Lie algebra of the group G. As a vector
bundle, g x B is a trivial bundle over B with fiber g. The anchor map g x B — T'B is
defined for an element (u,z) € g x B by #(u,z) = pyu(x), where p,, is the infinitesimal
generator of the G-action corresponding to u € g. The bracket of sections is given by

€] (z) = [C(@), ()] + (Lxen) (@) = (LynC) (), (8)



where [, ]g is the bracket in g, and the derivatives L4¢n, L4,( are defined by identifying
sections of g x B with g-valued functions on B.?2

Definition 2.7. A Lie algebroid A — B is called transitive if the anchor map is surjective.

The Lie algebroid associated with a transitive Lie groupoid is transitive.

2.3 Dual Lie algebroids as Poisson vector bundles

Recall that the dual space g* of any Lie algebra g carries a natural linear Poisson structure.
This result extends to the algebroid setting: the dual of a Lie algebroid is a Poisson vector

bundle.

Definition 2.8. A Poisson vector bundle EE — B is a vector bundle whose total space E
is endowed with a fiberwise linear Poisson structure, i.e. a Poisson structure such that the
bracket of any two fiberwise linear functions is again a fiberwise linear function.

Two basic examples of Poisson vector bundles are a vector space endowed with a linear
Poisson structure (which is a Poisson vector bundle over a point), and the cotangent bundle
of a manifold B. These Poisson vector bundles are dual, respectively, to Lie algebroids g and
T B from Examples 2.6(a) and 2.6(b). For general Lie algebroids, one has the following result.

Proposition 2.9. The dual bundle®* A* — B of any Lie algebroid A — B has a natural
structure of a Poisson vector bundle. The Poisson structure on A* is uniquely determined by
requiring that for arbitrary fiberwise linear functions (,n and an arbitrary fiberwise constant
function f, one has {¢,n} := [(,n], {C, f} := Lycf. Here we identify fiberwise linear functions
on A* with sections of A, and fiberwise constant functions on A* with functions on the base B.

In what follows, we will need the following explicit formula for the Poisson structure on a
Lie algebroid dual.

Proposition 2.10. [3] Let A be a Lie algebroid. Then, for any o € A* and for any smooth
functions f,g € C®(A*), one has

{£, 9}(@) = {a, [d" £(&),d" g(&)]) + Loyar () (90 & — (&, d"g(&)))

(
9
—Lyqrg(a) (fod —<(a, de(d)>) 9)

where & is an arbitrary section of A* estending o, and d¥ f(a),d" g(a) € A are fiber-wise
differentials of f and g at « (i.e. differentials restricted to the tangent space of the fiber of
ae A*).

This formula can be used as a definition in the infinite-dimensional case. Although for
general infinite-dimensional algebroids it is not even clear why this expression makes sense, we
prove it below by obtaining an explicit formula in the setting of multiphase diffeomorphism
groupoids.

2t is useful to compare this bracket to that of a semidirect product Lie algebra § := g x B, where the group
of the Lie algebra g acts on a vector space B (e.g. the Lie algebra for the group of affine transformations of B,
the semidirect product of linear transformations and translations). The Lie bracket of § between two elements
(u, ), (v, B) € g x Bis ([u,v]g,aduf — adya) .

3If the fibers of A are infinite-dimensional, then the fibers of A* consist of sufficiently regular functionals
on fibers of A. In the hydrodynamical setting we will make this precise below.
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Also note that for an action algebroid (see Example 2.6¢) formula (9) becomes

{£,9}(@) = {a, [d" f(a),d" g()]) + a(f. 9) — alg, f), (10)

where

2.4 Euler-Arnold equations on Lie algebroids

Let A — B be a finite- or infinite-dimensional Lie algebroid, and let Z7: A — A* be an
invertible bundle morphism. (In the infinite-dimensional case one needs to consider the smooth
dual bundle A*, similarly to consideration of smooth duals of infinite-dimensional Lie algebras,
cf. [2]. In the hydrodynamical setting we define this smooth dual in detail in Section 3.) We
call such Z an inertia operator. An inertia operator Z defines a metric on A given by

<u7 U>A = <I(’U,), 1)>

for any u,v in the same fiber of A. Since the inertia operator Z is invertible, one also has a
dual metric on A*:

{a, Byax = (T} (a), B) =T (@), T (B))a
for any «, 5 in the same fiber of A*. Consider also a function H € C*(A*) defined by

H(a) := %<a,oz>A* Vae A*.

Definition 2.11. The Hamiltonian equation associated with the Poisson structure on A* and
the function H is called the groupoid Euler-Arnold equation corresponding to the metric {, ) 4.

Example 2.12. When A is a Lie algebra, we obtain the standard notion of an Euler-Arnold
equation on a Lie algebra dual. When A = T'B is the tangent bundle of a manifold B, the
Euler-Arnold equation is the geodesic equation on B. (The latter is, of course, a second order
equation on B, but it becomes first order — specifically, the algebroid Euler-Arnold equation
— if we interpret it as an equation on T'B.)

Remark 2.13. In the case when the algebroid A is associated with a certain Lie groupoid
G, solutions of the Euler-Arnold equation can be interpreted as geodesics of a right-invariant
source-wise (i.e. defined only for vectors tangent to source fibers) metric on G. In the transitive
case those solutions can also be thought of as geodesics on any source fiber G,.

Furthermore, an Euler-Arnold equation on a transitive algebroid A — B always gives rise
to a certain geodesic flow on the base B. Indeed, let A — B be a Lie algebroid. Then, since
the anchor map #: A — TB is an algebroid morphism, the dual map #*: T*B — A* is
Poisson. Note that if, moreover, the algebroid A is transitive, then #*(7*B) is a symplectic
leaf in A*. Indeed, if A is transitive, then the Poisson map #* is injective, while the image
of a closed injective Poisson map of a symplectic manifold is always a symplectic leaf.

Proposition 2.14. Let A — B be a transitive Lie algebroid, and let {,)4 be a positive-
definite metric on A for an invertible inertia operator T: A — A*. Assume also* that for this
metric {, Y4 there is an orthogonal decomposition A = Ker# @ (Ker#)*. Then the following
holds:

4Note that this property is automatic in the finite-dimensional case.
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1. The pullback of the groupoid Euler-Arnold flow corresponding to the metric {,y 4 from
the symplectic leaf #*(T*B) to T*B s the geodesic flow for a certain metric {,)p on
B. Explicitly, for any x € B and any ¢,n € T, B, the metric {,)p reads

Comp = F O # M)A, (12)

where # 1: TB — (Ker#)L is the inverse for the restriction of the anchor map to

(Ker#)*.

2. Assume, in addition, that the algebroid A corresponds to a certain transitive groupoid G.
Then, for every x € B, the target mapping trg: (G.,{,>g) — (B,{,)p) is a Riemannian
submersion. (Here the metric (,)g on G, is defined using the identification between
metrics on A and right-invariant source-wise metrics on G, see Remark 2.13.)

For the proof see [12].

Example 2.15. Let M be a Riemannian manifold. Consider the natural transitive action
of its diffeomorphism group Diff(M) on the space Dens(M) of densities on M of unit total
mass, and let Diff(M) x Dens(M) be the corresponding action groupoid (see Example 2.2(c)).
Define a metric on the corresponding action algebroid Vect(M) x Dens(M) by setting

= | (o

for u,v lying in the fiber of Vect(M) x Dens(M) over u € Dens(M). (Recall that the fibers
of Vect(M) x Dens(M) are identified with the Lie algebra Vect(M), see Example 2.6(c).)
Then, according to Remark 2.13, for any p € Dens(M), there is a corresponding metric on the
source fiber (Diff(M) x Dens(M)),, = Diff(M). It is an L?-type metric on Diff(M), and there
is a Riemannian submersion of that metric onto Wasserstein metric on Dens(M ), see [16] and
Remark 4.8 below.

Example 2.16. Another example is given by the metric on the space VS(M) of vortex sheets
in a manifold M, discussed in [12, 14] and in Appendix below. In that case one considers
the Lie groupoid DSDiff (M) of volume-preserving diffeomorphisms of a manifold M that
are discontinuous along a hypersurface. Its Lie algebroid DSVect(M) — VS(M) consists of
velocities of the fluid with a vortex sheet: given a vortex sheet I', the corresponding velocities
are discontinuous vector fields on M of the form u = XIJE ut + xpu~, where Xff , Xp are the
indicator functions of connected components Df:r of M\T, and u* are smooth divergence-
free vector fields on Df:r such that the restrictions of u™ and u~ to I' have the same normal
component, see appendix. There is a Riemannian submersion from an L? metric on DSDiff (M)
to a metric on the space of classical vortex sheets, cf. [12, 14].

3 Kinematics of multiphase fluids

In this section, M is a compact connected manifold without boundary endowed with a volume
form volyy.
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3.1 The Lie groupoid of multiphase diffeomorphisms

In this subsection, we define the Lie groupoid MDiff (M) of volume-preserving multiphase
diffeomorphisms. This groupoid (or, more precisely, any of its source fibers) can be viewed as
the configuration space of a fluid with several phases penetrating through each other. The
conditions defining the groupoid MDIiff (M) can be seen as integration of the corresponding
infinitesimal equation (7), just like the group of volume-preserving diffeomorphisms arises
from “integrating” the divergence-free condition on the corresponding velocity field u.

The base of the groupoid MDiff (M) is, by definition, the space MDens(M) of multiphase
densities, i.e. the space of n-tuples p := (u1, ..., ttn), where each p; € Dens(M) is a density
(top-degree form) on M, satisfying the following conditions:

L. 37y pj = voly.
2. puj > 0forall j =1,...,n everywhere on M.
3. §yr 1y = ¢j for fixed constants c1,...,c, € R (such that 337 ¢; = §, volur).

These densities can be thought of as densities of different fractions of the fluid, that can
penetrate through each other without resistance, subject only to the total incompressibility
condition. The case of two densities, n = 2, supported on two different sides of the separating
hypersurface I' € M corresponds to the regular vortex sheet I' for an incompressible flow in
M. This case belongs to the closure of our space of positive densities. The general case with
densities (p1, ..., in) corresponds to a multiphase fluid where different phases can percolate
through each other.

The elements of MDiff (M) are n-tuples of diffeomorphisms of M preserving the above
property of incompressibility of multiphase densities, i.e. the set of tuples (¢;u,p’) =
(D1 ey Py o1y ooy fomy (Y -y i) With multiphase forms p, g’ € MDens(M) such that the multi-
phase diffeomorphism ¢ push-forwards one of them to the other, ¢, pu = p’ component-wisely.
The source and the target of (¢;p, ') are, by definition, g and g’ respectively. The multipli-
cation in MDiff (M) is given by composition of diffeomorphisms:

(s 1) (D5, i) = (Y, p") .

Remark 3.1. The groupoid MDiff (M) = MDens(M) is a transitive Lie-Fréchet groupoid.
The proof of the Lie-Fréchet property is the standard consideration similar to that for groups
of diffeomorphisms, cf. [12]. One can consider a more general case of densities p; > 0 on
M, in which case the groupoid is not necessarily transitive. The latter case covers that of
the usual vortex sheets I' = M, corresponding to the indicator densities supported on two
different sides of M\I', see Appendix.

Since MDiff (M) is a Lie-Fréchet groupoid, it follows that the corresponding algebroid is
well-defined as a Fréchet vector bundle over MDens(M ) with a bracket and anchor on smooth
sections. We describe this algebroid in detail in the next section.

Remark 3.2. One can also consider the groupoid MDiff (M) in the category of Hilbert man-
ifolds modeled on Sobolev H*® spaces for sufficiently large s, s > dim M /2 + 1, similarly to,
e.g., [11] or [13, Remark 3.3]. Note also that if n = 1, i.e. we have a one-phase fluid, with the
groupoid MDiff (M) becoming the group SDiff (M) of u-preserving diffeomorphisms of M.

Remark 3.3. Note that if we drop the requirement that the densities p; sum to volys in
the definition of the groupoid MDIiff (M), we obtain the definition of the action groupoid
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Diff(M)™ x Dens(M)™, which is the product of n copies of the action groupoid Diff(M) x
Dens(M) (see Example 2.2(c)) corresponding to the natural action of the group Diff(M)
on the space of densities Dens(M). So, the action groupoid Diff(M )™ x Dens(M)™ comes
with a subgroupoid MDiff (M). The subgroupoid MDiff (M) inherits certain properties of the
ambient action groupoid. In particular, the brackets in the algebroids corresponding to these
groupoids are given by the same formulas.

3.2 The Lie algebroid of multiphase vector fields

In this subsection we describe the Lie algebroid MVect(M) — MDens(M) corresponding to
the Lie groupoid MDiff (M). This algebroid serves as the space of velocities for a multiphase
fluid.

Theorem 3.4. The Lie algebroid MVect(M) — MDens(M) corresponding to the groupoid
MDiff (M) is as follows:

1. The fiber of MVect(M) over p := (u1, ..., tn) € MDens(M) is the space MVect(M, p)
which consists of multiphase vector fields on M of the form u := (uy,...,up), where
uj € Vect(M) are such that

ST Ly =0 (13)

(in other words, the multiphase vector field is “divergence-free” with respect to the mul-
tiphase volume form).

2. The anchor map #: MVect(M, p) — T,MDens(M) is given by the negative Lie deriva-
tive,
U= (Uly .y Up) = —Lygpb = (=L i1, ooy =Ly, fin) -

3. Let U,V be sections of MVect(M). Then their algebroid bracket is

U V) = [UW), V] + LyowV = LpvwU, (14)

where the first summand in the right-hand side is the usual Lie bracket of vector fields
on M.

Remark 3.5. The derivative £417(,)V is a multiphase vector field defined by

d
LyvaV = |,V (1),

where p(t) is any smooth curve in MDens(M) with p(0) = p and the tangent vector at p
given by #U(u). That derivative does not have to lie in MVect(M, p), but belongs to the
bigger space Vect(M)" := {(u1,...,un) | uj € Vect(M))} of n-tuples of vector fields on M with
no condition (13).

Remark 3.6. Note that the first term on the right-hand side of (14) is not an element
of MVect(M, ). Indeed, for two multiphase vector fields u and v satisfying >3, Ly 1 =
D Ly;pj = 0, their (component-wise) Lie bracket does not necessarily have this property.
However, the last two terms do not have this property either (see Remark 3.5) and compensate
the first term.
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Remark 3.7. The Lie algebroid MVect(M) is a subalgebroid in the action algebroid
Vect(M)™ x Dens(M)™ of smooth multiphase vector fields without restrictions acting on vol-
ume multiphase forms (see Remark 3.3). Because of that the bracket in MVect(M ) automat-
ically has form (14) (cf. Example 2.6(c)). However, MVect(M) is not an action algebroid. In
particular, the fibers of MVect(M) are not closed under the Lie bracket of vector fields (see
Remark 3.6) and hence do not have any natural Lie algebra structure.

Proof of Theorem 8.4. We begin with the first statement. By definition, the fiber of
MVect(M) over p consists of tangent vectors at id, € MDIiff(M) to curves of the form
(d(t); p, pu(t)), where p(0) = pp and ¢(0) = (id, . ..,id). The tangent vector to such a curve is

an n-tuple of vector fields
d
U; = @‘t:od)j(t) € Vect(M) .

Also note that

Z;lzl G5 (t)xity = Zn pj(t) = volas.

j=1
Differentiating this relation with respect to ¢ at ¢t = 0, we get (13), as needed.

Conversely, given any n-tuple of vector fields u; € Vect(M) satisfying (13), one can con-
struct a curve @(t) in the source fiber MDiff (M), whose tangent vector at id, coincides with
u. So, the fiber of MVect(M) over u is indeed the space MVect(M, p).

To prove the second statement we need the following.

Lemma 3.8. The tangent space T,MDens(M) is the space of multiphase top-degree forms
& = (&, ...,&,) satisfying the following conditions:

1. 30,8 =0o0n M.
2. Sng =0 foreachi=1,...,n.

Proof. These are infinitesimal versions of the conditions }, u; = volys and SM [j = Cj Tespec-
tively. O

Now, we compute the anchor map (one can also get the formula for the anchor map
using that our algebroid is a subalgebroid in the action algebroid, see Remark 3.7). Let
u € MVect(M),. Consider a curve (¢(t);p,u(t)) € MDiff (M), where u(t) := ¢(t)sp and
whose tangent vector at id, is w. Then, by definition of the anchor map for the algebroid of
a Lie groupoid, we have

d d
e %“:Otrg((ﬁ(t)) B %’t:oqﬁ(t)*l—" =—Lyp,

as desired.

Finally, the last statement of the theorem follows from the fact that our algebroid is a
subalgebroid in the action algebroid (see Remark 3.7) and formula (8) for the action algebroid
bracket. Thus, Theorem 3.4 is proved. O]
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3.3 The dual algebroid and its tangent space

In this subsection, we describe the dual of the Lie algebroid MVect(M). This space can be
viewed as the space of momenta for a multiphase fluid.
As the dual of MVect(M), we consider the “smooth dual bundle” defined as follows.

Definition 3.9. The smooth dual MVect(M, u)* of the space MVect(M, u) is the space of
linear functions f: MVect(M,u) — R that admit a smooth density, which means that there
exist smooth 1-forms aq, ..., a, such that

flu) = Z:zl JM o (us) (15)

for all u € MVect(M, p).

Formula (15) defines a surjective linear map 7: Q(M)™ — MVect(M, u)*: each collection
(ai,...,a,) € QY(M)™ is mapped to a linear function on MVect(M, u) defined by (15).

Proposition 3.10. The kernel of the map 7: Q' (M)™ — MVect(M,p)* consists of n-tuples
of the form (df,...,df), where f € C*(M). Therefore, we have an isomorphism

MVect(M, p)* := QY (M)™/5(dC®(M)),
where §: QY (M) — QY (M)™ is the diagonal embedding 6(a) = (..., ).

Proof. First observe that §(dC*(M)) < Kerx. This is due to condition (13):
Whoedpyr =33 [ drtwny ==X, [ 1 n L

:_JMf/\Zj_lﬁuj,uj =0.

So, the map 7m: Q'(M)™ — MVect(M, u)* descends to a surjective linear map
m: QY M) /5(dC* (M) — MVect(M, p)*.

We need to show that the latter is injectibe. This is based on the following.

Proposition 3.11. For any choice of a Riemannian metric on M, any coset [a] €
QYM)"/5(dC®(M)) has a unique (“co-closed”) representative a € QY (M)™ such that

d* Y, pioy =0, (16)

where pj = puj/volps.

Proof. This is equivalent to saying that for any a € Q'(M)™ there exists a function f €
C*(M), unique up to an additive constant, such that

Y plagtd) =0 = d* (ar + P pias) =0 & Af=—d* > iy

This is a Poisson equation on f whose solution is unique up to an additive constant, as
needed. O
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Returning to the proof of Proposition 3.10, given [a] € QY(M)"/§(dC*(M)), [a] # O,
consider its representative a satisfying (16) for some Riemannian metric on M. Then the
multiphase vector field f satisfies (13), so af € MVect(M, ). Furthermore, we have

(xla)).aty = Y fM (o 02) s >0,

and hence 7([a]) # 0. So 7 is indeed injective, as needed. O

In what follows we make an identification MVect(M, u)* ~ QY (M)"/5(dC*(M)). Accord-
ingly, the smooth dual of the algebroid MVect(M) is the trivial vector bundle

MVect(M)* = | J MVect(M, p)* = (Q'(M)"/6(dC*(M))) x MDens(M).

peMDens(M)

over the space of multiphase densities MDens(M ).

An important property of the smooth dual MVect (M, p)* = QY (M)"/5(dC®(M)) is that
this subspace of the full dual space “separates points”, meaning that for any non-zero u €
MVect(M, ) there exists [a] € MVect(M, p)* such that {[a],u) # 0 (indeed, one can take
a = ub). This is equivalent to saying that MVect(M, p) injects into the dual of its smooth
dual, which is needed for the Poisson bracket on MVect(M)* to be well-defined. This Poisson
bracket is described in the next section. For this we describe the tangent and cotangent spaces
to MVect(M)*. First we note that since MVect(M)* is a trivial vector bundle, we have the
following natural splitting of its tangent space.

Proposition 3.12. There is a natural splitting

Tia),uMVect(M)* ~ MVect(M, u)* @ Tu,MDens(M) . (17)

3.4 Poisson bracket on the dual algebroid

In this section we show that formula (9) gives a well-defined Poisson bracket on MVect (M )*.

For this we need to describe the cotangent space to MVect(M)* and we start by defining the
cotangent space to the base, T;MDens(M ).

Definition 3.13. The smooth cotangent space TyMDens(M) is the quotient
CP(M)™ /o(CP(M)), where CFP(M) = C*(M)/R, and 6: CFF(M) — CP(M)" is the
diagonal embedding h +— (h,...,h). The pairing between a coset [f] € CF(M)" /5(CF(M))
and a tangent vector £ € T,MDens(M) (i.e. a collection (¢1,...,&,) of top-degree forms on
M such that Z?zl & = 0, see Lemma 3.8) is given by

n
no=3, | 5.
(The right-hand side does not depend on the choice of a representative f € [f] thanks to the
zero sum condition on €. The integral §,, f;&; is well-defined for f; € C3°(M) since §,,&; = 0.)
Now we define the cotangent space to MVect(M)* by dualizing splitting (17).

Definition 3.14. Let ([a], p) € MVect(M)*. Then the smooth cotangent space to MVect(M)*

at ([a], ) s
Tiay, wMVect(M)* := MVect(M, p) @ T;MDens(M), (18)

where the second summand is the smooth cotangent space.
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Further, we define the notion of a differentiable function on MVect(M)*. Roughly speak-
ing, a function is differentiable if it has a differential belonging to the smooth cotangent
space.

Definition 3.15. A function F: MVect(M)* — R is differentiable if there exists a section dF
of the smooth cotangent bundle T*MVect(M)* such that for any smooth curve ([a](t), u(t))
in MVect(M)* one has

d d d

o7 (al(®), u(t) = dF ([a](t), u(1) . (- [a](t), 2 u())).

Using splitting (18), we decompose dF([a]) for [a] € MVect(M,p)* into the fiber and
base parts:

dF ([a],n) = (" F ([e],p) ,d" F ([e],p)) ,
where

d"F ([a], 1) € MVect(M, ), dPF ([a], 1) € TiMDens(M) = CZ(M)" / 5(CZ (M),

Theorem 3.16. Let F1, Fo: MVect(M)* — R be differentiable functions. Then their Poisson
bracket reads

{F1,Fa} = P(dF1,dF2),
where the value of the Poisson tensor P on two cotangent vectors
(u, [f]), (v, [g]) € Tig), WM Vect(M)* = MVect(M, ) & T;MDens(M)

at a point ([e], ) € MVect(M)* is

Pratas (.. 0.1a1) = 7 | (~day(usov) + £0ygs = L f) e (19)

Here a € QY (M)" is an arbitrary representative of the coset [a].

Remark 3.17. Equivalently, this bracket can be written in the form, similar to a Lie-Poisson
bracket with additional terms:

P[a],;t ((U, [f])? (’U, [g]))
= Z;L:1 JM (ei([uy, v;]) + Lo (iug-aj —fi) - Ly (ivjaj —95)) Hy-

Proof of Theorem 3.16. Formulas (19) and (20) are equivalent to each other. To see this,

rewrite the first term in (20) using the formula i, ) = [Lu,iv]. So, it suffices to derive (20).
Since the bracket (14) on sections of MVect(M) has the same form as for an action

algebroid, we can compute the Poisson bracket in the dual using formula (10). This gives

{F1, 7o} ([a], p) = o, [d" Fi([a], w), d" Fa(le], w)|) + (Fi, Fao) — q(Fo, F1),  (21)

Here and below the pairing {,) between multiphase forms and multiphase vector fields is
given by (15), and the commutator of multiphase vector fields is defined component-wisely.
To compute the q(Fg,F;) terms we extend [a] to a constant section A: MDens(M) —
MVect(M), A(n) := [a] of the trivial vector bundle MVect(M)*. Also, let Uy be the sec-
tion of MVect(M) given by Uy, := df Fx(A). Then formula (11) gives

q(Frs F1) := {0, Lay, U + Lav,u) (Fir o A) = Ly, (w4 Up). (22)

(20)
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Now, take any curve p;(t) € MDens(M) such that p;(0) = g, and the tangent vector to
w1y (t) at pis #Uk(p). Then, using that A is a constant section, we get

Lyt (Fi o A) = Slmo FiAui (1) = @ Fulal 1), #V (1) (23)

Further, we have
d
£t AU = 1, Al 0. 00 = 1, 0 [ (i, ) )

_Zg 1J <dtt_ Uzuk())g%)“k +Z f Wi (1)), 3) atli= ot (1)
= @, Ly, U + vy #Uk()) -
Substituting this, along with (23), into (22), we get
q(Fi, F1) := {dP F([a], ) — ip, e, #Ur () ) -
Finally, plugging this into (21) and using that U;(u) = d¥ Fi([a], ), one gets (20). O

Corollary 3.18. The Hamiltonian operator

Pt

o, Tiay, uMVect(M)* — Tjq) ,MVect(M)*

corresponding to the Poisson bracket on MVect(M)* is given by

(u, [f]) = (—[iuda] — [df], —Lup) - (24)

(Note that the coset [df] of df in QY(M)"/dC*®(M) does not depend on the choice of a
representative f in the coset [f] e C*(M)"/C§(M).)

Proof. By definition, we have
(019D Py (0 1)) = Piag o (0, [£)). (0. [g])
-y JM (—dj(u,05) + Laygi — Loy f3) 1
= (~liuda] = [df],v) = (Lup, [9])-
The result follows. 0

Remark 3.19. Using Proposition 4.6 below, the Hamiltonian operator (24) can be rewritten
in terms of the anchor map #: MVect(M ) — TMDens(M ), as follows:

(u, [£]) = (=[iuda] — #7[f], #u),

which agrees with the corresponding operator for the motion of vortex sheets, see [12, Corol-
lary 6.27].
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4 Dynamics of multiphase fluids

4.1 Geodesic and Hamiltonian framework for multiphase fluids

In this section, M is a compact connected oriented manifold without boundary endowed with
a Riemannian metric (, ) and the corresponding Riemannian volume form voly,. We define a
metric (, )2 on the Lie algebroid MVect(M) as follows: for u,v € MVect(M, u), one has

(u,vyr2 = 2::1 JM(uj, V) - (25)

Proposition 4.1. 1. The inertia operator T associated with the L*-metric {,);2 on
MVect(M) takes values in the smooth dual MVect(M)*. For w € MVect(M,u), one
has Z(u) = [w’], where

b b

W= (u),...,u),

uz denotes the 1-form dual to the vector field u; with respect to the Riemannian metric
(,) on M, and [w’] stands for the coset of w’ in QL (M)" /6(dC*(M)).

2. The inertia operator : MVect(M) — MVect(M)* is an isomorphism of vector bundles.

Proof. By definition of the inertia operator, for u,v € MVect(M, u), one has

Wy =@ =3 | o =3 | .

This means that the functional Z(u) coincides with the functional represented by the coset of
u’ € Q' (M)", proving the first statement.

The second statement, i.e. invertibility of the inertia operator, is equivalent to say-
ing that the equation [u’] = [a] has a unique solution u € MVect(M,u) for any coset
[a] € MVect(M, p)*. Written in terms of the form a := u’, the condition u € MVect(M, u)
translates to (16). (Indeed, the defining condition (13) of MVect(M, p) is equivalent to (7),
which, in turn, is equivalent to (16) since the divergence of a vector field is the same as the
co-differential of its metric dual form.) So, the result follows from Proposition 3.11. Explicitly,
we have Z7!([a]) = o, where a is the coset representative satisfying (16). O

Since the inertia operator is invertible, we also obtain an L2-metric on MVect(M)*, and
the corresponding Euler-Arnold Hamiltonian

H(le],p) = 32;:1 JM(%%‘) g

where a € [a] is a representative satisfying (16).
Theorem 4.2. The FEuler-Arnold equation corresponding to the L?-metric on MVect(M)
written in terms of a coset [a] € MVect(M, p)* reads
1
O] + [iude + §diua] =0, (26a)
O = — Loyt (26b)

where a € [a] is the representative satisfying (16), and u := of € MVect(M,p). It is a
Hamiltonian equation on the algebroid dual MVect(M)* with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.
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Remark 4.3. Note that for a single phase fluid (n = 1), the equations (26) are equivalent to
oi[a] + [iuda] = 0, and therefore to the Euler equation d;[a] + L,[a] = 0

Proof of Theorem 4.2. Tt suffices to compute dH ([e], p) and apply the Hamiltonian operator.
Let ([a](s),u(s)) be an arbitrary smooth curve in MVect(M)* = (QY(M)" /§(dC®(M))) x
MDens(M) with [a](0) = [a] and u(0) = p. Let also a(s) € [a](s) be the representative
satisfying (16). Then

%\SZOH([a](s)vu(s 2d58 OZJ J j(s), a;(s))p;(s)

d d
=(u, ds‘so Z] 1f aj(s), a;(s )ds‘s() 1 (s)

implying that
A" (o)) =, PH(alp) = 5 [(@e)].

Now, to get (26), it suffices to apply the Hamiltonian operator (24), ending the proof. O

Theorem 4.4. The Euler-Arnold equations corresponding to the L?-metric on MVect(M)
written in terms of the fluid velocities u := T~ ([a]) € MVect(M) read

{ druj + Vo, u; = —Vp, (27a)
Orprj = — Lo g, (27b)

where the pressure p € CP(M) is common for all phases and is defined uniquely up to an
additive constant by equations (27) supplemented by the condition

n
S Luy =0 (28)
Equivalently, equations (27) describe the velocity along a geodesic for the L* metric on a
source fiber of the groupoid MDiff (M).

Proof. Equation (27b) was already established by Theorem 4.2, so it suffices to derive (27a).
The latter rewrites as

. 1.
Orayj + iy dag + §dzujaj =df,
where a € [a] is the representative satisfying (16), and f € C*(M) does not depend on i.
Equivalently, this can be written as

1
6taj + Eujaj — §diujaj = df .

Taking the metric dual vector field and applying the formula (£,u’ — %al(u,u))ﬁ = Vy,u, we
get
o+ Vyu = Vf,

which is equivalent to (27a) for p = —f.

Now, we show that the pressure p can be expressed, using conditions (27) and (28), in
terms of velocity fields u; and densities p; (up to an additive constant). Let p; := pj/volys.
Then, from (27a), we get

—Vp:—(Z::lp])Vp:—Zj PiVP = Z pi{0rty Vi)
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Taking divergence, we get
—Ap = div Z pj(Oruj + Vi, uj). (29)

Furthermore, (28) can be rewritten as

div Z Pl =
0 (29) rewrites as
—Ap = div ijl(PjVujUj — (Oepj)uj). (30)
Also, (26b) is equivalent to
orpj = —div (pju;),
o (30) becomes
—Ap = div Zj:l(pjvujuj + div (pjuj)uj),

cf. (4). This is a Poisson equation on p, so the function p is indeed uniquely determined by
uj, 5 up to an additive constant. (Note that for n = 1 the second term in the right-hand side
vanishes and one gets the standard equation for the pressure —Ap = div V,u.) ]

Recall that for a fluid velocity field u, the corresponding vorticity is the 2-form w := du’.
For an n-tuple of vector fields u € MVect(M ), the vorticity is an n-tuple

wj = du;.

Corollary 4.5 (Generalized Kelvin’s theorem). For a multiphase fluid, the vorticity of each
phase is transported by the corresponding velocity field:

&twj + Eujwj =0.
Proof. Take the exterior derivative of both sides in (26a). O

In particular, vorticities remain in the same diffeomorphism class during the Euler-Arnold
evolution. Furthermore, solutions for potential initial conditions remain potential for all times,
as they correspond to the vanishing initial vorticity, which always remains zero thanks to the
corollary above. In the next section we discuss properties of potential solutions in detail.

4.2 Potential solutions as geodesics on the space of multiphase densities

Now, we apply Proposition 2.14 to obtain a geodesic description of potential solutions.

Proposition 4.6. Let [f] € TjMDens(M) (recall that the latter space is
CEP(M)"/5(Ce°(M))). Then its image under the map #*: TyMDens(M) — MVect(M, p)*
s given by

#*[f1:= [df].

(Note that the coset [df] of df in QY(M)"/§(dC®(M)) does not depend on the choice of a
representative f in the coset [f] e CF(M)"/6(CP(M)).)
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Proof. Let [f] € TyMDens(M), and let u € MVect(M, p). Then

F W = At ==X [ 5L = | Gt = .
The result follows. O

It follows that the vector field v := Z=1(#*[f]) = Z-!([df]) has the multiphase gradient
form v = Vf := (Vfi,...,Vfn). This means that the symplectic leaf #*(T*MDens(M)) <
MVect(M)* is metric dual to velocity fields of potential motions of a multiphase fluid.

Theorem 4.7. 1. Potential solutions of equations (27) of a multiphase fluid are geodesics
of a metric {, )Mpens 0n MDens(M) induced by the product Wasserstein metric on the
ambient space Dens,, (M) x --- x Dens,, (M), where Dens.(M) is the space of positive
smooth densities on M with total mass c.

2. For any multiphase density p € MDens(M) the groupoid target mapping
trg: (MDIff(M)y, (,)r2) — (MDens(M),{, )MDens) %5 a Riemannian submersion, see
Figure 2. Here {,)r2 is the restriction of the right-invariant source-wise metric on
MDiff (M) corresponding to the L?-metric on MVect(M).

Remark 4.8. Recall that the Wasserstein metric on the space Dens.(M) of densities of fixed
total volume ¢ on M is defined as follows: for any tangent vector £ € T),Dens.(M) its square
length is

& Ow = inf {{u,upp2 | ue Vect(M), Lup =&} =V, V)L,

where f e C*(M) is such that Lysu = &.

Proof of Theorem 4.7. We first prove the existence of a metric {, )\pens With desired prop-
erties, and then show that it is induced by the Wasserstein metric. To prove existence,
we use Proposition 2.14. To apply that proposition we need to show that MVect(M) =
Ker# @ (Ker#)t. Take any u € MVect(M, ). Consider functions f = (fi, ..., fn) satisfying
Loy, pj = Lyypj (construction of such functions boils down to the solution of the Poisson
equation div p;V f; = div pju; on f;). Then one has

u=(u—Vf)+ Vf. (31)

Notice that L,; vy, u; = 0, s0u — Vf € Ker#. Furthermore, Ker# consists of all multiphase
vector fields u € MVect (M, ) which satisfy the divergence-free condition £y, 1; = 0 and hence
are orthogonal to multiphase gradients with respect to the metric (25). In particular, we have
Vf € (Ker#)t. Thus we obtain a decomposition MVect(M) = Ker# @ (Ker# )", and hence,
by Proposition 2.14, a metric {, )Mpens With the listed properties.

To show that the metric {, )Mpens is induced by the Wasserstein metric, observe from (31)
that the map #~': T,MDens(M) — (Ker#) 't is given by #71(€) = Vf where the multiphase
function f is found from the requirement &; = Ly, p1;. Plugging this into (12), we see that
the metric {, )Mpens computed on any & € TMDens(M) is indeed the product Wasserstein
metric, as needed. O

Recall that MDiff (M, u) is the configuration space of a multiphase fluid. The motion of
the fluid follows the geodesics of the (, )2-metric on the space MDiff (M ). Potential solutions
thus correspond to horizontal (with respect to the target mapping) geodesics.
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Remark 4.9. The metric {, )Mpens constructed above can also be defined as follows:

&, EMDens = inf {(u,u)r2 | w € MVect(M, p), #u = &}

for any € € T,MDens(M). This directly follows from its Riemannian submersion property.

Remark 4.10. The Riemannian metric on MDens(M) makes the latter into a metric space
with the distance between multiphase densities g and p satisfying the following inequality:

n
diSti/IDens(ll‘vﬂ) = Z diStIQ/V(.uja ﬂ]) )
j=1
where disty is the Wasserstein distance on Dens(M). In particular, the distance function
distypens is non-degenerate (i.e. distypens (i, f£) > 0 whenever p # f1).

5 Groupoid of generalized flows

The above consideration can be extended to the case of “continuous” index 7, i.e. to multiphase
flows where phases are enumerated by a continuous parameter a which belongs to a measure
space A. Below we adapt all the above definitions and statements to that setting, while the
proofs are valid mutatis mutandis.

Consider a closed compact manifold M with a fixed volume form voly; and a measure
space A with a fixed function ¢,: A — R. The base of the Lie groupoid GDiff (M) of volume-
preserving generalized diffeomorphisms is the space GDens(M) of generalized densities, i.e.
sets of densities p := {u, € Dens(M) | a € A} satisfying the conditions: all u, are positive,
have prescribed masses cg, i.e. SM la = Cq, and they together constitute the volume form
volyy, i.e.

JA g da = volys (32)

at each point of M. (Here and in what follows we assume that the dependence of all objects
on a € A is such that the integrals below are well-defined. A particular example of such a
setting is described in Remark 5.1.) Now one can think of those densities as a set A of different
fractions of an incompressible fluid, penetrating through each other without resistance.

The elements of GDiff(M) are sets of diffeomorphisms ¢ := {¢, € Diff(M) | a € A} of
M preserving the above property of incompressibility of generalized densities, i.e. the set
of tuples (¢;p, ') := {(¢a; tta, 1t,,) | @ € A} with generalized forms p,p’ € GDens(M) such
that ¢,pu = p' component-wisely, i.e. @gupa = p, for each a € A. The source, target and
multiplication (i.e. composition) of such triples is given exactly as before.

Similarly, the space of velocities for a generalized fluid, i.e. the Lie algebroid GVect(M) —
GDens(M) corresponding to the Lie groupoid GDiff (M), is a vector bundle with the following
structure. Its fiber of GVect(M) over g € GDens(M ) is the space GVect(M, ) that consists
of generalized vector fields on M of the form u := {u, | a € A} with u, € Vect(M) that
are “divergence-free” with respect to the generalized volume form: § 4 Lugttada = 0. The
corresponding anchor map #: GVect(M,pu) — T,GDens(M) is given by the negative Lie
derivative, u — —Lyp 1= {—Ly, 1ta | a € A}, and the algebroid bracket is given by the same
formula (14). The tangent space T,GDens(M) is the space of generalized forms £ satisfying
the two conditions: §,&,da =0 on M and §,, & = 0 for all a € A (cf. Lemma 3.8).
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Remark 5.1. In the case when A is a manifold and the dependence of all objects on a € A is
smooth, the above setting can also be reformulated as follows. Consider compact manifolds
M and A with fixed volume forms voly; and voly respectively. The base of the Lie groupoid
GDiff (M) is the space GDens(M) of doubly stochastic measures on M x A with everywhere
positive smooth density, i.e. volume forms g € Dens(M x A) such that (mas)«pt = volys
and (m4)«p = vola, where mp; and w4 are projections to M and A respectively. The above
description of GDens(M) is then recovered by viewing a doubly stochastic measure p as a
collection of measures p, parametrized by a € A which have fixed volumes (defined by the
measure vol4) and add up to the measure voly;.

The elements of the groupoid GDiff (M) in this language are horizontal diffeomorphisms
¢ € Diff(M x A) which take one doubly stochastic measure to another. More precisely,
GDiff (M) is the set of triples (¢ ; u, p') where ¢ € Diff(M x A) is of the form (z,a) — (¢q(z), a)
and maps p € GDens(M) to p’ € GDens(M), i.e. ¢, pu = p'.

The Lie algebroid GVect(M) — GDens(M) corresponding to the Lie groupoid GDiff (M)
is a vector bundle with the following structure. Its fiber of GVect(M ) over p € GDens(M) is
the space GVect(M, ) that consists of vector fields u € Vect(M x A) which are horizontal (i.e.
tangent to fibers of the projection 74) and “divergence-free” in the sense that (mps)«Lup = 0.

The anchor map #: GVect(M,u) — T,GDens(M) in the algebroid GVect(M) is given
by the negative Lie derivative, u — —Lyu, and the algebroid bracket is given by the same
formula (14). The tangent space 7,,GDens(M) is the space of top-degree forms £ on M x A
such that (mp7)«€ = 0 and (74)€ = 0.

Returning to the general case of a measure space A, the smooth dual GVect(M, p)* of the
space GVect(M, u) is defined as the quotient

GVect(M, p)* := QL(M)?/5(dC*(M)),
where Q'(M)4 stands for functions A — Q'(M). The elements of GVect(M,p)* are cosets
la] == {aa +df | f e CT(M)},

where all 1-forms a,, € Q' (M) in one coset differ by the same function differential. The pairing
between a coset [a] € GVect(M,u)* and a generalized vector field u € GVect(M, p) is given
by the formula:

(o], u) = L jM o) 1o da.

As before, the dual algebroid is the total space

GVect(M)* := U GVect(M,p)*,

peGDens(M)

which is a trivial vector bundle over the space of generalized densities GDens(M).
The dual algebroid is a Poisson bundle, and the Poisson bracket on this space is given by
a formula analogous to (19). As a corollary, we obtain the Hamiltonian operator

e Tiay, uGVect(M)* — Tig) G Vect(M)*

corresponding to the Poisson bracket on GVect(M)* given by the same formula (24):

(u, [f]) = (—liuda] — [df], —Lup) -

25



To describe geodesics on the space of generalized solutions we equip the manifold M with
a Riemannian metric (,) whose Riemannian volume form is volys. As before, to simplify
the exposition, M is a compact connected oriented manifold without boundary, although the
results extend to noncompact M by imposing appropriate decay assumptions.

The {, )2 metric on the Lie algebroid GVect(M) is as follows: for u,v € GVect(M, pu),
one has

(u,v)p2 L JM(ua, v) 1o da. (33)

The inertia operator Z : GVect(M) — GVect(M)* associated with this L?-metric on
GVect(M) is as follows. For u € GVect(M, ) one has Z(u) = [u’], where v’ := {u” | a € A}.
Here v’ is the 1-form metric-dual to the vector field u, on M, and [u”] stands for the coset
of w’ in QY (M)A /§(dC*(M)).

The corresponding Euler-Arnold Hamiltonian on GVect(M)* is

Hiod) =5 [ | (o0 nada,

where a € [a] is a representative satisfying the following co-closedness type condition:
d* f Patqda =0, (34)
A

for pg := pa/volys (this is just the condition (3) written in terms of the multiform a = u”).
With this adjustment of notations the following theorem literally repeats Theorem 4.2 and
provides the Hamiltonian framework for generalized flows:

Theorem 5.2. The Euler-Arnold equation for generalized flows corresponding to the L?-
metric on GVect(M) written in terms of a coset [a] € GVect(M, u)* reads
oia] + [inda + Ldiya] =0,
Ot = —Lyp,
where a € [a] is the representative satisfying (34), and u := o' € GVect(M,p). It is a

Hamiltonian equation on the algebroid dual GVect(M)* with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.

Let us rewrite explicitly the Euler-Arnold equations in terms of fluid velocities of general-
ized flows.

Theorem 5.3. The Euler-Arnold equations corresponding to the L?-metric on GVect(M)
written in terms of the fluid velocities w and density pg = pg/volys coincide with generalized
flow equations (1.13) - (1.15) of [6]:

{ Or(patia) + div (paug ® ug) + paVp = 0, (35a)
Otpq + div (paug) = 0, (35Db)

subject to the constraint SA pada = 1, where the pressure p e C*(M) is common for all phases
and is defined uniquely up to an additive constant by these equations.

Equivalently, the generalized flow equations (35a)-(35b) describe the wvelocity along a
geodesic for the L? metric on a source fiber of the groupoid GDiff(M).
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Proof. The constraint § 4 Pada =1 follows from (32) and the definition p, = fa/volys of the
density function. Using Theorem 5.2 and the same argument as in the proof of Theorem 4.4,
one gets the equations

{ Org + Vy,uq = —Vp, (36a)
atlua = _Euaﬂa- (36b)

Clearly, (36b) is equivalent to (35b), so it only remains to derive (35a). Using (35b) and
(36a), we obtain

at(paua) = (atpa)ua + pa(étua) = —div (paua)ua - pa(VUau(l + Vp)
= —(div (patia)ta + vpauaua> — paVp = —div (pataq ® ua) — paVp,

where the last equality follows from the identity div (u ® v) = div (u)v + V,v. Thus, (35a) is
equivalent to (36a), as required. O

Remark 5.4. The quantity m := pu’ = {psu’ | a € A} has the physical meaning of the
momentum. In terms of momentum the metric (33) assumes a simpler form (u,v);2 =
§ 4§37 ma(va) volys da and the equations (35a)-(35b) are often written on my, cf. [6].

6 Open problems

Arnold’s original insight in [1] uncovered the geometry behind the hydrodynamic Euler equa-
tion: for an ideal fluid confined to a fixed domain the Euler equation describes the geodesic flow
for the energy metric on the Lie group of volume-preserving diffeomorphisms of that domain.
The analytical part of this approach is due to Ebin and Marsden [11] who proved short-time
existence in the setting of Sobolev spaces H?®, where s is sufficiently large (s > dim M /2 + 1).
The present paper can be regarded as an analog of Arnold’s take by providing the geometric
framework of Lie groupoids, instead of Lie groups, for the Euler equation for multiphase fluids
and generalized flows. We hope that it will encourage the appearance of necessary analytical
setting, in the form of existence theorems in appropriate Sobolev or tame Fréchet spaces.
Here we summarize several open problems motivated by the groupoid approach:

— Provide an analytic framework and existence theorems for the Euler equation for mul-
tiphase fluids and generalized flows, extending the Ebin—Marsden setting [11] from groups to
groupoids of diffeomorphisms.

— There are (at least) two different definitions of generalized flows, both suggested by
Y. Brenier: the one discussed above, as a continuum version of multiphase flows [5, 6],
and the other via probabilistic measures on the space of all parametrized continuous paths
X = C([0,1]; M) satisfying the incompressibility and finiteness of action conditions [4], see
also [2, 18]. Their equivalence is intuitively assumed but, to the best of our knowledge, not
written up. Once it is formally established, it would open new ways of applying groupoids in
probabilistic settings.

— There is a natural semigroup of continuous maps, in which fluid particles are allowed
to collide and stick to each other. In that setting compositions of maps are well-defined but
inversion is not, cf. [6], which seems to be an appropriate framework for the description of
shock waves in fluids. While there seem to be a projection from the diffeomorphism groupoid
to the semigroup of maps, the corresponding Hamiltonian picture for the semigroup is rather
obscure.
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— In the appendix below we give a groupoid description of vortex sheets [12], which can
be thought of as the limiting case for the relaxed problem of evolution of homogenized vortex
sheets or miltiphase flows, see [5, 14]. It would be interesting to obtain a rigorous treatment
of this limiting procedure in the Lagrangian and Hamiltonian setting.

— Finally, it would be interesting to apply the framework of Euler-Arnold equations on Lie
groupoids, along with the corresponding Hamiltonian framework on Lie algebroid duals, to
other problems in mathematical physics, both in finite and infinite dimensions. This approach
seems natural in the situations where the group symmetry is not available, e.g. fluids with
dynamic boundary, a rigid body moving in a manifold, etc.

7 Appendix: Dynamics of classical vortex sheets

Classical vortex sheets can be thought of as a particular case (or, rather, as belonging to a
closure) of multiphase fluids where the densities are indicator functions of open sets separated
by a hypersurface in a manifold M, see [12, 14]. Namely, the multiphase Lie groupoid in that
case becomes the Lie groupoid DSDiff (M) of volume-preserving diffeomorphisms of M that are
discontinuous along a hypersurface. The elements of the groupoid DSDiff (M) are quadruples
(T'1,T2,¢",¢7), where I'1,T's € VS(M) are hypersurfaces (vortex sheets) in M confining the
same total volume, while ¢*: Df:r1 — D;—; are volume-preserving diffeomorphisms between
connected components of M \T'; denoted by DR, Dr... The multiplication of the quadruples
in DSDiff (M) is given by the natural composition of discontinuous diffeomorphisms and is
shown in Figure 4.

The corresponding Lie algebroid DSVect(M) — VS(M) is the space of possible velocities
of a fluid with a vortex sheet, defined as follows. Given a vortex sheet I', the corresponding
velocities are discontinuous vector fields on M of the form u = Xff ut +xpu”, where Xff , Xp are
indicator functions of the connected components Df:r of M\T, and u* are smooth divergence-
free vector fields on DIJ:r which have the same normal component on I'. The map from such
vector fields u to their normal components on I' is the anchor map # of the corresponding
algebroid. Via the general procedure described above one defines a right-invariant L2-metric
on this groupoid and constructs an analogue of the geodesic Euler-Arnold equation.

Theorem 7.1 ([12]). The Euler-Arnold equation corresponding to the L?-metric on the alge-
broid DSVect(M) coincides with the the Euler equation for a fluid flow discontinuous along a
vortex sheet I' < M :

out + Vrut = —-VpT,
du” + Vy-u = —Vp, (37)
6tF = #’LL,

Figure 4: Elements of the groupoid DSDiff (M) and their composition rule.
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where u = xput + xpu~ is the fluid velocity, divu® = 0, and p* € COO(Df:r) are functions
satisfying the continuity condition p™|r = p~|r.

Equivalently, Euler equations (37) are geodesic equations for the right-invariant L?-metric
on (source fibers of) the Lie groupoid DSDIiff (M) of discontinuous volume-preserving diffeo-
morphisms.

The above consideration also defines a metric on the space VS(M) of vortex sheets, while
the target map is a Riemannian submersion of the L?-metric on the groupoid of discontinuous
diffeomorphisms to the metric on VS(M), see [12, 14].

Remark 7.2. The multiphase groupoid studied in Section 3.1 can be regarded as a relaxed
version of the vortex sheet groupoid as follows. Given a hypersurface I' € M we define the
multiphase density g := (u4, ) as a pair of indicator densities p4 = x4volys for indicator
functions x4+ of the connected components Df:r of M\ T, and therefore satisfying the condition
py + p— = volps on M. Now, for a groupoid element (¢;p,p’) := (¢4, d—; pg, p—y 'y, pi)
the pair of diffeomorphisms ¢+ on M satisfying ¢+,u+ = p/p for indicator densities py
representing the connected components Df:r, of M \T” boils down to a pair of voly;-preserving
diffeomorphisms sending, respectively, D% to Df:r,, i.e. T' to IV while preserving the volume
form voly; on M.

One can see that the definitions of the corresponding algebroids, their brackets and an-
chor maps, as well as the corresponding Poisson structures and Hamiltonian equations are
consistent with taking this relaxed version and lead to the relation between the Euler equa-
tions (6) and (37). It would be interesting to formally establish the convergence for the relaxed
solutions to the classical solutions with vortex sheets, cf. Section 6.
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