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Hashmap is a fundamental data structure in computer science. There has been extensive research on con-
structing hashmaps that minimize the number of collisions leading to efficient lookup query time. Recently,
the data-dependant approaches, construct hashmaps tailored for a target data distribution that guarantee to
uniformly distribute data across different buckets and hence minimize the collisions. Still, to the best of our
knowledge, none of the existing technique guarantees group fairness among different groups of items stored
in the hashmap.

Therefore, in this paper, we introduce FairHash, a data-dependant hashmap that guarantees uniform
distribution at the group-level across hash buckets, and hence, satisfies the statistical parity notion of group
fairness. We formally define, three notions of fairness and, unlike existing work, FairHash satisfies all three
of them simultaneously. We propose three families of algorithms to design fair hashmaps, suitable for different
settings. Our ranking-based algorithms reduce the unfairness of data-dependant hashmaps without any
memory-overhead. The cut-based algorithms guarantee zero-unfairness in all cases, irrespective of how the
data is distributed, but those introduce an extra memory-overhead. Last but not least, the discrepancy-based
algorithms enable trading off between various fairness notions. In addition to the theoretical analysis, we
perform extensive experiments to evaluate the efficiency and efficacy of our algorithms on real datasets.
Our results verify the superiority of FairHash compared to the other baselines on fairness at almost no
performance cost.
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1 INTRODUCTION
1.1 Motivation
As data-driven technologies become ingrained in our lives, their drawbacks and potential harms
become increasingly evident [12, 81, 98]. Subsequently, algorithmic fairness has become central
in computer science research to minimize machine bias [23, 25, 74, 78]. Unfortunately, despite
substantial focus on data preparation, machine learning, and algorithm design, data structures and
their potential to induce unfairness in downstream tasks have received limited attention [106].

Towards filling the research gap to understand potential harms and designing fair data structures,
this paper revisits the hashmap data structure through the lens of fairness. To the best of our
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knowledge, this is the first paper to study group fairness in a data structure design. Hashmaps
are a founding block in many applications such as bloom filters for set membership [31, 34, 84],
hash sketches for cardinality estimation [51, 55], count sketches for frequency estimation [44],
min-hashes in similarity estimation [33, 43], hashing techniques for security applications [6, 95],
and many more.
Collision in a hashmap happens when the hash of two different entities is the same. Collisions

are harmful as those cause false positives. For example, in the case of bloom filters when the hash
of a query point collides with a point in a queried set, the query point is falsely classified as a set
member. In such cases, in the least further computations are needed to resolve the false positives.
However, this would require to explicitly storing all set members in the memory, which may not
be possible in all cases. Note that false negative is impossible in case of hashmaps. That simply is
because when 𝑥 = 𝑥 ′, the hash of 𝑥 and 𝑥 ′ is always the same. To further motivate the problem, let
us consider Example 1.
Example 1: Consider an airline security application, which aims to identify passengers who may
pose a threat, and subject them for further screening and potential prevention from boarding
flights. A set of criminal records is used to create a no-fly list. Due to privacy reasons, the criminals’
identities are hashed and the list is a pair of {hash, gender} of individuals. The passenger hashes
are matched against the no-fly list for this purpose. False positives in airline security can lead to
significantly inconveniencing passengers. □

Traditional 𝑘-wise independent hashing [83, 94] aims to randomly map a key (an entity) to a
random value (bucket) in a specific output range. However, given a set of points, it is unlikely that
independent random value assignment to the points uniformly distribute the points to the buckets.
For example, Fig. 1 shows the distribution of 100 independent and identically distributed (iid)
random numbers, we generated in range [0,9]. While in a uniform distribution of the points, each
bucket would have exactly 10 points, the random assignment did not satisfy it. On the other hand,
the number of collision is minimized, when the uniform distribution is satisfied. In order to resolve
this issue, data-informed approaches are designed, where given a set of data, the goal is to “learn”
a proper hash function that uniformly distributes the data across different buckets [68, 76, 87].
Particularly, given a data set of 𝑛 entities, the cumulative density function (CDF) of (the distribution
represented by) the data set is constructed. Then the hashmap is created by partitioning the range
of values into𝑚 buckets such that each buckets contains 𝑛

𝑚
entities. We refer to this approach [68]

as CDF-based hashmap. It has been shown that such index structures [68, 87] can outperform
traditional hashmaps on practical workloads.
To the best of our knowledge, none of the existing hashmap schemes consider fairness in

terms of equal performance for different demographic groups. Given the wide range of hashmap
applications, this can cause discrimination against minority groups, at least for social applications.
Therefore, in this paper, we study group fairness defined as equal collision probability (false positive

rate) for different demographic groups, in hashmaps. Specifically, targeting to prevent disparate
treatment [16, 57], we propose FairHash, a hashmap that satisfies group fairness. We consider the
CDF-based hashmap for designing our fair data structure.
While there are many definitions of fairness, at a high level group fairness notions fall under

three categories of independence, seperation, and sufficiency [25]. Our proposed notion of group
fairness falls under the independence category, which is satisfied when the output of an algorithm
is independent of the demographic groups (protected attributes). Specifically, we adopt statistical
parity, A well-known definition under the independence category.
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1.2 Applications
FairHash is a data-informed hashmap, extended upon CDF-based hashmap. Data-informed
hashmaps are proper for applications where a large-enough workload is available for learning to
uniformly distribute the data across various buckets. Particularly, data-informed hashmaps are
preferred when the underlying data distribution is not uniform. Besides, the choice between data-
informed hashmaps and traditional hashmaps hinges on other factors such as conflict resolution
policy and memory constraints.

Nevertheless, data-informed hashmaps effectively address a broad range of practical challenges
where traditional approaches fall short. For instance, when dealing with larger payloads or dis-
tributed hash maps, it is advantageous to minimize conflicts, making data-informed hashmaps more
beneficial. On the other hand, in scenarios involving small keys, small values, or data following a
uniform distribution, traditional hash functions are likely to perform effectively [68]. In addition
to Example 1, in the following we outline a few examples of the applications of data-informed
hashmaps, which demonstrate the need for FairHash in real-world scenarios.

Table Joins in Data Lakes: Consider an enterprise seeking to share its data with third-party
companies. The data is stored in a data lake and includes sensitive information such as email,
phone number, or even social security number of the clients serving as the primary keys for select
tables. Disclosing such sensitive information constitutes a breach of client privacy, hence it needs
to be masked through hashing. In such cases, where the join operation is on the hashed columns,
hash-value collisions would add invalid rows to the result table. As a result, higher occurrence
of false positives correlated with particular demographic groups can make the result table biased
against that group. This underscores the need to employ a fair hashing scheme when anonymizing
sensitive columns.

Machine Learning Datasets: Consider a scenario for constructing an ensemble model, where a
large dataset is partitioned into multiple smaller random subsets, each used for training for a base
model. In this setting, ensuring that the sampling process does not introduce any bias is crucial;
hence, each subset of the data should maintain the same ratio of each subpopulation as present in
the original distribution. While the conventional random sampling method fails to ensure such
distribution alignment, employing FairHash to bucketize the data, guarantees this goal.

Distributed Hashmaps and Load Balancing: Collisions incur a substantial cost in distributed
hashmaps, as each collision necessitates an extra lookup request on the remote machine through
RDMA, taking on the order of microseconds. Therefore, higher collision rates linked to keys from a
specific demographic group may cause a notable performance disadvantage against that group.
Using FairHash, for example, web servers can distribute incoming requests across multiple server
instances. This guarantees an equitable distribution of the load, mitigating potential harm to a
specific client if a server becomes unavailable.

1.3 Technical Contributions
(I) Proposing FairHash. We begin our technical contributions by proposing two notions of
group fairness (single and pairwise) based on collision probability disparity between demographic
groups. Intuitively, single fairness is satisfied when the data is uniformly distributed across different
buckets, i.e., the buckets are equi-size. Consequently, as reflected in Figure 1 traditional hashmaps
do not satisfy single fairness. On the other hand, CDF-based hashmap satisfies single fairness as all
of its buckets have the same size. Pairwise fairness is a stronger notion of fairness that, not only
requires equi-size buckets but it also demands equal ratio of demographic groups across all buckets.
To better clarify this, let us consider the distribution of 100 random (synthetic) points from two
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Fig. 1. Distribution of 100 random

integers in [0,9].

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

(a) CDF-based hashmap

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

(b) FairHash

Fig. 2. Distribution of 100 points belonging to two groups blue and

red in 10 buckets.

groups red and blue into 10 buckets, using CDF-based hashmap and FairHash in Figure 1a and
Figure 1b. Although assigning equal number of points to each bucket, CDF-based hashmap fails to
satisfy equal ratio of groups across all buckets, and hence fails on the pairwise fairness. On the
other hand, using FairHash equal group ratios, hence pairwise fairness, is satisfied. Also, from
the figures it is evident that pairwise fairness is a stronger notion, not only requiring equi-size
buckets but also equal group ratios. We shall prove of this in § 2 after providing the formal terms
and definitions.
(II) Ranking-based Algorithms. Next, making the observation that only the ranking between
the points (not their value distribution) impacts the fairness of the CDF-based hashmap, we use
geometric techniques to find alternative ranking of points for fair hashing. We propose multiple
algorithmic results with various benefits. At a high level, our ranking-based approach, maintains
the same time and memory efficiency as of CDF-based hashing, while minimizing the unfairness
(but not guaranteeing zero unfairness).
(III) Cut-based Algorithms. Our next contribution is based on the idea of adding more bins
than the number of hash buckets. We propose Sweep&Cut to prove that independent of the
initial distribution of points, there always exists a fair hashing based on the cutting approach.
While guaranteeing fair hashing, Sweep&Cut is not memory efficient. Therefore, we make an
interesting connection to the necklace splitting problem [8, 10, 75], and using some of the recent
advancements [9] on it, provide multiple algorithms for FairHash. While guaranteeing the fair
hashing, our algorithms achieve the same time efficiency as of the CDF-based hashing with a small
increase in the memory requirement.
(IV) Discrepancy-based Algorithms. We also propose discrepancy-based algorithms that trade-
off single fairness to achieve improve pairwise fairness and memory efficiency. In addition to
the theoretical analysis, we conduct experiments to verify the efficiency and effectiveness of our
algorithms.

2 PRELIMINARIES
Let 𝑃 be a set of 𝑛 points1 in R𝑑 (each point represents a tuple with 𝑑 attributes), where 𝑑 ≥ 1. Let
G = {g1, . . . , g𝑘 } be a set of 𝑘 demographic groups2 (e.g., male, female). Each point 𝑝 ∈ 𝑃 belongs to
group g(𝑝) ∈ G. By slightly abusing the notation we use g𝑖 to denote the set of points in group g𝑖 .

1Throughout this paper, we assume access to 𝑃 is the complete set of points. For cases where instead an unbiased set of
samples from 𝑃 is available, our results in Tables 1 and 2 will remain in an expected manner.
2Demographic groups can be defined as the intersection of multiple sensitive attributes, such as (race, gender) as
{black-female , · · · }.
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LetH be a hashmap with𝑚 buckets, 𝑏1, . . . , 𝑏𝑚 , and a hash function ℎ : R𝑑 → [1,𝑚] that maps
each input point 𝑝 ∈ 𝑃 to one of the𝑚 buckets. Given the pair (𝑃,H), we define three quantitative
requirements that are used to define fairness in hash functions.

(1) Collision Probability (Individual fairness): For any pair of points 𝑝, 𝑞 taken uniformly at random
from 𝑃 , it should hold that 𝑃𝑟 [ℎ(𝑝) = ℎ(𝑞)] = 1

𝑚
.

(2) Single fairness: For each 𝑖 ≤ 𝑘 , for any point 𝑝𝑖 taken uniformly at random from g𝑖 and any
point 𝑥 taken uniformly at random from 𝑃 , it should hold that 𝑃𝑟 [ℎ(𝑝𝑖 ) = ℎ(𝑥)] = . . . =

𝑃𝑟 [ℎ(𝑝𝑘 ) = ℎ(𝑥)] = 1
𝑚
.

(3) Pairwise fairness: For each 𝑖 ≤ 𝑘 , for any pair of points 𝑝𝑖 , 𝑞𝑖 taken uniformly at random from
g𝑖 , it should hold that 𝑃𝑟 [ℎ(𝑝𝑖 ) = ℎ(𝑞𝑖 )] = . . . = 𝑃𝑟 [ℎ(𝑝𝑘 ) = ℎ(𝑞𝑘 )] = 1

𝑚
.

Ensuring Pareto-optimality: A major challenge when formulating fair algorithms is that those
may generate Pareto-dominated solutions [80]. That is, those may produce a fair solution that are
worse for all groups, including minorities, compared to the unfair ones. In particular, in a utility
assignment setting, let the utility assigned to each group g𝑖 by the fair algorithm be 𝑢𝑖 . There may
exist another (unfair) assignment that assigns 𝑢′𝑖 > 𝑢𝑖 , ∀g𝑖 ∈ G. This usually can happen when
fairness is defined as the parity between different groups, without further specifications.
In this paper, the requirements 2 and 3 (single and pairwise fairness) have been specifically

defined in a way to prevent generating Pareto-dominated fair solutions. To better explain the
rational behind our definitions, let us consider pairwise fairness (the third requirement). Only
requiring equal collision probability between various groups, the fairness constraint would translate
to 𝑃𝑟 [ℎ(𝑝𝑖 ) = ℎ(𝑞𝑖 )] = 𝑃𝑟 [ℎ(𝑝𝑘 ) = ℎ(𝑞𝑘 )], where 𝑝𝑖 and 𝑞𝑖 belong to group g𝑖 . Now let us consider
a toy example with two groups {g1, g2}, two buckets {𝑏1, 𝑏2}, and 𝑛 points where half belong to g1.
Let the hashmapH map each point 𝑝 ∈ g1 to 𝑏1 and each point 𝑞 ∈ g2 to 𝑏2. In this example, the
collision probability between a random pair of points is 0.5, simply because each bucket contains
half of the points. It also satisfies the collision probability equality between pairs of points from the
same groups: 𝑃𝑟 [ℎ(𝑝𝑖 ) = ℎ(𝑞𝑖 )] = 𝑃𝑟 [ℎ(𝑝𝑘 ) = ℎ(𝑞𝑘 )] = 1.
This, however, is the worst assignment for both groups as their pairs always collide. In other

words, it is fair, in a sense that it is equally bad for both groups. Any other hashmap would have a
smaller collision probability for both groups and, even if not fair, would be more beneficial for both
groups. In other words, this is a fair but Pareto-dominated solution.
In order to ensure Pareto-optimality while developing fair hashmaps, in requirements 2 and 3

(single and pairwise fairness), not only we require the probabilities to be equal, but also we require
them to be equal to the best case, where the collision probability is 1

𝑚
. As a result, we guarantee

that (1) our hashmap is fair and (2) no other hashmap can do better for any of the groups.

Calculation of probabilities: Next, we give the exact close forms for computing the collision
probability, the single fairness, and the pairwise fairness. Let 𝛼𝑖, 𝑗 be the number of items from group
𝑖 at bucket 𝑗 and let 𝑛 𝑗 =

∑︁𝑘
𝑖=1 𝛼𝑖, 𝑗 . The probabilities are calculated as follows, collision probability:∑︁𝑚

𝑗=1
(︁𝑛 𝑗

𝑛

)︁2, single fairness: ∑︁𝑚
𝑗=1

𝛼𝑖,𝑗

|g𝑖 | ·
𝑛 𝑗

𝑛
, pairwise fairness:

∑︁𝑚
𝑗=1

(︂
𝛼𝑖,𝑗

|g𝑖 |

)︂2
. We observe that, if and

only if |g𝑖 |/𝑚 tuples from each group g𝑖 are placed in every bucket then all quantities above are
equal to the optimum value 1

𝑚
.

The relationship between the three requirements: In this paper we aim to construct a hashmap
H that satisfies (approximately) all the three requirements.

Proposition 1. Collision probability is satisfied if and only if all buckets contain exactly the same

number of points i.e., for each bucket 𝑏 𝑗 , |𝑏 𝑗 | = 𝑛
𝑚
.
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Proposition 2. If collision probability is satisfied then single fairness is also satisfied.

Proposition 3. Pairwise fairness is satisfied if and only if for every group g𝑖 ∈ G, every bucket 𝑏 𝑗

contains the same number of points from group g𝑖 , i.e., 𝑏 𝑗 contains
|g𝑖 |
𝑚

items from group g𝑖 . If pairwise
fairness is satisfied then both single fairness and the collision probability are satisfied but the reverse

may not necessarily hold.

Proof: We give the proofs to all propositions above.

For Proposition 1, if each bucket contains𝑛/𝑚 items then the collision probability is
∑︁𝑚

𝑗=1

(︂
𝑛/𝑚
𝑛

)︂2
=

1
𝑚
, so it is satisfied. For the other direction, we assume that the collision probability holds. Notice

that
∑︁𝑚

𝑗=1
(︁𝑛 𝑗

𝑛

)︁2
= 1

𝑚
⇔ ∑︁𝑚

𝑗=1 𝑛
2
𝑗 =

𝑛2

𝑚
. For any integer values 𝑛 𝑗 ≥ 0 with

∑︁𝑚
𝑗=1 𝑛 𝑗 = 𝑛, it holds that∑︁𝑚

𝑗=1 𝑛
2
𝑗 ≥

∑︁𝑚
𝑗=1

(︁
𝑛
𝑚

)︁2
= 𝑛2

𝑚
and the minimum value is achieved only for 𝑛 𝑗 =

𝑛
𝑚

for each 𝑗 ∈ [1,𝑚].
The result follows.

For Proposition 2, we have that if the collision probability is satisfied then from Proposition 1, it
holds 𝑛 𝑗 =

𝑛
𝑚
. Then the single fairness for any group g𝑖 is computed as

∑︁𝑚
𝑗=1

𝛼𝑖,𝑗

|g𝑖 |
𝑛 𝑗

𝑛
=
∑︁𝑚

𝑗=1
𝛼𝑖,𝑗

|g𝑖 |
𝑛/𝑚
𝑛

=
1

𝑚 · |g𝑖 |
∑︁𝑚

𝑗=1 𝛼𝑖, 𝑗 =
1
𝑚
, so it is satisfied.

The first part of Proposition 3 follows directly from Proposition 1, because the pairwise fairness
of group g𝑖 is equivalent to the collision probability assuming that 𝑃 = g𝑖 . For the second part, if
pairwise fairness is satisfied, then from the first part of Proposition 3, we know that 𝑛 𝑗 =

𝑛
𝑚
. Then

from Proposition 1 the collision probability is satisfied, so from Proposition 2, the single fairness is
also satisfied. Finally, the construction in the proof of Lemma 1 shows that the reverse may not
necessarily hold. □

From Propositions 1 to 3, in order to satisfy the three requirements of collision probability, single
fairness, and pairwise fairness, it is enough to develop a hashmap that satisfies pairwise fairness
(which will generate equal-size buckets). In other words, pairwise fairness is the strongest property,
compared to the other two.
Our goal is to design hashmaps that, while satisfying collision probability and single fairness

requirements, satisfies pairwise fairness as the stronger notion of fairness3. Specifically, we want to
find the hashmapH with𝑚 buckets to optimize the pairwise fairness.

Measuring unfairness: For a group g ∈ G, let 𝑃𝑟g be the pairwise collision probability between
its members. That is, 𝑃𝑟g = 𝑃𝑟 [ℎ(𝑝) = ℎ(𝑞)], if 𝑝 and 𝑞 are selected uniformly at random from the
same group g(𝑝) = g(𝑞) = g. We measure unfairness as the max-to-min ratio in pairwise collision
probabilities between the groups. Particularly, using 1

𝑚
as the min on the collision probability, we

say a hashmap is 𝜀-unfair, if and only if

maxg∈G (𝑃𝑟g)
1/𝑚 ≤ (1 + 𝜀) ⇒ max

g∈G
(𝑃𝑟g) ≤

1
𝑚
(1 + 𝜀) (1)

It is evident that for a hashmap that satisfies pairwise fairness, 𝜀 = 0. We use 1
𝑚

as the min on
the collision probability to ensure pareto-optimality.

Memory efficiency: A hashmap with𝑚 buckets needs to store at least𝑚 − 1 boundary points

to separate the𝑚 buckets. While our main objective is to satisfy fairness, we also would like to
minimally increase the required memory to separate the buckets. We say a hashmap with𝑚 buckets

3To simplify the terms, in the rest of the paper, we use “fairness” to refer to pairwise fairness. We shall explicitly use “single
fairness” when we refer to it.
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satisfies 𝛼-memory, if and only if it stores at most 𝛼 (𝑚 − 1) boundary points. Evidently, the most
memory-efficient hashmap satisfies 𝛼 = 1.

Definition 1 ( (𝜀, 𝛼)-hashmap). A hashmapH is an (𝜀, 𝛼)-hashmap if and only if it is 𝜀-unfair

and 𝛼-memory.

Problem formulation: Given 𝑃 , G, and parameters𝑚, 𝜀, 𝛼 , the goal is to design an (𝜀, 𝛼)-hashmap.
In this work we mostly focus on (𝜀, 1)-hashmaps and (0, 𝛼)-hashmaps, minimizing 𝜀 and 𝛼 ,

respectively4. Note that, in the best case, one would like to achieve (0, 1)-hashmap. That is a
hash-map that is 0-unfair and does not require additional memory, i.e., satisfies 1-memory.

(Review) CDF-based hashmap [68]: is a data-informed hashmap that “learns” the cumulative
density function of values over a specific attribute, and use it to place the boundaries of the𝑚
buckets such that an equal number of points ( 𝑛

𝑚
) fall in each bucket. Traditional hash functions

and learned hash functions (CDF) usually satisfy the collision probability and the single fairness
probability, however they violate the pairwise fairness property.

Lemma 1. While CDF-based hashmap satisfies collision probability, hence single fairness, it may

not satisfy pairwise fairness.

Proof: From [68], it is always the case that each bucket contains the same number of tuples, i.e.,
𝑛 𝑗

𝑛
= 1

𝑚
for every 𝑗 = 1, . . . ,𝑚. Hence, from Proposition 1, the collision probability is satisfied. Then,

from Proposition 2, the single fairness is also satisfied.
Next, we show that CDF-based hashmap does not always satisfy pairwise fairness using a

counter-example. Let 𝑘 = 2,𝑚 = 2, |g1 | = 3, |g2 | = 3|, and 𝑛 = 6. Assume the 1-dimensional tuples
{1, 2, 3, 4, 5, 6} where the first 3 of them belong to g1 and the last three belong to g2. The CDF-based
hashmap will place the first three tuples into the first bucket and the last three tuples into the
second bucket. By definition, the pairwise fairness is 1 (instead of 1/2) for both groups. □

Data-informed hashmaps vs. traditional hashmaps: A summary of the comparison between
CDF-based and traditional hashmaps is presented in Table 3. The most major difference between
CDF-based and hashmaps is that the former is data-informed. That is, the CDF-based hashmap
is tailored for a specific data workload, while traditional hashmaps are data-independent, i.e.,
their behavior does not depend on the data those are applied on. As a result, as mentioned in
§ 1.2, the main assumption and the requirement of the CDF-based hashmap is access to a large-
enough workload 𝑃 for learning the CDF function. On the other hand, traditional hashmaps do not
require access to any data workload. While the traditional hashmaps compute the hash value of a
query point in constant time, CDF-based hashmap requires to run a binary search on the bucket
boundaries, and hence has a query time logarithmic to𝑚. Having learned the data distribution, the
CDF-based hashmap guarantees a uniform distribution of data across different buckets, while as
shown in Figure 1 traditional hashmaps cannot guarantee that. As a result, CDF-based hashmap
guarantees equal collision probability and single fairness, while traditional hashmaps do not. Finally,
both traditional and CDF-based hashmaps fail to guarantee pairwise fairness, a requirement that
FairHash satisfies.

2.1 Overview of the algorithmic results
We propose two main approaches for defining the hashmaps, called ranking-based approach, and
cut-based approach. A summary of our algorithmic results with perfect collision probability and
single fairness for all groups, is shown in Table 1.
4For simplicity, throughout the paper, we consider that the cardinality of each group g𝑖 is divisible by𝑚.
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Table 1. Summary of the algorithmic results with exact (1/𝑚) collision and single fairness probability.

Assumptions Performance
∗

Algorithm No. No. (𝜀, 𝛼)-hashmap Query Pre-processing

Attributes Groups time time

Ranking 𝑑 ≥ 2 𝑘 ≥ 2 (𝜀𝑅, 1) 𝑂 (log𝑚) 𝑂 (𝑛𝑑 log𝑛)
Sweep&Cut 𝑑 ≥ 1 𝑘 ≥ 2 (0, 𝑛𝑚 ) 𝑂 (log𝑛) 𝑂 (𝑛 log𝑛)
Necklace2𝑔 𝑑 ≥ 1 2 (0, 2) 𝑂 (log𝑚) 𝑂 (𝑛 log𝑛)
Necklace𝑘𝑔 𝑑 ≥ 1 𝑘 > 2 (0, 𝑘 (4 + log𝑛)) 𝑂 (log(𝑘𝑚 log𝑛)) 𝑂 (𝑚𝑘3 log𝑛 + 𝑘𝑛𝑚(𝑛 +𝑚))
∗: 𝑛 is the dataset size,𝑚 is the number of buckets, and 𝑘 is the number of groups.

Table 2. Summary of the algorithmic results with approximate collision and single fairness probability. The

output of Ranking
+
holds with probability at least 1 − 1/𝑛.

Assumptions Performance
∗

Algorithm No. No. (𝜀, 𝛼)-hashmap Query Pre-processing

Attr. Groups time time

Ranking 𝑑 ≥ 2 𝑘 ≥ 2 (𝜀𝐷 , 1) 𝑂 (log𝑚) 𝑂 (𝑛𝑑+2𝑚 log𝑘)
Ranking+ 𝑑 ≥ 2 𝑘 ≥ 2 ((1 + 𝛿)𝜀𝐷 + 𝛾, 1) 𝑂 (log𝑚) 𝑂 (𝑛 + 𝑘𝑑+2𝑚2𝑑+5

𝛾2𝑑+4 polylog(𝑛, 1
𝛿
))

Necklace𝑘𝑔 𝑑 ≥ 1 𝑘 > 2 (𝜀, 𝑘 (4 + log 1
𝜀 )) 𝑂 (log(𝑘𝑚 log 1

𝜀 )) 𝑂 (𝑚𝑘3 log 1
𝜀 + 𝑘𝑛𝑚(𝑛 +𝑚))

Table 3. Comparison between CDF-based and traditional hashmaps.

Query Collision Single Pairwise

Hashmap Architecture time probability fairness fairness

traditional data-independent 𝑂 (1) ✗ ✗ ✗

CDF-based data-dependent 𝑂 (log𝑚) ✓ ✓ ✗

FairHash data-dependent 𝑂 (log𝑚) ✓ ✓ ✓

Let 𝑊 be the set of all possible unit vectors in R𝑑 . Given a vector 𝑤 ∈ 𝑊 , let 𝑃𝑤 be the
ordering defined by the projection of 𝑃 onto 𝑤 . Based on this ordering, we construct 𝑚 equi-
size buckets. In the ranking-based approaches, we focus on finding the best vector𝑤 to take the
projection on that minimizes the unfairness. Let 𝑂𝑃𝑇𝑅 (𝑃𝑤) be the smallest parameter such that
an (𝑂𝑃𝑇𝑅 (𝑃𝑤), 1)-hashmap exists in 𝑃𝑤 with collision probability and single fairness equal to 1/𝑚.
We define 𝜀𝑅 = min𝑤∈𝑊 𝑂𝑃𝑇𝑅 (𝑃𝑤).

In the cut-based approaches, we define 𝛽 (𝑚 − 1) + 1 intervals I = {𝐼1, . . . , 𝐼𝛽 (𝑚−1)+1} defined by
the 𝛽 (𝑚 − 1) boundary points, such that for each point 𝑝 ∈ 𝑃𝑤 (the projection of 𝑃 on a vector𝑤 )
there exists an interval 𝐼 ∈ I where 𝑝 ∈ 𝐼 . Each interval 𝐼 ∈ I is assigned to one of the𝑚 buckets.
Our focus on cut-based approaches is on finding the best way to place the boundary points on a
given ordering 𝑃𝑤 . In all cases the hashmap H stores the vector 𝑤 along with the 𝛽 (𝑚 − 1) + 1
intervals I and their assigned buckets. During the query phase, given a point 𝑞 ∈ R𝑑 , we first apply
the projection ⟨𝑤,𝑞⟩ and we get the value 𝑞𝑤 ∈ R. Then we run a binary search on the boundary
points to find the interval 𝐼 ∈ I such that 𝑞𝑤 ∈ 𝐼 . We return 𝑏 (𝐼 ) as the bucket 𝑞 belongs to.

So far, we consider that the collision probability and the single fairness should be (optimum) 1
𝑚
.

However, this restricts the options when finding fair hashmaps. What if, there exists a hashmap
with better pairwise fairness having slightly more or less than 𝑛/𝑚 items in some buckets? Hence,
we introduce the notion of 𝛾−discrepancy [9]. The goal is to find a hashmap with𝑚 buckets such
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that each bucket contains at most (1 + 𝛾) |g𝑖 |
𝑚

and at least (1 − 𝛾) |g𝑖 |
𝑚

points from each group 𝑖 ≤ 𝑘 .
A summary of our algorithmic results with approximate collision probability and single fairness for
all groups, is shown in Table 2. Let𝑊 be the set of all possible unit vectors in R𝑑 . Let𝑂𝑃𝑇𝐷 (𝑃𝑤) be
the smallest parameter such that a hashmap with 𝑂𝑃𝑇𝐷 (𝑃𝑤)-discrepancy exists in 𝑃𝑤 . We define
𝜀𝐷 = min𝑤∈𝑊 𝑂𝑃𝑇𝐷 (𝑃𝑤).
Fairness and memory efficiency trade-off. Ideally, one would like to develop a hashmap that
is 0-unfair and 1-memory. But in practice, depending on the distribution of the data, achieving
both at the same time may not be possible. For cases where fairness is a hard constraint, cut-based
algorithms are preferred, as those guarantee 0-unfairness, irrespective of the data distribution. But
that is achieved at a cost of increasing memory usage. On the other hand, ranking-based algorithms
minimize unfairness without requiring any extra memory but do not 0-unfairness; hence those
are fit when memory is a hard constraint. Last but not least, the discrepancy-based algorithms
provide a trade-off between pairwise and single fairness. Specifically, these algorithms do not
guarantee to contain exactly 𝑛

𝑚
points in each bucket, and hence, may not satisfy the first two

requirements (individual and single fairness). However, for cases where adding a small amount of
single unfairness is tolerable, the discrepancy-based algorithms may further reduce the pairwise
unfairness of the ranking-based and the memory bound of the cut-based algorithms.
Remark. In all cases, for simplicity, we assume that our algorithms have access to the entire
input set in order to compute a near-optimal hashmap. However, our algorithms can work in
expectation, if an unbiased sample set from the input set is provided. We verify this, experimentally
in Section 6.7.

3 RANKING-BASED ALGORITHMS
We start our contribution by defining a space of (𝜀, 1)-hashmaps, and designing algorithms to
find the (near) optimum hashmap with the smallest 𝜀. By definition, recall that 𝜀𝑅 is the smallest
unfairness we can find with this technique (assuming 1-memory).

Our key observation is that only the ordering between the tuples matterswhen it comes to pairwise
fairness, not the attribute values. Hence, assuming that 𝑑 > 1, our idea is to combine the attribute
values of a point 𝑝 ∈ 𝑃 into a single score 𝑓 (𝑝), using a function 𝑓 : R𝑑 → R called the ranking
function, and consider the ordering of the points based on their scores for creating the hashmap.
Then, in a class of ranking functions, the objective is to find the one that returns the best (𝜀, 1)-
hashmap with the smallest value of 𝜀. Of course, 𝑓 (𝑝) needs to be computed efficiently, ideally in
constant time. Therefore, we select linear ranking functions, where the points are linearly projected
on a vector𝑤 ∈ R𝑑 . That is, 𝑓𝑤 (𝑝) = ⟨𝑝,𝑤⟩ = 𝑝⊤𝑤 . Notice that the value 𝑓𝑤 (𝑝) can be computed
in 𝑂 (𝑑) = 𝑂 (1) time and it defines an ordering between the different tuples 𝑝 ∈ 𝑃 . For a vector
𝑤 , let 𝑃𝑤 be the ordering defined by 𝑓𝑤 and let 𝑃𝑤 [ 𝑗] be the 𝑗-th largest tuple in the ordering 𝑃𝑤 .
Given the ordering defined by a ranking function 𝑓𝑤 , we construct (𝑚 − 1) boundaries to partition
the data into𝑚 equi-size buckets (each containing 𝑛

𝑚
points). Then a natural algorithm to construct

an (𝜀, 1)-hashmap is to run the subroutine for each possible ranking function and in the end return
the best ranking function we found.

For simplicity, we describe our first method inR2. All our algorithms are extended to any constant
dimension 𝑑 .
It is known that for 𝑃 ⊂ R2 there exist 𝑂 (𝑛2) combinatorially different ranking functions [53].

We can easily compute them if we work in the dual space [53]. For a point 𝑝 = (𝑥𝑝 , 𝑦𝑝 ) ∈ 𝑃 we
define the dual line 𝜆(𝑝) : 𝑥𝑝𝑥1 + 𝑦𝑝𝑥2 = 1. Let Λ = {𝜆(𝑝) | 𝑝 ∈ 𝑃} be the set of 𝑛 lines. Let A(Λ)
be the arrangement [53] of Λ, which is defined as the decomposition of R2 into connected (open)
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cells of dimensions 0, 1, 2 (i.e., point, line segment, and convex polygon) induced by 𝑃 . It is known
that A(Λ) has 𝑂 (𝑛2) cells and it can be computed in 𝑂 (𝑛2 log𝑛) time [53].
Given a vector 𝑤 , the ordering 𝑃𝑤 is the same as the ordering defined by the intersections of

Λ with the line supporting 𝑤 . Hence, someone can identify all possible ranking functions 𝑓𝑤 by
traversing all intersection points in A(Λ). Each intersection in A(Λ) is represented by a triplet
(𝑝, 𝑞,𝑤) denoting that the lines 𝜆(𝑝), 𝜆(𝑞) are intersecting and the intersection point lies on the line
supporting the vector𝑤 . LetW be the array of size𝑂 (𝑛2) containing all intersection triplets sorted
in ascending order of the vectors’ angles with the 𝑥-axis. LetW[𝑖] denote the 𝑖-th triplet (𝑝𝑖 , 𝑞𝑖 ,𝑤𝑖 ).
It is known that the orderings 𝑃𝑤𝑖

, 𝑃𝑤𝑖+1 differ by swapping the ranking of two consecutive items.
Without loss of generality, we assume that for (𝑝𝑖 , 𝑞𝑖 ,𝑤𝑖 ) ∈ W, the ranking of 𝑝𝑖 is higher than the
ranking of 𝑞𝑖 for vectors with angle greater than𝑤𝑖 . The arrayW can be constructed in𝑂 (𝑛2 log𝑛)
time.

3.1 Algorithm
Using W, the goal is to find the best (𝜀, 1)-hashmap over all vectors satisfying the collision
probability and the single fairness. The high level idea is to consider each different vector𝑤 ∈ W,
and for each ordering 𝑃𝑤 , find the hashmap that satisfies the collision probability and the single
fairness measuring the unfairness. In the end, return the vector 𝑤 along with the boundaries of
the hashmap with the smallest unfairness we found. If we execute it in a straightforward manner,
we would have 𝑂 ( |W| · 𝑛 log𝑛) = 𝑂 (𝑛𝑑+1 log𝑛) time algorithm. Next, we present a more efficient
implementation applying fast update operations each time that we visit a new vector.
The pseudo-code of the algorithm in R2 is provided in Algorithm 1. The algorithm starts with

the initialization of some useful variables and data structures. Let 𝑤0 be the unit vector with
angle to the 𝑥-axis slightly smaller than 𝑤1’s angle. We visit each point in 𝑃 and we find the
(current) ordering, denoted by 𝑃𝑤 , sorting the projections of 𝑃 onto𝑤0. Next, we compute the best
(𝜀, 1)-hashmap in 𝑃𝑤 . The only way to achieve optimum collision probability and single fairness
in 𝑃𝑤 is to construct exactly 𝑚 buckets containing the same total number of tuples in each of
them. Identifying the buckets (and constructing the hashmap) in 𝑃𝑤 is trivial because every bucket
should contain exactly 𝑛/𝑚 items. Hence, the boundaries of the 𝑗-th hashmap bucket are defined
as 𝑃𝑤 [( 𝑗 − 1) 𝑛

𝑚
+ 1], 𝑃𝑤 [ 𝑗 𝑛𝑚 ], for 𝑗 ∈ [1,𝑚]. Next, we compute the unfairness with respect to

𝑤0. For each group g𝑖 that contains at least one item in 𝑗-th bucket we set 𝛼𝑖, 𝑗 = 0. We use the
notation 𝛼𝑖, 𝑗 to denote the number of tuples from group 𝑖 in 𝑗-th bucket. Let 𝑃𝑤 [ℓ] be the next
item in the 𝑗-th bucket, and let 𝑃𝑤 [ℓ] ∈ g𝑖 . We update 𝛼𝑖, 𝑗 ← 𝛼𝑖, 𝑗 + 1. After traversing all items

in 𝑃𝑤 , we compute the pairwise fairness of group g𝑖 as 𝑃𝑟𝑖 =
∑︁𝑚

𝑗=1

(︂
𝛼𝑖,𝑗

|g𝑖 |

)︂2
. The unfairness with

respect to 𝑤0 is 𝜀 =𝑚 · max𝑖≤𝑘 𝑃𝑟𝑖 − 1. After computing all values 𝑃𝑟𝑖 , we construct a max heap
𝑀 over {𝑃𝑟1, . . . , 𝑃𝑟𝑘 }. Let𝑤∗ = 𝑤0. We run the algorithm visiting each vector inW maintaining
𝜀, 𝑀,𝑤∗, 𝑃𝑤, 𝑃𝑟𝑖 , 𝛼𝑖, 𝑗 for each 𝑖 and 𝑗 .

As the algorithm proceeds, assume that we visit a triplet (𝑝𝑠 , 𝑞𝑠 ,𝑤𝑠 ) inW. If 𝑝𝑠 and 𝑞𝑠 belong
in the same bucket, we only update the positions of 𝑝𝑠 , 𝑞𝑠 in 𝑃𝑤 and we continue with the next
vector. Similarly, if both 𝑝𝑠 , 𝑞𝑠 belong in the same group g𝑖 we only update the position of them
in 𝑃𝑤 and we continue with the next vector. Next, we consider the more interesting case where
𝑝𝑠 ∈ g𝑖 belongs in the 𝑗-th bucket and 𝑞𝑠 ∈ gℓ belongs in the ( 𝑗 + 1)-th bucket of 𝑃𝑤 , with 𝑖 ≠ ℓ , just
before we visit (𝑝𝑠 , 𝑞𝑠 ,𝑤𝑠 ). We update 𝑃𝑤 as in the other cases. However, now we need to update
the pairwise fairness. In particular, we update,

𝑃𝑟𝑖 = 𝑃𝑟𝑖 −
(︃
𝛼𝑖, 𝑗

|g𝑖 |

)︃2
−
(︃
𝛼𝑖, 𝑗+1
|g𝑖 |

)︃2
+
(︃
𝛼𝑖, 𝑗 − 1
|g𝑖 |

)︃2
+
(︃
𝛼𝑖, 𝑗+1 + 1
|g𝑖 |

)︃2
,
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Algorithm 1 Ranking2𝐷
Input: Set of points 𝑃 ∈ R2
Output: vector𝑤∗ and corresponding boundaries 𝐵
1: Construct and sort the vectors inW with respect to their angles;
2: 𝑤0 ← vector with angle to the 𝑥-axis slightly smaller than𝑤1’s angle;
3: 𝑃𝑤 ← sorted projection of 𝑃 onto𝑤0;
4: 𝑏 𝑗 ←

(︁
𝑃𝑤 [( 𝑗 − 1) 𝑛𝑚 + 1], 𝑃𝑤 [ 𝑗

𝑛
𝑚 ]

)︁
∀𝑗 = 1, . . . ,𝑚;

5: 𝛼𝑖, 𝑗 ← |g𝑖 ∩ 𝑏 𝑗 |, ∀𝑖 = 1, . . . , 𝑘 , 𝑗 = 1, . . . ,𝑚;

6: 𝑃𝑟𝑖 ←
∑︁𝑚

𝑗=1

(︂
𝑎𝑖,𝑗
|g𝑖 |

)︂2
, ∀𝑖 = 1, . . . , 𝑘 ;

7: 𝑀 ←Max-Heap on 𝑃𝑟𝑖 ,∀𝑖 = 1, . . . ,𝑚;
8: 𝜀 ←𝑚 ·max𝑖≤𝑘 𝑃𝑟𝑖 − 1;𝑤∗ = 𝑤0;
9: for (𝑝𝑠 , 𝑞𝑠 ,𝑤𝑠 ) ∈ W do

10: if 𝑝𝑠 , 𝑞𝑠 belong in the same bucket OR g(𝑝𝑠 ) == g(𝑞𝑠 ) then
11: Swap 𝑝𝑠 , 𝑞𝑠 and update 𝑃𝑤 ;
12: else

13: Let 𝑝𝑠 ∈ 𝑏 𝑗 , g(𝑝𝑠 ) = g𝑖 , 𝑞𝑠 ∈ 𝑏 𝑗+1, g(𝑞𝑠 ) = gℓ ;

14: 𝑃𝑟𝑖 ← 𝑃𝑟𝑖 −
(︂
𝛼𝑖,𝑗
|g𝑖 |

)︂2
−
(︂
𝛼𝑖,𝑗+1
|g𝑖 |

)︂2
+
(︂
𝛼𝑖,𝑗−1
|g𝑖 |

)︂2
+
(︂
𝛼𝑖,𝑗+1+1
|g𝑖 |

)︂2
;

15: 𝑃𝑟ℓ ← 𝑃𝑟ℓ −
(︂
𝛼ℓ,𝑗+1
|gℓ |

)︂2
−
(︂
𝛼ℓ,𝑗

|gℓ |

)︂2
+
(︂
𝛼ℓ,𝑗+1−1
|gℓ |

)︂2
+
(︂
𝛼ℓ,𝑗+1
|gℓ |

)︂2
;

16: 𝛼𝑖, 𝑗=𝛼𝑖, 𝑗 −1, 𝛼𝑖, 𝑗+1 = 𝛼𝑖, 𝑗+1 + 1, 𝛼ℓ, 𝑗+1 = 𝛼ℓ, 𝑗+1 − 1, 𝛼ℓ, 𝑗 = 𝛼ℓ, 𝑗 + 1;
17: Update 𝑃𝑟𝑖 , 𝑃𝑟ℓ in𝑀 ;
18: if 𝑚 ·𝑀.𝑡𝑜𝑝 () − 1 < 𝜀 then {𝜀 =𝑚 ·𝑀.𝑡𝑜𝑝 () − 1;𝑤∗ = 𝑤𝑠 ; }
19: for 𝑗 = 1 to𝑚 do 𝐵 𝑗 ←

𝑃𝑤∗ [ 𝑗 𝑛
𝑚
]+𝑃𝑤∗ [ 𝑗 𝑛

𝑚
+1]

2 ; // right boundary of 𝑏 𝑗

20: return (𝑤∗, 𝐵);

and similarly

𝑃𝑟ℓ = 𝑃𝑟ℓ −
(︃
𝛼ℓ, 𝑗+1
|gℓ |

)︃2
−
(︃
𝛼ℓ, 𝑗

|gℓ |

)︃2
+
(︃
𝛼ℓ, 𝑗+1 − 1
|gℓ |

)︃2
+
(︃
𝛼ℓ, 𝑗 + 1
|gℓ |

)︃2
.

Based on the new values of 𝑃𝑟𝑖 , 𝑃𝑟ℓ we update the max heap 𝑀 . We also update 𝛼𝑖, 𝑗 = 𝛼𝑖, 𝑗 − 1,
𝛼𝑖, 𝑗+1 = 𝛼𝑖, 𝑗+1 + 1, 𝛼ℓ, 𝑗+1 = 𝛼ℓ, 𝑗+1 − 1, 𝛼ℓ, 𝑗 = 𝛼ℓ, 𝑗 + 1. If the top value of 𝑀 is smaller than 𝜀, then
we update 𝜀 with the top value of 𝑀 and we update 𝑤∗ = 𝑤𝑠 . After traversing all vectors inW
we return the best vector𝑤∗ we found. The boundaries can easily be constructed by finding the
ordering 𝑃𝑤∗ satisfying that each bucket contains exactly 𝑛/𝑚 items.

Analysis: The correctness of the algorithm follows from the definitions. Next, we focus on the
running time. We need 𝑂 (𝑛2 log𝑛) to construct A(Λ) and 𝑂 (𝑛 log𝑛) additional time to initialize
𝜀, 𝑀,𝑤∗, 𝑃𝑤, 𝑃𝑟𝑖 , 𝛼𝑖, 𝑗 . For each new vector 𝑤𝑠 we visit, we update 𝑃𝑤 in 𝑂 (1) time by storing the
position of each item 𝑝 ∈ 𝑃 in 𝑃𝑤 using an auxiliary array. All variables 𝑃𝑟𝑖 , 𝑃𝑟ℓ , 𝛼𝑖, 𝑗 , 𝛼𝑖, 𝑗+1, 𝛼ℓ, 𝑗 , 𝛼ℓ, 𝑗+1
are updated executing simple arithmetic operations so the update requires 𝑂 (1) time. The max
heap 𝑀 is updated in 𝑂 (log𝑚) time. Hence, for each vector 𝑤𝑠 ∈ W we spend 𝑂 (log𝑚) time.
There are 𝑂 (𝑛2) vectors inW so the overall time of our algorithm is 𝑂 (𝑛2 log𝑛).

Extension to 𝑑 ≥ 2: The algorithm can straightforwardly be extended to any constant dimension
𝑑 . Using known results [53], we can construct the arrangement of𝑂 (𝑛) hyperplanes in𝑂 (𝑛𝑑 log𝑛)
time. Then, in 𝑂 (𝑛𝑑 log𝑛) time in total, we can traverse all combinatorially different vectors such
that the orderings 𝑃𝑤𝑖

, 𝑃𝑤𝑖+1 between two consecutive vectors 𝑤𝑖 ,𝑤𝑖+1 differ by swapping the
ranking of two consecutive items. Our algorithm is applied to all 𝑂 (𝑛𝑑 ) vectors with the same way
as described above. Hence, we conclude to the next theorem.
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Theorem 1. Let 𝑃 be a set of 𝑛 tuples in R𝑑 . There exists an algorithm that computes an (𝜀𝑅, 1)-
hashmap satisfying the collision probability and the single fairness in 𝑂 (𝑛𝑑 log𝑛) time.

Sampled vectors: So far, we consider all possible vectors 𝑤 ∈ W to return the one with the
optimum pairwise fairness. In practice, instead of visiting𝑂 (𝑛𝑑 ) vectors, we sample a large enough
set of vectors ˆ︂W from R𝑑 . We run our algorithm using the set of vectors ˆ︂W instead ofW and we
return the vector that leads to the minimum unfairness 𝜀. This algorithm runs in 𝑂 ( | ˆ︂W|𝑛 log𝑛).
4 CUT-BASED ALGORITHMS
The ranking-based algorithms proposed in Section 3, cannot guarantee 0-unfairness. In other words,
by re-ranking the 𝑛 points using linear projections in R𝑑 , those can only achieve an (𝜀𝑅, 1)-hashmap.

In this section, we introduce a new technique with the aim to guarantee 0-unfairness. So far, our
approach has been to partition the values (after projection) into𝑚 equi-size buckets. In other words,
each bucket 𝑏𝑖 is a continuous range of values specified by two boundary points. The observation
we make in this section is that the buckets do not necessarily need to be continuous. Specifically, we
can partition the values into more than𝑚 bins while in a many-to-one matching, several bins are
assigned to each bucket. Using this idea, in the following we propose two approaches for developing
fair hashmaps with 0-unfairness.

4.1 Sweep&Cut
An interesting question we explore in this section is whether a cut-based algorithm exists that
always guarantee 0-unfairness.

Theorem 2. Consider a set of 𝑛 points in R, where each point 𝑝 belongs to a group 𝑔(𝑝) ∈
{g1, · · · , g𝑘 }. Independent of how the points are distributed and their orders, there always exist a

cut-based hashmap that is 0-unfair.

We prove the theorem by providing the Sweep&Cut algorithm (Algorithm 2) that always finds
a 0-unfair hashmap. Without loss of generality, let 𝐿 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ be the sorted list of points
in 𝑃 based on their values on an attribute 𝑥 . Sweep&Cut sweeps through 𝐿 from 𝑝1 to 𝑝𝑛 twice.
During the first sweep (Lines 3 to 5), the algorithm keeps track of the number of instances it has
observed from each group g𝑖 . The algorithm uses 𝐻 𝑡𝑚𝑝 to mark which bucket each point should
fall into, such that each bucket contains |g𝑖 |

𝑚
instances from each group g𝑖 . During the second pass

(Lines 7 to 12), the algorithm compares the neighboring points and as long as those should belong
to the same bucket (Line 8), there is no need to introduce a new boundary. Otherwise, the algorithm
adds a new boundary (in array 𝐵) to introduce a new bin, while assigning the bucket numbers in 𝐻 .
Finally, the algorithm returns the bin boundaries and the corresponding buckets.

4.1.1 Analysis. Sweep&Cut makes two linear-time passes over 𝑃 . Therefore, considering the time
to sort 𝑃 based on 𝑥 , its time complexity is 𝑂 (𝑛 log𝑛). The algorithm assigns 𝑛

𝑚
point to each

bucket; hence, following Propositions 1 and 2 is satisfies collision probability and single fairness.
More importantly, Sweep&Cut assigns |g𝑖 |

𝑚
point from each group g𝑖 to each bucket. As a result,

for any pair 𝑝𝑖 , 𝑞𝑖 in g𝑖 , 𝑃𝑟 [ℎ(𝑝𝑖 ) = ℎ(𝑞𝑖 )] = 1
𝑚
. Therefore, the hashmap generated by Sweep&Cut

is 0-unfair, proving Theorem 2.
Despite guaranteeing 0-unfairness, Sweep&Cut is not efficient in terms of memory. Particularly,

in the worst case, it can introduce as much as 𝑂 (𝑛) boundaries.
In a best case, where the points are already ordered in a way that dividing them into𝑚 equi-size

buckets is already fair, Sweep&Cut will add𝑚 bins (𝑚 − 1 boundaries). On the other hand, in
adversarial setting, a large potion of the neighboring pairs within the ordering belong to different
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Algorithm 2 Sweep&Cut
Input: The set of points P
Output: Bin boundaries 𝐵 and corresponding buckets 𝐻
1: ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ ← sort 𝑃 based on an attribute 𝑥
2: for 𝑗 = 1 to 𝑘 do 𝑐 𝑗 ← 0; // # of instances observed from g𝑖

3: for 𝑖 = 1 to 𝑛 do

4: let g𝑗 = g(𝑝𝑖 ); 𝑐 𝑗 ← 𝑐 𝑗 + 1
5: 𝐻

𝑡𝑚𝑝

𝑖
←

⌊︂
𝑐 𝑗×𝑚
|g𝑗 |

⌋︂
+ 1

6: 𝑖 ← 0; 𝑗 ← 0
7: while True do

8: while (𝑖 < 𝑛 and 𝐻𝑡𝑚𝑝

𝑖
== 𝐻

𝑡𝑚𝑝

𝑖+1 ) do 𝑖 ← 𝑖 + 1
9: 𝐻 𝑗 ← 𝐻

𝑡𝑚𝑝

𝑖
; // the bucket assigned to the 𝑗-th bin

10: if 𝑖 == 𝑛 then break

11: 𝐵 𝑗 =
𝑝𝑖 [𝑥 ]+𝑝𝑖+1 [𝑥 ]

2 ; // the right boundary of the 𝑗-th bin

12: 𝑗 ← 𝑗 + 1
13: return (𝐵,𝐻 )

groups with different hash buckets assigned to them. Therefore, in the worst-case Sweep&Cut
may add up to 𝑂 (𝑛) boundaries, making it satisfy 𝑛

𝑚
-memory. Applying the binary search on the

𝑂 (𝑛) bin boundaries, the query time of Sweep&Cut hashmap is in the worst-case 𝑂 (log𝑛).

Lemma 2. In the binary demographic groups cases, where G = {g1, g2} and 𝑟 = |g1 |, the expected
number of bins added by Sweep&Cut is bounded by 2

(︁ 𝑟 (𝑛−𝑟 )
𝑛
+𝑚

)︁
.

Proof: Sweep&Cut adds at most 𝑚 − 1 boundaries between the neighboring pairs that both
belong to the same group, simply because a boundary between neighboring pair can only happen
when moving from one bucket to the next while there are𝑚 buckets.

In order to find the upper-bound on the number of bins added, in the following we compute
the expected number of neighboring pairs from different groups. Consider the in the sorted list
of points ⟨𝑝1, · · · , 𝑝𝑛⟩ based on the attribute 𝑥 . The probability that a point 𝑝𝑖 belongs to group
𝑔1 is 𝑃𝑟1 = 𝑃𝑟 (g(𝑝𝑖 ) = g1) = 𝑟

𝑛
. Now consider two consecutive points 𝑝𝑖 , 𝑝𝑖+1, in the list. The

probability that these two belong to different groups is 2𝑃𝑟1 (1− 𝑃𝑟1). Let B be the random variable
representing the number of pairs from different groups. We have, 𝐸 [B] = ∑︁𝑛−1

𝑖=1 2𝑃𝑟1 (1 − 𝑃𝑟1) =
2(𝑛 − 1) 𝑟

𝑛
(1 − 𝑟

𝑛
) < 2𝑟 (𝑛−𝑟 )

𝑛
. Therefore, 𝐸 [No. bins] ≤ 𝐸 [B] + 2𝑚 < 2

(︂
𝑟 (𝑛−𝑟 )

𝑛
+𝑚

)︂
. □

4.2 Transforming to Necklace Splitting
Although guaranteeing 0-unfairness, Sweep&Cut is not memory efficient. The question we seek
to answer in this section is whether it is possible to guarantee 0-unfairness while introducing
significantly less number of bins, close to𝑚. In particular, we make an interesting connection to
the so-called necklace splitting problem [8, 10, 75], and use the recent advancements [9] on this
problem by the math and theory community to solve the fair hashmap problem.

(Review) Necklace Splitting: Consider a necklace of 𝑇 beads of 𝑛′ types. For each type 𝑖 ≤ 𝑛′, let
𝑚′𝑖 be the number of beads with type 𝑖 , and let𝑚′ = max𝑖𝑚′𝑖 . The objective is to divide the beads
between 𝑘 ′ agents, such that (a) all agents receive exactly the same amount of beads from each
type and (b) the number of splits to the necklace is minimized.
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Reduction: Given an instance of the fair hashmap problem, let 𝐿 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ be the ordering
of 𝑃 based on an attribute 𝑥 . The problem gets reduced to necklace splitting as following: The
points in 𝑃 get mapped into the 𝑇 = 𝑛 bead, distributed with the ordering ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ in the
necklace. The 𝑘 groups in G get translated to the 𝑛′ = 𝑘 bead types {g1, · · · , g𝑘 }. The𝑚 buckets
translate to the 𝑘 ′ =𝑚 agents.
Given the necklace splitting output, each split of the necklace translates into a bin. The bin

is assigned to the corresponding bucket of the agent who received the necklace split. Using this
reduction, an optimal solution to the necklace splitting is the fair hashmap with minimum number
of cuts: first, since all party in necklace splitting receive equal number of each bead type, the
corresponding hashmap satisfies 0-unfairness, as well as the collision probability and single
fairness requirements; second, since the necklace splitting minimizes the number of splits to the
necklace, it adds minimum number of bins to the fair hashmap problem, i.e., it finds the optimal
fair hashmap on 𝐿, with minimum number of cuts. Using this mapping, in the rest of the section
we adapt the recent results for solving necklace splitting for fair hashmap. In particular, Alon and
Graur [9] propose polynomial time algorithms (with respect to number of beads) for the Necklace
Splitting problem and the 𝜀-approximate version of the problem.

4.2.1 Binary groups. The fair hashmap problem when there are two groups {g1, g2}, maps to the
necklace splitting instance with two bead types. While a straightforward implementation of the
algorithm in [9]-(Proposition 2) leads to an𝑂 (𝑛(log𝑛 +𝑚)) algorithm, in Necklace2𝑔 Algorithm 3,
we propose an optimal time algorithm that guarantees splitting a necklace with at most 2(𝑚 − 1)
cuts in only 𝑂 (𝑛 log𝑛) time.

Algorithm: Without loss of generality, let 𝐶 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ be the sorted list of points in 𝑃

based on their values on an attribute 𝑥 . Necklace2𝑔 views𝐶 as a circle by considering 𝑝𝑛 before 𝑝1.
It uses modulo to size of the list (%|𝐶 |) to move along the circle. The key idea is that the circle 𝐶
always has at least one consecutive window of size 𝑛

𝑚
that contains |g1 |

𝑚
points from g1 (and hence

|g2 |
𝑚

points from g2), see [9]. Hence, we design an algorithm to find such windows efficiently. We
initialize a list 𝑇 such that 𝑇 [ 𝑗] contains the number of items from group g1 between 𝐶 [ 𝑗] and
𝐶 [( 𝑗 + 𝑛/𝑚 − 1)%|𝐶 |]. Furthermore, we initialize the list 𝑋 such that 𝑋 [ 𝑗] is true if and only if
𝑇 [ 𝑗] = |g1 |/𝑚, i.e., the window from 𝐶 [ 𝑗] to 𝐶 [( 𝑗 + 𝑛/𝑚 − 1)%|𝐶 |] is a good candidate for a cut.
All indexes are initialized in lines 4–9 of Algorithm 3. In order to bound the running time of the
new algorithm, we assume that 𝑋 [ 𝑗] also stores a pointer to the 𝑗-th elements in lists 𝐶 and 𝑇 .
Furthermore, we assume that all Boolean variables in 𝑋 are stored in a max heap𝑀𝑋 (if 𝑋 [ 𝑗] = true
and 𝑋 [𝑖] = false then 𝑋 [ 𝑗] > 𝑋 [𝑖]). We use𝑀𝑋 to call𝑀𝑋 .𝑡𝑜𝑝 () that returns the top item in max
heap, i.e., it returns a 𝑗 such that 𝑋 [ 𝑗] = true, in 𝑂 (1) time.
The algorithm is executed in iterations until the list 𝐶 is non-empty. In each iteration, we find

a window of size 𝑛/𝑚 containing exactly |g1 |/𝑚 items from group g1 (so it also contains exactly
|g2 |/𝑚 items from group g2). More specifically, in line 11 we find 𝑗 such that 𝑇 [ 𝑗] = |g1 |/𝑚. In
line 20 we define the new cut we find and in lines 21–23 we remove the cut from our lists to
continue with the next iteration. The points within the cut are marked for the bucket 𝑏𝑘𝑡 . In lines
13–19 we update the values of𝑇 (and hence the values of 𝑋 ) so that𝑇 and 𝑋 have the correct values
after removing the window from 𝐶 [ 𝑗] to 𝐶 [( 𝑗 + 𝑛/𝑚 − 1)%|𝐶 |]. Hence, we can continue searching
for the next window containing |g1 |/𝑚 tuples from group g1 in the next iteration. Finally, it sorts
the discovered cuts and assigns the bin boundaries 𝐵 and the corresponding buckets 𝐻 .

Theorem 3. In the binary demographic group cases, there exists an algorithm that finds a (0, 2)-
hashmap satisfying the collision probability and the single fairness in 𝑂 (𝑛 log𝑛) time.
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Proof: In each iteration of the algorithm, we remove a window containing |g1 |/𝑚 items from
group g1 and |g2 |/𝑚 items from group g2. Hence, the correctness of our algorithm follows by the
discrete intermediate value theorem and [9]. Next, we show that the running time is 𝑂 (𝑛 log𝑛).
It takes 𝑂 (𝑛 log𝑛) to sort based on attribute 𝑥 . Then it takes 𝑂 (𝑛/𝑚 + 𝑛) = 𝑂 (𝑛) to initialize 𝑇
and 𝑋 . In each iteration of the while loop at line 10 we remove 𝑛/𝑚 items, so in total it runs
for𝑚 iterations. In each iteration, we get 𝑗 at line 11 in 𝑂 (1) time using the max heap. The for
loop in line 13 is executed for 𝑂 (𝑛/𝑚) rounds. In each round, we need 𝑂 (1) time to update 𝑇 . It
also takes 𝑂 (1) time to update a value in 𝑋 , and 𝑂 (log𝑛) time to update the max heap. Finally,
the for loop in line 21 runs for 𝑂 (𝑛/𝑚) rounds. In each round it takes 𝑂 (1) time to remove an
item from lists 𝐶,𝑇 , 𝑋 and 𝑂 (log𝑛) time to update the max heap. Overall Algorithm 3 runs in
𝑂 (𝑛 log𝑛 +𝑚 𝑛

𝑚
log𝑛) = 𝑂 (𝑛 log𝑛) time. □

5 DISCREPANCY-BASED HASHMAPS
A hashmap satisfies 𝛾-discrepancy if and only if each bucket contains at least (1 − 𝛾) |g𝑖 |

𝑚
and at

most (1 + 𝛾) |g𝑖 |
𝑚

points from each group g𝑖 . In this section, we first show that a hashmap that
satisfies 𝛾-discrepancy has bounded collision probability, single fairness, and pairwise fairness.
Then, we propose efficient algorithms that construct 𝛾-discrepancy hashmaps, where 𝛾 is close to
the optimum.
Let 𝑃𝑤 be the ordering of points in 𝑃 based on a vector𝑤 and letH be a hashmap constructed

on 𝑃𝑤 . Recall that 𝑃𝑟𝑖 is defined as the pairwise fairness value of H for group g𝑖 . Let 𝐶𝑝 be the
collision probability and 𝑆𝑝𝑖 the single fairness of group g𝑖 .

Lemma 3. Let H be a hashmap satisfying 𝛾-discrepancy. Then 𝐶𝑝 ≤ 1+𝛾
𝑚

,
1−𝛾
𝑚
≤ 𝑆𝑝𝑖 ≤ 1+𝛾

𝑚
and

𝑃𝑟𝑖 ≤ 1+𝛾
𝑚

for each group g𝑖 .

Proof: Recall that 𝑛 𝑗 is the number of items in bucket 𝑗 and 𝛼𝑖, 𝑗 is the number of items from
group 𝑖 in bucket 𝑗 . Notice that

∑︁𝑚
𝑗=1 𝛼𝑖, 𝑗 = |g𝑖 | and

∑︁𝑚
𝑗=1 𝑛 𝑗 = 𝑛. We have,

𝑃𝑟𝑖 =

𝑚∑︂
𝑗=1

(︃
𝛼𝑖, 𝑗

|g𝑖 |

)︃2
≤

𝑚∑︂
𝑗=1

(1 + 𝛾) g𝑖
𝑚

|g𝑖 |
·
𝛼𝑖, 𝑗

|g𝑖 |
=
1 + 𝛾
𝑚

𝑚∑︂
𝑗=1

𝛼𝑖, 𝑗

|g𝑖 |
=
1 + 𝛾
𝑚

.

Similarly we show that

𝐶𝑝 =

𝑚∑︂
𝑗=1

(︂𝑛 𝑗

𝑛

)︂2
≤ 1 + 𝛾

𝑚
.

Using the same arguments it also holds that

𝑆𝑝𝑖 =

𝑚∑︂
𝑗=1

𝛼𝑖, 𝑗

|g𝑖 |
𝑛 𝑗

𝑛
≤ 1 + 𝛾

𝑚
and 𝑆𝑝𝑖 ≥

1 − 𝛾
𝑚

.

□
Next, we describe a dynamic programming algorithm to find a hashmap with the smallest

discrepancy. In technical report [19] we show a faster randomized algorithm approximating the
smallest discrepancy. Finally, we describe a simple heuristic that works as a post-processing method
to further improve the pairwise fairness.

5.1 Dynamic Programming algorithm
Let 𝑃𝑤 be the ordering of the items for a vector 𝑤 ∈ W. Let Disc[𝑖, 𝑗] be the discrepancy of the
optimum partition among the first 𝑖 items in 𝑃𝑤 using 𝑗 buckets. Let alsoD(𝑎, 𝑏) be the discrepancy
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Algorithm 3 Necklace2𝑔
Input: The set of points 𝑃 (with two groups {g1, g2})
Output: Bin boundaries 𝐵 and corresponding buckets 𝐻
1: 𝐶 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ ← sort 𝑃 based on an attribute 𝑥 ;
2: for 𝑖 = 0 to 𝑛 − 1 do {𝑇 [𝑖] ← 0;𝑋 [𝑖] ← false}
3: 𝑀𝑋 ← max heap storing 𝑋 ; 𝜎1 ← 0; 𝑏𝑘𝑡 ← 0;

//Initialize 𝑇

4: for 𝑖 = 0 to 𝑛/𝑚 do {if g(𝐶 [𝑖]) == g1 then 𝜎1 ← 𝜎1 + 1}
5: for 𝑖 = 0 to 𝑛 − 1 do
6: 𝑇 [𝑖] ← 𝜎1;
7: if 𝑇 [𝑖] == |g1 |/𝑚 then 𝑋 [𝑖] ← true;𝑀𝑋 .update(𝑋 [𝑖]);
8: if g(𝐶 [𝑖]) == g1 then 𝜎1 ← 𝜎1 − 1;
9: if g(𝐶 [(𝑖 + 𝑛/𝑚)%|𝐶 |]) == g1 then 𝜎1 ← 𝜎1 + 1;
10: while |𝐶 | > 0 do
11: 𝑗 ← 𝑀𝑥 .𝑡𝑜𝑝 (); //Find a window [ 𝑗, ( 𝑗 + 𝑛/𝑚 − 1)% |𝐶 | ] with 𝑋 [ 𝑗 ] = true

//Update 𝑇 and 𝑋 removing the window [ 𝑗, ( 𝑗 + 𝑛/𝑚 − 1] )% |𝐶 | ]
12: 𝜎 ← 𝑇 [( 𝑗 + 𝑛/𝑚)%|𝐶 |];
13: for 𝑖 = 𝑗 − 1 to 𝑗 − 𝑛/𝑚 + 1 with step −1 do
14: if 𝑖 < 0 then 𝑖 ← |𝐶 | + 𝑖;
15: if g(𝐶 [(𝑖 + 2 · 𝑛/𝑚)%|𝐶 |]) == g1 then 𝜎 ← 𝜎 − 1;
16: if g(𝐶 [𝑖]) == g1 then 𝜎 ← 𝜎 + 1;
17: 𝑇 [𝑖] ← 𝜎 ;
18: 𝑋 [𝑖] ← true if (𝑇 [𝑖] == |g1 |/𝑚) else false
19: 𝑀𝑋 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑋 [𝑖]);
20: cuts← cuts ∪

{︁
𝑗, ( 𝑗 + 𝑛/𝑚 − 1)%|𝐶 |

}︁
//Remove window [ 𝑗, ( 𝑗 + 𝑛/𝑚 − 1)% |𝐶 | ]

21: for 𝑖 ∈ [0, 𝑛/𝑚) do
22: 𝐻

𝑡𝑚𝑝

𝐶 [ (𝑖+𝑗 )% |𝐶 | ] ← 𝑏𝑘𝑡 ; 𝑅𝑒𝑚𝑜𝑣𝑒 (𝐶 [(𝑖 + 𝑗)%|𝐶 |]);
23: 𝑅𝑒𝑚𝑜𝑣𝑒 (𝑇 [(𝑖 + 𝑗)%|𝐶 |]); 𝑅𝑒𝑚𝑜𝑣𝑒 (𝑋 [(𝑖 + 𝑗)%|𝐶 |]);
24: 𝑏𝑘𝑡 ← 𝑏𝑘𝑡 + 1;
25: sort(cuts)
26: for 𝑗 = 0 to |cuts| do
27: Let 𝑝𝑖 be the rightmost tuple in the 𝑗-th bin;
28: 𝐵 𝑗 ← 𝑝𝑖 [𝑥 ]+𝑝𝑖+1 [𝑥 ]

2 ; // the right boundary of the 𝑗-th bin

29: 𝐻 𝑗 ← 𝐻
𝑡𝑚𝑝

𝑖
; // the bucket assigned to the 𝑗-th bin

30: return (𝐵,𝐻 )

of the bucket including all items in the window [𝑎, 𝑏] in 𝑃𝑤 , i.e., {𝑃𝑤 [𝑎], 𝑃𝑤 [𝑎 + 1], . . . , 𝑃𝑤 [𝑏]}. We
define the recursive relation

Disc[𝑖, 𝑗] = min
1≤𝑥<𝑖

max{Disc[𝑥 − 1, 𝑗 − 1],D(𝑥, 𝑖)}

Given 𝑖, 𝑗 , our algorithm computes the 𝑗-th bucket with right boundary 𝑖 , trying all left boundaries
𝑥 < 𝑖 , that leads to a partition with minimum discrepancy over the first 𝑖 items. In order to efficiently
implement the algorithm, each time we try a new left boundary 𝑥 , we do not computeD(𝑥, 𝑖) from
scratch. Instead, we maintain and update a max-heap of size 𝑘 storing the discrepancy of every
group g𝑖 in the window [𝑥, 𝑖]. When we compute [𝑥 − 1, 𝑖] we update one element in the max-heap
and compute D(𝑥 − 1, 𝑖) in 𝑂 (log𝑘) time. The table Disc has 𝑂 (𝑛𝑚) cells and for each cell we
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spend 𝑂 (𝑛 log𝑘) time. By definition, Disc[𝑛,𝑚] computes 𝜀𝐷 . Doing standard modifications, it is
straightforward to return the partition, instead of the discrepancy 𝜀𝐷 . By repeating the algorithm
above for every𝑤 ∈ W, we conclude to the next theorem.

Theorem 4. Let 𝑃 be a set of 𝑛 tuples in R𝑑 . There exists an algorithm that computes an (𝜀𝐷 , 1)-
hashmap in𝑂 (𝑛𝑑+2𝑚 log𝑛 log𝑘) time, satisfying 𝜀𝐷 -approximation in collision probability and single

fairness.

For parameters 𝛾, 𝛿 , in technical report [19], we show a randomized algorithm, to compute a
((1 + 𝛿)𝜀𝐷 + 𝛾, 1)-hashmap with collision probability at most 1+(1+𝛿 )𝜀𝐷+𝛾

𝑚
and single fairness in the

range [ 1−(1+𝛿 )𝜀𝐷−𝛾
𝑚

,
1+(1+𝛿 )𝜀𝐷+𝛾

𝑚
], in time 𝑂 (𝑛 + poly(𝑚,𝑘, 𝛿,𝛾).

5.2 Local-search based heuristic
So far, we consider algorithms that return a hashmap satisfying (approximately) 𝜀𝐷 -discrepancy.
From Lemma 3 we know that a hashmap satisfying 𝜀𝐷 -discrepancy is a (𝜀𝐷 , 1)-hashmap. However,
there is no guarantee that 𝜀𝐷 ≤ 𝜀𝑅 .
In this section, we design a practical algorithm that returns an (𝜀, 1)-hashmap with 𝜀 ≤ 𝜀𝑅

allowing a slight increase in single fairness (and collision probability). In practice, as we see in
Section 6, it holds that 𝜀 ≪ 𝜀𝑅 . The new algorithm is a local-search based algorithm and works
as a post-processing procedure to any ranking-based algorithm (for example Algorithm 1). The
intuition is the same to other discrepancy-based algorithms: The fact that we use the same number
of items per bucket, restricts our options to compute a fair hashmap. Given the buckets computed
by a ranking-based algorithm, we try to (slightly) modify the boundaries of the buckets to compute
a new hasmap with smaller unfairness.
The high level idea is that in each iteration of the algorithm we slightly move one of the

boundaries that improves the unfairness the most, maintaining a sufficient single fairness and
collision probability. Let𝑇 be the maximum number of iterations we execute our algorithm, and let
𝑓 −, 𝑓 +, 𝑐+ be the minimum single fairness, the maximum single fairness, and the maximum collision
probability, respectively, that the returned hashmap should satisfy. Let 𝐵 be the boundaries returned
by Algorithm 1. For an iteration 𝑖 ≤ 𝑇 , for every boundary 𝐵 𝑗 ∈ 𝐵 we move 𝐵 𝑗 one position to the
left or to the right. For each movement of the boundary 𝐵 𝑗 , we compute the unfairness 𝜀 𝑗 , single
fairness 𝑓𝑗 , and collision probability 𝑐 𝑗 of the new partition. If 𝑓 − ≤ 𝑓𝑗 ≤ 𝑓 + and 𝑐 𝑗 ≤ 𝑐+ then this
is a valid partition/hashmap satisfying the requested single fairness and collision probability. In the
end of each iteration, we modify the boundary 𝐵 𝑗∗ that leads to a valid hashmap with the smallest
unfairness, i.e., 𝑗∗ = argmin𝑗 :𝑓 −≤ 𝑓𝑗 ≤ 𝑓 +,𝑐 𝑗 ≤𝑐+ 𝜀 𝑗 .

By definition, in each iteration, we find a partition having at most the same unfairness as before.
In practice, we expect to find a hashmap with much smaller unfairness. This is justified in our
experiments, Figure 32. For the running time, the algorithm runs in 𝑇 iterations. In each iteration,
we go through all the 𝑂 (𝑚) boundaries, and we compute 𝜀 𝑗 , 𝑓𝑗 , 𝑐 𝑗 . Using a max heap to maintain
the unfairness for every group g𝑖 (similar to the max-heap we used in the previous dynamic
programming algorithm) we can compute the unfairness 𝜀 𝑗 in 𝑂 (log𝑘) time. We need the same
time to compute 𝑓𝑗 and 𝑐 𝑗 . Our algorithm runs in 𝑂 (𝑛 +𝑇𝑚 log𝑘).

Due to space limitations, we show the cut-based algorithm that finds a
(︁
𝜀, 𝑘 (4 + log 1

𝜀
)
)︁
-hashmap

in technical report [19].

6 EXPERIMENTS
In addition to the theoretical analysis, we conduct extensive experiments on a variety of settings
to confirm the fairness and memory/time efficiency of our proposed algorithms. In short, aligned
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with the theoretical guarantees shown in the previous sections, the results of our experiments
demonstrate the effectiveness and efficiency of our algorithms in real-world settings.

6.1 Experiments Setup
The experiments were conducted on a 3.5 GHz Intel Core i9 processor, 128 GB memory, running
Ubuntu. The algorithms were implemented in Python 3.
For evaluation purposes, we used three real-world and one semi-synthetic datasets to evaluate

our algorithms. With the importance of the scalability of our proposed methods to large settings
in mind, we chose datasets that are large enough to represent real-world applications. For each
dataset, we selected the two columns that were most uncorrelated to construct the hashmaps. The
values in either column are normalized to be in the [0, 1] range. As the sensitive attribute, we follow
the existing literature on group fairness and study fairness over demographic information such as
sex and race. A summary of the datasets is presented in Table 4. For a more detailed description of
the datasets, refer to the technical report [19].

6.2 Evaluation Plan
We evaluate our proposed algorithms based on three metrics: 1) unfairness, 2) space, and 3) effi-
ciency (preprocessing time and query time). For each of the above metrics, we study the effect
of varying three variables: dataset size 𝑛, minority-to-majority ratio, and number of buckets𝑚.
In our experiments, we vary 𝑛 from 0.2 to 1.0 fraction of the original dataset with an increasing
step of 0.2. We vary𝑚 from 100 to 1000 increasing by 100 at each step and finally, the minority-
to-majority ratio from 0.25 to 1.0 increasing by 0.25 at each step. Throughout our experiments,
while varying a variable, we fix the others as follows: dataset size 𝑛 = 0.2 × |original dataset|;
number of buckets𝑚 = 100; minority-to-majority ratio = 0.25. Due to the space limitations, we
present the results for two datasets for each setting and present the extended results in the techni-
cal report [19]. Particularly, for fairness and space evaluation, we report the results for Compas
and Adult, the fairness benchmark datasets. For run-time evaluation though, we report on the
larger-scale datasets, Diabetes and ChicagoPop. We confirm that we obtained similar results for
all datasets.

6.2.1 Evaluated Algorithms. In our experiments, we evaluate Ranking, Necklace2𝑔, Sweep&Cut
algorithms, and CDF-based hashmap [68] (referred as Fairness-agnostic) as the baseline, for all
of the datasets using the binary sensitive attributes (sex or binary race). We also evaluate the
Ranking and Sweep&Cut algorithms using Compas dataset with race attribute to demonstrate
that our algorithms extend to non-binary sensitive attributes. Given the potentially large number
of rankings, we use the sampled vectors approach for Ranking. Particularly, we report the results
based on two samples of vectors of size 100 and 1000. Finally, we evaluate the effectiveness of our
local-search based heuristic on the output the Ranking algorithm.

Table 4. Overview of datasets

Dataset Size Sensitive Attributes No. of Attributes

Adult [26] ∼49K sex 15
Compas [1] ∼61K sex, race 29

Diabetes [99] ∼102K sex 49
ChicagoPop [79] 1M race 5
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6.3 Unfairness Evaluations
We start our experiments by evaluating our algorithms for unfairness. Recall that Ranking returns
an 𝜀𝑅-unfair hashmap while Sweep&Cut and Necklace2𝑔 output 0-unfair hashmaps, i.e., 𝜀 = 0.
In the first experiment, we study the effect of varying dataset size 𝑛 on the unfairness. As shown
in Figures 3 and 4, irrespective of the dataset size, Sweep&Cut and Necklace2𝑔 always exhibit
zero unfairness. On the other hand, Ranking, while improving compared to Fairness-agnostic,
still shows a small degree of unfairness that, similar to the baseline, decreases as the size of the
dataset grows. We also studied the impact of increasing the number of sampled vectors in Figures 29
and 30 and noticed a consistent decrease in the unfairness with the increasing number of sampled
vectors. Next, we study the effect of the minority-to-majority ratio on unfairness. The results are
illustrated in Figures 5 and 6 with Sweep&Cut and Necklace2𝑔 showing no unfairness, while
Ranking reducing the unfairness compared to Fairness-agnostic. It is worth mentioning that all
unfairness values approach to zero when the dataset includes an equal number of records from
each group. This further accentuates the role of unequal base rate [66] in unfairness. Last but
not least, we evaluate the effect of increasing the number of buckets𝑚 on unfairness (Figures 7
and 8). Sweep&Cut and Necklace2𝑔 are independent of the number of buckets and show zero
unfairness as𝑚 increases. Fairness-agnostic and Ranking unfairness values however increase
in a linear fashion as𝑚 grows. Consistent with the two previous experiments, we observe that
Ranking methods moderately improve the unfairness. Overall, confirming our theoretical analysis,
Sweep&Cut and Necklace2𝑔 are preferred from the fairness perspective.
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6.4 Space Evaluations
Next, we evaluate our algorithms for memory demands a.k.a. space. Recall that Ranking is a
1-memory hashmaps, meaning that no additional memory is required and the number of boundary
points is exactly𝑚 − 1. Necklace2𝑔 guarantees the number of cuts to be at most 2(𝑚 − 1) while
Sweep&Cut can create up to 𝑂 (𝑛) cuts in the worst-case. We investigated the effect of varying
dataset size 𝑛 (Figures 9 and 10), minority-to-majority ratio (Figures 11 and 12), and number of
buckets (Figures 13 and 14) on the required space for each algorithm. As expected the results
are consistent with the theoretical bounds. The number of boundaries created by Ranking is
independent of the dataset size 𝑛 and minority-to-majority ratio and only depends on the number
of buckets𝑚 and therefore it is always a constant (𝑚 − 1). Our experiments also verify similar
results for Necklace2𝑔 being independent of 𝑛 and minority-to-majority ratio. Interestingly, in
almost all settings, the actual number of cuts created by Necklace2𝑔 is close to the upper-bound
2(𝑚 − 1). The results for Sweep&Cut however, verify that the major drawback of this algorithm is
the memory demands with close to the worst case of𝑂 (𝑛) cuts. Lemma 2 provides an upper-bound
on the expected number of cuts as a function of the minority ratio in the data set. To evaluate how
tight this upper-bound is in practice, in Figures 11 and 12, we also present the actual number of
cuts while varying the minority-to-majority ratios. At least in this experiment, the upper-bound
was tight as it was always less than 30% larger than the actual number. In general, if an application
requires maintaining the space at a minimum while satisfying fairness constraints, as empirically
observed, Ranking is the leading alternative. Necklace2𝑔 is also a favorable choice as it provides a
practical trade-off between fairness (0-unfair) and space (≤ 2(𝑚 − 1) cuts).

6.5 Efficiency Evaluations
In this set of experiments, we evaluate our proposed algorithms for efficiency. More specifically, we
measure efficiency from two perspectives: 1) the preprocessing time that is required to construct
the fair hashmap, and 2) the query time needed to return a hash (bucket) for new records when the
hashmap is constructed.

6.5.1 Preprocessing Time. We start our efficiency experiments by revisiting the preprocessing
time complexity of the proposed algorithms. Ranking has a time complexity of 𝑂 (𝑛2 log𝑛) in 2D
while Sweep&Cut and Necklace2𝑔 both run in 𝑂 (𝑛 log𝑛). In our first experiment, we study the
impact of varying the dataset size 𝑛. First, in Figures 15 and 16, one can confirm that, overall, the
run-time increases with the dataset size. For Ranking, the exact time depends on the number of
rankings generated. This is also evident in Figures 31, where we study the impact of increasing
the number of sampled vectors on the preprocessing time. Next, as demonstrated in Figures 17
and 18, we confirm that the preprocessing time is independent of the minority-to-majority ratio.
As with the preceding experiment, we expect that varying𝑚 should not impact the run-time of any
of the algorithms, which is consistent with our experiment results in Figures 19 and 20. Overall,
in time-sensitive applications, both Sweep&Cut and Necklace2𝑔 offer the fastest results, all the
while ensuring 0-unfairness.

6.5.2 Query Time. Recall that the output of our algorithms consists of a sequence of boundaries
along with a corresponding set of hash buckets. After constructing the hashmap, obtaining the
hash bucket for a new query is a simple process: just execute a binary search on the boundaries
and retrieve the bucket linked to the boundaries within which the query point resides. Therefore,
query time is in 𝑂 (log |𝐵 |) and only depends on the number of boundaries. Our empirical results
are consistent with the preceding analysis, confirming that query time remains independent of
both dataset size (see Figures 21 and 22) and the minority-to-majority ratio (refer to Figures 23
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and 24). The increase in the number of buckets (𝑚) leads to a logarithmic growth in query time
across all our algorithms, as depicted in Figures 25 and 26. Thanks to the logarithmic efficiency of
binary search, all our algorithms offer remarkably fast query times, with with practically negligible
variations.

6.6 Local-search-based Heuristic Evaluation
In this experiment, we apply the local-search-based heuristic to the boundaries generated by the
Ranking algorithm on an instance of Adult dataset. We run the heuristic in 1000 iterations, with
single fairness lower and upper bounds as 𝑓 − = 0, 𝑓 + = 0.05 respectively and the collision probability
upper bound as 𝑐+ = 0.05. The results are shown in Figure 32. The local-search-based heuristic
effectively enhances pairwise fairness by making minimal adjustments to the bin boundaries,
incurring a slight cost in single fairness within 100 iterations before it concludes.

6.7 Learning Settings Evaluation
So far in our experiments, we assumed that the algorithms have access to the entire input set. In this
experiment, we demonstrate that our methods can work in expectation if an unbiased sample set
from the input set is provided. To do so, we partition the input datasets into training and test sets
with a ratio of 0.8 to 0.2. Next, we utilize our algorithms to create a hashmap on the training set. We
then use the test set for evaluation: each test entry is queried on the constructed hashmap to identify
their buckets. Having created a hashmap that exclusively contains the test entries, we proceed
to measure the pairwise unfairness. The results are illustrated in Figures 27 and 28. Although all
methods demonstrate an enhancement in unfairness compared to the Fairness-agnostic baseline,
the most notable improvement is observed with Necklace2𝑔, where the unfairness decreases from
0.81 to 0.03 for the ChicagoPop and from 0.15 to 0.007 for Adult. Aligned with our previous
results, Ranking only moderately improves the unfairness. Although Sweep&Cut consistently
improves the unfairness in the learned settings, depending on the number of cuts it generates, it may
exhibit signs of overfitting based on the number of cuts it generates. This tendency becomes more
apparent, especially when dealing with large training data, as illustrated in Figure 28. However,
this overfitting phenomenon is mitigated when the size of training data is smaller and the number
of cuts is reduced, resulting in a substantial decrease in unfairness, as depicted in Figure 27.

7 RELATEDWORK

Hashing: Hashing has a long history in computer science [40, 102]. Hashing-based algorithms and
data structures find many applications in various areas such as theory, machine learning, computer
graphics, computational geometry and databases [4, 37, 39, 45, 50, 67, 73]. Due to its numerous
applications, the design of efficient hash functions with theoretical guarantees are of significant
importance [2, 3, 13, 27, 29, 46, 47, 64, 69, 103]. In traditional hashmaps, the goal is to design a hash
function that maps a key to a random value in a specified output range. The goal is to minimize the
number of collisions, where a collision occurs when multiple keys get mapped to the same output
value. There are several well-known schemes such as chaining, probing, and cuckoo hashing to
handle collisions. Recently, machine learning is used to learn a proper hash function [68, 76, 87].
In a typical scenario, a set of samples is received and they learn the CDF of the underlying data
distribution. Then the hashmap is created by partitioning the range into equal-sized buckets. It has
been shown that such learned index structures [68, 87], can outperform traditional hashmaps on
practical workloads. However, to the best of our knowledge, none of these hashmap schemes can
handle fair hashing with theoretical guarantees. Finally, learning has been used to obtain other
data structures as well, such as 𝐵-trees [68] or bloom filters [68, 76, 101].
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Algorithmic Fairness: Fairness in data-driven systems has been studied by various research
communities but mostly in machine learning (ML) [24, 74, 85]. Most of the existing work is on
training a ML model that satisfies some fairness constraints. Some pioneering fair-ML efforts
include [35, 36, 52, 54, 59, 65, 104]. Biases in data has also been studied extensively [17, 18, 82,
88, 92, 98] to ensure data has been prepared responsibly [77, 89, 90, 93]. Recent studies of fair
algorithm design include fair clustering [5, 28, 32, 41, 42, 62, 72, 91], fairness in resource allocation
and facility location problem [30, 48, 56, 60, 63, 108], min cut [70], max cover [14], game theoretic
approaches [7, 49, 107], hiring [11, 86], ranking [15, 16, 58, 96, 97, 105], recommendation [38, 71, 100],
representation learning [61], etc.
Fairness in data structures is significantly under studied, with the existing work being limited

to [20–22], which study individual fairness in near-neighbor search. Particularly, a rejection sampling
technique has been added on top of local sensitive hashing (LSH) that equalizes the retrieval chance
for all points in the 𝜌-vicinity of a query point, independent of how close those are to the query
point. To the best of our knowledge, we are the first to study group fairness in hashing and more
generally in data structure design.

8 FINAL REMARKS AND FUTUREWORK
In this paper we studied hashmaps through the lens of fairness and proposed several fair and
memory/time efficient algorithms. Some the interesting directions for future work are as following.

Memory-efficient 0-unfair hashmaps for more than two groups: Our ranking-based algorithms do
not depend on the number of groups, however, those are not 0-unfair. The Sweep&Cut algorithm
also does not depend on the number of groups and it is even 0-unfair. Its memory requirement,
however, can be as high as 𝑂 (𝑛). The performance of the necklace splitting algorithm, on the
other hand, depends on the number of groups. While for two groups, the number of boundaries is
independent from 𝑛 and at most 2(𝑚 − 1), the state-of-the-art algorithm for more than two groups
suddenly increases this requirement by a factor of 𝑂 (log(𝑛)). Developing a fair (0, 𝑐)-hashmap for
this case, for a constant value of 𝑐 , remains an interesting open problem for future work.

Beyond the class of Linear Ranking functions: We developed our ranking-based algorithms using
the class of linear ranking functions. It would be interesting to expand the scope to more general non-
linear classes (such asmonotonic functions). Indeed one can add non-linear attributes before running
our ranking-based algorithms. But this will increase the number of dimensions, exponentially
reducing its run time.
Lower-bounds and trade-offs on (𝜀, 𝛼): Our ranking-based algorithms satisfy 1-memory require-

ment but cannot achieve 0-unfairness. The cut-based algorithms, on the other hand, are 0-unfair but
require additional memory. This suggests a trade-off between fairness and memory requirements.
Last but not least, formally studying this trade-off and identifying the lower-bound Pareto frontier
for fairness and memory is an interesting future work.
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