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We introduce a novel notion of perception contracts to reason about the safety of controllers that interact
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symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms
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our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test
images obtained during runtime monitoring of the systems.
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1 INTRODUCTION

Deep learning has become the de facto method for solving perception tasks such as object detection,
object tracking, and semantic segmentation. Deep Neural Network (DNN) functions are poised to be
deployed en masse in safety-critical autonomous systems. Vision-based lane tracking in driver assist
systems, vision-based landing protocols in urban aerial vehicles, and indoor robotic navigation
with LIDAR are prime examples. To make progress towards reasoning about the correctness of the
decision making programs in such systems, one has to gain some level of understanding of the
correctness of the DNN-implemented perception. Fragilities of DNNs are well-known— they can
fail to detect objects (e.g., pedestrians) and fail to recognize salient aspects of the environment (e.g.,
lanes from lane lines, and hence the position of ego vehicle in the environment). Since the precise
set of raster images cameras can capture for each groundtruth setting is impossible to formally
characterize, formal verification of such systems is hard.
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There have been, nevertheless, several novel attempts to characterize desirable characteristics
of effective neural perception. The notion of local robustness (and global robustness) demand that
the neural perception on training images (respectively, all images) evaluate to the same or similar
perception when images are perturbed mildly with respect to a norm, such as the I, norm. In recent
years, several advances in automatic verification for local robustness for neural network have
emerged [Bonaert et al. 2021; Gehr et al. 2018; Singh et al. 2019; Tjeng et al. 2019], including tool
competitions [Bak et al. 2021b], and some approaches for global robustness have also emerged [Katz
et al. 2017; Leino et al. 2021]. Robustness guarantees, to some extent, rule out adversarial examples
to neural networks. Another approach that has emerged is that of using image generators— given
an image generator that can generate images from groundtruth configurations of objects and
probability distributions, we can test neural perception based controllers (such as autonomous
vehicle controllers) against them, and use techniques such as fuzz testing to find scenarios where
they fail [Dreossi et al. 2019; Fremont et al. 2022; Katz et al. 2021].

We posit that probing the perceptual role of DNNs in autonomous systems could unlock new
opportunities for systematic analysis for safety of decision modules (called reactive modules through-
out the rest of the paper). Neural perception pipelines are complex, but at the end of the day, they
give state estimates. They provide estimates of certain environmental variables that are important
for the reactive module. In the lane-keeping example, the vision pipeline provides an estimate of
the relative position of the car with respect to the lanes and the heading angle. Thus, capturing how
far the estimated state output from neural perception deviates from the true state (groundtruth
state) serves as a natural specification or contract for the neural perception.

The primary contribution of this paper is the development of a technique based on perception
contracts. Perception contracts are formal contracts for the perception module that describe the
errors that the perception module can make regarding estimation of groundtruth while keeping
the global system safe. Perception contracts hence negotiate the agreement between learned
components for perception, and the programmed components of the system and the environment.
This splits the analysis of the system to its modular components. In particular, in order to prove that
a programmed system (which we call a reactive module in this paper) with a learned component NP
for neural perception is safe under an environment, we need to ensure (a) that the ML component
L for perception meets the perception contract, and (b) that assuming the perception contract
is met by the perception module, the system stays safe under its environment. The second task
can be performed using traditional techniques in formal verification of cyberphysical systems
using automated logic engines. The first task cannot be formally proven as there is no formal
specification of which images correspond to which groundtruth. However, we can use extensive
testing techniques obtained from images gathered in the field as well as synthetically generated
images that test for borderline/rare events to check if the perception module meets its contract.

The salient feature of perception contracts is that it is closely tied and dependent on the rest of the
system and environment. The key idea is to measure neural perception errors, that is, the deviation
of neural perception’s estimation of groundtruth from the actual groundtruth. This deviation is
not in absolute terms but in terms of its effect on preserving invariants that prove the safety of the
system. More precisely, we deem a groundtruth estimate by neural perception as acceptable if
the system’s action based on this estimate, though it may differ from groundtruth, preserves the
invariant designed for the system. A perception contract is hence a contract on groundtruth and
groundtruth estimates that ensures that the system maintains its invariant.

The first contribution of this paper is the theory of perception contracts. We propose building
safe systems that interact with neural perception using two distinct system-environment couplings
that are tied together using perception contracts. First, we have the reactive module interacting with
a model of the environment using perfect perception of groundtruth that is proven to be safe. Second,
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we consider the same reactive module working with the real environment (which cannot even
be modeled, of course), and where sensors compute an impression of the environment state (say
camera images). A neural perception module processes this impression to estimates groundtruth,
which is then used by the reactive module.

A perception contract relates the above two instantiations of the reactive module —one working
with the environment model under perfect perception, and the other working with the real environ-
ment using sensors and neural perception (see Figure 2). The key property of a perception contract
is that it maintains the invariant Inv that was used to prove the first system safe. More precisely, a
perception contract is a symbolic contract expressed in logic that captures a set of pairs (gt, gte)
of groundtruth and groundtruth estimates such that in any configuration satisfying the invariant
Inv, the system acting on the estimate gte nevertheless preserves the invariant (even though the
invariant itself typically will refer to the actual groundtruth gt).

We develop the theory of perception contracts, developing a framework and formally proving
that the system working with the real environment through sensors and neural perception is
guaranteed to be safe as long as the environment model can simulate the environment and the real
environment with sensors meets the perception contract.

Since machine learned components are not designed by humans, their perception contracts,
which specify the errors they make in various regions while maintaining the invariant, are complex
to determine. Errors in perception that maintain an invariant also are dependent on the state of the
system. Consider an invariant proving that a vehicle stays within the lane boundaries in a lane
tracking system. This invariant naturally allows for more error in perception when the vehicle is
in the middle of the lane and its steering angle is aligned with the road, while allowing less error
when it is at the edge of the lane or its steering angle is misaligned with the road.

This leads us to the second main contribution of this paper: formulating and solving the synthesis
problem for perception contracts. We are given a reactive module working with an environment
model that has been proved to be safe using an invariant Inv, and we are given a neural perception
module. We are also given a finite set of impressions of the sensors (like a set of images) along with
the corresponding groundtruth values. We assume that the groundtruth estimates computed by
neural perception on these impressions preserve the invariant (in practice, we can in fact verify this).
The problem then is to find a perception contract PC in a given logic L (PC preserves the invariant
of the system) that includes all the groundtruth-estimate pairs computed by the neural perception
module. In other words, we want a contract in £ that includes the groundtruth and estimation
pairs exhibited by the neural perception on the given images, and maintains the invariant.

We develop a technique for synthesizing symbolic perception contracts using counterexample
guided synthesis [Alur et al. 2015]. A decision-tree learner synthesizes quantifier-free logic formulae
(allowing Boolean combinations) working with a verification engine that checks whether proposed
contracts indeed preserve the invariant, and returns counterexamples otherwise.

The synthesis of perception contracts in specific regions of the groundtruth configuration space
where the reactive module and the real environment seem to be working safely gives a conjecture of a
formal specification of neural perception as to why the system stays safe even with neural perception.
The adherence of the perception module to this contract cannot be formally proven, of course, as the
real environment and sensors cannot be modeled mathematically effectively. However, extensive
runtime monitoring in specialized settings where groundtruth can be determined (say environments
with special sensors to detect position and heading angle of a vehicle) and checking such images
against the contract gives greater confidence in the safety of the system. The perception contract
also gives a formal specification for downstream attack techniques— for example, techniques that
may try to generate an image using an image generator on which the neural perception violates
the perception contract.
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Fig. 1. Autonomous system interacting with environment/model of environment with perfect perception

One particular utility of perception contracts is in runtime monitoring of a system in an envi-
ronment where groundtruth can be assessed. Rather than just monitoring the system for safety or
even the invariant, we can monitor the perception module against the perception contract. Since a
perception contract is a local specification for the perception module, monitoring adherence to it
is stronger as the contract ensures safety of the system even for other valuations of variables in
the system. For instance, consider an autonomous vehicle monitored when driving on a dry road;
monitoring against a perception contract will check for the safety of the vehicle in other states as
well, like at different speeds and wetness conditions of the road. We articulate this subtle issue in
the paper, aided with examples in the evaluation section (Section 3.2 IV and Section 6.4).

The final contribution of this paper is an implementation and evaluation of our techniques
for synthesizing perception contracts using two autonomous systems: a GEM vehicle for lane-
tracking and an agricultural robot that navigates in aisles between crop lines, both using DNN-based
perception (LaneNet [Neven et al. 2018] and CropFollow [Sivakumar et al. 2021]). Our evaluations
show that our approach is extremely effective in synthesizing perception contracts. We also evaluate
how well these synthesized contracts generalize by evaluating them against test sets obtained
using runtime monitoring of these vehicles in closed-loop, and show that the contracts have high
precision in capturing safe perception.

2 PRELIMINARIES: SAFETY OF SYSTEMS INTERACTING WITH ENVIRONMENTS
USING PERFECT PERCEPTION

In this paper, we advocate the design approach that starts with designing a system that satisfies
safety properties that interact with environments using perfect perception, before analyzing the
system with sensors and neural-network based perception. In this setting, we assume that the
system perceives aspects of the environment (called percepts) precisely— we do not yet model
sensors, the output of sensors, and perception algorithms based on machine-learning and other
computation (these are introduced in the next section).

We hence start by first modeling reactive modules interacting with environments with perfect
perception. In such cyberphysical systems, traditionally, we consider the system interacting with a
model of the environment, and prove that the system and model of the environment with perfect
perception satisfy certain desirable safety properties. Such a proof ensures that the system is safe
with respect to any environment that can be simulated by the model of the environment. We
formalize these notions in this section (see Figure 1). The notations that we use in this section and
the next section are depicted in Table 1.
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Table 1. Notations used in Section 2 and Section 3

Notation for perfect perception Extra notation for neural perception
Enov: Environment Sensor: Sensor reporting impression
MEnv: Model of Environment from environment state
RM: Reactive module (controller) NP: Neural perception module

P: Percept variables Imp: Impressions (output of sensor)

FB: Feedback variables Preservep,: Set of groundtruth estimates
L: Latent variables of environment that preserve the invariant Inv at a
LM: Latent variables of environment model configuration

Initg,,: Initial states of environment PC: Perception contract

Initpgny: Initial states of model of environment

Tgno: Transition relation of environment

TmEno: Transition relation of model of environment

Safe: Safety property

Inv: Invariant of system and model of environment
interacting with perfect perception

2.1 Systems Interacting with an Environment Using Perfect Perception

We formalize systems interacting with an environment (see Figure 1, in particular the solid path
showing an environment model interacting with the system (called reactive module directly, without
sensors and machine-learned perception components).

We have two modules— the environment Env and the Reactive Module RM modeling the system.
In our driving example, RM is the control software of the car, and Eno includes the car’s hardware
platform, the road, as well as the surrounding environment that influences the behavior of the car.
Let us fix a set of percept variables P that captures some attributes of reality in the environment
which are used by RM. In an autonomous driving setting, for example, this set of percepts would
be variables that give the position of the car in some fixed coordinate system, e.g., the ego vehicle’s
coordinates, the lay of the road, the position and speed of pedestrians and vehicles nearby, etc.

Let us also fix a set of control or feedback FB variables that captures the feedback the RM gives
to effect changes to the environment. Again, in the autonomous vehicle example, this feedback can
be variables for control of brakes, acceleration, and steering angle of the vehicle.

The system and environment communicate with each other in discrete time steps or rounds. In
each round the environment updates its state based on the current feedback. The percepts are fed
to the system which in turn computes both an update to its state and feedback to the environment.

In the autonomous vehicle example, note that vehicle dynamics are part of the environment,
and the feedback from the system is used to effect only certain variables, such as an update to the
steering angle.

We model both the system and the environment using a set of variables over arbitrary domains,
with state-space being the valuations of these variables, a set of initial states, and a transition
relation describing (potentially nondeterministic) changes to these variables. For any set of variables
X, let Val(X) denote the set of all possible valuations of X (over the respective domains). Also, for
any set of variables X, let X’ denote a fresh set of primed variables corresponding to variables in X,
e, X' ={x"|x € X}.

Let us fix an environment Env with a set of variables L U P that consist of a set of latent variables
L and the percept variables P. Let us assume an initial state predicate Initg,,(L, P), giving a set of
initial valuations for latent and percept variables. And a transition relation Tg,,(L, P, FB,L’, P’).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 299. Publication date: October 2023.



299:6 Angello Astorga, Chiao Hsieh, P. Madhusudan, and Sayan Mitra

Let Qgny = Val(L U P) denote the set of states of the environment and we will denote particular
states as a pair ([, p). A transition ((1, p), fb, (I, p’)) denotes that the environment, when in state
(I, p) and reading feedback fb can transition to (I’, p’), and give the system the percept p’.

Let the reactive module RM have a state-space defined by a set of variables S and an initial state
predicate Initgy (S, fb) giving possible initial states and initial feedback. Let Qry = Val(S) denote
the set of states of the reactive module. The transition relation is a relation Try (S, P, S’, FB). A
transition of the form (s, p, s, fb) means that the system, when in state s, reading a percept p, can
transition to state s’, and give the feedback fb to the environment.

The global behavior of the system with the environment and with perfect perception is defined
over configurations C = Loc X Val(P) x Val(FB) x Val(L) X Qrm, where Loc = {env, sys} models
whether it is the turn of the environment or system to move:

o There is a transition from (eno, p, fb, I, s) to (sys, p’, fb, 1", s) if ((L, p), fb, (I',p")) € Teno

e There is a transition from (sys, p, fb, 1, s) to (eno, p, fb', 1, s") if (s, p,s’, fb') € Tam
The initial set of configurations are those of the form ({env}, po, fb,, lo, so), Where Initgp,(lo, po)
holds and Initga(so, fb,) holds.

2.2 Safety under Perfect Perception

Real world environments are incredibly complex to model and reason with. The classical approach
of proving safety of systems that interact with the environment proceeds in two steps: (a) develop
a simpler model of the environment MEno to simulate all possible behaviors of the real world
environment (and potentially more), and (b) prove the safety of the system with respect to this
model of the environment. The completion of this proof shows that the system interacting with
any environment that can be simulated by the model of the environment will be safe.

We formally outline the invariant-based technique for proving systems safe against (a model of
the) environment.

A model of the environment MEnv has precisely the same structure as environments as described
above. It has a set of latent variables LM (latent variables of the model), initial state predicate
Initpgny (LM, P), and transition relation Tyg,, (LM, P, FB, LM’, P’), as described above.

Typically, the set of latent variables and transitions of the model are much simpler than real
world environments, and can be seen as assumptions made of the real world. In the automated
vehicle context, for example, vehicle dynamics may model nondeterministic skidding of a vehicle
up to some degree (without modeling the wetness of the road precisely), making formal reasoning
much easier.

Safety Properties. A safety property is a predicate Safe(P, S) over the set of percepts and state of
the system. Note that the safety property is independent of the latent variables of the environment,
and consequently, we can determine safety of systems with respect to different environments (e.g.,
the real world environment as well as a model of it).

Turning to the autonomous vehicle example, a safety property may demand that the vehicle
remains well within the left and right flanks of the road. Another desirable property (related to
stability) is to demand that in any two consecutive configurations ¢ and ¢’, if c is reasonably away
from the center of the lane, then ¢’ will be closer than c is to the center of the lane. Though this
property involves two consecutive configurations, it can be modeled as a safety property. We can
have the system storing in its state the vehicle’s previous configuration (say using variables added
to the set P) and having the safety property demand the appropriate relation using the previous
configuration and the current configuration.

Verification of Safety against Environment Models. Let us fix a system and an environment
model MEnv. The set of reachable configurations of the system and environment is defined as usual—
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the least set that includes the initial configurations and is closed with respect to the transitions over
configurations (as defined above). Let us denote this set as Reach. The system and environment
are said to satisfy the safety property Safe(P, S) if for every configuration (loc, p, fb,Im, s) € Reach,
Safe(p, s) holds.

An invariant is a predicate over global configurations Inv(Loc, P, FB, LM, sts) that defines a
superset of Reach. Such an invariant is said to prove the safety property Safe(P,S) if for every
configuration (loc, p, fb,Im,s) € Inv, Safe(p, s) holds.

It is in general hard to check whether a given predicate Inv is an invariant of the system. The
typical approach to ensure predicates are invariants is to have a stronger notion of invariants that
is easier to verify. One approach is to use inductive invariants. An inductive invariant is a predicate
Inv that satisfies the following properties: it includes all the initial configurations, and for every
configuration c satisfying Inv and every configuration ¢’ that ¢ can transition to, Inv(c”) also holds.
It is easy to see (by induction on length of executions) that such a predicate is always an invariant.

In this paper, we will not focus on methods to synthesize or prove safety for systems that work
with perfect perception, as these are well studied problems in cyberphysical system verification
(see, for example [Alur 2015; Astrom and Murray 2008; Mitra 2021]). However, we assume some
invariant Inv that establishes safety (or stability) of the system working with an environment
model— i.e., we assume that as long as a system and environment model work together in such
a way that the reachable state space stays within the invariant, the safety/stability property is
guaranteed to hold.

We assume that for desired safety properties of the system and a model of the environment,
interacting with perfect perception, there is an invariant Inv(Loc, P, FB, LM, Qsys) that establishes
safety of the system and environment.

Safety under Environments Simulated by an Environment Model. Now let us turn to proving
the safety of systems interacting with an environment using perfect perception using the fact that
the system is safe under an environment model using perfect perception.

Consider an environment Env with variables L U P interacting with a system. And assume that
the system interacting with a model of the environment MEnv (over variables LM U P) satisfies
a safety condition Safe(P, S), established using an invariant Inv(Loc, P, FB, LM, Qsys). Now under
conditions that relate the environment and the model of the environment, namely a simulation
relation, we can argue that the system working with the environment Env will continue to be safe.

Formally, we say that the model of the environment MEno simulates the environment Eno if there
is a simulation relation ~ between the states of the environment and the states of the environment
model, i.e., between Val(LM U P) and Val(L U P), such that the following hold (below, [, 1" € Val(L),
Im,Im" € Val(LM), and p, p’ € Val(P))

o Whenever (I,p) ~ (Im,p’),p=1p’.

e For every initial state of the environment, there is an initial state of the model of the environ-
ment that it is related to, i.e., for every L, p, if Initg,,((l, p)) holds, there is some Im such that
Initpygn, ((Im, p)) holds and (L, p) ~ (Im, p).

e Let (I,p) ~ (Im,p) and let fb € ¥ B be a feedback, and let Tg,, (L, p, fb,1’, p’) hold. Then there
is some Im’ such that Tyg,, (Im, p, fb,Im’, p’) holds and (I, p”) ~ (Im’, p’).

The first condition says that states of the environment and environment model must share the
same perception valuations. The second demands that every initial state of the environment is
related to some initial state of the environment model. And the third demands that from any pair
of states that are similar, the environment model should be able to simulate every move of the
environment, and reach similar states.
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Fig. 2. Autonomous system interacting with environment/model of environment with neural perception;
perception contracts.

THEOREM 2.1. Let a reactive module (system) RM with the environment model MEnv satisfy
an invariant Inv, which in turn proves a property Safe, under perfect perception. Let Env be an
environment module that MEnv simulates Env. Then the environment Env working with the system
RM is guaranteed to preserve the property Safe.

PRrROOF. Let ~ be a simulation relation between Env and MEnv. We can show by induction that
on n that for every reachable configuration (loc, p, fb, [, s) reached by Env||Sys in n steps, there is a
reachable configuration (loc, p, fb, Im, s) such that (I, p) ~ (Im, p). The base case is easy, and the
induction step involving a system move as the last move are trivial. For the induction step involving
an environment move as the last move, the fact that the simulation relation guarantees a move of
the environment model that simulates the environment ensures the property. O

3 SYSTEMS WITH NEURAL PERCEPTION AND PERCEPTION CONTRACTS

We now define systems that interact with environments with “neural perception”— perception
is now not precise, but approximate perception is realized from impressions of observing the
environment using machine-learned components and possibly other forms of computation.

3.1

Let us fix a system reactive module RM = (Initgp(S, FB), Trm(S, P, S’, FB)) and an environment
Env = (Initgyy(L, P), Tgno (L, P, FB,L’, P’)) over a set of perception variables P and feedback vari-
ables FB.

We introduce two new components, a sensor and a neural perception module (see Figure 2). A
sensor computes from environment states an impression. Impressions include many kinds of data
produced by sensors— images taken by cameras, sound recordings of the environment, LIDAR
readings, sensor readings of vehicles, etc. Formally, we fix a set of impression variables Imp, and
sensors are modeled as a function Sensor : Val(LUP) — Val(Imp), i.e., functions from environment
states to impressions.

A neural perception (NP) module is a module that processes impressions and outputs perceptions.
Neural perception modules typically consist of machine-learned models (e.g., for vision, processing
sound, etc.) as well as programmed components (e.g., geometric algorithms that complete line
segments detected to lines, calculate middle of lanes from flanking lines, etc.). Formally, neural
perception modules are modeled as a function NP : Val(Imp) — Val(P)

The global behavior of the system with the environment and with neural perception is defined
over the same set of configurations as in perfect perception, C = Loc X Val(P) X Val(FB) X Val(L) X

Perception Contracts
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Qrm. The transitions are the following two kinds, where the first kind for environment moves
is precisely as earlier for perfect perception, while the second one utilizes the sensor and neural
perception:

o There is a transition from (eno, p, fb, I, s) to (sys, p’, fb, 1", s) if ((L, p), fb, (I',p")) € Teno
e There is a transition from (sys, p, b, 1, s) to (env, p, fV', 1, s’) if (s, NP(Sensor(1Up)),s’, fb’) €
Trm

Note that the system moves on the perceived perception it gets, delivered through the sensor
and neural perception module.
Safety with respect to a predicate Safe(P, S) is defined as usual.

Imperfect Perception but Action That Maintains Invariants. Let us fix a proposed invariant
of the system Inv(Loc, P, FB, LM, Qsys).

The key idea of the contracts we define in this paper relies on the following idea of maintaining
inductively the invariant with imperfect perception:

In any configuration satisfying the invariant, the reactive module, though it acts on
the estimated perception, gives feedback that results in a configuration satisfying the
invariant.

The formalization of the above introduces certain subtleties. First, consider a predicate
Inv(Loc, P, FB,LM, Qsys) that has been proved to be an inductive invariant when the system
interacts with an environment model MEno.

Let gte € Val(P) be a ground-truth estimate— this is any valuation of the perception variables,
not necessarily the one given by the composition of sensors and neural perception. Let ¢ be any
configuration of the system working with the environment model satisfying Inv, where it is the
system’s turn to move, i.e., c is of the form (sys, p, fb, Im, s), and let c satisfy the invariant Inv.

Then we say the ground-truth estimate gte preserves the invariant at c if for any configuration
¢’ = (env, p, fb', 1, s") where (s, gte,s’, fb’) € Tru, it is the case that ¢’ satisfies Inv.

The above definition declares gte to preserve the invariant at the configuration c if the system
module, reacting to the ground-truth estimate (rather than the groundtruth p) results in configu-
rations ¢’ that respect the invariant. Intuitively, gte, despite being not the precise groundtruth, is
tolerable by the system as it keeps the invariant.

It is easy to see that the system will preserve the invariant as long as the neural perception
gives, at every reachable configuration c, a groundtruth estimate that preserves the invariant at
that configuration.

Let Preservey,,(c) be the set of all ground-truth estimates at the configuration c that preserve
the invariant. Our goal now is to find simple perception contracts that imply that groundtruth
estimates preserve the invariant.

Perception Contracts. We are now ready to define the primary contribution of this paper—
perception contracts.

Fix a system interacting with a model of the environment, and an invariant Inv for the system
interacting with this model under perfect perception. A perception contract is a predicate PC(P, P)
with respect to the invariant Inv, expressed in a given logic £, such that for every configuration
¢ = (sys,p,fb,Im,s) and gte € Val(P), if PC(p, gte) holds, then gte preserves the invariant at
configuration c, i.e., gte € Preservep(c).

Intuitively, a perception contract is a condition between groundtruths (p) and ground-truth
estimates (gte) that ensures the estimate is safe with respect to maintaining the invariant.

We can now prove the main theorem regarding perception contracts. Consider an environment
Env, with a sensor Sensor and neural perception NP. We say that (Sys, Eno, Sensor) satisfies a
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perception contract PC if in any reachable configuration, the neural perception working on the
output of the sensor reading an environment state with groundtruth p computes a ground-truth
estimate gte such that PC(p, gte) holds.

We can now prove the main theorem associated with perception contracts.

THEOREM 3.1. Let a system interact with an environment Env through a sensor Sensor and a neural
perception module NP. Let MEnv be a model that simulates the environment Env. Let Inv be an
invariant of the system interacting with the model of the environment MEnv with perfect perception
that ensures safety with respect to a predicate Safe. Let PC be a perception contract with respect to Inv
and assume that the environment, sensor, and neural perception satisfy PC. Then the system working
with the environment Env, under the sensor and neural perception, ensures safety with respect to Safe.

Proor. (gist): The proof is by induction on the number of steps of taken by the environment,
that for any reachable environment state g.,, with perception groundtruth p, there is a similar state
in the environment model ms with the same perception p that satisfies the invariant Inv. Notice
that this proves that the system working with the environment through neural perception is safe.

The base case is trivial. The induction step is as follows. Given a state g.p, with similar state in
the environment model ms, both with the same perception valuation v, where ms with the system
state satisfies the invariant Inv. Now, since the environment satisfies the perception contract, the
groundtruth estimate that the neural perception computes from the signal generated from the
environment state, must produce a feedback and system state update that satisfies the invariant Inv.
Furthermore, the next state reached by the environment from g.,, will be similar to a successor of
ms (since the model simulates the environment). Consequently, the invariant will be preserved in
the next state as well, completing the proof. O

3.2 Perception Contracts: Salient Features, Extensions, and the Synthesis Problem
There are several salient features of the notion of perception contracts that we want to highlight.

I. Perception Contracts Relate Different Systems. Perception contracts relate groundtruth
perception values and groundtruth estimates given by the neural perception. Intuitively, we expect
groundtruth estimates to be close to groundtruth. This error in perception is captured by the
perception contract, symbolically. The error that is allowed is not a priori (say using some bounded
norm), but rather it is allowed to be any error that the system can tolerate and maintain its
invariant. Note that perception contracts are not like usual contracts which often relate only pre-
and post-states of modules. Rather, a perception contract ties together two distinct systems—(a)
the system that interacts with a model of the environment under perfect perception, and (b) the
system that works with an environment (that can be simulated by the model) under sensors and
neural perception. Note that the neural perception module takes as input the impression from the
signal and generates a groundtruth estimate, and has no access to the groundtruth perception that
the contract mentions. One can think of the groundtruth perception variables as a variant of ghost
variables in verification literature that helps capture the specification for the module.

II. Maximal Set of Groundtruth Estimates That Preserve Invariants. Let I be the set of pairs
(p, gte) such that for every configuration c satisfying the invariant Inv with groundtruth perception
D, gte preserves the invariant at c. Then any perception contract PC defines a set that is a subset
of I'. However, this maximal set of pairs I', being defined using universal quantification over an
unbounded set of configurations, and with intricate non-linear semantics of how the system and
environment module behave, is a complex set that may not even be expressible in a reasonable
symbolic logic. In this paper, we seek perception contracts that assure the invariant but also are
expressible in a simple logic L (for example, using Boolean combinations of linear constraints over
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the groundtruth and groundtruth estimates). See section 4.2 for a formal description of the logic
used in our approach.

III. Perception Contract Synthesis Problem. The above discussion motivates the central algo-
rithmic problem that we tackle in this paper— synthesizing perception contracts.

Let us fix a finite set of sensor outputs X = {01, ..., 0} (these are, for example, a set of training
images obtained by cameras observing a real environment). For each o; € X, assume that we
know the groundtruth perception, gt;. We can execute the neural perception module on each
element of 3; to get a set of groundtruth estimates, gte;. Let us assume that these estimates indeed
preserve the invariant of the system (note that we can verify this). We hence have a set of pairs
(gti, gte;) of groundtruth and groundtruth estimates that are exhibited by the environment and
neural perception, and that preserve the invariant. It is natural to expect to include these points in
any perception contract for the network. Let us also fix a logic £ to express perception contracts.

The perception contract synthesis problem is the following:

Given a set of sensor outputs ¥ associated with groundtruths, i.e., the set {(gt;, gte;)},

as above, find a perception contract expressed in £ (which by definition maintains the

invariant Inv) and that includes these pairs.
The perception contract synthesis problem asks to find a perception contract PC expressible in the
logic L that includes the given pairs X = {(gt;, gte;)} (and provably maintains the invariant Inv).
We propose to solve the perception contract synthesis problem computationally.

Can Humans Write Perception Contracts? Given that a machine learning model is trained using
tons of data (like ResNet), we believe that it would be hard for humans to predict the errors the ML
perception module makes in each region in order to write a perception contract for it. Even for the
given set of images (hundreds/thousands), we do not believe that humans can look at the errors
made by ML perception to write a perception contract. The contracts synthesized by our tool also
do not suggest that they can be written by humans easily (even though they are interpretable by
humans). For example, a contract synthesized by our tool for a particular region is the decision tree:
If(y+0+d+y >=0.163) then (y+ 60 — ¢ >= 0859 Ay+ 0 +d+1y < 0.415) else 0 + ) < 0.132
where (y, 0) represents gt (groundtruth) variables—y is the distance to the center line and 6 is
the heading angle, and (d, ) represents gte (groundtruth estimate) variables—d is the estimated
relative distance and i is the estimated relative heading angle.

Another possibility is for the user to write or mechanically derive the most general perception
contract, independent of the ML module. Note that we need a perception contract expressed in
a symbolic logic that maintains a complex invariant that the definition of perception contract
demands. The most general perception contract may not even be expressible in the logic, let alone
be simple enough for humans to construct.

We hence posit that we require automatic computational methods to solve the perception contract
synthesis problem.

IV. Utility of Perception Contracts. Assume we have a set of outputs X of training data along
with groundtruth, and we synthesize a perception contract PC from it that provably maintains the
invariant (and hence keeps the system safe). Note that, of course, this does not mean the system
is safe under the environment (that kind of safety is after all impossible to prove, given that we
cannot even formalize the environment, and have only sampled some states). However, the contract
PC not only gives a formal symbolic contract conjectured for the neural perception but also keeps
the system satisfying its safety property whenever the contract is obeyed. More precisely, if all
reachable states of the environment satisfy the perception contract PC, then we are guaranteed
that the system will be safe. Though formal checking of whether the environment will satisfy the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 299. Publication date: October 2023.



299:12 Angello Astorga, Chiao Hsieh, P. Madhusudan, and Sayan Mitra

contract PC is never possible, given that the training data adheres to the contract, and by more
runtime monitoring to gather data and checking against the contract, gives confidence that the
contract is satisfied, and the system is safe. Notice though that runtime monitoring needs to be
in special environments where groundtruth can be measured or inferred (for example, cars in
environments with enough position sensors that observe the actual groundtruth).

In fact, one utility of perception contracts is that they can be used for runtime monitoring. As
opposed to naive runtime monitoring that monitors whether the system is within the invariant,
runtime monitoring perception against perception contracts give a stronger guarantee. These checks
ensure that the system is safe not only from the current state, but in any other state, where latent
variables can be different. For example, in the setting of autonomous vehicles, a perception that
verifies against a perception contract ensures that the perception is the same at different speeds
and different road conditions as well. We refer the reader to the end of the Evaluation Section 6.4
for a more detailed discussion.

V. Relaxing Invariants. In the above development, we assumed that the inductive invariant Inv is
any invariant that proves the safety of the system working with an environment model. However,
extremely restrictive invariants may disallow perception contracts despite the system being safe.
Intuitively, we want the invariant to be a bit more liberal than the strictest invariants that can
prove the system under perfect perception correct, in order to allow errors in perception.

A concrete example occurs in our evaluation. Consider a lane-keeping vehicle where safety is
proved using an invariant that demands that the vehicle always move towards the center line. More
precisely, we record the position of the vehicle in the previous time step, and require that at the
next time step, the vehicle is closer or at the center line. In operating with perfect perception, this is
easy to achieve, as the system knows where the center line is, and can navigate the vehicle towards
it. However, in any system with neural perception, this invariant will not hold. In particular, when
the vehicle is very close to the center line, even an extremely accurate neural perception may detect
it to the other side of the line, causing the system to violate the invariant. However, notice that for
the safety property of being within the lane, this stringent invariant isn’t required. We can relax
this by asking for the invariant property to hold only if the vehicle is far enough away from the
center of the lane. This leads to the existence of perception contracts that can prove the system
safe, and we show in our evaluation that our mining algorithms are able to synthesize one.

4 LEARNING ARCHITECTURE FOR SYNTHESIZING PERCEPTION CONTRACTS

In this section we explain our general learning architecture (Figure 3) for synthesizing perception
contracts. As defined in the previous section, the synthesis problem for perception contracts is to
find a formula in a logic £ that captures properties of groundtruth estimates (in relationship to
groundtruth perception) that (a) include the groundtruth estimates of the neural perception module
working on a finite set of impressions (images), and (b) maintain an invariant Inv.

Let us fix a system, environment model MEnuv, sensor, neural perception (using notation developed
in the previous section). Let us also fix a finite set of impressions (images) 3. Let GTE be the finite
set of groundtruth estimates computed by the neural perception on X.

4.1 Overview
To synthesize a perception contract, we use a symbolic learning algorithm that learns concepts in
the given logic L.

Our learning architecture (depicted in Figure 3) has the learner interact with a teacher, which
provides counterexamples to adherence to the invariant.
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Fig. 3. Architecture for synthesizing Perception Contracts (PCs)

In each round, the learner takes a set X of (gt, gte) pairs (of groundtruth and groundtruth
estimate), each pair labeled positive and negative. It then synthesizes a classifier in the logic £ that
is precisely classifies the samples in X, and forwards it to the teacher.

The teacher, receiving a proposed perception contract PC checks whether the pairs of groundtruth
and groundtruth estimates defined by the contract maintain the invariant Inv. This requires checking
whether for every pair (gt, gte) satisfied by PC, and for every configuration ¢ with perception
component gt that adheres to the invariant, gte preserves the invariant at c. We achieve this using
a constraint solver (Gurobi in our evaluation). If the perception contract does not maintain the
invariant, we extract a counterexample pair of the form (gt, gte), label it negative, add it to X, and
recurse calling the learner.

The learner, in each round receiving a set of positive and negative sample X, computes a feature
vector which has additional features depending on the logic, and uses decision tree learning to
learn concepts expressed as Boolean combinations of these features. The decision-tree learning
algorithm is an exact learning algorithm (classified the training set perfectly), and is an adaptation of
Quinlan’s ID3 algorithm [Quinlan 1986], modified slightly as described below to increase margins.

Note that when the teacher verifies a perception contract to maintain the invariant the algorithm
can return this contract as it is a valid perception contract that includes Xiy;.

4.2 Realizing the Learning Architecture

We now describe how to realize the learner and teacher in the learning architecture for perception
contracts.

Logics for Expressing Invariants. We assume that the logics for invariants are expressed as
quantifier-free formulae over the domains of variables appearing in the environment model and
the system, the feedback variables, and the perception variables. While the logics can be arbitrary,
in order to apply decidable verification techniques such as Gurobi, we restrict these to use a class
of nonlinear functions, trigonometric functions, etc. that lead to instances of constraint solving
problems that can be decided by Gurobi.

Logics for Perception Contracts. In fixing a logic to realize our learning, one must strike a balance
between expressivity and simplicity. The logic for perception contracts should be powerful enough
to capture regions of groundtruth and groundtruth estimate pairs that preserve an invariant. Note
that invariant expressions can be complex (expressed using nonlinear arithmetic and trigonometric
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functions). We need the formulas in the logic describing the perception contracts to be simple in
order for verification of invariant preservation to be decidable using tools such as Gurobi.

Let us fix the variables P and P’ (two copies of percept variables). Let I be a finite set of predicates
over P U P’ and let T be a set of real-valued functions over P U P’. Let us introduce new variables
{n;} and {y;} that stand for the Boolean and real values corresponding to the valuation of predicates
IT and T, respectively. The logics for learning are parameterized over IT and T, and are essentially
quantifier-free Boolean combinations of predicates in IT and upper/lower bounds on the functions
inl:

f o= ite(bp,f.f) | bp| true | false
bpri—rm|ly<cly<c

where 7 ranges over m;, and y ranges over y;. The ite expression stands for if-then-else terms:
ite(b, f, f’) evaluates to f if b is true and to f’ otherwise.

In our evaluation, the predicates I are typically octagonal expressions (+ — x + —y) over the real-
valued variables. Consequently, perception contracts are Boolean combinations of linear expressions
over reals, and hence amenable to verification by tools like Gurobi.

Symbolic Learner. We can learn formulas over the logic for perception contracts from samples
using decision-tree learning. For every positive/negative sample (gt, gte), we expand it to a larger
feature vector where new features evaluate to every 7; and y;. The problem then reduces to learning
a Boolean formula over predicates () and upper/lower bounds of numerical variables by constants
(y < ¢,y < ¢), and we can employ a standard decision-tree learning algorithm for this purpose.

In our evaluation, we utilize the ID3 algorithm for decision tree learning, modified appropriately
to find perfect classifiers [Garg et al. 2014; Mitchell 1997]. The ID3 algorithm builds the tree top
down in one pass, choosing predicates to apply at each node. The best attribute at any node of the
tree is chosen based on the information gain statistical measure based on entropy [Mitchell 1997].
While typical decision tree algorithms can stop building the tree when the leaf nodes are mostly
pure, we need to continue building the tree till leaves are entirely pure (i.e., all samples that flow to
any leaf must all be positive or all be negative).

Teacher. Given a proposed perception contract ¢, the teachers need to check if all (gt, gte) pairs
admitted by ¢ preserve the invariant.
Formally, we need to check the validity of the following formula:

(PC(P,P’') A Inv(sys, P, FB,LM, S) A Trm(S, P’,S’, FB")) = Inv(eno, P, FB', LM, S’) (1)

The above formula captures the crucial property of when a perception contract preserves an
invariant. It says that if PC(gt, gte) holds and there is a configuration c satisfying the invariant
with percept variables evaluating to g¢, and the system reading the groundtruth estimate gte can
move to a new state s’ giving feedback fb’, then the invariant must hold where the perception
variables are evaluated according to the groundtruth gt.

The teacher needs to check the validity of the above formula, and if not valid, return a valuation
of variables where the formula does not hold. Projecting this valuation to (P, P’) gives the coun-
terexample pair that is returned to the learner. In our evaluation, we implement this teacher using
the constraint-solver Gurobi [Gurobi Optimization 2020].

5 CASE STUDIES

We will study how perception contracts can be used to analyze the safety of two realistic vision-based
control system, namely, a Lane Tracking System (LTS) on a Polaris GEM E2 electric vehicle [Du
et al. 2020] and an agricultural robot that follows crop rows [Sivakumar et al. 2021]. The controllers
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Fig. 4. Vision-based lane tracking system (LTS) on AV platform (Left). Latent variables (x, y, 0) for vehicle
positions and percept variables (d, {) for the lane tracking system (Right).

(reactive modules) used in these systems do provably satisfy certain safety properties when they work
with perfect perception. However, those same properties may be violated under some conditions
when the controllers work with neural perception. The perception contracts constructed here
capture the positive examples, and as we shall see, they can help discover the conditions under
which the overall system can be proven to be safe.

5.1 Case Study: Lane Tracking System

For the experiments on the GEM vehicle in this paper, we use the high-fidelity Gazebo simulation
of the vehicle model together with the actual controller code. The neural perception module uses
LaneNet [Neven et al. 2018] for lane detection.! We use the well-studied Stanley controller [Hoff-
mann et al. 2007] for lane tracking as the reactive module.

Table 2. Constants in Lane Tracking System.

Value | Description

\W 4.0 Lane width (meter).

AT 0.05 | Time discretization parameter (second).
ve | 2.5~3.0 | Possible forward velocity (meter/second).
L 1.75 | Length of the wheelbase (meter).

K 0.45 | Proportional gain for Stanley controller.
Omax 0.61 Maximum steering angle limit (radian).

Environment Model. Given a global reference coordinate system, we define latent variables for
the environment model LM = {x, y, 0} where x and y represent the position of the vehicle in the
2D plane, and 0 represents the orientation of the vehicle with respect to the x-axis (see Figure 4).
The percept variables are P = {d, /}, where d is called the cross-track error and heading error ¢
is the difference between the direction of the lane and the heading of the vehicle. When the lane
center line is aligned with the x-axis of the global reference, the groundtruth cross-track error
d = —y and the heading error ¢ = —0. Thus, the valuation Val(LM U P) C R>. Feedback variable
FB = {6} is the steering input to the vehicle, and the valuation Val(FB) C R. The transition of the
environment model is derived from a relatively simple textbook bicycle model [Hsieh et al. 2022b]:

((x,9,0), (d,9),6, (x", ", 0", (d"¥")) € Tyipny iff

IWe use https://github.com/MaybeShewill-CV/lanenet-lane-detection, a popular open source implementation of LaneNet
on GitHub.
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x" = x +vgcos(0 +8)AT
y =y +vesin(0 + §)AT

iné
0" = 0 +viom O AT

(d.y") =(-y".-0)

where v¢, AT, and L are constants as in Table 2.

Reactive Module. The Stanley controller g in [Hoffmann et al. 2007] is given as follows:

1//+arctan(%d), if |1//+arctan(K%fd)| < Omax
If,fd; > Smax

0= g(d, lﬂ) = 4 Smaxs if i/ + arctan
Kd

—Smaxs if  + arctan | %

where v¢, K, and 8,,., are constants in Table 2. The transition of the reactive module is defined as
follows:

((d, ), 6) € Trm iff 6 = g(d, )

Initial Configurations, Safety, and Invariant. Safety is to guarantee the vehicle never leaves
lane boundary.
Safe((d,¢)) = |d| < 0.5W
where W is the constant value of lane width in Table 2.
Recall that configuration is defined by C = Loc X P X F 8B X LM X Qgy. Since the reactive
module has no state, we can ignore Qrar. We consider the following initial configurations:

Init = {(env, (do, Yo), 8o, (x0, Yo, 60)) | ((x0, Yo, B0), (do, Yo)) € Inityeny A 8o € Initras}

T
Inityeny = {((x0, Yo, 00), (do, Y0)) | Idol < 0.3W Aol < A (do, o) = (~yo, ~00)}
Initgy = {(S() I |50| < 6rnax}

To show the safety, we consider that the system should preserve the Lyapunov stability [Gibson
etal. 1961] as the invariant and relax the Lyapunov stability based on input-to-state stability [Sontag
2008]. That is, we are given a Lyapunov function V, which takes the groundtruth values of d and ¢
and outputs a non-negative real value representing the (generalized notion of) distance to a desired
state. The invariant then is to require that, when the system is evolving, this distance is always
nonincreasing so that the system stays safe since it always stays within a distance to the desired
state. In addition, the nonincreasing requirement is relaxed if the distance has decreased to less than
a small threshold parameter p. In this case study, the desired state is when the vehicle is aligned
with the center line of the lane, i.e., d = 0 and § = 0; hence the Euclidean norm V (d, /) := /d? + /2
is given as the Lyapunov function over the domain . The relaxed invariant Inv that includes initial
configurations Init is as follows:

Inv = {(loc, (d, ). 0, (x,y.0)) | V(d',§) < max(V(d. ). p)} (2)

where p is the parameter for relaxing the invariant. We will further evaluate over different p values
in Section 6.

5.2 Case Study: Agricultural Robots

The second case study is a visual navigation system, named CropFollow, for under-canopy agricul-
tural robots (AgBot) developed in [Sivakumar et al. 2021]. The system is responsible for avoiding
collisions to the row boundaries when the vehicle traverses the space between two rows of crops.
Similar to Lane Tracking System, the latent variables LM = {x,y, 0} consist of the 2D position
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x and y and the heading 6. The sensor captures the image in front of the vehicle with a camera
(Figure 5). Likewise, the percept variables P = {d, /} are composed of the heading difference ¢
and cross track distance d to an imaginary center line of two rows. The valuation of environment
model states is thus Val(LM U P) C R>.

Fig. 5. Real and simulated camera images for corn row following for agricultural robots.

However, all components in CropFollow are very different from the Lane Tracking System in
GEM. The neural perception module uses ResNet-18, as used in [Sivakumar et al. 2021], to detect
the row boundaries. In contrast to the bicycle model, the vehicle dynamics is a kinematic differential
model of a skid-steering mobile robot [Sivakumar et al. 2021] as follows:

((x,9.0), (d.9).6, (x", ", 0"), (d".9")) € Tnagny iff

x" = x + vg cos OAT

y =y +vgsin AT

0" =0+ wAT
.y =(-y',-0")

where v and AT are constants in Table 3.
Table 3. Constants in Corn Row Following System for Agricultural Robots

Value | Description

W 0.76 | Corn row width (meter).

AT | 0.05 | Time discretization parameter (second).

\/2 0.2 | Forward velocity (meter/second).

K 0.1 | Proportional gain for the modified Stanley controller.
Omax | 0.5 | Maximum steering angular velocity (radian/second).

Reactive Module. The modified Stanley controller uses the feedback variable FB = {w} where w is
the angular velocity instead of the steering angle. Formally, the reactive module using the modified
Stanley controller g is as follows:

(¢+arctan (Kde)) /AT, if |¢+arctan (K—d) < OmaxAT
w = g(d, (//) = < Omax if i + arctan (K—

—®max, if  + arctan ( v
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where v¢, K, and wpnax are constants shown in Table 3. The transition of the reactive module is
defined as follows:

((d,¥), w) € Tpu iff 0 = g(d, ¥)

Initial Configurations, Safety, and Invariant. For the agricultural robots, we wish to avoid
two undesirable outcomes: (1) if |[d| > 0.5W = 0.38 meters, the vehicle will hit the corn, and (2) if
|| > Z, the camera view will face crops and neural perception will fail. Formally,

Safe((d,$)) = d| < 05W A ly| < =
We consider the following initial configurations:
Init = {(env, (do, Y0), wo, (x0, Yo, 60)) | ((x0, Yo, Oo), (do, Yo)) € Initaeny A wo € Initgyr}
Inityeny = {((x0, Yo, 00), (dos ¥0)) | |do] < 0.3W A [¢ho] < % A (do, ¥o) = (=yo, —06o) }
Initpy = {wo | [@o] < Omax}
The invariant Inv that includes initial configurations Init and prove the safety Safe is:
Inv = {(loc, (d,¥),6, (x,y,0)) | V(d',y") < max(V(d, ), p)}
where V(d, /) := 4/(3d + 0.75y)2 + (2¢)? is a norm function for proving the safety and stability.

6 EVALUATION

We implemented our technique for synthesizing perception contracts for autonomous systems with
ML-based perception in a framework called PERCEPTOR.

Our system is given (a) a system (a reactive module) interacting with a model of the environment,
(b) a safety property and an invariant that proves the safety property under perfect perception,
and (c) a set of ground truths and their estimates (perception pairs) i.e., {(gt;, gte;) }, PERCEPTOR
synthesizes a perception contract that is guaranteed to maintain the system invariant and includes
the given set of perception pairs. The ground truths, gt, are sampled from a simulated environment.
The estimates, gte, are derived from images and outputs of ML perception working over them.
The resulting Perception contracts synthesized are parameterized over a logic £, which is the one
described in Section 4.2.

To assess the efficacy of our approach, we investigate (1) how effectively can PERCEPTOR synthesize
perception contracts that include all positive samples ((gt, gte), +) while preserving the invariant and
also (2) how well can PERCEPTOR synthesize perception contracts that generalize.

6.1 Implementation

PERCEPTOR is implemented in Python and contains approximately 2536 lines of code. We use
Quinlan’s C 5.0 decision tree algorithm [Mitchell 1997; Quinlan 1986], with some modifications, to
build our learner. We ensure our learner can only find exact classifiers for a given set of samples.
Additionally, for every individual sample our learner receives, it produces a feature vector that has
additional features depending on the logic. Therefore, perception contracts are decision trees (i.e.,
Boolean combinations) over these new features. We use the optimization solver Gurobi [Gurobi Op-
timization 2020] as the teacher. Given a candidate contract, Gurobi checks if the perception contract
maintains the invariant, i.e., whether Formula (1) is valid, if not, Gurobi returns a set of counterex-
amples (negatively labeled ((gt, gte), —) perception pairs) indicating valuations where the formula
does not hold. Due to approximations of trigonometric functions, limitations of floating point
arithmetic, etc., Gurobi can return spurious counterexamples, i.e., (gt, gte) pairs that are already
excluded by the contract. In these cases, we use Z3 [De Moura and Bjgrner 2008] to double-check
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(a) Safe and unsafe regions (b) Safe and unsafe re-(c) Regions with learned (d) Regions with learned
with p = 0.0 gions with p = 1.0 PCs (checkmarks) for 2D PCs (checkmarks) for 4D
features with p = 1.0 features with p = 1.0

Fig. 6. Safe and unsafe regions with learned perception contracts with respect to the original and relaxed
invariants in combination with two choices of features.

that the returned pairs are true counterexamples. When Gurobi returns spurious counterexamples,
if it cannot also return at least one true counterexample (i.e., a pair allowed by the contract but not
the invariant after a transition), we deem the contract safe (in these cases, technically, we have
not proven the contract to be safe, and using more powerful verification techniques is a potential
future direction).

Case Studies, Relaxing Invariants, and Safe Regions. We evaluate our prototype on two case
studies of vision-based control systems, a Lane Tracking System (LTS) for an electric vehicle and
a navigation system (CropFollow) for a crop row-following agricultural robot, as described in
Section 5. There are several aspects of the systems that need to be articulated. First, these systems
are proven to be formally safe under perfect perception. Second, these systems, with their current
neural network based perception, are evidently not safe. For example, if the vehicle is at the edge
of a road and the heading angle and camera are facing away from the center of the lane, then NN
perception fails many times, and the vehicle is led off the road by the controller. In fact, there are
concrete images in our training set that already show this unsafe behavior.

We refer the reader to Figure 6a that shows the ratio of safe images in the training data. We
divide the groundtruth values into regions based on intervals of heading angle (on the y-axis) and
the distance of the ego vehicle to the center of the lane (on the x-axis), and represent the fraction
of safe images in the training set in each region.

Notice that there are unsafe regions labeled in white (safe regions are those colored blue). In fact,
some of these unsafe regions are where the ego vehicle is further away from the center of the lane
and where the vehicle is facing away from it.

Another set of unsafe regions is when the vehicle is close to the center of the lane. However,
in these cases, the vehicle is not truly unsafe. The reason the invariant is not maintained is that
even a slight error in perception can make the controller veer the vehicle slightly away from the
center of the lane. For example, when the vehicle is slightly to the right of the center of the lane, a
mild perception error can place it to the left of the center, making the controller steer it to the right
and violate the invariant. As described in Section 3.2, the invariant needs to be typically relaxed to
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accommodate some error in perception. Recall from Page 16, Equation 2, that the invariant demands
that the V function always decreases, where the V function captures both how close the vehicle is
to the center of the lane and how well it is aligned to it. We relax this invariant V(d’, ¢") < V(d,¢)
to V(d’,¢¥') < max(V(d, ), p). This relation says the vehicle need not decrease the V-function
under a threshold value p (as it is already quite close to the center and aligned). Note that this
relaxes the invariant only when the vehicle is close to the center of the lane, and hence still assures
that the vehicle will not leave the lane.

We now refer the reader to Figure 6b, where the training images are now evaluated with respect
to the relaxed invariant above. Notice that now there are no unsafe regions when the distance and
heading angle are both small.

The goal of our experiments is to synthesize perception contracts for every region using both the
original and relaxed invariant. For each safe region, we want to synthesize a perception contract
that includes the perception of all training images in that region. And for unsafe regions, we want
to synthesize perception contracts that include only the safe training images in the region.

6.2 Experiment Setup

Our experiments for the Lane Tracking System (LTS) case study span six experiments where the
training data is the same across the experiments. In each experiment, the data is divided into 40
partitions (as in Figure 6a). However, experiments are configured differently to study the impact
of the feature space and choice of invariant on the effectiveness of our learning architecture. The
feature space for configurations are either 2D and 4D values. The 2D feature space consists of
two base features (dg — dgre) and (g: — Ygre). That is, the two base features capture the difference
between groundtruth and perceived values for distance and heading angle. The derived octagonal
constraint features are formed using the two base features (to get 8 features). The 4D space has
base features dgt, Ygr, dgre, and Ygre.

The invariant for the LTS is defined in Equation 2 and it is parameterized by p. We use two
values for p, 0.0 and 1.0. When p := 1.0, the invariant is relaxed while when p := 0.0, the invariant
is strict. We perform four experiments taking two choices for feature space and two choices for
values of p, and a speed of 2.8m/s. And an additional two experiments where the speed of the car
is assumed to be in the range [2.5m/s, 3.0m/s], for 2D and 4D feature spaces, and with p := 1.0.

The setup for the Agricultural Robots case study is the same except that we do two experiments,
both for the relaxed invariant, one for the 2D space and the other for the 4D space.

Training Data Preparation. To prepare the training data for the Lane Tracking System (see
Section 5.1), we use the Gazebo model for the GEM vehicle [Du et al. 2020] and generate camera
images with their groundtruth percepts gt = (dg, ¥4:). Each image is sampled from a uniform
distribution over (i) the states of the environment model Q g,y = {(x, y,0) | |yl <03W A 0] < 1”—2}
(ii) three types of roads with two, four, and six lanes, and (iii) two lighting conditions, day and
dawn. We process each image using LaneNet [Neven et al. 2018] and obtain gte = (dgte, Ygze)- In
total, we collect 24144 pairs of (gt, gte) as training data.

For each of these images and outputs gte, we check using Gurobi whether the system maintains
the invariant from any state satisfying the invariant when the controller is fed gte (note that this
labeling is different for the constant speed and variable speed cases). This gives us a positive/negative
label for each sample.

The training data for the agricultural robot (AgBot) case study is prepared using the Gazebo model
for AgBot in a similar manner with different environments. Images are sampled from a uniform
distribution over (i) the states of the environment model Q g,y = {(x, y,0) | |yl <03W A 0] < 1”—2}
(ii) five different plant fields, including three stages of corn (baby, small, and adult). We process

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAZ2, Article 299. Publication date: October 2023.



Perception Contracts for Safety of ML-Enabled Systems 299:21

Table 4. Learned Perception Contracts (PCs) for LTS

Invariant | Feature | Safe/Unsafe | # Regions | Avg. time per Rounds #Paths in DT
Relaxation | Space Regions learned PCs region (s) | Avg. [ Max. | Avg. [ Max.
Constant speed vy = 2.8

2D Safe 18/22 577 | 15.83 35 44 11

=00 2D Unsafe 13/18 378 11.2 19 3.0 7
’ 4D Safe 19/22 1035 | 30.95 64 | 2.52 6

4D Unsafe 12/18 962 | 29.0 61 2.5 5

2D Safe 30/30 72 5.67 24 | 1.83 6

p=10 2D Unsafe 8/10 175 | 10.5 21| 3.25 7
’ 4D Safe 26/30 97 | 8.27 79 | 1.38 5

4D Unsafe 7/10 100 | 11.43 25 | 2.29 4

Range of speed vy € [2.5,3.0]

2D Safe 28/30 252 9.5 92 | 1.68 6

p=1.0 2D Unsafe 8/10 664 | 27.5 58 | 3.75 10
’ 4D Safe 30/30 321 | 14.88 141 | 1.83 6

4D Unsafe 10/10 872 | 29.5 139 3.6 8

each image and obtain groundtruth estimates from the pretrained ResNet-18 model used in Crop-
Follow [Sivakumar et al. 2021]. In total, we collect 7733 pairs of (gt, gte) as the set of samples and
labelled them positive and negative, as described above.

6.3 Results: Effectiveness in Learning Perception Contracts

We study the effectiveness of our architecture in learning perception contracts. In this paper, we say
an approach is effective if it can learn a perception contract that includes all positive samples and
preserves the invariant. We present our results in Table 4 for the Lane Tracking System (LTS) case
study and Table 5 for the CropFollow case study. We especially focus on finding perception contracts
in safe regions (i.e., when all training data, in a region, maintain the invariant). Nonetheless, the
tables show our results for safe as well as unsafe regions. For each configuration, we report whether
the 2D/4D feature space was used, the number of regions where our technique was successful in
generating a perception contract (for safe as well as unsafe regions), the average time required for
synthesis, the average and maximum number of rounds our tool takes to find a correct contract,
and the average and maximum number of paths (leaves) in the decision tree representing the
synthesized perception contract.

The results for the LTS case study in Table 4 show that our technique is in general able to
synthesize perception contracts (~ 85% of the time). In particular, when the invariant is relaxed
(p = 1.0) and in the 4D case, our tool successfully found perception contracts in all the 30 safe regions
(30/30, 100%), for both the constant speed case as well as the variable speed case. Furthermore, for
the variable speed case, our tool was also successful in synthesizing contracts in all the unsafe
regions as well (where these contracts include all safe images in the region).

For the CropFollow case study in Table 5, our findings show that the tool is effective in finding
perception contracts in most cases as well, and in the 4D feature space, succeeds in finding perception
contracts in all the 14 safe regions and in all 11 unsafe regions.

6.4 Generalizability of Perception Contracts
In this subsection, we want to study how well our synthesized perception contracts generalize. To

do this, we want to evaluate on new images processed by ML perception. We check whether images
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Table 5. Learned Perception Contracts (PCs) for AgBot
Invariant | Feature | Safe/Unsafe # Regions | Avg. time per Rounds #Paths in DT
Relaxation | Space Region learned PCs region (s) | Avg. | Max. | Avg. | Max.
2D Safe 14/ 14 4.62 4.21 46 | 1.07 2
—10 2D Unsafe 4/11 257 61.5 79 8.0 14
p== 4D Safe 14/14 335 | 321 32| 10 1
4D Unsafe 11/11 1110 | 45.82 114 | 5.36 8

that maintain the invariant satisfy the contract and images that do not maintain the invariant
violate the contract. We use runtime monitoring of the two case studies to obtain these new images.

Setup for Obtaining Test Set. We validate the learned perception contracts within the context of
the closed-loop system. As test data, we use simulation traces of the system and use conformance
to the perception contracts for runtime monitoring.

For the lane tracking system, we use the simulator to collect 800 traces as the testing set for the
synthesized contracts. Each trace simulates the lane tracking system for 20 seconds and consists of
at least 400 pairs of groundtruth values gt and estimated values gte. We then prepare our test dataset
by labeling each pair of gt and gte positive (negative) with respect to preserving the invariant
Preserver,,.

Similarly, we collect 400 traces as the testing set for AgBot. Each trace simulates the AgBot
system for 10 seconds and consists of over 200 pairs of images.

Results on Generalizability of Perception Contracts. To calculate precision of a contract over a
set of images, we compute the percentage of correctly classified ground truth and estimate pairs,
(gt, gte), over the total number of pairs. Note that the pairs are extracted from images evaluated on
ML perception.

Table 6 and Table 7 show results on precision of perception contracts synthesized by our tool,
for the various configurations involving relaxation of the invariant, feature space, and safe and
unsafe regions. Our results on synthesized contracts show high precision (> 79%) for both case
studies when the invariant is relaxed.

Using Perception Contracts as Runtime Monitors. Our results show that our learning algorithm
has generalized from training data well, and hence can be used for runtime monitoring. On average,
it only takes 0.003 seconds to evaluate perception values over the perception contract in our setting,
and hence can be used in an online runtime monitoring setting.

The reader may wonder why we cannot do runtime monitoring simply by checking whether
the system is within the invariant. Note that the runtime monitoring using perception contracts
performs a much better job than simply checking invariants at runtime. When perception on an
image during runtime monitoring passes the perception contract, we are guaranteed that in all
states of the system satisfying the invariant (not just the current state), the current perception will
maintain the invariant. For example, consider a car moving at a particular speed on a dry road,
and consider perception on an image that keeps the car within the invariant. While naive runtime
monitoring will declare this safe, we require a lot more— we want the perception on the image
to be safe in all states, where latent variables can be different, like when the car is moving at a
different speed or the road is wet. Monitoring using perception contracts gives this assurance.

For example, in Figure 7a, the left image shows an ego vehicle in a three-lane road positioned
on the rightmost lane but close to the middle lane, with heading angle towards the middle lane.
However, the vision component only perceives (seen in Figure 7b) a two-lane road represented by
the three red lines in the image on the right. As a result, the ego vehicle considers itself positioned
in the perceived left lane instead of the rightmost lane, and maintains its current heading instead
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of steering to the right. It turns out that when the vehicle is at a slower speed, the invariant is
not violated, but the invariant is violated at higher speeds (the invariant is a complex function).
Consequently, if we were doing naive runtime monitoring when the car is going slow, we may
declare the perception is safe, though it is not, while our perception contract will declare the
perception unsafe.

Table 6. Precision represents the percentage of correctly classified testing data in the LTS case study.

Invariant | Feature Space | Safe/Unsafe Region | Precision
2D Safe 90.44%
2D Unsafe 90.72%

p=0.0
4D Safe 91.58%
4D Unsafe 53.58%
2D Safe 99.91%
b=1.0 2D Unsafe 79.59%
’ 4D Safe 99.89%
4D Unsafe 88.57%

Table 7. Precision represents the percentage of correctly classified testing data in the AgBot case study.

Relaxation | Feature Space | Safe/Unsafe Region | Precision (%)
2D Safe 100.0%

b=10 2D Unsafe 83.33%

' 4D Safe 100.0%

4D Unsafe 99.49%

6.5 Comparison with Approximate Abstractions of Perception

The work in [Hsieh et al. 2022b] creates approximate abstractions of perception (AAPs) that are
similar to perception contracts in that it captures errors in perception that preserve the invariant.
However, there are many differences; AAPs do not intend to capture all safe images in regions
unlike perception contracts. AAPs capture errors using simple shapes like spheres (and hence
convex regions) while perception contracts use a logic that represents various shapes (which is
why they can include all safe images). In short, AAPs are not perception contracts as defined in
this paper.

We however compare experimentally our learned PCs with AAPs generated using the tool
in [Hsieh et al. 2022b]. In order to run the tool for AAPs following [Hsieh et al. 2022b], we collect
the training data by uniformly sampling different positions and orientations of the LTS on the
one-road scenario and collect the testing data using the three-road scenario. Further, we need to
simplify the system model with constant speed v¢ = 2.8 so that we can obtain AAPs.

Table 8 shows the results comparing the effectiveness of the two approaches. It includes the
time for synthesis, the percentage of included pairs in training data, and precision with respect
to testing data. We first observe that, unsurprisingly, inferring AAPs is much faster than learning
PCs. However, AAPs do not provide the strong guarantee by PCs; they do not include all positive
pairs in training data. Especially, for unsafe regions of states, the inferred AAPs include only half
of the pairs on average and none of the pairs in the worst case. On the other hand, our approaches
using either 2D or 4D feature space can consistently find PCs that include almost all positive pairs
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Table 8. Comparison between Approximate Abstractions of Perception (AAPs) from [Hsieh et al. 2022b] and
Perception Contracts (PCs) for the LTS case study with invariant relaxation p = 1.0 and constant speed
vg = 2.8 m/s.

PCs by PERCEPTOR

2D | M
# Regions learned 38/40 33/40 40/40
Avg. time for synthesis per region (s) | 93.68 97.6 5.3
Percentage of included positive pairs in training data (%)
Worst region in safe regions 100.0% | 99.62% | 64.16%
Avg. over safe regions 100.0% | 99.98% | 94.68%
Worst region in unsafe regions 100.0% | 100.0% 0.0%
Avg. over unsafe regions 100.0% | 100.0% | 50.94%
Precision w.r.t testing data from uniform distribution (%)
Worst region in safe regions 98.99% | 98.79% | 71.41%
Avg. over safe regions 99.90% | 99.89% | 96.44%
Worst region in unsafe regions 72.34% | 80.85% 0.0%
Avg. over unsafe regions 96.40% | 96.61% | 56.83%

for all regions (the entries that are close to but not 100% are due to numerical errors in Gurobi to
determine true safety of perception on images). Similarly, when the testing data is gathered from
a uniform distribution over positions and orientations, PCs achieve higher precision scores than
AAPs regardless of the texture and the color of the roads in the three-road scenario.

6.6 Example Perception Contract

In this section, we show a perception contract synthesized by PERCEPTOR. We further illustrate
how to interpret the contract to better understand the constraint it poses on estimated percept
values. An example contract synthesized in the LTS case study, is the decision tree:

If(y+0+d+y =0.163)
then (y+60 -1y >0.859 Ay+0+d+y < 0.415)
else 0+ < 0.132

corresponding to region y € [0.6, 1.2] meters and 6 € [—0.16, —0.10] radians. The region associated
with the perception contract indicates that the car would be positioned to the left of the center line
within the range of 0.6 to 1.2 meters away from the line. The range of values for the heading angle
indicate that the vehicle is oriented toward the center line as depicted in Figure 4.

The variables d and ¢ are estimates of the negative of y and 0, respectively. Hence when there is
perfect perception for estimating relative distance and relative heading angles, d = —y and {y = -0
as defined in Section 5.1.

7 RELATED WORK

Related work spans the areas of program synthesis, specification mining and quality assurance
techniques for autonomous systems.

Analysis of Closed-Loop Systems with NN Perceptions. The closest related work is the recent
paper [Hsieh et al. 2022b] by Hsieh et al. In that work, a notion called approximate abstraction
of perception (AAP) was developed to create abstractions of neural perception modules, which
were then used for system-level safety analysis. Similar to the perception contracts proposed here,
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(a) The image shows a three-lane road from the perspec- (b) Image from LaneNet misperceiving lane boundaries.
tive of a car positioned in the rightmost lane.

Fig. 7. Images depicting actual view of road vs vision estimate

AAPs relate groundtruth values with the groundtruth estimates produced by neural perception.
The relation there is defined in terms of piece-wise error bounds that are derived from sampled
data as well as the constraints imposed by the system invariant. In [Hsieh et al. 2022a,b], it has
been shown how AAPs can be used to establish system-level safety invariant properties for a
realistic lane tracking system, a formation control system for drones, and a row-following system
for an agricultural robot. The industry paper [Abraham et al. 2022] discusses the relevance of these
approaches in the context of engineering autonomous systems. There are several salient differences
between these prior works and this paper. (1) This work gives a much more general formalization of
perception contracts (PCs), including stateful environments and reactive modules. (2) We formulate
the general problem of synthesizing perception contracts (which is independent of the logic used
for the contracts). Finally, (3) we propose an iterative learning approach that synthesizes PCs that
includes all positive samples from neural perception module and maintains a system invariant.

Other closely related works are VerifAl [Dreossi et al. 2019; Ghosh et al. 2021] by Dreossi
and Ghosh et al., [Katz et al. 2021] by Katz et al., and NNLander-VeriF [Santa Cruz and Shoukry
2022]. VerifAl [Dreossi et al. 2019] and related publications [Fremont et al. 2020, 2022] provide a
comprehensive framework to falsify a closed loop system with ML-based perception. Further, the
Counter Example Guided Inductive Synthesis (CEGIS) based approach in [Ghosh et al. 2021] uses
VerifAl to find counterexamples of the closed-loop system, synthesizes a controller, and learns a
surrogate model. Their techniques focus on the falsification of the system specification. [Katz et al.
2021] trains generative adversarial networks (GANSs) to produce a simpler network for DNN-based
perception. NNLander-VeriF [Santa Cruz and Shoukry 2022] verifies NN perception along with NN
controllers for an autonomous landing system.

Isolated Neural Network Verification. Recently, there are many works on verifying an isolated
neural network such as ReLuplex [Katz et al. 2017], NNV [Tran et al. 2020], Verisig [Ivanov et al.
2019], etc. We refer readers to a summary of the VNN competition [Bak et al. 2021a] for a complete
list. Our notion and learning approach of PC can decompose the system level specification and
search for the specification for the neural network perception, and the NN verification tool can be
applied to check neural network perception with respect to PC.

Program Synthesis. Program synthesis deals with the problem of synthesizing expressions that
satisfy a specification. Counterexample-guided inductive synthesis (CEGIS) [Alur et al. 2015] is
one of the most promising approaches in synthesis and resembles online learning. In this setting,
the target expression is learned in multiple rounds of interaction between a learner and a verifier.
In each round, the learner proposes a candidate expression and the verifier checks whether the
expression meets the specification. Our work can be seen as instance of CEGIS. where along with a
verifier, we also rely on a vision component for positive examples via simulation.
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Specification Mining. Our work can also be seen as mining specifications [Alur et al. 2005;
Ammons et al. 2002; Astorga et al. 2019, 2021; Ernst et al. 1999; Henzinger et al. 2005; Whaley et al.
2002; Xie et al. 2006] for ML-based vision components. In this setting, mining approaches observe
program executions to build abstractions of the specification by generalizing from observed runs.
Ammons et. al [Ammons et al. 2002] are the first to propose this line of work. It learns Probabilistic
Finite State Automatons (PFA) to represent valid method call sequences. Various approaches have
been proposed since then on automata learning [Alur et al. 2005; Henzinger et al. 2005; Whaley
et al. 2002; Xie et al. 2006]. Ernst et al. [Ernst et al. 1999] proposed Daikon for dynamically inferring
conjunctive Boolean formulas as likely invariants from black-box executions by collecting program
state at method entry and exit. The work by [Jahangirova et al. 2016] also uses mutation testing to
infer assertions, and iterates over rounds with the programmer to infer specs.

8 CONCLUSION

We have introduced perception contracts that formalize groundtruth estimation deviations by neural
perception that preserve invariants of systems. We additionally argue that they can form contracts
for neural perception modules for ensuring safety. We have also studied the problem of synthesizing
perception contracts given a set of images whose groundtruth estimate by neural perception
maintains the invariant. We have evaluated our synthesis algorithm on two realistic vision-based
control systems, for efficacy and precision. We also demonstrate the effectiveness of perception
contracts as runtime monitors over simulation traces of these vision-based control systems. Several
future directions are interesting. First, perception modules in autonomous vehicles, drones, robots,
etc. glean groundtruth not just from a single image, but a sequence of frames. Extending the notion of
perception contracts to sequences of frames augmented with reasoning mechanisms for perception
is an interesting future direction. Second, it would be interesting to perform larger experiments
that subject vision-based control systems to continuous runtime monitoring, checking synthesized
perception contracts to validate them. Third, we believe that our techniques are orthogonal to other
approaches for evaluating perception correctness such as robustness and testing against image
generators; exploring combinations of these techniques would be interesting, especially using
perception contracts as specifications for these ML components. Finally, it would be interesting
to utilize synthesized perception contracts for both runtime monitoring as well as falsification,
exploiting the fact that these are local contracts for the perception module. Evaluating the efficacy of
perception contract guided monitoring and falsification in comparison with traditional monitoring
and falsification techniques, would be interesting. We are also intrigued as to how perception
contracts, monitoring, and falsification extend to more complex properties than safety, such as
temporal properties of systems [Lukina et al. 2021; Mamouras et al. 2021].
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