2104.07769v2 [math.LO] 6 Dec 2023

arxiv

Combinatorial Bounds in Distal Structures

Aaron Anderson

December 8, 2023

Abstract

We provide polynomial upper bounds for the minimal sizes of distal cell decompositions in
several kinds of distal structures, particularly weakly o-minimal and P-minimal structures. The
bound in general weakly o-minimal structures generalizes the vertical cell decomposition for
semialgebraic sets, and the bounds for vector spaces in both o-minimal and p-adic cases are
tight. We apply these bounds to Zarankiewicz’s problem in distal structures.

1 Introduction

Some of the strongest tools in geometric combinatorics revolve around partitioning space. These
techniques fall largely into two categories, the polynomial partitioning method developed by Guth
and Katz [23], and versions of the cutting lemma for various cell decompositions [11]. While the
polynomial method has yielded impressive results, its reliance on Bézout’s Theorem limits its scope
to questions about algebraic and semialgebraic sets. If one tries to generalize it to sets definable in
o-minimal structures other than real closed fields, Bézout’s theorem can fail [18]. The cutting lemma
method, however, can be generalized to more complicated sets using the language of model theory.
Distal cell decompositions, defined in [5], provide an analogous definition to the stratification or
vertical cell decomposition results known for R, with a similar cutting lemma, for families of sets
definable in a suitable first-order structure, known as a distal structure.

We then study distal cell decompositions through the lens of shatter functions. In [26], the dual
shatter function m} of a set ® of formulas is defined so that 7}(n) is the maximum cardinality of
the set of ®-types over a parameter set of size n. We define an analogous shatter function 7 (n)
for each distal cell decomposition 7, where instead of counting all ®-types, we count the maximum
number of cells needed for a distal cell decomposition against n sets (See Definition 2.11). This
shatter function grows polynomially in a distal structure, so each T has some exponent ¢t € R such
that m7(n) = O(n'). This exponent is what determines the effectiveness of the cutting lemma for
combinatorial applications. Just as the dual VC density of ® is defined to be the rate of growth of 73,
we define the distal density of ® to be the infimum of the exponents of all distal cell decompositions
T for ®.

In this article, we construct and bound the sizes of distal cell decompositions for definable families
in several distal structures, namely the weakly o-minimal structures, including a better bound on
ordered vector spaces, the field @, and its linear reduct. Then we apply these bounds to some
combinatorial problems.

1.1 Main Results

Our first theorem constructs distal cell decompositions (see Definition 2.8) for all sets of formulas
®(z;y), with = and y tuples of variables of arbitrary finite length, in some structure M, given a
distal cell decomposition for all sets of formulas ®(z;y), with with |z| = 1. This construction by
inducting on the dimension generalizes the stratification result in [11], which essentially constructs



distal cell decompositions for R as an ordered field. It is also similar to Theorem 7.1 in [26], which
provides an analogous bound for the VC density of a set of formulas in many dimensions assuming
the strong VCd property in dimension 1.

Theorem (Theorem 3.1). Let M be a structure in which all finite sets ®(x;y) of formulas with
|| = 1 admit a distal cell decomposition with k parameters (see Definition 2.10), and for some
do € N, all finite sets ®(x;y) of formulas with |x| = dy admit distal cell decompositions of exponent
at most r. Then all finite sets ®(x;y) of formulas with |x| = d > dy admit distal cell decompositions
of exponent k(d — do) + .

In sections 4, 5, 6, and 7, we prove upper bounds on the exponents of distal cell decompositions
in weakly o-minimal structures, as well as the field @, and its linear reduct. Those results are
summarized and contrasted with the best-known bounds for the dual VC density, in the following
theorem:

Theorem 1.1. Let M be a structure from the first column of this table. Then any formula ¢(x;y)
has dual VC' density bounded by the corresponding value in the second colummn, and admits a distal
cell decomposition with exponent bounded by the value in the third column. Thus also its distal
density is bounded by the value in the third column.

M Dual VC density Distal Density
o-minimal expansions of groups x 20z —2 (1 if 2] =1)
weakly o-minimal structures x 2]z —1
ordered vector spaces over ordered division rings || ||
Presburger arithmetic || ||
Qyp the valued field 2lz| —1 3lz] —2
Q,, in the linear reduct || ||

Proof. The Dual VC density bounds are from [26], except for the bound for the linear reduct of Q,,
which is from [2].

Theorem 4.1 establishes the bound for weakly o-minimal structures by constructing a distal cell
decomposition in the 1-dimensional case, and then applying Theorem 3.1. Taking into account [5],
we improve that bound for o-minimal expansions of fields to match the bound from [11] for the case
of R as an ordered field. This improves [29, Theorem 4.0.9], which provides a cell decomposition
with O(| B le‘fl) uniformly definable cells for M an o-minimal expansion of a real closed field.

Theorem 4.2 shows that the distal density of any finite set of formulas ®(z; y) in an ordered vector
space over an ordered division ring matches the VC density. In particular, the distal exponent of ®
is bounded by |x|, which is optimal. This also works for any o-minimal locally modular expansion
of an abelian group, and Theorem 5 shows the same results for Z in Presburger’s language.

Theorem 6.1 shows that the distal density matches the VC density for any finite set of formulas
®(z;y) in Qp equipped with its reduced linear structure in the language L.g described by Leenknegt
in [17]. The proof adapts Bobkov’s bound on VC density in the same structure [2].

Theorem 7.1 establishes the bound for Q, or any other P-minimal field with quantifier-elimination
and definable Skolem functions in Macintyre’s language by constructing a distal cell decomposition
in the 1-dimensional case and applying Theorem 3.1. O

Finally in Section 8 we apply these results to combinatorics. We combine them with the results
on Zarankiewicz’s problem from [5] to prove a bound on the number of edges in bipartite graphs
definable in distal structures which omit some (oriented) complete bipartite graph K ,,, similar to
the bound given by Theorem 1.2 from [20].

Corollary (Corollary 8.7, expressed in terms of distal density). Let M be a structure and t €
N>o. Assume that E(x,y) C M=l s MW is a definable relation given by an instance of a formula



O(z,y;2) € L, such that the formula 0'(x;y, z) := 6(x,y; z) has distal density at most t, and the
graph E(z,y) does not contain Ks,. Then for every ¢ € Rsq, there is a constant o = «(0, s, u, )
satisfying the following.

For any finite P C M*l,Q C MY, |P| =m,|Q| = n, we have:

(t—1)s t(s—1)

|[E(P,Q)|] <« (m R I —l—m—l—n) .

This corollary then lets us place bounds on graphs in the following contexts:

Corollary (Corollary 8.8). Assume that E(x,y) C RI#l x RI¥ is a relation given by a boolean
combination of exponential-polynomial (in)equalities, and the graph E(z,y) does not contain K .
Then there is a constant « = (0, s,u) satisfying the following.

For any finite P C RI*l,Q CRW, |P| =m,|Q| =n, we have:

(2|z|—2)s (2\1\*1)(8*1)+5

|E(P, Q)| <a (m(Z\z\fl)sfln Qlz[—1)s—1 +m+n) .

(Here an exponential-polynomial (in)equality is an (in)equality between functions R" — R in
Zlxq, ..., xy, e, ... "] as in [9)].

Corollary (Corollary 8.10). Assume that E(x,y) C ZL,I‘ X ZL‘U‘ is a subanalytic relation, and the
graph E(x,y) does not contain Ks,. Then there is a constant o = a(0, s,u) satisfying the following.

For any finite P C ZLI‘,Q C ZL‘U‘, |P| =m,|Q| =n, we have:

(3lz|—3)s (3\1\*2)(8*1)+5

|E(P, Q)| <a (m(S\z\72)371n Gle[—2)s—1 +m+n) .

Here subanalytic relations are defined in the sense of [32].
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2 Preliminaries

In this section, we review the notation and model-theoretic framework necessary to understand distal
cell decompositions. For further background on these definitions, see [4] and [5].
Firstly, we review asymptotic notation:

Definition 2.1. Let f,g: N — R>.

o We will say f(z) = O(g(x)) to indicate that there exists C' € Rsq such that for n € Ny,
f(n) < Cyg(x).

o We will say f(x) = Q(g(x)) to indicate that there exists C' € Rs¢ such that for n € N,
f(n) = Cy(x).

If f,g: NxN— Rsq, then f(z,y) = O(g(x,y)) indicates that there is a constant C' € Rs¢ such
that for all m,n € N5, f(m,n) < Cg(m,n).

Throughout this section, let M be a first-order structure in the language £. We will frequently
refer to ®(z;y) as a set of formulas, which will implicitly be in the language £. Each formula in ®
will have the same variables, split into a tuple z and a tuple y, where, for instance, |z| represents
the length of the tuple x. We use M to refer to the universe, or underlying set, of M, and M™ to



refer to its nth Cartesian power. If ¢(z;y) is a formula with its variables partitioned into = and y,
and b € MY then ¢(M!*!;b) refers to the definable set {a € M!*l : M |= ¢(a,b)}. We also define
the dual formula of ¢(z;y) to be ¢*(y;x) such that M = VaVyd(x;y) < ¢*(y;x), and similarly
define ®*(y; x) to be the set {¢*(y; ) : p(x;y) € P(z;9)}.

Definition 2.2. For sets A, X C M?, we say that A crosses X if both X N A and X N —A are
nonempty.

Definition 2.3. Let B C M.

e For ¢(x;y) with |y| = t, we say that ¢(x; B) crosses X C M!®l when there is some b € B such
that ¢(M1*l;b) crosses X.

e For ®(z;y) with |y| = t, we say that X C M=®l is crossed by ®(x; B) when there is some
¢ € B such that ¢(z; B) crosses X.

Definition 2.4. We define S®(B) to be the set of complete ®-types over a set B C MYl of
parameters, or alternately, the set of maximal consistent subsets of {¢(z;b) : ¢ € ®,b € B} U
{—p(z;b) : p € B,b € B}.

Throughout this article, we will want to use the concepts of VC density and dual VC density.
Definition 2.5. Let ®(x;y) be a finite set of formulas.

e For B C MWl define w3 (B) := |S®(B)].

e For n € N, define 73 (n) := maxgc vl | pj=pn T3 (B)-

e Define the dual VC density of ®, vc*(®), to be the infimum of all » € Ry such that there
exists C € R with |S®(B)| < C|B|" for all choices of B. Equivalently, we can define vc*(®)
to be | .

lim sup 12872 (7).
n—oo  logmn

e Dually, we define 7g := 7(4., and define the VC density of ® to be ve(P) = ve* (P*).

This definition of (dual) VC density of sets of formulas comes from Section 3.4 of [26], which
relates it to the other definitions of VC density.

Definition 2.6. An abstract cell decomposition for ®(x;y) is a function 7 that assigns to each finite
B C M a set T(B) whose elements, called cells, are subsets of M?l not crossed by ®(x; B), and
cover M*l so that M*l = |JT(B).

Example 1. Fix ®(z;y). For each type p(x) € S®(B), the set p(M?!) is a definable subset of M|,
as p(z) is equivalent to a boolean combination of formulas ¢(x;b) for ¢ € ® and b € B. Define
Tee(B) := {p(M*l) : p € S®(B)}. Then T is an abstract cell decomposition with |Tv.(B)| =
|S%(B)| = m5(B).

Proposition 2.7. For any abstract cell decomposition T of ®(x;y) and any finite B C MY,
IT(B)| = 75(B).

Proof. As each cell A € T(B) is not crossed by ®(x; B), its elements must all have the same ®-types
over B. Thus there is a function f : 7(B) — S®(B) sending each cell to the ®-type over B of its
elements. Each type in S®(B) is consistent and definable by a formula, and thus must be realized
in M, so there must be at least one cell of T(B) containing formulas of that type. Thus f is a
surjection, and |T(B)| > |S®(B)]. O



Definition 2.8. Let ®(z;y) be a finite set of formulas without parameters. Then a distal cell
decomposition T for ® is an abstract cell decomposition defined using the following data:

e A finite set U(z;y1,...,yx) of formulas (without parameters) where |y;| =--- = |yx| = |y|.
o For each ¢ € ¥, a formula (without parameters) 0y (y; 1, ..., Yx).

Given a finite set B € MW let U(B) := {(M'*l;by,... b)) : ¥ € W,by,...,b, € B}. This
is the set of potential cells from which the cells of the decomposition are chosen. Then for each
potential cell A = (M= by, ..., by), we let Z(A) = 0, (M¥; by, ..., bg). Then we define 7(B) by
choosing the cells A € U(B) such that BNZ(A) =0, that is, T(B) = {A € ¥(B) : BNZ(A) = (}.

In the rest of this article, when ®(z;y) is a finite set of formulas, we will assume that ® is defined
without parameters.
The following lemma will be useful in defining distal cell decompositions later on:

Lemma 2.9. Let ®(z;y) be a finite set of formulas, and let ®'(x;y) be a finite set of formulas
such that each formula in ® is a boolean combination of formulas in ®'. Then if T is a distal cell
decomposition for ®', it is also a distal cell decomposition for ®.

Proof. The definability requirements for a distal cell decomposition do not depend on the set of
formulas ®, so it suffices to show that 7 is an abstract cell decomposition for ®, or that for a
given B, each cell A € T(B) is not crossed by ®(z;B). As for any ¢ € ®, b € B, p(z;b) is a
boolean combination of formulas in ®(x; B), and all of these have a fixed truth value on A, so does
o(z;b). O

We now consider a few ways of counting the sizes of distal cell decompositions:

Definition 2.10. Let 7 be a distal cell decomposition for the finite set of formulas ®(x;y), whose
cells are defined by formulas in the set .

o We say that T has k parameters if every formula in ¥ is of the form ¥ (z;y1,...,yx).
e We say that 7 has exponent r if [T(B)| = O(|B|") for all finite B C M.

Note that even if 7 has k parameters, not every formula 1 used to define 7 needs to use all
k parameters. In practice, we will sometimes define distal cell decompositions using formulas with
different numbers of variables, but as each distal cell decomposition is defined using finitely many
formulas, we can just take k£ to be the maximum number of parameters used by any one formula,
and add implicit variables to the rest.

Definition 2.11. Let ®(x;y) be a finite set of formulas. Then define the distal density of ® to be
the infimum of all reals > 0 such that there exists a distal cell decomposition T of ® of exponent
r. If no T exists for @, the distal density is defined to be co.

Problem 2.12. Note that if ® has distal density ¢, it is not known if 8 must have a distal cell
decomposition of exponent precisely ¢.

Definition 2.13. We also define a shatter function m7(n) := max g|—, [T(B)|. The distal density
of ® can equivalently be defined as the infimum of

, log 77 (n)
lim sup ———=
n—oo 10g n

over all distal cell decompositions 7 of @, if any exist.

Proposition 2.14. For any finite set of formulas ®(x;y), mr(n) > w5(n) for all n € N, and the
distal density of ® is at least vc*(P).



Proof. By Proposition 2.7, for every distal cell decomposition T, |7(B)| > |S®(B)|. Thus

1 x I
ve (@) < Timsup 28T i o, 08T (M)
n—o00 log n n—o00 log n

so after taking the infimum over all 7, the distal density is at least vc*(®). O

Also, just by defining ®(z;y) to be {z = y}, where |z| = |y| = d, we see that |S*(B)| > |B|,
so we see that for every d, there is a ® with both VC- and distal densities at least d in any structure.

Example 2. Chernikov, Galvin and Starchenko found that if M is an o-minimal expansion of a
field, and |z| = 2, then any ®(z;y) admits a distal cell decomposition with |T(B)| = O(|B|?) for
all finite B [5]. Thus the distal density of such a ® is at most 2.

So far, we have defined distal cell decompositions and distal density in the context of a particular
structure. In fact, if ®(z;y) is a finite set of L-formulas, and T' a complete L-theory, we will show
that the distal density of ®(x;y) is the same in every model of T', so we can define the distal density
of ® over T to be the distal density of ® in any model of T. (This uses the fact that the formulas
in ® and the formulas defining a distal cell decomposition are required to be parameter-free.)

Proposition 2.15. Let ®(x;y) be a finite set of L-formulas, and M = M’ be elementarily equivalent
L-structures. Then if ® admits a distal cell decomposition T in M, the same formulas define a distal
cell decomposition for ® in M’. Thus we can refer to T as being a distal cell decomposition for ®
over the theory T = Th(M). Also, the shatter function w1, and thus the distal exponent of T and
the distal density of ®, will be equal for M and M’, and can be viewed as properties of the theory
T.

Proof. Let T be a distal cell decomposition for & over M, consisting of a set ¥(x;y1,...,yr) of
formulas, and a formula 6, for each ¢ € ¥ (as in Definition 2.8). Then to verify that the same
formulas define a distal cell decomposition for ® over M’, we must simply check that for all finite
B C MW the set of cells T(B) covers M'I?l and that no cell of T(B) is crossed by ®(z; B).

It is enough to show that these facts can be described with first-order sentences. Fix some natural
number n, and we will find a first-order sentence that shows that for all B = {b1,...,b,}, the cells
of T(B) cover the space and are not crossed. We can encode that the cells of 7(B) cover M'1*l with
the sentence

n

YY1, Yn, VT, A (@5 Yirs s Yi) N N\ 00 (i Yiss - i)
YEW in i €{1,...,n} i=1
When interpreted over M’ this simply states that for any choice of n parameters by, ...,b, and any
xo € M'I?l there is some 1,41, ..., i} such that Y(x;biy, ..., b;,) defines a valid cell, which contains
xo. Similarly, to show that the cell defined by ¥ (x; b, ..., b;, ), if included in the cell decomposition,
is not crossed by ®(z; B), we can use the following sentence, showing that for all B = {b1,...,b,},

if for some i and some ¢ € ®, ¢(x;b;) crosses Y (z;b;,,...,bi, ), then ¥(z;b;,, ..., b
cell:

i) 1s not a valid

VY15 Uns \/ Jw1, w2, 0(@1;yi) A ~0(T2595) A V(@13 Y5 -5 Yir) AO(T25Yirs - - Vi)
ped,1<i<n

n
=\ Ou(Wisvirs - vin):
=1

Now it suffices to show that the shatter function 77 is the same in both models, as the distal
exponent of 7 and distal density of ® are defined in terms of these shatter functions.



To say that mr(n) < m in M is to say that for all by,...,b, € MY there are at most m cells
in T(B). This is the disjunction of a finite number of cases, which we will index by Aj,..., An,
where each A; C ¥ x {1,...,n}* as each tuple t = (¢4,t1,...,t,) € ¥ x {1,...,n}* corresponds
to a potential cell Ay = ¢ (x;bs,,...,bs,). Then in the case indexed by A1, ..., A, there is a first-
order sentence stating that for all 1 < ¢ < n and s,t € A;, the formulas Ag and A; are equivalent,
and for all tuples ¢t = (¢,41,...,%,) not contained in any A;, ¢ is not a valid cell, as implied by
V=1 0y(bj3biy,s- .., bi,). The disjunction of all these sentences states that there are at most m
distinct cells in T ({b1,...,b,}), and if by,...,b, are replaced with universally-quantified variables,
we find a sentence that states that w7 (n) < m. Thus for all n, 77 (n) evaluates to the same number
over any model of the theory of M. O

Distality of a theory was defined originally in terms of indiscernible sequences in [28]. We will
not present that definition here, but we will take the following equivalence as a definition:

Fact 2.16. The following are equivalent for any first-order structure M:
1. M is distal.
2. For every formula ¢(x;y), {¢} admits a distal cell decomposition.
3. For every finite set of formulas ®(x;y), ® admits a distal cell decomposition.

Proof. The equivalence of (1) and (2) is by [3] (see [5, Fact 2.9] for a discussion). Clearly (3) implies
(2), so it suffices to show that (2) implies (3).

For a given ®(z;y), assume each ¢ € ® admits a distal cell decomposition T,. Then for finite
B C MWl we define T(B) to consist of all nonempty intersections [ sca Dg, where each Ay is
chosen from 74 (B). These cells will cover M#l | as each a € M!*! belongs to some Ay for each ¢,
and thus belongs to their intersection. Any cell A =, 4 Ay will not be crossed by ®(z; B), as for
each ¢ € ®, as A C Ay, and Ay is not crossed by ¢(x; B).

Now we check that this cell decomposition is uniformly definable. For each ¢ € ®, let T consist of
Uy and {0y : 1 € Uy}. Then T can be defined by the set of formulas ¥ consisting of all conjunctions
Ngeca e Where 1hy € Wy for each ¢. For a given A = 4 Ay, we can let Z(A) = U e Z(Ay). O

Examples of distal structures include:

e o-minimal structures

e Presburger arithmetic (Z, 0, +, <)

o The field of p-adics Q, and other P-minimal fields.
e The linear reduct of Qp, in the language Lag.

For justification of the first three of these, see [4]. The distality of these structures is established
using the indiscernible sequence definition, which does not provide good bounds. In what follows,
we will construct explicit distal cell decompositions for all of these examples.

3 Dimension Induction

In this section, we provide a bound on the size of distal cell decompositions for all dimensions, given
a bound for distal cell decompositions for a fixed dimension in an arbitrary distal structure. This
allows us to bound the size of a distal cell decomposition for any finite family of formulas in several
kinds of distal structures, including any o-minimal structures. This approach is inspired by the
partition construction in [11], which can be interpreted as constructing distal cell decompositions in
the context of R as an ordered field. (It also improves the bound in [6, Proposition 1.9].)



Theorem 3.1. Let M be a structure in which all finite sets ®(z;y) of formulas with |x| =1 admit
a distal cell decomposition with k parameters (see Definition 2.10), and for some dy € N, all finite
sets ®(x;y) of formulas with |x| = do admit distal cell decompositions of exponent at most r. Then
all finite sets ®(x;y) of formulas with |x| = d > do admit distal cell decompositions of exponent

k(d — do) + 7.

Proof. The case with d = dj follows directly from the assumptions, so we can proceed by induction.
Assume the result for all finite sets of formulas with |x| = d—1 > dy. Then we will build a distall cell
decomposition for a ®(x;y) with |x| = d. Where x = (21, ...,24), let 2’ = (z2,...,24). We start by
fixing a distal cell decomposition 7; for the set of formulas ®1 (z1; 2, y) := {¢(z1;2",y) : d(x;y) € D}
Let the cells of 71 be defined by Wq(z1;2%,y1,. .., %%, yx) and a formula 0, (2, y; 24, v1, ..., 2L, yk)
for each ¢ € W;. For this construction, we will only use 77 to define ®;-types over sets of the
form {a'} x B. Because each element of that set has the same first coordinate, we will abbreviate

the formula ¢ (z1; 2%, y1, 25, y2, - . -, &, yx) as Y(xz1;2', 91, Y2, - - -, Yk), assuming all the variables ]
are equal. Similarly, we abbreviate 0y (2', y; 27, y1,..., 2, yk) as Oy(2',y;y1,. .., Yk), setting each
x} equal to 2. We will also want to repartition the variables, setting 6y * (z';91,...,Uk,y) =

O (2", Y5915+ -+, Yk)-

For each ¢ € Wy, let Dy (2';91,. .., Yk, y) be the set of formulas consisting of §,,* and all formulas
of the form Vaq,¥(x1;2", 91, .., yx) = Oo(x1,2’;y) where ¢ € ®, and O is either — or nothing.

Then let Ty be a distal cell decomposition for ®,,, consisting of ¥,, and a formula 8, for each
' € Uy. As before, we will assume some of the variables are equal, and write these formulas more
succinctly, assuming that our set of parameters is of the form {(b1,...,bx)} x B for some by, ..., by €
M and finite B C M!. This allows us to write each 1/ € Uy as V' (2591, Yk Yy - - -5 Uby), and
write Oy as O (YY1, - Yks Yls - - > Yon)-

For each ¢ € ¥ and ¢’ € Uy, let ¥ @ ¥ (@591, -+, Yks Y1, - - - Yby) be the formula

¢I($I;y17" '7y7€7y117' .. 7y;n) /\d](xl;x/aylu' 7yk)

(Intuitively, this defines a sort of cylindrical cell in M 17 where 2’ is in a cell of one cell decomposition
of M‘M, and z is in a cell of a cell decomposition of M, defined using =’ as a parameter.) Let
(T Y1y Yk Yl s Uiy) = {0 @Y 1 € Uy, € Uy}, We will use ¥ to define a distal cell
decomposition T for ®(z;y).

To define T, it suffices to define fygy for each ¢ € ¥y,9" € ¥y,. Define

elll@w’(y;ylu e 7yk7y/17 .. Jy;n) =
Opr (Y YLs - Uk Yl Um) A (G20 (@ 5y, ks Y1 - i) A O (2591, Uk, Y))-

This means that if A is the cell ¥ ® ¢'(M%;by,. .., bg,b),..., b)), then
Z(A) :={be MY : M = Opgy (b;by, ... b, b, ..., 00 )}
={be MW :3(a1,d") € A, M =0,(d,b;b1,...,b)}.

Thus for all a’ in the projection of A onto M9~1, the fiber {a; € M : (a1,a’) € A} is a cell of
Ti({a'} x B) if and only if BNZ(A) = 0.

Now we show that this definition of T gives a valid distal cell decomposition for ®(x;y). Fix
a finite B ¢ M and let @ € M? be given. Firstly, each element of M is contained in a
cell. If a = (aj,d’) with ay € M,a’ € M91 then a; is in some cell of T;({a’} x B), and
that cell is defined by some ¥(x1;a’,b1,...,bx), so for all b € B, M |= =6y * (a';b1, ..., bk, b).
Therefore @’ is in some cell of Ty ({(b1,...,bk)} x B) on which M = =0y * (2/;b1,...,b,0). If
that cell is defined by ¢’(b1,...,bg,b},...,b),), then we can now define a cell containing a by
@Y (b, .. b, by B).

Secondly, we show that each cell of T(B) is not crossed by ®(x;B). Fix a cell A € T(B),
and fix ¢ € ®, b € B. We know that for each @’ in the projection of A onto M9~!, the fiber



{a1 € M : (a1,d’) € A} is a cell of Ty ({a'} x B), so that fiber is not crossed by ¢(z; B). We also
guaranteed that if A is defined by the formula ¢ ® ¥'(x,by, ..., bk, by, ..., b)), then the projection
of A onto M1 is a cell of Ty (B), so it is not crossed by the formulas Va1, (z1;2',b1,...,bk) —
d(x1,2';b) and Vaq,¥(x1; 2, b1, ..., bk) — —d(x1,2';b). If for some (a1,a’) in A, M E ¢(a1,a’;d),
then M = Va1, ¥(x1;2",01,...,br) = ¢(z1,2';b) for 2’ = o/, and thus for all 2’ in the projection of
A, so M E(z;b) for all z € A.

Finally we can count the number of cells of T(B). For each ¢ € Ty, and each by, ..., by, there
are, by induction, O(| B| k((d_l)_do)'”) cells in T7'({(b1,...,bx)} X B), each inducing a cell of T(B).
Multiplying by the | B k possible tuples (by,...,bx) € B¥ and a finite number of formulas 1, we get

the desired bound O(|B]| k(d—do)ﬂ)' u

4 Weakly o-Minimal Structures

In any structure M, for any n, there is a formula ¢(z;y) with |z| = n such that the the dual VC
density of ¢ is |x|, giving a lower bound on the distal density (see [26, Section 1.4]). In this section,
we construct an optimal distal cell decomposition for the case |z| = 1, and then use Theorem 3.1
to construct distal cell decompositions for all @, and bound their sizes. In the case where M is an
o-minimal expansion of a group, we start instead with the optimal bound for |z| = 2 from [4] and
obtain a the bound on the size of the sign-invariant stratification in [11], and improves the bounds
on [29, Theorem 4.0.9)].

Theorem 4.1. If ®(z;y) is a finite family of formulas in a weakly o-minimal structure M, then ®
admits a distal cell decomposition for ® with exponent 2|z| — 1.
If M is an o-minimal expansion of a group and |x| > 2, then the distal density is at most 2|xz| —2.

Proof. In any weakly o-minimal structure, if ®(x;y) has |z| = 1, then there exists a distal cell
decomposition 7 with |7 (B)| = O(|B|) with 2 parameters.
Indeed, by weak o-minimality, for any ¢(z;y) € ® with |z| = 1, there is some number N, such

that the set p(M;b) is a union of at most N, convex subsets for any b € MW, Let N := maxX,ed Nop-
Then for each ¢(z;y) € ®, we can define formulas ¢! (z;y), ..., " (z;y) by

¢ (w3y) =
n—1
FE1, 2,5 T, Y Yn 1 P Y) A (@1 <y < @2 < <yaor <) AN (p(r59) A (YY)
=1
and then

p(M;b) = o' (M:b) U U™ (M)
for all b, each ©(M;b) is convex, and ¢*(M;b) < ¢**1(M;b) for each 4, in the sense that for every
x; € o' (M;b) and w11 € @ TH(M;b), 1; < Tiy1.
Then for each ¢ € ® we can also define

Q% (z3y) == 3o (9 (w03 y) A w < x0),

Pl (23y) = Yoo (o' (203 y) — @ < @o).
Note that each ¢(M;b) for O € {<,<} is closed downwards. Thus for any finite subset
B C MW, the family of sets F(B) = {p5(M,b) : b € B,p € ®,1 <i < N,0 € {<,<}} is linearly
ordered under inclusion. Thus the atoms in the boolean algebra B generated by F(B) are of the form

X1\ X2 where X1, X, € F(B) and X, is the unique maximal element of F(B) properly contained
in X1, or M\ X; where X; is the unique maximal element of F(B). Thus only one atom of the



boolean algebra can be of the form X; \ X5 for each X7, and thus the number of such atoms is at
most |F(B)| + 1, which is O(|B|).

Now we construct 7. We let ¥ consist of the formulas of the form (x;y1,y2) = gpiDl(:zr; Y1) A
ﬂgpj%(x;yg) or Y(xz;y) = ﬁwél(x;y) with 1 <4 < N,0O0 € {<,<}, and then for each potential
cell A = ¢p(M;by,bs), let Z(A) just consist of all b € MYl such that A is crossed by ¢o(M;b) for
some o € ®. Then T(B) is exactly the set of atoms in the boolean algebra generated by F(B),
so |[T(B)| = O(|B]). Each cell is not crossed by any set in F(B), and thus not by any ¢(x; B), or
®(x; B) itself, so this is a valid distal cell decomposition, where every cell is defined using at most
2 parameters from B.

Thus we can use Theorem 3.1, setting dy = 1, r = 1, and k = 2, to find that any family of
formulas ®(z;y) has a distal cell decomposition of exponent at most 2(|z| — 1) + 1 = 2|z| — 1.

If M is an o-minimal expansion of a group, we can instead set dy = 2, then we can set r = 2,
and by [5, Theorem 4.1], for ®(z;y) with |z| = 2, ® admits a distal cell decomposition of exponent
2. (In [5], this is only proven for the case where M is an expansion of a field, but the proof only uses
it for definable choice, which o-minimal expansions of groups also have.) Then for |z| > 2, ®(z;y)
admits a distal cell decomposition of exponent 2(|z| —2) + 2 = 2|z| — 2. O

In the case of the ordered field R, more is known. In that case, the distal cell decomposition
produced in the above proof is the stratification in [11]. An earlier version of that paper includes
an improved bound for the case where |z| = 3, showing that [T(B)| = O(|B|*8(|B|)) = O(|B|***)
for all € > 0, where 5 is an extremely slowly growing function defined using the inverse of the
Ackermann function.[12] The argument uses Davenport-Schinzel sequences, purely combinatorial
objects which lend themselves naturally to counting the complexity of cells defined by inequalities
of a bounded family of functions. The lengths of Davenport-Schinzel sequences can be bounded in
terms of the inverse Ackermann function, giving rise to the 8(|B|) term. For a general reference
on such sequences, see [30]. These techniques are extended in [22] to the case |z| = 4, where it is
shown that [T(B)| = O(|B]***) for all € > 0. These results imply that any finite set of formulas
®(|z|; |y|) over R the ordered field has distal density 3 if |z| = 3, and 2|z| —4 if |z| > 4. It would be
interesting to see if these bounds hold in any o-minimal structure, again using Davenport-Schinzel
sequences. It seems possible that every ®(z;y) in an o-minimal structure has distal density |z|, or
admits a distal cell decomposition of exponent exactly |z|, although new tools would be required to
prove such claims.

4.1 Locally Modular o-minimal Groups

The trichotomy theorem for o-minimal structures classifies them locally into three cases: trivial,
ordered vector space over an ordered division ring, and expansion of a real closed field [35]. The
o-minimal structures that are locally isomorphic to ordered vector spaces are known as the linear
structures, and can also be classified as those satisfying the CF property [21]. Any such structure
must extend the structure of either an ordered abelian group or an interval in an ordered abelian
group. We will show that with the added assumption of local modularity, all finite families of
formulas in o-minimal expansions of groups admit optimal distal cell decompositions. This includes
the special case of any ordered vector space over an ordered division ring.

Theorem 4.2. Let M be an o-minimal expansion of an ordered group, with Th(M) locally modular.
Let ®(x;y) be a finite set of formulas in the language of M. Then ® admits a distal cell decomposition
of exponent |z|.

To prove this theorem, we will need the following lemma:

Lemma 4.3. Let M be an L-structure.
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Let ®(z;y) be a set of L-formulas such that the negation of each ¢ € ® is a disjunction of
other formulas in ®. Assume that for any nonempty finite B C MY and ¢ € ®, the conjunction
Nocp @(x;0) is equivalent to the formula ¢(x;bo) for some by € B, or is not realizable. Then ®
admits a distal cell decomposition T such that for all finite B, the cells of T (B) are in bijection with
the ®-types S*(B). In particular, the distal density of ® equals the dual VC density of ®.

Proof. Let ¥ be the set of all formulas of the form (z; (yy)pee) = A, cor ©(;Yyp), where & C &
is arbitrary.
To define the distal cell decomposition T, for each ¢ € ¥, let 6y (y; (y,)peca) denote

\/ Fz, (@15 9) A (s (o) pew) A Tz, (0(a2;y) A (5 (Yp) pea)-
pcd

Then for a fixed finite B ¢ MY, and fixed b, : ¢ € ® in B, let A be the cell ¥(M; (by)pea ).
Then for b € B, we see that b € I(A) if and only if the cell defined by ¢ (z; (b,)eca) is crossed by
o(x;b) for some p € P.

We now claim that for any finite B € M!¥l, the cells of T(B) correspond exactly to the ®-types
S?(B). As each cell A of T(B) is not crossed by ®(B), its elements belong to a unique type of
S?(B). We claim that this type will be realized exactly by the elements of A. This type is equivalent
to a single formula, which will be of the form A .4 (Apes Oppo(x; b)), where each O, is either =
or nothing. For each ¢,b such that O, is =, we may simply drop —¢(x;b) from the conjunction,
because —(z;b) is equivalent to the disjunction v«pedm, @(z;b) for some subset ®, C &, and as
the type is realizable, p;, (x;b) rather than its negation must already appear in the conjunction for
some ig, and we can replace i, (2;0) AV g ¢(@;b) with simply ¢;, (;b). In this way, inductively,
we can continue to remove all of the negated formulas in the conjunction, until we are left with
AV (/\bEBg o(x; b)) where ® C ®, and each B, C B is nonempty. By our other assumption, as

this formula is realizable, it is equivalent to A cq Ogp,p, (25 b,) where each b, € B, which in turn
is a defining formula for a cell of T (B), which must be A. O

Proof of Theorem 4.2. By o-minimality, we can assume the group is abelian. Let £ be the language
of M. Corollary 6.3 of [21] shows that M admits quantifier elimination in the language £’, consisting
of +, <, the set of algebraic points (that is, acl(())) as constants, and a unary function symbol for each
0-definable partial endomorphism of M. Recall that a partial endomorphism is defined as a function
of type either f: M — M or f: (—c,c¢) = M for some ¢ € M, such that if a,b,a + b are all in the
domain, then f(a+b) = f(a) + f(b). The unary symbols representing the partial endomorphisms
are assigned the value 0 outside the domain. If f has domain (—¢, ¢), then ¢ € acl((}). Note that by
o-minimality, acl = dcl, so each of the constants in this language is in dcl((), so each symbol of this
language is (-definable in the original structure (M, Lq).

Each formula in ® is equivalent modulo Th(M) to some formula in £, so we replace ® with
® ./, a pointwise equivalent finite set of L-formulas. It suffices to find a distal cell decomposition of
exponent |x| for ®./. As the interpretation of every symbol of £’ is f-definable in £ 4, we can replace
each formula of this distal cell decomposition with an equivalent £ a¢-formula without parameters.

By quantifier elimination in £’, we can find a finite set of atomic £'-formulas ® 4 such that each
formula in @, is equivalent to a boolean combination of formulas in ®4 modulo Th(M). Lemma
2.9 tells us that a distal cell decomposition for ® 4 is a distal cell decomposition for ® ., so it suffices
to prove the desired result for ®,. We then will find another finite set of £'-formulas, ®', such
that each atomic formula in ®4 is a boolean combination of formulas in ®', and ®’ satisfies the
conditions of the following lemma, providing us with a distal cell decomposition that we can show
has the desired exponent. It suffices to find @’ satisfying the requirements of Lemma 4.3 such that
any atomic formula in ® 4 is a boolean combination of formulas from ®’, and to show that for any

finite ® and B, |S®(B)| < O(|B| lx')'
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We will select @' to contain only atomic £'-formulas of the form f(x) + g(y) + 0, where f, g
are group endomorphisms, ¢ is a term built only out of functions and constants, and O € {<,=,>}.
If p(z;y) is of the form f(x) 4+ g(y) +c = 0, then for a given B, A\, @(z;b) is either equivalent to
@(x;b) for all b € B or not realizable. If ¢ is an inequality, then A, 5 (z;b) is equivalent to o(z; bo)
for some by minimizing or maximizing g(b). Also, for all ¢ € ®', —p(z;y) is a disjunction of other
formulas in @', because —f () +g(y) +c¢ = 0 is equivalent to f(z)+g(y)+c <0V f(z)+g(y)+c >0,
—f(x)+9g(y)+c < 0is equivalent to f(x)+g(y)+c =0V f(z)+g(y)+c> 0, and = f(z)+g(y)+c >0
is equivalent to f(z) +g(y) +c=0V f(z) + g(y) + ¢ < 0.

Now we show that every atomic £'-formula, and thus every formula in ® 4, can be expressed
as a boolean combination of atomic formulas of the form f(z) + ¢g(y) + 30 with f and g total
(multivariate) definable endomorphisms. Any atomic formula is of the form f(z;y)0g(z;y), and by
subtraction is equivalent to (f — g)(z;y)00. Thus it suffices to show that for any £'-term t(z;y)
and O € {<, =, >}, the atomic formula #(z;y)00 is equivalent to a boolean combination of formulas
of the form f(x) + g(y) + ¢'0 with f and g total endomorphisms and ' € {<,=,>}.

We prove this by induction on the number of partial endomorphism symbols in #(x;y) that do
not represent total endomorphisms. If that number is 0, then every symbol in the term t(z;y) is
a variable, a constant, or represents a total endomorphism. Thus ¢(x;y) is a composition of affine
functions, and is thus itself an affine function, which can be represented as f(z) + g(y) + ¢. Thus
t(z;y)00 is equivalent to f(x) + g(y) + 0. Now let ¢(x;y) contain n + 1 partial endomorphism
symbols. Let one of them be f, so that ¢(x;y) = t1(f(t2(z;y)), x,y) for some terms ¢y,t3. By [21,
Lemma 4.3] and local modularity, £’ contains a partial endomorphism symbol g representing a total
function such that f(x) = g(x) on the interval (—c¢,c), with f(x) = 0 outside of that interval. Thus
t(z; y)OO0 is equivalent to

(—e < ta(z;y) Aa(w;y) < c Ati(g(ta(z;y)), 2, y)00)
V(=(=e < ta(z;y) Ata(z;y) < ) Atr(0, 2, y)00).

This is equivalent to a boolean combination of t2(z;y)+c > 0,ta(x; y)—c < 0,t1(g(t2(z; y)), , y))D0,
and t1(0, z, y)00, each of which has at most n non-total partial endomorphisms, and thus by induc-
tion, is a boolean combination of formulas of the desired form.

Now we wish to verify that |[S?(B)| < O(|B]| lm'). Theorem 6.1 of [26] says that the dual VC
density of ® will be at most |z|, which is only enough to show that ® has distal density |z].
However, the proof shows that |S®(B)| < O(|B| |I‘). Tracing the logic of that paper, Theorem 6.1
guarantees that a weakly o-minimal theory has the VCI1 property, which by Corollary 5.9 implies
that ® has uniform definition of ®(x; B) types over finite sets with |z| parameters, which implies
that |S®(B)| < O(|B| \r\) (as noted at the end of Section 5.1).

O

5 Presburger Arithmetic

Presburger arithmetic is the theory of Z as an ordered group. As mentioned in Example 2.9 of [4],
the ordered group Z admits quantifier elimination in the language Lpyes = {0,1,+, —, <, {k |}ren},
where for each k € N and x € Z, Z = k | © when z is divisible by k, so we will work in this
language. As this structure is quasi-o-minimal, it is distal, and we will construct an explicit distal cell
decomposition with optimal bounds, similar to the distal cell decomposition for o-minimal expansions
of locally modular ordered groups in Theorem 4.2.

Theorem 5.1. Let G be an ordered abelian group with quantifier elimination in Lpres. Let ®(z;y)
be a finite set of formulas in this language. Then ® has distal density at most |z|.

Proof. Throughout this proof, we will identify Z with the subgroup of G' generated by the constant
1.
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As G has quantifier elimination in this language, every o(z;y) € @ is equivalent to a boolean
combination of atomic formulas. We will group the atomic formulas into two categories. The first
is those of the form f(x)0g(y) + ¢, where O € {<,=,>}, (f,g) belongs to a finite set F' of pairs
of Z-linear functions of the form E‘Zill a;x; with a; € Z, and ¢ belongs to a finite set C C Z. The
second is atomic formulas of the form &k | (f(z) + g(y) +¢) for k € N, (f,g) € F, and ¢ € C.
Furthermore, we may assume that only one symbol of the form & | is used. If K is the least common
multiple of the finite collection of k such that k | appears in one of these atomic formulas, then each
k| (f(z)+g(y)+c) can be replaced with K | (d-f(z)+d-g(y)-+d-c), where d'ZLi a;T; = Eli'l (d-a;)z;
and dk = K. Note that all of these functions and constants are (-definable.

Then, by Lemma 2.9, we may replace ®(z;y) with the union of the following two sets of atomic
formulas for appropriate choices of F' and C:

e Fix C to be a finite subset of Z, F' a finite subset of pairs of Z-linear functions of the form
Z‘Zﬂl a;r;, and K € N.

o Let g be the set of all f(z)0g(y) + ¢ with (f,g9) € F,e e C,0 € {<,=,>}.
o Let @1 be the set of all K | (f(z) + g(y) + ¢) with (f,g) € F,c € {0,..., K —1}.
o Let ® = PyU Py.

It is straightforward to see that the negation of any formula from ® is equivalent to the dis-
junction of two formulas from ®¢, and a negation of any formula K|(f(z) + g(y) + ¢) from ®; is
equivalent to \/o< /g . K|(f(2) + g(y) + ¢), a disjunction of formulas from @;.

To apply Lemma 4.3, it suffices to show that for any ¢ € ® and nonempty finite B ¢ M,
Nocp @(x;0) is equivalent to ¢(x;bp) for some by € B or is not realizable. This holds for ¢ € @
for reasons discussed in the proof of 4.2. For ¢ € ®;, we see that if there exist by, bs such that
g(b1) # g(b2) (mod K), then p(x;b1) A ¢(w;bz) implies K|(f(z) + g(b1) + ) A K|(f(x) + g(b2) + ¢)
so K|(g(b1) — g(b2)), a contradiction. Thus this conjunction is not realizable. Otherwise, for any
bo € B, and any other b € B, g(b) = g(bo) (mod K), so A\, (w;b) is equivalent to ¢(x;bo).

Now Lemma 4.3 gives us a distal cell decomposition T for @, such that for all B, |T'(B)| =
|S?(B)|. The theory of Z in Lpyes is quasi-o-minimal by [10, Example 2], and the same argument will
hold for G, because G has quantifier elimination in the same language. The same VC density results
apply to quasi-o-minimal theories as to o-minimal theories (see [26, Theorem 6.4]), so |S®(B)| <

o(|B|!h. ]

6 Q,, the linear reduct

Now we turn our attention to the linear reduct of Q,, viewed as a structure M in the language
Log = {0,+, =, {c}ecq, |s {@mn}m,nem g0}, where ¢ is a unary function symbol which acts as
scalar multiplication by ¢, z | y stands for v(z) < v(y), and M = Qmn(a) if and only if a €
Urez P"™(14p"Z,). For each m,n, the set Qy, »(M)\{0} is a subgroup of the multiplicative group of
Q, with finite index. Leenknegt [17, 24] introduced this structure (referring to the language as E(Sg-),
proved that it is a reduct of Macintyre’s standard structure on Q,, and proved cell decomposition
results for it which imply quantifier elimination.

Bobkov [2] shows that every finite set ®(x;y) of formulas has dual VC density < |z|, and this
section is devoted to strengthening this by proving the same optimal bound for the distal density:

Theorem 6.1. For any finite set ®(x;y) of Lag-formulas in Qp, there is a distal cell decomposition
T with |T(B)| = O(|B|"™"), so ® has distal density < |z| .
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It is worth noting that Bobkov used a slightly different version of this language, which included
the constant 1, therefore making all definable sets ()-definable. Because our distal cell decomposi-
tion must be definable without parameters, we will use slightly stronger versions of Leenknegt and
Bobkov’s basic lemmas, to avoid parameters. The first such result is a cell-decomposition result,
proven in [24], but stated most conveniently as [2, Theorem 4.1.5]. To state it, we need to define
what a cell is in that context:

Definition 6.2. A 0-cell is the singleton Qg. A (k + 1)-cell is a subset of Q’;‘H of the following
form:
{(z,1) € D x Qp|v(a1(2)) Dy o(t — e(x)) Dz v(az()), t = c(z) € AQm,n},

where D is a k-cell, ay,as, c are polynomials of degree < 1, called the defining polynomials, each of
Oy, 0, is either < or no condition, m,n € N, and A € Q.

Fact 6.3 ([24], see also [2, Theorem 4.1.5]). Any definable subset of Q’; (in the language Lag)
decomposes into a finite disjoint union of k-cells.

Now we modify these definitions and results to work in an (-definable context:

Definition 6.4. A 0-cell over () is just a O-cell. A (k + 1)-cell over 0 is a (k + 1)-cell {(x,t) €
D x Qplv(ar(2))Tho(t — c(z))Oav(az(x)),t — c(x) € AQm,n} where D is a k-cell over @) and the
defining polynomials have constant coeflicient O.

We can now state a (-definable version of the cell decomposition result:

Lemma 6.5. Any ()-definable subset of Q’; (in the language Lag) decomposes into a finite disjoint
union of k-cells over ().

Proof. We trace the proof of the original cell decomposition result in [24]. Lemmas 2.3 and 2.7
establish that finite unions of cells (in the case of finite residue field, equivalent to the “semi-additive
sets” of Definition 2.6) are closed under intersections and projections respectively, and Lemma 2.5
(using Lemma 2.4) shows that all quantifier-free definable sets are semi-additive. It suffices to modify
each of these four lemmas slightly. In all four lemmas, we modify the assumptions to require that all
linear polynomials in the assumptions have constant term 0. In each construction, the polynomials
in the results are linear combinations of the polynomials in the assumptions, and thus will also have
constant term 0, allowing us to state the results in terms of k-cells over (. O

This tells us that no nonzero constants are definable:
Lemma 6.6. In the structure M consisting of Qp in the language Lag, dcl(0) = {0}.

Proof. If a € dcl(@), then {a} is 0-definable, so it can be decomposed into 1-cells over (). There can
only be one cell in the decomposition, {a}. All of its defining polynomials take in variables from the
unique 0-cell, and thus consist only of their constant coefficient, which is 0. Thus the cell must be of
the form {a} = {t € D x Q,|v(0)T1v(t —0)02v(0), ¢ —0 € AQum,n}- The condition v(0)T1v(¢)Tav(0)
will define one of the following sets: 0, {0}, Q) \ {0}, Q,, and the condition ¢t € AQy, » defines {0}
when A = 0, and otherwise, AQm,.» € Qp \ {0}. Thus the whole cell is either {0} or AQy, » which is
infinite, so if it is a singleton {a}, we must have a = 0. O

We now check that our cell decomposition for (-definable sets yields (-definable cells:
Lemma 6.7. Any k-cell over §) is (-definable.

Proof. We prove this by induction on k. The k = 0 case is trivial. The (k + 1)-cell {(z,t) €
D x Qplv(ar(z))Oyv(t — e(z))Ogv(az(x)), t — c(x) € AQmn} is O-definable if D is, v(ai(x))Div(t —
c(z))Ogv(az(x)) is, and t — c(z) € AQm,n is. We have that D is by the induction hypothesis. For
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the next condition, it suffices to observe that the defining polynomials are ()-definable functions if
and only if they have constant coefficient 0, because scalar multiplication is ()-definable, but no
constant other than 0 is. For the final condition, we see that if A\ = 0, then ¢ — ¢(x) € AQum.n is
equivalent to t — ¢(z) = 0, which is (-definable, and if A # 0, then ¢ — ¢(z) € AQp,» is equivalent to
A7t (t —¢(x)) € Qum.n, which is (-definable. O

We now want to generalize the following quantifier-elimination result to the ()-definable case:

Lemma ([2, Theorem 4.2.1]). Any La.g-formula (with parameters) ¢(x;y) where  and y are finite
tuples of variables is equivalent in the Lag-structure Q, to a boolean combination of formulas from
a collection

Dy = {v(pi(r) — ci(y)) <v(pj(®) —c;(Y)) }iger U{pi(x) — ci(y) € AQmnticrren

where I = {1,...,|I|} is a finite index set, each p; is a degree < 1 polynomial with constant term 0,
each c; is a degree < 1 polynomial, and A is a finite set of coset representatives of Qm, n for some
m,n € N.

Bobkov derives this result from the cell decomposition. If we apply the same logic to the (-
definable cell decomposition from Lemma 6.5, then all of the polynomials involved have constant
term 0, and thus all formulas involved are ()-definable:

Lemma 6.8. Any L.g-formula ¢(x;y) where x and y are finite tuples of variables is equivalent in
the Lag-structure Qp to a boolean combination of formulas from a collection

Py = {v(pi(x) — ci(y)) <v(pj(@) — ¢j(Y) }ijer U{pi(z) — ci(y) € AQm,n}icr,ren

where I = {1,...,|I|} is a finite index set, each p; and each ¢; is a degree < 1 polynomial with
constant term 0 and A is a finite set of coset representatives of Qm,n for some m,n € N.

As a corollary of this lemma and Lemma 2.9, we see that we can replace ® with the set |J s P
and thus assume that ® takes the form

{vpi(x) —ciy)) <v(pj() —cj(y)bijer U{pi(z) — ci(y) € AQum.n}icr ren-

for some fixed m,n € N.
We now recall some terminology from Bobkov [2].

Definition 6.9 ([2], Def. 4.2.3). For the rest of this section, we fix B ¢ MYl and let T = {c;(b) :
iel,be B}.

e For c € Q, and r € Z, we define B,(c) := {x : v(z — ¢) > r} and refer to it as the open ball of
radius r around c.

e Let the subintervals over a parameter set B be the atoms in the Boolean algebra generated by
the set of balls

B = {B'U(Ci(bl)*cj(bz))(ci(bl)) 14,J € 1,b1,be € B} U {Bv(c]'(b)fck(b))(ci(b)) i, 5,kelbe B}
e Each subinterval can be expressed as I(t, ar,, ay) where

I(tao‘Lao‘U) = BaL(t)\ U BaU(t/)v
#ETABay 1(t)

for some t = ¢;(bg) with i € I,bg € B, and o, = aq(bo, b1), ay = aa(bg, b2), with a1, ag chosen
from a finite set A of -definable functions QIQ) — I, including two functions defined, by abuse
of notation, as +oo.
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e The subinterval I(¢,ar, ay) is said to be centered at t.

By this definition, it is not clear that I(¢, a,, ay) should be uniformly definable from parameters
in B, as the set T'N By, —1(t) could depend on all of B. However, we can eliminate most of the
balls from that definition. The ball By, —1(t) can be split into p balls of the form By, (t') for some
t' € Qp, call them By, ..., B,. Let T be a subset of TN Bq,, —1(t) such that for each B;, if TNB; # 0,
then T’ contains only a single representative ¢; from B;. Then

U BQU(t/): U BaU(t/)v

t/€TNBay, —1(t) teT

because each ¢ € T N By, —1(t) belongs to some B;, so By, (t') = B; = By, (t;). We may assume
|T’| to be at most p — 1, because if all p balls were removed, we could instead define this set as

I(t,ar,ay — 1). Thus each subinterval can be defined as I(t,ar,ay) = Ysub(t, ap, ay, b), where
Psub 18 one of a finite collection Wy, of formulas, and b is a tuple of at most p — 1 elements of B.

Definition 6.10 ([2], Def. 4.2.5). For a € Q,, define T—val(a) := v(a — t), where a belongs to a
subinterval centered at t. By Lemma 4.2.6, [2], this is well-defined, as v(a — t) is the same for all
valid choices of t.

Definition 6.11 ([2], Def. 4.2.8). Given a subinterval I(¢, ar, ay), two points ag, az in that subin-
terval are defined to have the same subinterval type if one of the following conditions is satisfied:

e ap +n<T—val(a;) <ay —nfori=1,2and (a; —t)(az —t)"' € Qum.n,
o —(ar +n <T—val(a;) < ay —n) for i = 1,2 and T—val(a;) = T—val(az) < v(a; — az) — n.

We show that the set of points of each subinterval type is definable over ¢, a,, ayy. The subinterval
types of the first kind are definable by

wép(:c;t,aL,aU) =(ar+n<vx—-t)<ay—n)A(x—1) € \Qm.n
where A € A. The subinterval types of the second kind are definable by one of
i (st ap,ov) = (e — 1) = ag +i) Aoy + i+ < e = (P g+ 1)

or
Ui (23t an, ap) = (v(e —t) = av — i) Aoy —i+n <oz — (P g+ 1)),

where 0 < i < n, and ¢ ranges over a set ) of representatives of the balls of radius n contained in
By(0)\B1(0). If we let ae be a,+4 or iy —1, this makes p*g+t range over a finite set of representatives
of the balls of radius a+n contained in the set B, (t)\ Ba+1(¢) of points a with v(a—t) = a. Let ¥y, be

the set of all these formulas: {4, : A € A}U {thp’i’q :0<i<n,ge QU {thp,i,q :0<i<n,qgeQ}.

6.1 Defining the Distal Cell Decomposition

We start by defining ¥ (z;(yo; : ¢ € I),(y1 : @ € I),(y2, : ¢ € I)) to be the set of all formulas
Yz (yoi:i€1), (Y11 €I),(ya, i € I)) of the form

</\ [k (i (@), tis ap i v, ) AL, (pi(@), by o, aU,i)}) No (it .. t))
iel

where ¥ | € Wgun, 1/J§p € Wip, Yo(x,t1,..., 1) is, for some permutation o of I,

V(Po(1)(T) = toqry) > -+ > V(o1 (T) = to(1)))s
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and we define t;, ar ;, ap,; so that t; = ¢;(yo,;) for some j € I, ar; = a1(yo,i,y1,:), and ar; =
a2(Yo0,i, Y2,;) for some ay,as € A.

For each potential cell A, we will define Z(A) so that A will be included in 7(B) exactly when
each set %, (M, t;,ar i, o, b;) is actually a subinterval. Then each cell of 7(B) will consist of all
elements a € M!*l such that for all 7, pi(a) belongs to a particular subinterval and has a particular
subinterval type, and the set {T'— val(p;(a)) : i € I'} has a particular ordering. These cells are not
crossed by ®(z; B), as a consequence of the following lemma:

Lemma 6.12 ([2, Lemma 4.2.12]). Suppose d,d’ € Q, satisfy the following three conditions:
o Forallie I, p;(d) and p;(d') are in the same subinterval.
o Forallie I, p;(d) and p;(d') have the same subinterval type.

o Foralli,jelI, T—val(pi(d)) >T —val(p;(d)) iff T —val(p;(d')) > T — val(p,;(d")).
Then d,d’ have the same ®-type over B.

Now we check that we can actually define Z(A) as desired. For some tsup(2,t, ar, oy, b) to be
a subinterval, we must check that it actually equals I(¢,«r,ap), and that that set is not crossed
by any other balls in B. If b = (by,...,b,_1), then there are ji,...,j,—1 € I with this set equal
to B, (t) \ Ui;i By (¢, (br)). This is actually I(t,ar,ayr) as long as thereisno ¢ € I, b € B
with v(¢;(b) — t) = ay, but ¢(b) ¢ Ui;} B, (¢j, (br)). The only way for this to happen is if
v(ci(b) — ¢, (br)) = ap for all 1 <k < p, so let Z;(A) be the set of all b € B where this happens.

For A = I(t,ar,ay) to not be a subinterval, it must be crossed by some ball B, (t*) € B. Such
a ball crosses I(t, ar, o) if and only if t* € By, (t), ar < a < ay, and

B (t*)\ U By, (t) # 0.

/€T Bay, —1(t)

This last condition follows from the previous two, as

U BaU (t) - Banl(t)v
t"€TNBay —1(t)

and if a < ay, then either By, _1(t) C Ba(t*) or they are disjoint. The radius a can either be
v(c;(b) — ¢k (b)), where t* = ¢;(b), for some 4, j, k € I, or v(t' —t*) for some ¢ € T. Let Zo(A) be
the set of all b such that for some 4,4,k € I, ar < v(c;(b) — k(b)) < ay and ar < v(c;(b) — t).
This handles the former case. In the latter case, where @ = v(t' — t*), we see that as ay < «a,
t' € By, (t*) = By, (t), so ar < v(t—t"). Also, min{v(t —t"),v(t —t*)} < v(t' —t*) < ay, so either
the ball By _s)(t) or By—s+)(t) has radius between ar and ar, and thus crosses A. Thus A is
crossed by a ball of the form B, _4+)(t*) if and only if it is crossed by a ball of the form B, ;_s(t')
if and only if there is some t' € T with ar, < v(t —t') < ay, so we let Z3(A) be the set of all b such
that there exists ¢ € I with ay, < v(t —¢;(b)) < ay.

Then if we let Z(A) = Zy(A) U Zy(A) U Z3(A), which is uniformly definable from just the
parameters used to define A, then A is a subinterval if and only if BNZ(A) = 0, as desired.

6.2 Counting the Distal Cell Decomposition

To calculate the distal density of ®, we will count the number of cells of T (B) by following Bobkov’s
estimate of |[S®(B)|. Because our cells are defined less in terms of x itself than the values p;(z), we
define a function to shift our problem to study those values directly:

Definition 6.13 ([2, Def. 4.3.4]). Let f : Ql,ﬂ — Q} be (pi(z))ier. Define the segment set Sg to be
the image f(QI]).
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We will need a notation for recording certain coefficients of elements of Q,:

Definition 6.14 ([2, Def. 4.2.9]). For ¢ € Q,, a < 8 € v(Q,), ¢ can be expressed uniquely as
nyev(Qp) cypY with ¢y € {0,1,...,p—1}. Then define ¢ | [a, ) to be the tuple (ca, Cat1,--.,Cs-1) €

{0,1,...,p— 1}~

This coefficient function | will be useful in allowing us to reduce the information of {a; : ¢ € I'} €
QZI) to a linearly independent subset together with a finite number of coordinates, using this lemma:

Lemma 6.15 ([2, Cor. 4.3.2]). Suppose we have a finite collection of vectors {p;}ier with each

D; € Q;If‘. Suppose J C I and i € I satisfy p; € span{p;}jecs , and we have ¢ € Qp, a € v(Q,) with
v(p; - €) > a for all j € J. Then v(p; - €) > a — v for some v € v(Qp),y > 0. Moreover v can be
chosen independently from J, j, ¢, a depending only on {p;}icr.

As each homogeneous linear polynomial p;(x) can be written as the dot product p; - « for some
Di € QLI‘, let v € v(Qp)>0 satisfy the criteria of Lemma 6.15 for {p;}icr-

Definition 6.16 ([2, Def. 4.3.3]). Any a € Q, belongs to a unique subinterval I(¢, o, ay). Define
T —fl(a) == ar.

Using this function, we partition Sg into (2|I])! pieces, corresponding to the possible order types
of {T —1fl(x;) : i € I}U{T —val(x;) : i € I}. We will show that each piece of this partition intersects
only O(|B|!"y cells of T(B).

Let Sg’ be a piece of the partition. Relabel the functions p; such that

T—ﬂ(al) > > T—ﬂ(am)

for all (a;)icr € Sg’. Using a greedy algorithm, find J C I such that {p}},cs, with the new labelling,
is linearly independent, and for each ¢ € I, j; is a linear combination of {p;};c.j j<i-

Definition 6.17. e Denote {0,...,p— 1}7 as Ct.

e Let Tp be the set of all subinterval types. Lemma 4.2.11 from [2] shows that |Tp| < K, where
K is a constant that does not depend on B.

e Let Sub be the set of all subintervals. Lemma 4.2.4 from [2] tells us that [Sub| = O(|B|).

Now we can define a function identifying subintervals, subinterval types, and v many coefficients
of the components of each element of Sg’:

Definition 6.18. Define ¢ : Sg’ — Tp’ x Sub” x Ct"\ as follows:

Let a = (a;)ier € Sg'.

For each ¢ € I, record the subinterval type of a; to form the component in Tpl.

For each j € J, record the subinterval of a; to form the component in Sub”’.

Foreachi € I\J, let j € J be maximal with j < ¢. Thenrecord a; | [T—fi(a;)—~,T—1fl(a;)) € Ct,
and list all of these as the component in Ct’ \

Combine these three components to form g(a).

As {p;}es alinearly independent set in the |z|-dimensional vector space QLI‘, |J] < |x|, so
IS¢’ — Tp’ x Sub” x Ct'\| = okl |B| . IV = o(1B| 7],

and it suffices to show that if a,a’ € Q,‘fl are such that f(a), f(a') € Sg’, and g(f(a)) = g(f(a)),
then a,a’ are in the same cell of 7(B). That would show that the number of cells intersecting Sg’
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is at most |Sg’ — Tp’ x Sub”? x Ct!\/| = O(|B| m). Then as the number of pieces in the partition
is itself only dependent on I, the total number of cells in T(B) is also O(|B| |m‘) as desired.

If a,a’ are such that f(a), f(a') € Sg’, then immediately we know that (T' — val(p;(a)))ie; and
(T —val(p;(a’)))ier have the same order type. If also g(f(a)) = g(f(a’)), then for each i € I, p;(a)
and p;(a’) have the same subinterval type, so it suffices to show that for each i, p;(a) and p;(a’) are
in the same subinterval. This is clearly true for i € J, but we need to consider the Ct’ \J component
of g to show that it is true for ¢ € I\ J. Bobkov shows this in Claim 4.3.8 and the subsequent
paragraph of [2]. That argument is summarized here:

Fix such an i € I'\ J, and let j € J be maximal with j < i. By the definition of Sg’, T'—fi(a;) <
T —fl(a;) and T —fi(a}) < T —1fi(a}), and as a;, a} lie in the same subinterval, T'—fl(a;) = T —fi(a}).
Claim 4.3.8 in 2] shows that v(a;—a}) > T—fl(aj) —7. As the Ct components of g(f(a)) and g(f(a))
are also the same, we know that a; [ [T'—fl(a;) —v,T —fl(a;)) = a; | [T —fi(a}) —v,T —fl(a})), but
as [T'—fl(a;) —v, T —fl(a;)) = [T —fl(a}) — v, T —fl(a})) and v(a; — a;) > T —fl(a;) —, this tells us
that even more coefficents of a; and a} agree, so v(a; —a}) > T —fl(a;) > max(T —fi(a;), T — fl(a})).
Assume without loss of generality that T —fl(a;) < T —{l(a}), and let the subintervals of a; and a} be
I(t,T—1l(a;), ar) and I(t',T—1(a}), af;). Then as v(a; —a;) > T —1l(a}) and v(¢t' —a}) > T —1l(a),
the ultrametric inequality gives us v(a; —t') > T —fl(a}), s0 a; € Br_q(a:)(t') and a; € Br_g(a,) (1),
so one ball is contained in the other. By the assumption on the radii, BT_ﬂ(afi)(tl) C Br_q(a,) (1)
If the subintervals are distinct, they must be disjoint, in which case BT_ﬂ(afi)(t/) C Br_fia)(t) \
I(t,T — fi(a;), av). However, a; € Br_g(a;)(t') N I(t,T —fi(a;), av), contradicting this. Thus the
subintervals are the same.

6.3 A Conjecture about Locally Modular Geometric Structures

The following proposition, together with Theorem 6.1, lends support to a conjecture about distal
cell decompositions in locally modular geometric structures. Recall that a structure is geometric
when the acl operation defines a pregeometry and the structure is uniformly bounded (it eliminates
the 3°° quantifier) [19].

Proposition 6.19. The structure M with universe Q, in the language Lag s a modular geometric
structure.

Proof. To check this, it suffices to check that this structure is uniformly bounded, and that its
algebraic closure operation acl gives rise to a modular pregeometry.

First we check uniform boundedness. That is, we wish to show that for all partitioned L.g-
formulas ¢(z;y) with |z| = 1, there is some n € N such that for all b € M, either |p(M;b)] < n
or ¢(M:;b) is infinite.

By Lemma 6.5, o(M,M!¥!) is a disjoint union of (|y| + 1)-cells of the form {(z,y) € Q, x
Dlv(a1(y))Dho(z — c(y))Oav(az(y)),z — c(y) € AQmn}. Let n, be the number of cells in that
disjoint union. We will show that for all b € M¥l, either [p(M;b)| < n, or ¢(M;b) is infinite. To do
this, we will show that for each cell A, defined by the formula v(z; %), that for all b € M¥!, either
the fiber ¢ (M;b) is infinite, or [¢)(M;b)| < 1. Then for b € MYl if the original set ¢(M;b) is finite,
then each fiber ¢ (M;b) of the cells are finite, and thus each is at most a singleton. Thus |¢(M;b)|
is at most the number of cells n,.

Now consider a formula 1 (z; y) that defines an (|y| 4+ 1)-cell, and the fibers of ¥(M;b) for various
b € MY, The fibers are of the form {z|v(a1(b))Tiv(x — ¢(b))Tav(az(h)), z — c¢(b) € AQm.n}, and we
will show that any set of that form is either empty, infinite, or the singleton {c(b)}.

For simplicity, let us assume ¢(b) = 0. This amounts just to a translation of the set, and will
not effect its size. Then assume a € {z|v(a1(b))D1v(z)02v(az(b)),x € AQm,n}, and we will show
either that the set is {a}, or that it is infinite. If A = 0, then AQy,,, = {0}, so we have a = 0 and
the set is {0}. Thus we assume A # 0. As a € AQm n, there are some k € Z,z € Z, such that
a = ApF"(1+p"z), and v(a) = v(\) + km +v(1 +p"z). As n # 0, we have v(p"z) = nv(z) > n > 0,
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so v(1 +p"z) = v(1) = 0 by the ultrametric property, and v(a) = v(\) + km. Now for any 2’ € Z,,
v(ApF™ (1 + p2')) = v(a), and ApF™ (1 + p"2’) € AQm.n, 50 ApF™(1 + p™2') is also in this set. As
A #£ 0, these are all distinct elements of the set, which is infinite.

Now we check that acl gives rise to a modular pregeometry. To do this, it suffices to check that acl
is just the span operation, equal to acl in the plain vector space language, which also gives rise to a
modular pregeometry. If B C M,a € M, then a € acl(B) if and only if there exists a formula ¢(z;y)
with |#| = 1 and a tuple b € BlYl such that ¢(M,b) is finite and M = ¢(a,b). If we decompose
@(M; MY into cells, then we see that there must exist a cell (say it is defined by ¢ (x;y)) such that
a € Y(M,b). As (M,b) C p(M,b) is also finite, and ¢ (z;y) defines a cell, (M;b) = {c(b)} for
a defining polynomial ¢ of the cell, which can be assumed to be linear with constant coefficient 0.
Thus a = ¢(b), so a is in the span of B. Clearly also the span of B is contained in decl(B) C acl(B),
so acl = dcl, and both represent the span. O

Conjecture 6.20. We conjecture that all distal locally modular geometric structures admit distal
cell decompositions of exponent 1. We have already shown this in the o-minimal case with Theorem
4.2, and now we have shown this for the linear reduct of Q, with Theorem 6.1.

7 Qp, the Valued Field

Let IC be a P-minimal field, taken as a structure in Macintyre’s language, which consists of the
language of rings together with a symbol to define the valuation and a unary relation P, for each
n > 2, interpreted so that P, (z) <= 3Jy,y™ = x. While the symbol to define the valuation can be
chosen either to be a unary predicate defining the valuation ring or a binary relation | interpreted
so that z|ly <= wv(z) < v(y), we will refer directly to the valuation v for legibility. The symbols
P, are included so that this structure has quantifier-elimination [1]. Furthermore, assume that K
has definable Skolem functions. (This assumption is only required to invoke the cell decomposition
seen at equation 7.5 from [26]. The existence of this cell decomposition is shown to be equivalent to
definable Skolem functions in [27].)

Theorem 7.1. Let ® be a finite set of formulas of the form o(x;y). Then ® admits a distal cell
decomposition with exponent 3|x| — 2.

Proof. This follows from Lemma 7.2 below, together with Theorem 3.1. O

Lemma 7.2. If |x| = 1, then ® admits a distal cell decomposition T with 3 parameters and exponent
1.

In the rest of this section, we prove Lemma 7.2.

7.1 Simplification of ¢

To construct our distal cell decomposition, we start with a simpler notion of cell decomposition.
Each formula o(x;y) with |z| = 1, and thus every ¢ € ®, has a cell decomposition in the sense that
o(z;y) is equivalent to the disjoint disjunction of the formulas ¢;(z;y) : 1 < ¢ < N, each of the form

v(f(y)Dhv(z — e(y))D2v(9(y)) A Pr(Mz — c(y)))

for some n, N > 0, where [J; is < or no condition, [ is < or no condition, f,g,c are (-definable
functions, and A € A, a finite set of representatives of the cosets of P. By Hensel’s Lemma, we
can choose A C Z C dcl(0), so that each cell is (-definable [1]. Let F be the set of all functions
appearing as f, g in these formulas, and C the set of all functions appearing as ¢ (See equation 7.5,
126]).
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Now we define ®p o a(z;y) as the set of formulas {v(f(y)) < v(z —c(y)) : f € F,c € C} U
{Po(AMz—c(y))) : c € C, X € A}. Tt is easy to check that every formula of @ is a boolean combination
of formulas in ® g ¢ A, so a distal cell decomposition for ® 7 ¢ 4 will also be a distal cell decomposition
for ®. Thus we may assume that ® is already of the form ®r ¢ A. For additional ease of notation,
we also assume F' contains the constant function fo: y — 0.

7.2 Subintervals and subinterval types

Let B,(c) denote again the open ball centered at ¢ with radius r: B,(¢) = {z € K : v(x — ¢) > r}.
Fix a finite set B C MYl and let B be a set of balls, similar to those referred to in [26], Section 7.2
as “special balls defined over B”, which we express as B := Br U B¢, where

Br = {Bv(f(b))(c(b)) 1 b e B,f € F,ce C}

and
Be = {By(ci (b1)—ca(ba)) (€1(b1)) 1 b1,b2 € B,ci,co € C}.

Clearly |Br| = O(|B]). It is less clear that |Be| = O(]B]), but this is a consequence of [26,
Lemma 7.3]. Thus |B| = O(|B]).

Definition 7.3. We now define subintervals and surrounding notation, analogously to Definition
6.9, but with a different notion of subinterval types.

e Define a subinterval as an atom in the boolean algebra generated by B.

e Each subinterval can be expressed as I(t, ar,, ay) where

I(tuaLvaU) = BaL(t)\ U Bau(t/)7
€T Bay —1(t)

for some t = ¢;(bg) with i € I,bg € B, and ay, = a1 (bg, b1), ay = aa(bg, b2), with aq, as chosen
from a finite set A of P-definable functions Q% — I, including two functions defined, by abuse
of notation, as +oo.

e The subinterval I(¢,ar, ay) is said to be centered at t.

e For a € Qp, define T — val(a) := v(a — t), where a belongs to a subinterval centered at t. As
in Definition 6.10, this is well-defined.

e Given a subinterval I(t,ar, ay), two points aj, as in that subinterval are defined to have the
same subinterval type if one of the following conditions is satisfied:

1. ar +2v(n) < T—val(a;) < ay — 2v(n) for i = 1,2 and (a3 —t)(az — )~ € PX

2. =(ar + 2v(n) < T—val(a;) < ay — 2v(n)) for i = 1,2 and T—val(a;) = T—val(az) <
v(ay — az) — 2v(n)

We will construct a distal cell decomposition 7 (B) where each cell consists of all points in a
fixed subinterval with a fixed subinterval type. There are several requirements to check for this:

1. The sets of points in a fixed subinterval with a fixed subinterval type are uniformly definable
from three parameters in B.

2. If two points lie in the same subinterval and have the same subinterval type, then they have
the same ®-type over B.

3. K has O(|B|) subintervals, and each divides into a constant number of subinterval types.
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The first and second requirements will verify that this is a valid distal cell decomposition. The third
will verify that |7(B)| < O(|B]), and thus that 7 has exponent 1. The first will guarantee that T
uses only three parameters.

First we check the first requirement. We see that the triple (¢, ay,, ) can always be defined from
a triple (bo,b1,b2) € B3, so it suffices to show that each cell (subinterval type) in the subinterval
I(t,ar,ay) can be defined from (t,ar,ay) and no other parameters in B. Note that while in
Section 6, we showed that the subintervals are uniformly definable, and the same argument would
hold here, the defining formulas there may need more than three parameters, so we give a different
argument.

A subinterval type of the first kind can be defined from ¢, oy, ay by ¥a(t, ar, ay) := ap+2v(n) <
v(z —1t) < ay —2v(n) A Py(AM(z — t)). A subinterval type of the second kind is just a ball, of the
form B, y2,(n)(q), where either 7 = ar + i with 0 <4 < 2v(n), or 7 = ay — i, with 0 < i < 2v(n),
and ¢ satisfies T — val(q) = r, which is implied by v(t — ¢) = r. For a fixed t, oy, ay, there are a
constant number of choices for r, and ¢ can be chosen to be p"(qo) + t, where g is chosen from a
set @ of representatives for open balls of radius 2v(n) such that v(go) = 0.

Given a potential cell A which represents a subinterval type within the set I(¢, ar, ay), we want
to define Z(A) so that Z(A)N B = ) if and only if there actualy is a subinterval I (¢, ar,, o). There is
such an interval if and only if there are no balls in B strictly containing B, (t) and strictly contained
in B, (t). A ball Bys(c(b)) € Br for some b € B, f € F,c € C lies between those two balls if and
only if ar, < v(f(b)) < ay and v(f(b)) < v(t — ¢(b)), so define

Or.c(yit,ar,ay) = arp < v(f(y) < av Av(f(b)) <v(t —c(b)).

A ball Byc, (by)—ca(b2))(c1(b1)) € Be for some by,by € B,ci,co € C lies between those two balls if
and only if a, < v(e1(b1) — e2(b2)) < ay and v(ey(b1) — c2(b2)) < v(t — c1(b1)). If this is true, then
By (b1)—ca(b2)) (€1(b1)) = By(t—cq(b2))(t), s0 it is enough to check if there is a ball B, ;—))(t) that
lies between those two balls. That happens if and only if oy, < v(t — ¢(b)) < ay, so define

O.(yst,ap,ay) = ar <v(t —c(y)) < ay.

Then Z(A) is defined by the formula

\/ oc(y;t,OéL,OéU) V \/ ej',C(y;tao‘LvaU)
ceC fer

as desired.

Now we will check the third requirement. Ordering the balls of B by inclusion forms a poset,
whose Hasse diagram can be interpreted as a graph. By the ultrametric property, any two intersecting
balls are comparable in this ordering, which rules out cycles in the graph. As the number of vertices
is |B| = O(|B|) and the graph is acyclic, the number of edges is also O(|B| ). There are also O(|B|)
subintervals, because there is (almost) a surjection from edges of the graph to subintervals: given
an edge between B; and Bs, assuming without loss of generality that Bs C Bj, we can assign it to
the subinterval I (¢, ay,, oy ), where t € Ba, ay, is the radius of By, and «y is the radius of By. This
omits the subintervals with outer ball K, and the subintervals representing minimal balls in B, but
there are O(|B|) of those as well.

Now we will check that each subinterval breaks into only a constant number of subinterval types.
Fix a subinterval I (¢, ar,, cy). Then the subinterval types of the first kind correspond with cosets of
P, of which there are n (or n+1 if one takes into account the fact that 0 is not in the multiplicative
group at all). As in Section 6, or [2, Lemma 4.2.11], there will also be a constant number of
subinterval types of the second kind. We have seen that these can be defined as B, 2,(n)(q). For
our fixed (¢, ar, ay), r must be either o, +¢ with 0 < i < 2v(n) or ay —i with 0 <4 < 2v(n), which
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leaves only finitely many choices. For a fixed r, ¢ must be of the form p"(qg) + ¢, where g is chosen
from a fixed finite set, so there are |Q| choices of q.

Now we check the second requirement. Let ¢ € ®,b € B. Then @(x;b) is either of the form
v(f(b)) <v(x —c(b)) for f € F,ce C or P,(A(x — c(b))) for c € C, A € A.

If o(x;b) is v(f(b)) < v(z — ¢(b)), then the set of points satisfying ¢(x;b) is a ball in B, so a
subinterval, as an atom in the boolean algebra generated by B, is not crossed by that ball, or the
formula v(f (b)) < v(z—c(b)). Thus each cell of T(B), being a subset of a subinterval, is not crossed
by ¢(@;b).

Now it suffices to check that each cell is not crossed by ¢(x;b), where ¢(z;b) is P, (A(x — ¢(b)))
for c € C;\ € A. To do this, we will need the following lemma:

Lemma 7.4 (7.4 in [26]). Suppose n > 1, and let x,y,a € K with v(y —x) > 2v(n) + v(y — a).
Then (x —a)(y —a)~' € PX.

We will show that any two points a1, ag in a given subinterval (¢, o, ay) with a given subinterval
type satisfy (a1 — c(b))(az — ¢(b))~! € PX. This shows that K = P"(A(a1 — ¢(b))) < P"(A(az —
¢(b))), so the cell defined by points in that subinterval with that subinterval type is not crossed by
p(x3b).

We will do casework on the two kinds of subinterval types, but for both we use the fact that the
definition of I(¢, o, ay) implies that either v(t — ¢(b)) < ar, or v(t — ¢(b)) > ay.

In the first kind of subinterval type, we have (a; — t)(az —t)~1 € P by definition, so it suffices
to show, without loss of generality, that (t — a1)(c(b) — a1)~! € PX. Lemma 7.4 shows that this
follows from v(t — ¢(b)) > 2v(n) + v(t — a1). As T — val(ay) = v(t — a1), this is equivalent to
v(t — ¢(b)) > ay. By the construction of I(¢, ar, ar), this is one of two cases, and we are left with
the case v(t—c(b)) < ar. In that case, v(t—c(b))+2v(n) < v(t—ay). Thus (a1—c(b))(t—c(b))~t € P,
and similarly, (az — c(b))(t — (b))t € PX, so we get (a1 — ¢(b))(az — c(b))~1 € PX.

In the second kind of subinterval type, we have v(a; —t) = v(az —t) < v(a; — a2) — 2v(n). If
v(t —¢(b)) > ay, then as a1 € I(t, ar,ay), we have ap, < v(a; —t) < ay, we have v(a; — ¢(b)) =
v(ay — t) by the ultrametric property. Thus v(a; — ¢(b)) + 2v(n) < v(a; — az), so by Lemma 7.4,
(a1 —c(b))(agz —c(b))~! € PX. In the other case, v(t — c(b)) < ar, < v(a; —t), so the lemma tells us
that v(a; —c(b)) = v(t—c(b)) < v(a; —t) —2v(n), so by the lemma, v(a; —c(b))(a; —t)~ € P, and
also v(az —c(b))(az —t)~1 € PX, so as also v(a; —t) +2v(n) < v(a; —vs), so (a1 —t)(az—t)~' € PX,
so we can combine all these facts to get (a1 — c(b))(az — c(b))~! € PX.

8 Zarankiewicz’s Problem

In this section, we introduce background on Zarankiewicz’s problem, and the bounds known for the
case of distal-definable bipartite graphs in general. We then combine these general bounds with the
bounds on distal cell decompositions throughout in this paper, arriving at concrete combinatorial
corollaries for the distal structures we have discussed.

8.1 Background

First we will want to define the notion of a bigraph. A bigraph consists of a pair of sets X,Y and
a relation £ C X x Y such that E is a bipartite graph with parts X and Y. We say that such a
bigraph contains a K, if there is a subset A C X with |A| = s and a subset B C Y with |B| =t
such that E restricted to A x B is a complete bipartite graph (isomorphic to K ).

Zarankiewicz’s problem asks to bound asymptotically in m and n the number of edges in the
largest bipartite graph on m x n omitting the subgraph K. Better bounds are known when we
fix a particular infinite bigraph E omitting some K ;, and bound the size of the largest subgraph
with parts of size m, n respectively. If P,Q are subsets of the parts of E, then we write E(P, Q) to
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denote the set of edges between P, @, so we concern ourselves with bounding |F(P, Q)| in terms of
|P| and |@|. This applies easily to problems in incidence geometry - if I' is a family of curves on R™,
we may consider an incidence graph on parts R™ and T' defined by placing an edge between (p,~)
exactly when p € v. When these curves are algebraic of bounded degree, Bézout’s theorem bounds
the size of a complete bipartite subgraph K, in this incidence graph, and then we are interested
in the number of edges (incidences) between a finite set of points and a finite set of curves. For a
general reference on incidence geometry, see [31].

We will concern ourselves with the case where the bigraph is definable in a distal structure. In
the incidence example, this happens when the curves in I' are uniformly definable in some distal
structure on R. In [5], the authors set an upper bound for Zarankiewicz’s problem in bigraphs
definable in a distal structure, using distal cell decompositions as the foundation of their approach.
The resulting bound depends essentially on the distal density of the definable graph - this is our
primary motivation for defining distal density and distal exponents in this paper.

The approach of [5] follows a classic divide-and-conquer argument used in [25, Section 4.5] to
prove the Szemerédi-Trotter theorem, which states that if we let T' be the set of lines in R?, then

[E(P.Q)| = O (IPPPIQP® + Pl + Q).

This is proven using cuttings:

Definition 8.1. Let F be a finite family of subsets of a set X with |F| =n. Givenareal 1 <r <mn,
we say that a family C of subsets of X is a %-cuttmg for F when C forms a cover of X and each set
C € C is crossed by at most 7 elements of F.

Cuttings differ from abstract cell decompositions in that a limited amount of crossing is allowed,
but they are still related. In [25, Section 6.5], a bound ([25, Lemma 4.5.3]) is given on the size of
an %-cutting into triangles with respect to any finite set of lines. For a given set of points and a
given set of lines, a particular value of r is chosen, an %-cutting is found, and then for each triangle
in the cutting, the set of incidences between points in the triangle and lines that cross the triangle
is bounded. These bounds are summed, and after considering some exceptional cases, this proves
Szemerédi-Trotter.

In [5], meanwhile, the authors find uniformly definable cuttings for each definable relation, start-
ing with a distal cell decomposition. The size of the cutting given by this cutting lemma scales
directly with the size of the given distal cell decomposition, so the bounds on distal cell decomposi-
tions throughout this paper also function as bounds on the sizes of cuttings.

Fact 8.2 (Distal Cutting Lemma: [5, Theorem 3.2]). Let ¢(z;y) be a formula admiting a distal cell
decomposition of exponent d. Then for any natural n and any real 1 < r < n, there exists t = O(r?)
such that for any finite H C MWl of size n, there are uniformly definable sets X1,...,X; C M!*l
which form an L-cutting for {¢(z;h):h e H}.

The proof of this also follows the proof of the cutting lemma for lines in [25, Sections 4.6 and
6.5], which in turn uses the random sampling technique of Clarkson and Shor.[15].

From this cutting lemma, a similar divide-and-conquer argument works. Given a formula ¢(z;y)
on a distal structure M defining a bigraph E on Ml x MYl for any finite subset H C M¥!, the
authors of [5] use a distal cell decomposition and the distal cutting lemma to find a suitable cutting
for {¢(x;h) : h € H}. They then, in summary, use other tools to bound the incidences between the
points in each cell of the cutting and formulas ¢(z; h) which cross it, and combine these bounds to
find a final result, quoted here in our terminology:

Fact 8.3 ([5, Theorem 5.7]). Let M be a structure and d,t € N>o. Assume that E(z,y) C M®l x
M is a definable relation given by an instance of a formula 0(x,y; z) € L, such that the formula
0'(x;y,2) = 0(x,y; 2) has a distal cell decomposition of exponent t, and such that the VC density of
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0" (z,z;y) == 0(x,y; 2) is at most d. Then for any k € N there is a constant « = «(0, k) satisfying
the following.
For any finite P C M1 . Q C MW, |P| =m,|Q| =n, if E(P,Q) is Ky -free, then we have:

E(P,Q)| < a(mTFn = +m+n).

While d,t are assumed to be integral in their theorem statement, they could be replaced with
any real d,t € R>y and their proof would work unchanged. If §" has distal density ¢, then it is not
known if 8 must have a distal cell decomposition of exponent precisely ¢t. However, we can still get
nearly the same bound, as for all € > 0, ¢’ has a distal cell decomposition with exponent ¢ + &. As
lime o 52 = Lo and (ELED < HOU e theorem still holds for 6 with distal density
t, except with the final bound replaced by

(t—1)d t(d—1)

|E(P7 Q)| S [ (m td—1 +5n td—1 +m+n)

for arbitrary ¢ > 0 and « = «(0, k, ).
Contrast this result to an analogous result for semi-algebraic sets, using polynomial partitioning
for the divide-and-conquer argument instead of cuttings:

Fact 8.4 ([33, Corollary 1.7]). Let P be a set of m points and let V be a set of n constant-degree
algebraic varieties, both in R%, such that the incidence graph of P x V does not contain K. Then
for every e > 0, we have

(d—l)er8 d(s—1)
I(R V) =04dst,e (m ds—1T T°m ds—T +m + n) .

The initial version of this result, [20, Theorem 1.2], had an extra factor of m® in the first term.
The m*® was removed first in special cases, such as in [8, Theorem 1.5], with a more involved
application of polynomial partitioning, eventually leading to [33].

Remark 1. The special case of d = s = 2 is proven in [20, Theorem 1.1], without the extra factor
of m®, using the cutting lemma strategy generalized by [5]. This method would imply the rest of
Fact 8.4 given a distal cell decomposition of exponent |z| for each finite set ®(x;y) of formulas in
the language of ordered rings over R.

As a last remark before examining these combinatorial applications in specific structures, we
mention some other combinatorial applications of distal cell decompositions which may be improved
using specific bounds like those in this paper. While the papers are different in strategy and scope,
both [7, Theorem 2.6] and [13, Theorem 1.9] apply techniques that we now recognize as distal
cell decompositions and distal cutting lemmas Ramsey-theoretically, showing that sets definable in
distal structures satisfy a property that [13] dubs the strong Erdds-Hajnal property. The constants
in this asymptotic bound are improved by providing better bounds on exponents of distal cell
decompositions.

8.2 New Results in Specific Structures

In this subsection, we collect the results from earlier in the paper and combine them with the
Zarankiewicz bounds of [5] as cited above.

We begin by just applying Fact 8.3 with known distal exponent and VC density bounds, listing
the exponents in the resulting Zarankiewicz bounds in a table.

Corollary 8.5. Let M be a structure from the left column of the following table and let E C M®x M®
be a definable bigraph. Then for any k € N, there is a constant o = «(0,k) such that for the
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corresponding values of ¢ and r in this table, and any finite P C M®,Q C M®, |P| = m,|Q| = n,

if E(P,Q) is Ky g-free, then |E(P,Q)| < a(min" +m+n).

M q r

o-minimal expansions of groups % (?5(;2;;2:})

weakly o-minimal structures 7(2((%;)21))51 (?gt;_ligzj)
e . (a—1)b a(b—1)
ordered vector spaces over ordered division rings T =1
Presburger arithmetic (Zb:lib “ﬁjj)

(3a—3)(2b—1) (3a—2)(2b—2)

Qp the valued field Ba—2)(20-1)—1 | Ba—2)(26-1)—1

Qp in the linear reduct % %

Proof. The bounds on VC densities and exponents of distal cell decompositions are listed in Theorem
1.1. The VC densities come from the literature cited in that theorem, as does the exponent for the
distal cell decomposition in the case of o-minimal expansions of groups with a = 2 from [5], but the
rest of the distal cell decomposition bounds are new to this article. o

In some applications to Zarankiewicz’s problem, the omitted bipartite graph K, may give a
better bound on the relevant VC density than is known for general formulas. The following lemma
bounds the VC density for formulas defining relations which do not contain a K ,:

Lemma 8.6. Let M be a first-order structure, and p(x;y) be a formula such that the bigraph with
edge relation p(M1=l; M) does not contain K. Then ve(p) < s.

Proof. An equivalent way (see [26]) of defining 7, (n) is as max 4 pyizl |aj=n | N A|, where p N A is
shorthand for {A N @(M*1 ) : b e MY}

Given A ¢ M*! find B ¢ Ml such that for each subset Ay € ¢ N A, there is exactly one b € B
such that Ag = AN (M!*1 b). Thus |B| = |pN Al.

The number of subsets of A in ¢ N A of size less than B is trivially bounded by Zf;ol (I‘?I) =
O(|A]*""). Thus there are O(|A|*"") elements b € B for which |p(M!*l b) N A] < s. However,
by assumption, for each subset Ag C A of size B, there are most ¢ — 1 elements b of B with
M = ¢(a,b) for all a € As. Thus there are at most (¢ — 1)("3‘) = O(|A]*®) elements b € B for which
lp(M171 ) N A] > s, and in general, |B| = O(|A|"), so m,(n) = O(n?), and vc(p) < s. O

Combining this lemma with Theorem 8.3 gives us the following Zarankiewicz bound for bigraphs
defined in distal structures, making use only of the omitted complete bipartite subgraph for the VC
density bound.

Corollary 8.7. Let M be a structure and t € Rso. Assume that E(z,y) € M*Ix MW is a definable
relation given by an instance of a formula 6(x,y; z) € L, such that the formula 0'(x;y, z) := 0(z,y; 2)
has a distal cell decomposition of exponent t, and the graph E(z,y) does not contain Ks,. Then
there is a constant o = (6, s,u) satisfying the following.

For any finite P C M1 . Q C MW!, |P| = m,|Q| = n, we have:

(t—1)s

BP0 <a (0T v,
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This Corollary recalls one version of Theorem 2.6 of [14], which provides the same bound on
|E(P, Q)| from a slightly different assumption on ¢, and either the same condition of ¢(x; y) omitting
K, for some u, or p(z;y) omitting K, , for some u and having dual VC density at most s.

To phrase this corollary in terms of distal density, we must add a small error term again. If
instead t is the distal density of €', then for all € € R, we get the bound

(t—1)s te t(s—1)
E(P.Q)| <a(m &0 +min),

where o depends also on .

To illustrate the generality of Corollary 8.7, we will apply it to some specific structures. Let us
first apply it to M = Rexp = (R;0,1,+,*,<,e”). This structure is an expansion of a field, and
o-minimal by [34], allowing us to apply the distal exponent bounds from Theorem 4.1. We define
an exponential polynomial to be a function R™ — R in Z[xy,..., 2y, €%, ..., %] as in [9], and an
exponential-polynomial inequality to be an inequality of exponential polynomials. As any exponential
polynomial function over R is definable in this structure, a boolean combination of exponential-
polynomial inequalities or equations will be as well. Combining all of this with Corollary 8.7 gives
the following result:

Corollary 8.8. Assume that E(z,y) C Rl*l x RIY! is a relation given by a boolean combination of
exponential-polynomial (in)equalities, and the graph E(z,y) does not contain Ks.,. Then there is a
constant o = «(0, s,u) satisfying the following.z

For any finite P C RI*l,.Q CRW | |P| =m,|Q| =n, we have:

(2|z|—2)s (2\2\*1)(5*1)+€

|E(P7Q)| <« (m(2\z\7l)sfln Qz[—1)s—1 +m+ n) .

Let us also apply Corollary 8.7 to subanalytic sets over Z,, defined as in [16]:

Definition 8.9. e Aset S C Zj is semianalytic if for every z € S, there is an open neighborhood
U of x such that U NS can be defined by a boolean combination of inequalities of analytic
functions.

e A set S C Zy is subanalytic if for every z € S, there is an open neighborhood U of z and a
semianalytic set 5" in U x Z[ for some N such that UNS = 7(S’), where 7 : U x Z) — U is
the projection map.

For any n, the subanalytic subsets of Zj are exactly the quantifier-free definable subsets in
a structure R,n, which is a substructure of the structure XC,,, consisting of @, with its analytic
structure, as described in [32]. As per Theorem A’/B from [32], this structure is P-minimal with
definable Skolem functions, we can apply the distal exponent bounds from Theorem 7.1, giving us
this corollary:

Corollary 8.10. Assume that E(x,y) C Z]If‘ X Z‘py‘ is a subanalytic relation, and the graph E(x,y)
does not contain K. Then there is a constant o = «(6, s,u) satisfying the following.

For any finite P C Z‘;‘,Q - Z‘py‘, |P| =m,|Q| = n, we have:

Glz|=3)s  @lzl-2)(=1) ,

|E(P7Q)| < a (m(3\z\72)sfln Blz[—2)s—1 _;’_m_;’_n) .
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