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We study convolution semigroups of invariant/finitely satisfiable Keisler measures

in NIP groups. We show that the ideal (Ellis) subgroups are always trivial

and describe minimal left ideals in the definably amenable case, demonstrating

that they always form a Bauer simplex. Under some assumptions, we give an

explicit construction of a minimal left ideal in the semigroup of measures from a

minimal left ideal in the corresponding semigroup of types (this includes the case

of SL2(R), which is not definably amenable). We also show that the canonical

pushforward map is a homomorphism from definable convolution on G to classical

convolution on the compact group G/G00, and use it to classify G00-invariant

idempotent measures.

1. Introduction

This paper is a continuation of [Chernikov and Gannon 2022], but with a focus

on NIP groups and the dynamical systems associated to the definable convolution

operation. It was demonstrated in [Chernikov and Gannon 2022] that when T is

an NIP theory expanding a group, G is a monster model of T , and G z G, the

spaces of global Aut(G/G)-invariant Keisler measures and Keisler measures which

are finitely satisfiable in G (denoted by Minv
x (G,G) and Mfs

x (G,G), respectively)

form left-continuous compact Hausdorff semigroups under definable convolution ∗

(see Fact 2.29). Equivalently, the semigroup (Mfs
x (G,G), ∗) can be described as

the Ellis semigroup of the dynamical system given by the action of conv(G), the

convex hull of G in the space of global measures finitely satisfiable in G, on the

space of measures Mfs
x (G,G) (see [Chernikov and Gannon 2022, Theorem 6.10

and Remark 6.11]). The main purpose of this paper is to study the structure of

these semigroups, as well as to provide a description of idempotent measures via

type-definable subgroups in some cases.

In Section 2 we review some preliminaries and basic facts on convolution in

compact topological groups (Section 2A), model theory (Section 2B), Keisler
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measures (Section 2C), definable convolution in NIP groups (Section 2D), Ellis

semigroups (Section 2E) and Choquet theory (Section 2F).

In Section 3 we study the relationship between the semigroups Minv
x (G,G) and

Mfs
x (G,G) (under definable convolution) and the classical convolution semigroup

of regular Borel probability measures on the compact topological group G/G00. We

demonstrate that the pushforward along the quotient map is a surjective, continuous,

semigroup homomorphisms from definable convolution to classical convolution

on G/G00 (Theorem 3.10), mapping idempotent Keisler measures onto idempotent

Borel measures on G/G00 (Corollaries 3.11 and 3.12).

We have shown in [Chernikov and Gannon 2022, Theorem 5.8] that, by analogy

to the classical theorem of Kawada and Itô for compact groups (Fact 2.8), which

was later rediscovered by Wendel, there is a one-to-one correspondence between

idempotent measures on a stable group and its type-definable subgroups (namely,

every idempotent measure is the unique translation-invariant measure on its type-

definable stabilizer group). In NIP groups, this correspondence fails (Example 4.5),

but revised versions of this statement can be recovered in some cases. In particular,

using the results of Section 3, we demonstrate in Section 4 that a G00-invariant

idempotent measure in an NIP group G is a (not necessarily unique) invariant

measure on its type-definable stabilizer group. In future work, we examine further

cases of the classification of idempotent measures in NIP groups, including the

generically stable case.

In Section 5 we study the semigroups (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) for

an NIP group G through the lens of Ellis theory. We demonstrate that the ideal

subgroups of any minimal left ideal (in either Mfs
x (G,G) or Minv

x (G,G)) are always

trivial (Proposition 5.10). This is due to the presence of the convex structure, in

contrast to the case of types in definably amenable NIP groups (where, due to

the proof of the Ellis group conjecture in [Chernikov and Simon 2018], the ideal

subgroups are isomorphic to G/G00). We also classify minimal left ideals in both

Mfs
x (G,G) and Minv

x (G,G)when G is definably amenable. In this case, any minimal

left ideal in Mfs
x (G,G) is also trivial (Proposition 5.16), while Minv

x (G,G) contains a

unique minimal left ideal (which is also two-sided). This unique ideal is precisely the

collection of measures in Minv
x (G,G) which are G-right-invariant (Proposition 5.18;

this is in contrast to minimal left ideals in Mfs
x (G,G) corresponding to G-left-

invariant measures). It is also a compact convex set, and moreover a Bauer simplex

(see Definition 2.38). In particular, the set of its extreme points is closed, and

consists precisely of the lifts µp of the Haar measure on G/G00 for p ∈ Sinv
x (G,G) an

f -generic type of G (Corollary 5.21). If the group G is fsg, this minimal ideal is also

trivial (Corollary 5.24). We also observe that if G is not definably amenable, then the

minimal left ideal of Mx(G,G) has infinitely many extreme points (Remark 5.26).

See Theorem 5.1 for a more precise summary of the results of the section.
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In Section 6 we isolate certain conditions on G, applicable in particular to some

nondefinably amenable groups, which allows us to describe a minimal left ideal

of M†
x(G,G) for † ∈ {fs, inv} in terms of a minimal ideal in the corresponding

semigroup of types. We prove the following two results. Suppose that I is a minimal

left ideal of S†
x (G,G) and u is an idempotent in I such that u ∗ I is a compact group

under the induced topology (we refer to this condition as CIG1; see Definition 6.5).

Then M(I ) ∗µu∗I is a minimal left ideal of M†
x(G,G), where µu∗I is the Keisler

measure corresponding to the normalized Haar measure on u∗ I and M(I ) is the set

of Keisler measures supported on I (Theorem 6.11). Under a stronger assumption,

CIG2, on G (see Definition 6.14), we show that a minimal left ideal of M†
x(G,G)

is affinely homeomorphic to a collection of regular Borel probability measures

over a natural quotient of I ; specifically, it is a Bauer simplex (Theorem 6.20). In

particular, SL2(R) falls into both of these categories (Example 6.23).

2. Preliminaries

Given r1, r2 ∈ R and ε ∈ R>0, we write r1 ≈ε r2 if |r1 − r2| < ε. For n ∈ Ng1,

[n] = {1, 2, . . . , n}.

2A. The classical setting. Before discussing the model-theoretic setting, we recall

some classical facts concerning compact Hausdorff spaces, measures, and compact

topological groups.

Fact 2.1. Let X, Y be compact Hausdorff spaces and f : X → Y .

(i) Let M(X) be the set of all regular Borel probability measures on X. Then

M(X) is a compact Hausdorff space under the weak-∗ topology, with the basic

open sets of the form
n⋂

i=1

{
µ ∈ M(X) : ri <

∫

X

fi dµ < si

}

for n ∈ N, ri < si ∈ R and fi : X → R continuous for i ∈ [n].

(ii) A net of measures (µi )i∈I in M(X) converges to a measure µ if and only if for

any continuous f : X → R,

lim
i∈I

∫

X

f dµi =

∫

X

f dµ.

(iii) A (Borel) measurable map f : X → Y induces the pushforward map

f∗ : M(X)→ M(Y )

given by f∗(µ)(A) = µ( f −1(A)) for any Borel subset A ¦ Y . Then for any

Borel function h : Y → R such that h ∈ L1( f∗(µ)),∫

Y

h d f∗(µ)=

∫

X

(h ◦ f ) dµ.
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Moreover, the map f∗ is affine: for any r1, . . . , rn ∈ [0, 1] with
∑n

i=1 ri = 1

and µ1, . . . , µn ∈ M(X),

f∗

( n∑

i=1

riµi

)
=

n∑

i=1

ri f∗(µi ).

(iv) If f : X → Y is continuous, then f∗ : M(X) → M(Y ) is continuous. If

f : X → Y is also surjective, then f∗ is also surjective.

Remark 2.2. Let X be any compact Hausdorff space and let C(X) be the collection

of continuous functions from X to R. We consider C(X) as a normed vector space

with the ∥ · ∥∞ norm, i.e., ∥ f ∥∞ = supx∈X | f (x)|. The dual of C(X), denoted

by C(X)∗, is the space of all continuous linear functionals, i.e., maps from C(X)

to R which are continuous with respect to the norm topology on C(X). The

weak-∗ topology on C(X)∗ is the coarsest topology such that for any a ∈ X , the

map Ea : C(X)→ R given by Ea( f )= f (a) is continuous. We remark that M(X)

can be naturally viewed as a subset of C(X)∗ via µ 7→
∫

−dµ. The topology

induced from C(X)∗ on M(X) is both compact and Hausdorff. Moreover, M(X)

forms a convex subset of C(X)∗.

Convention 2.3. If f : X → R is a measurable function, we sometimes write∫
X

f dµ simply as µ( f ).

Definition 2.4. Let X be a compact Hausdorff space and µ ∈ M(X). The support

of µ is supp(µ) := {a ∈ X : µ(U ) > 0 for any open neighborhood U of a}. Then

supp(µ) is a nonempty closed subset of X . We remark that µ(supp(µ))= 1.

By a compact group we mean a compact Hausdorff topological group where both

the multiplication −·− : G ×G → G and inverse −1 : G → G maps are continuous.

Definition 2.5. Let G be a compact group andµ, ¿ ∈M(G). Then their convolution

product1 µ⋆¿ is the unique regular Borel measure on G such that for any continuous

function f : G → R,∫

G

f (z) d(µ ⋆ ¿)(z)=

∫

G

∫

G

f (x · y) dµ(x) d¿(y).

Equivalently, µ⋆¿ is the unique regular Borel measure on G such that for any Borel

subset E of G,

µ⋆ ¿(E)=

∫

G

µ(Ex−1) d¿(x).

See, e.g., [Stromberg 1959] for a proof the this equivalence.

Remark 2.6. Let G be a compact group.

(1) If a, b ∈ G, then ¶a·b = ¶a ⋆ ¶b (where ¶a denotes the Dirac measure on a).

1To stay consistent with the notation in [Chernikov and Gannon 2022], we will use “∗” to denote

definable convolution (defined later in this section) and “⋆” to denote classical convolution.
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(2) The space M(G) is a compact topological semigroup under convolution. In

particular, the map ⋆ :M(G)×M(G)→M(G) is associative and continuous.

(3) The map ¶ : G → M(G), a 7→ ¶a is an embedding of topological semigroups.

Definition 2.7. Suppose that G is a compact group and ¼ ∈ M(G). We say that ¼

is idempotent if ¼ ⋆ ¼= ¼.

The following theorem classifies idempotent measures on compact groups. The

first proof of this theorem is due to Kawada and Itô [1940, Theorem 3] and uses

representation theory of compact groups. This result was rediscovered a decade-

and-a-half later by Wendel [1954, Theorem 1] using semigroup theory.

Fact 2.8. Suppose G is a compact group and ¼ ∈ M(G). Then the following are

equivalent:

(1) ¼ is idempotent.

(2) supp(¼) is a closed subgroup of G and ¼|supp(¼) is the normalized Haar measure

on supp(¼).

We are interested in which ways this theorem can be recovered for Keisler

measures on definable groups. However, finding subgroups of a monster model is

more difficult than directly applying this classification theorem since the support of

an idempotent Keisler measure is a collection of types and not a subgroup of the

model. Instead, we will also need to take into account a measure’s stabilizer. This

distinction does not arise in the compact group setting since the stabilizer of an

idempotent probability measure is the same as its support. We take a moment to be

precise about this statement.

Definition 2.9. Suppose G is a compact group and ¼ ∈ M(G). Its right stabilizer

is Stab(¼) := {a ∈ G : ¼(B · a)= ¼(B) for any Borel set B ¦ G}.

Lemma 2.10. Let G be a compact group and ¼ ∈ M(G). If ¼ is idempotent, then

supp(¼)= Stab(¼).

Proof. Suppose a ∈ supp(¼). By Fact 2.8, supp(¼) is a closed subgroup of G and

¼|supp(¼) is the normalized Haar measure on supp(¼). Hence ¼(C · a) = ¼(C) for

any Borel subset C of supp(¼). Let X be a Borel subset of G. Then

¼(X ·a)= ¼
(
(X ·a)∩ supp(¼)

)
= ¼

(
(X ∩ supp(¼)) ·a

)
= ¼(X ∩ supp(¼))= ¼(X),

and hence a ∈ Stab(¼).

Conversely, suppose a ∈ Stab(¼), but a ̸∈ supp(¼). By Fact 2.8, this implies that

(supp(¼) · a)∩ supp(¼)= ∅. However ¼(supp(¼))= 1 and also

¼(supp(¼) · a)= ¼
(
supp(¼) · a ∩ supp(¼)

)
= ¼(∅)= 0,

a contradiction. □
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Finally, we recall a couple of facts on integrating functions over compact groups.

Fact 2.11. Suppose that G is a compact group and H is a closed subgroup of G

with normalized Haar measure ¼H . Let h ∈ H , and let f : G → R be a Borel

function such that f |H ∈ L1(¼H ), i.e., the restriction of f to H is integrable. Then
∫

G

f (x) d¼(x)=

∫

G

f (x · h) d¼(x),

where ¼ is the measure on G defined by ¼(X)= ¼H (X ∩ H).

The next fact appears hard to find explicitly stated in the literature, so we provide

a proof for completeness.

Lemma 2.12. Let G be a compact group and assume that f : G → R is continuous.

Let µ ∈ M(G). Then the map b 7→
∫

G
f (x · b) dµ from G to R is continuous.

Proof. Define h : G →R via h(b)=
∫

G
f (x ·b) dµ. We first show that for every ε>0

there exists an open neighborhood U of the identity e ∈ G such that for any b ∈ U ,

supx∈G | f (x)− f (x · b)|< ε. Fix ε > 0, and suppose the statement does not hold.

Then for every neighborhood U of e there exist some bU ∈ U and cU ∈ G such that

| f (cU )− f (cU ·bU )|g ε. Let N be the set of all open neighborhoods of e. Then N is

a directed set under reverse inclusion and (cU ·bU )U∈N is a net. Since G is compact,

we may pass to a convergent subnet N ′ of N so that (cU · bU )U∈N ′ converges.

Note also that still limU∈N ′ bU = e. Since the nets (cU · bU )U∈N ′ and (bU )U∈N ′

both converge and G is a topological group, the net (cU )U∈N ′ also converges. Let

c := limU∈N ′ cU . By continuity of f ,

lim
U∈N ′

f (cU )= f (c)= lim
U∈N ′

f (cU · bU ).

Then limU∈N ′ | f (cU )− f (cU · bU )| = 0, but | f (cU )− f (cU · bU )| g ε for each

U ∈ N ′ by assumption, a contradiction.

We now show that h is continuous. Let (r, s) ¦ R, g0 ∈ h−1((r, s)), and

ε := min{|h(g0)− r |, |h(g0)− s|}. By the paragraph above, there exists an open

neighborhood of the identity U such that supx∈G | f (x)− f (x · b)| < ε/2 for any

b ∈ U . We will show that the open set g0 ·U is a subset of h−1((r, s)) containing g0.

Note that g0 ∈ g0 ·U since e ∈ U . Now suppose that g1 ∈ g0 ·U , so that g1 = g0 ·b1

for some b1 ∈ U . Since, for any g ∈ G, the action k(x) 7→ k(x · g) of G on the

space C(G) of continuous functions from G to R preserves the uniform norm,

acting on the right by g0 derives supx∈G | f (x · g0)− f (x · g0 ·b1)|< ε/2. Therefore

h(g1)=

∫

G

f (x · g1) dµ=

∫

G

f (x · g0 · b1) dµ≈ε/2

∫

G

f (x · g0) dµ= h(g0).

Hence h(g1) ∈ (r, s) and thus g0 · U is an open subset of h−1((r, s)). Therefore

h−1((r, s)) is also open, and the map h is continuous. □
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2B. Model-theoretic setting. For the most part, our notation is standard. Let T be

a complete first-order theory in a language L and assume that U is a sufficiently

saturated and homogeneous model of T . While the rest of the paper is focused on

the setting where T expands the theory of a group, this section contains results about

arbitrary theories. We write x, y, z, . . . to denote arbitrary finite tuples of variables.

If x is a tuple of variables and A ¦ U , then Lx(A) is the collection of formulas

with free variables in x and parameters from A, modulo logical equivalence. We

write Lx for Lx(∅). Given a partitioned formula ϕ(x; y) with object variables x

and parameter variables y, we let ϕ∗(y; x) := ϕ(x; y) be the partitioned formula

with the roles of x and y reversed.

As usual, Sx(A) denotes the space of types over A, and if A ¦ B ¦ U then

Sfs
x (B, A) (respectively, Sinv

x (B, A)) denotes the closed set of types in Sx(B) that

are finitely satisfiable in A (respectively, invariant over A). Throughout this paper,

we will want to discuss the spaces Sinv
x (B, A) and Sfs

x (B, A) simultaneously, so

we let S†
x (B, A) denote “either Sfs

x (B, A) or Sinv
x (B, A)”. If ϕ(x) ∈ Lx(U), then

[ϕ(x)] = {p ∈ Sx(U) : ϕ(x) ∈ p}. Given a set X ¢ U x and A ¦ U a small set of

parameters, we say that X is
∨

-definable over A (respectively,
∧

- or type-definable

over A) if for some {Èi (x)}i∈I with Èi (x) ∈ Lx(A) we have X =
⋃

i∈I Èi (U)

(respectively, X =
⋂

i∈I Èi (U)). And X is
∨

-definable (respectively, type-definable)

if it is
∨

-definable (respectively, type-definable) over A for some small A ¦ U .

Definition 2.13. If X is a
∨

-definable subset of U x , we let [X ] :=
⋃

i∈I [Èi (x)]

where
∨

i∈I Èi (x) is any
∨

-definition of X . Likewise, if X is a type-definable

subset of U x , we let [X ] :=
⋂

i∈I [Æ j (x)], where
∧

i∈I Æ j (x) is any
∧

-definition

of X . Note that [X ] does not depend on the choice of the small set of formulas

defining X .

In the next fact, (1) follows by considering the preimages of half-open intervals,

and for a proof of (2) see, e.g., [Gannon 2019, Fact 2.10].

Fact 2.14. Let S be a topological space and f : S → R a function.

(1) Assume f is bounded and Borel. Then for every ε > 0 there exist r1, . . . , rn ∈ R

and Borel sets B1, . . . , Bn such that {Bi }
n
i=1 partition S and

sup
a∈S

∣∣∣∣ f (a)−

n∑

i=1

ri 1Bi
(a)

∣∣∣∣< ε.

(2) Assume S is a Stone space and f is continuous. Then for every ε > 0 there

exists clopen sets C1, . . . ,Cn ¦ S and r1, . . . , rn ∈ R such that

sup
a∈S

∣∣∣∣ f (a)−

n∑

i=1

ri 1Ci
(a)

∣∣∣∣< ε.
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2C. Keisler measures. For any A ¦ U , a Keisler measure over A in variables x

is a finitely additive probability measure on Lx(A). We denote the space of Keisler

measures over A (in variables x) as Mx(A). Every µ ∈ Mx(A) extends uniquely

to a regular Borel probability measure µ̃ on the space Sx(A), and we will routinely

use this correspondence. If A ¦ B ¦ U , then there is an obvious restriction

map r0 : Mx(B)→ Mx(A) and we denote r0(µ) simply as µ|A. Conversely, every

µ∈Mx(A) admits an extension to some µ′ ∈Mx(B) (not necessarily a unique one).

Definition 2.15. Let B ¦ U and µ ∈ Mx(U). We say that µ is

(1) invariant over B if for any formula ϕ(x, y) ∈ Lx,y(B) and elements a, b ∈ U y

such that a ≡B b we have µ(ϕ(x, b))= µ(ϕ(x, a));

(2) finitely satisfiable in B if for any formula ϕ(x)∈Lx(U) such that µ(ϕ(x)) > 0,

there exists some b ∈ B such that |H ϕ(b).

We let Mfs
x (U, B) (respectively, Minv

x (U, B)) denote the closed set of Keisler

measures in Mx(U) that are finitely satisfiable in B (respectively, invariant over B).

Just as with types, we let M†
x(U, B) mean “Mfs

x (U, B) or Minv
x (U, B)”. The

support of µ ∈ Mx(B) is the nonempty closed set of types

sup(µ)= {p ∈ Sx(B) : µ(ϕ(x)) > 0 for any ϕ(x) ∈ p}.

Given p̄ = (p1, . . . , pn) with pi ∈ Sx(A), we let Av( p̄) ∈ Mx(A) be defined by

Av( p̄)(ϕ(x)) := |{i ∈ [n] : ϕ(x) ∈ pi }|/n, and given ā = (a1, . . . , an) ∈ U x , we let

Av(ā) := Av
(
tp(a1/U), . . . , tp(an/U)

)
. We refer to, e.g., [Chernikov and Gannon

2022, Section 2] for a more detailed discussion of the aforementioned notions.

Definition 2.16. Let X ¦ Sx(U). We let M(X) := {µ ∈ Mx(U) : sup(µ)¦ X} be

the set of Keisler measures supported on X. If X is a closed subset of Sx(U), we let

M(X) denote the set of regular Borel probability measures on X, with the topology

on X induced from Sx(U). When we consider M(X) as a topological space, we

will always consider it with the weak-∗ topology.

The space of Keisler measures Mx(A) is a (closed convex) subset of a real

locally convex topological vector space of bounded charges on Lx(A) (see, e.g.,

[Bhaskara Rao and Bhaskara Rao 1983] for the details).

Lemma 2.17. Assume that X is a closed subset of Sx(U). Then M(X) is a closed

convex subset of Mx(U).

Proof. Suppose M(X) is not closed. Then limi∈I µi = µ for some µ ̸∈ M(X)

and some net (µi )i∈I with µi ∈ M(X). Then there exists a type p ∈ sup(µ) \ X.

Since X is closed, the set U := Sx(U)\X is open. Hence U =
⋃

j∈J [ϕ j (x)] for

some set of formulas {ϕ j } j∈J and there is some j ∈ J such that ϕ j (x) ∈ p. Then

[ϕ j (x)] ∩ X = ∅ and µ(ϕ j (x)) > 0 (since p ∈ sup(µ)). Thus limi∈I µi (ϕ j (x)) =

limi∈I 0 = 0< µ(ϕ j (x)), a contradiction.
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The space M(X) is convex since if r, s ∈ R>0 with r + s = 1, and µ, ¿ ∈ M(X),

then sup(rµ+ s¿)= sup(µ)∪ sup(¿)¦ X. □

In the later sections, we will need to discuss maps from the space of Keisler

measures to other spaces of measures. The following definition is an appropriate

notion of an isomorphism in this context (and will be denoted by ∼=).

Definition 2.18. Let V1, V2 be two locally convex topological vector spaces. Sup-

pose that C1 and C2 are closed convex subsets of V1 and V2, respectively. A map

f : C1 → C2 is an affine homeomorphism if f is a homeomorphism from C1 to C2

(with the induced topologies) and for any a1, . . . , an ∈ C1 and r1, . . . , rn ∈ Rg0

with
∑n

i=1 ri = 1 we have

f

( n∑

i=1

ri ai

)
=

n∑

i=1

ri f (ai ).

Definition 2.19. Let A be a subset of a locally convex topological vector space, V ,

and let b ∈ V . We say that b is extreme in A (or an extreme point of A) if b ∈ A

and b cannot be written as rc1+(1−r)c2 for c1, c2 ∈ A where c1 ̸= c2 and r ∈ (0, 1).

We let ex(A) := {c ∈ A : c is extreme in A}.

Fact 2.20 (Krein–Milman theorem). Let A be a convex compact subset of a locally

convex topological vector space V . Then the convex hull of ex(A) is a dense subset

of A.

Proposition 2.21. Let X ¦ Sx(U) be a closed set. Then there exists an affine

homeomorphism µ :M(X)→M(X) such that for any ϕ(x)∈Lx(U) and µ∈M(X),

µ(ϕ(x))= µ (µ)([ϕ(x)] ∩ X).

Moreover, sup(µ)= supp(µ (µ)).

Proof. This follows directly from the fact that every Keisler measure µ in Mx(U)

extends uniquely to a regular Borel probability measure µ̃ on Sx(U). We let

µ (µ) := µ̃ ↾X, i.e., the restriction of the measure µ̃ to the collection of Borel subsets

of X. See, e.g., [Simon 2015, page 99] for the details. □

For a proof of the following fact, see [Chernikov and Gannon 2022, Lemma

2.10].

Fact 2.22. (1) µ ∈ Mfs
x (U,M) if and only if p ∈ Sfs

x (U,M) for all p ∈ sup(µ).

(2) (T is NIP) µ∈Minv
x (U,M) if and only if p ∈ Sinv

x (U,M) for every p ∈ sup(µ).

Combining Proposition 2.21 and Fact 2.22 we have the following.

Corollary 2.23. (1) If T is any theory, then Mfs
x (U,M) = M(Sfs

x (U,M)) ∼=

M(Sfs
x (U,M)).

(2) If T is NIP, then Minv
x (U,M)= M(Sinv

x (U,M))∼= M(Sinv
x (U,M)).
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Remark 2.24. It is not true that M(Sinv
x (U,M)) = Minv

x (U,M) in an arbitrary

theory; see [Chernikov and Gannon 2022, Lemma 2.10(4)].

Lemma 2.25. For any µ∈Mx(U), there exists a net of measures (¿ j ) j∈J in Mx(U)

such that

(1) for each j ∈ J , ¿ j = Av( p̄ j ) for some p̄ j = (p j1, . . . , p jm ) with p ji ∈ sup(µ);

(2) lim j∈J ¿ j = µ.

Moreover, if µ is finitely satisfiable in M ¯ U , then we can take ¿ j of the form

Av(ā j ) for some ā j ∈ (M x)<É.

Proof. Consider a basic open subset O of Mx(U), of the form

O =

n⋂

i=1

{¿ ∈ Mx(U) : ri < ¿(¹i (x)) < si }.

Suppose that µ ∈ O . Let B be the (finite) Boolean algebra generated by the

sets {¹1(x), . . . , ¹n(x)}, and let {Ã1(x), . . . , Ãm(x)} be the set of its atoms. For

each atom Ãi (x) such that µ(Ãi (x)) > 0, there exists some pi ∈ sup(µ) such that

Ãi (x) ∈ pi . Consider the measure

¼ :=
∑

{i∈[n]:µ(Ãi (x))>0}

µ(Ãi (x))¶pi
.

Then ¼(¹i (x)) = µ(¹i (x)) for every i ∈ [n], and hence ¼ ∈ O . We can choose a

sufficiently large t ∈ N and si ∈ N so that si/t is sufficiently close to µ(Ãi (x)), so

that ¿O :=
∑

{i∈[n]:µ(Ãi (x))>0}(si/t)¶pi
∈ O (taking p̄O to be the tuple of types of

length t with pi repeated si times, we see that ¿O = Av( p̄O)). Then we can take

the net (¿O)µ∈O .

And if µ is finitely satisfiable in M and µ(Ãi (x)) > 0, then |H Ãi (ai ) for some

ai ∈ M x , and we can take pi := tp(ai/U) (see [Chernikov and Gannon 2022,

Proposition 2.11]). □

2D. Definable convolution in NIP groups. In this section, we assume that T is an

L-theory expanding a group, we denote by G a sufficiently saturated model of T

and by G a small elementary submodel; x, y, . . . denote singleton variables; and

for any ϕ(x) ∈ Lx(G), we let ϕ′(x, y) := ϕ(x · y).

Definition 2.26 (T is NIP). Suppose that µ, ¿ ∈ Minv
x (G,G). Then we define

µ ∗ ¿ to be the unique Keisler measure in Minv
x (G,G) such that for any formula

ϕ(x) ∈ Lx(G),

µ ∗ ¿(ϕ(x))= µx ¹ ¿y(ϕ(x · y))=

∫

Sy(G ′)

F
ϕ′

µ,G ′ d(¿G ′),

where G ′ is a small model containing G and all parameters from ϕ, the map F
ϕ′

µ,G ′ :

Sy(G
′)→ [0, 1] is given by F

ϕ′

µ,G ′(q) = µ(ϕ(x · b)) for some (equivalently, any)
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b ∈ G with b |H q, and ¿G ′ is the regular Borel probability measure on Sy(G
′)

corresponding to the Keisler measure ¿|G ′ . We will routinely suppress notation and

write this integral as
∫

Sy(G ′)
F
ϕ′

µ d¿.

Remark 2.27. This integral is well defined since invariant measures in NIP are

Borel-definable, so the maps which are being integrated are measurable, and does

not depend on the choice of G ′. For more details about definable convolution and its

basic properties we refer the reader to [Chernikov and Gannon 2022, Section 3.2].

In particular, we will freely use [Chernikov and Gannon 2022, Proposition 3.14].

The following is well known; see, e.g., [Chernikov and Gannon 2022, Fact 3.11].

Fact 2.28. Both (Sinv
x (G,G), ∗) and (Sfs

x (G,G), ∗) are left continuous (i.e., p 7→

p ∗ q is a continuous map for every q) compact Hausdorff semigroups.

The next fact is from [Chernikov and Gannon 2022, Propositions 6.2(3) and 6.4].

Fact 2.29 (T is NIP). Both (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) are left continuous

(i.e., µ 7→ µ ∗ ¿ is a continuous map for every ¿) compact Hausdorff semigroups.

Moreover, for any fixed ¿ and ϕ(x)∈Lx(G), the map µ 7→ (µ∗¿)(ϕ(x))∈ [0, 1]

is continuous.

We also have right continuity when multiplying by a definable measure (but not

in general).

Lemma 2.30. If ¿ ∈ Minv
x (G,G) is a definable measure, then the map µ 7→ ¿ ∗µ

from Minv
x (G,G) to Minv

x (G,G) is continuous.

Proof. Let O be a basic open subset of Minv
x (G,G), that is,

O =

n⋂

i=1

{µ ∈ Minv
x (G,G) : ri < µ(ϕi (x)) < si }

for some ri , si ∈ R and ϕi (x) ∈ Lx(G). We have

(¿ ∗ −)−1(O)=

n⋂

i=1

{µ ∈ Minv
x (G,G) : ri < (¿ ∗µ)(ϕi (x)) < si }

=

n⋂

i=1

{µ ∈ Minv
x (G,G) : ri < (¿z ¹µx)(ϕi (z · x)) < si }

=

n⋂

i=1

((
(¿z ¹ −)(ϕi (z · x))

)−1
(ri , si )

)
,

where ¿z is simply ¿x with change of variables to z and (ri , si ) is an open subinterval

of [0, 1]. By, e.g., [Conant et al. 2021, Lemma 5.4], the map µx ∈ Mx(G) 7→

(¿z ¹µx)(ϕi (z · x)) ∈ [0, 1] is continuous, so its restriction to Minv
x (G,G) remains

continuous. Thus O is open, as the intersection of finitely many open sets. □
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Definition 2.31. A measure µ ∈ Minv
x (G,G) is idempotent if µ ∗µ= µ.

The following simple observation will be frequently used in computations.

Fact 2.32. Let µ ∈ Minv
x (G,G) and f : Sx(G)→ R be a bounded Borel function.

Let r : Sx(G)→ Sx(G), p 7→ p|G be the restriction map. Then
∫

Sx (G)

f dµG =

∫

Sx (G)

( f ◦ r) dµ.

2E. Some facts from Ellis semigroup theory.

Definition 2.33. Suppose that (X, ∗) is a semigroup. A nonempty subset I of X is

a left ideal if X I = {x ∗ i : x ∈ X, i ∈ I } ¦ I . We say that I is a minimal left ideal

if I does not properly contain any other left ideal.

The next fact summarizes the results that we will need from the theory of Ellis

semigroups. See [Ellis et al. 2001, Proposition 4.2; Glasner 2007, Proposition 2.4].

Fact 2.34. Suppose that X is a compact Hausdorff space and (X, ∗) is a left

continuous semigroup, i.e., for each q ∈ X , the map − ∗ q : X → X is continuous.

Then there exists a minimal left ideal I , and any minimal left ideal is closed. We let

id(I )= {u ∈ I : u2 = u} be the set of idempotents in I .

(1) id(I ) is nonempty.

(2) For every p ∈ I and u ∈ id(I ), p ∗ u = p.

(3) For every u ∈ id(I ), u ∗ I = {u ∗ p : p ∈ I } = {p ∈ I : u ∗ p = p} is a subgroup

of I with identity element u. For every u′ ∈ id(I ), the map Äu,u′ := (u′ ∗−)|u∗I

is a group isomorphism from u ∗ I to u′ ∗ I . In view of this, we refer to u ∗ I as

the ideal group.

(4) I =
⋃

{u ∗ I : u ∈ id(I )}, where the sets in the union are pairwise disjoint, and

each set u · I is a subgroup of I with identity u.

(5) For any q ∈ X , I ∗ q is a minimal left ideal; and if p ∈ I , then X ∗ p = I .

(6) Let J be another minimal left ideal of X and u ∈ id(I ). Then there exists

a unique idempotent u′ ∈ id(J ) such that u ∗ u′ = u′ and u′ ∗ u = u. The

map ÄI,J := (− ∗ u′)|I is a homeomorphism from I to J (with the induced

topologies) mapping u ∗ I to u′ ∗ J .

The following is a celebrated theorem of Ellis [1957, Theorems 1 and 2] (see

also [Lawson 1974, Corollary 5.2]).

Fact 2.35 (Ellis joint continuity theorem). (1) Let G be a locally compact Haus-

dorff semitopological group (i.e., G is equipped with a group structure such

that the maps x 7→ y · x and x 7→ x · y from G into G are continuous for any

fixed y ∈ G), and let X be a locally compact Hausdorff topological space.

Then every separately continuous action of G on X is (jointly) continuous.
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(2) If G is a locally compact Hausdorff semitopological group, then G is a topo-

logical group.

2F. Some facts from Choquet theory. We recall some notions and facts from

Choquet theory for not necessarily metrizable compact Hausdorff spaces (we use

[Phelps 2001] as a general reference). Let E be a locally convex real topological

vector space. The following generalizes the usual notion of a simplex in Rn to the

infinite-dimensional context.

Definition 2.36 [Phelps 2001, Section 10]. (1) A set P ¦ E is a convex cone if

P + P ¦ P and ¼P ¦ P for every scalar ¼ > 0 in R.

(2) A set X ¦ P is the base of a convex cone P if for every y ∈ P there exists a

unique scalar ¼ g 0 in R and x ∈ X such that y = ¼x (not all convex cones

have a base).

(3) A convex cone P in E induces a translation-invariant partial ordering on E :

x g y if and only if x − y ∈ P . When P admits a base, P ∩ (−P)= {0}, and

hence x g y ' y g x =⇒ x = y.

(4) A nonempty compact convex set X ¦ E is a Choquet simplex, or just simplex,

if X is the base of a convex cone P ¦ E such that P is a lattice with respect to

the ordering induced by P . That is, for every x, y ∈ P there exists a greatest

lower bound z ∈ P (i.e., z f x and z f y, and for every z′ ∈ P with z′ f x

and z′ f y, z′ f z). The greatest lower bound z of x and y is unique and

denoted by x ' y.

We could not find a direct quote for the following fact, so we provide a short

argument combining several standard results in the literature.

Fact 2.37. Let S be a compact Hausdorff space and T a family of continuous func-

tions from S into S. Then the set of all regular T -invariant (that is, µ(T −1(A))=

µ(A) for every Borel A ¦ S and T ∈ T ) Borel probability measures on S, denoted

by MT (S), is a Choquet simplex (assuming it is nonempty).

Proof. By the Riesz representation theorem, we can view the set M+(S) of all

regular Borel nonnegative finite measures on S as a subset of C(S)∗, the dual (real

topological vector) space of the topological vector space of continuous functions

on S, with the weak-∗ topology. Let MT (S) (respectively, M+
T
(S)) be the set of

regular Borel T -invariant probability (respectively, finite nonnegative) measures

on S. Then MT (S) ¦ M
+
T
(S) ¦ M+(S) are compact convex subsets (by Borel

measurability of the maps in T ; see [Phelps 2001, page 76]). Moreover, M+
T
(S) is

a convex cone with the base MT (S). It is well known that M+(S) forms a lattice:

for µ, ¿ ∈ M+(S), their greatest lower bound µ' ¿ ∈ M+(S) can be defined via

(µ'¿)(A)= infB∈S,B¦A{µ(B)+¿(A\ B)} (see, e.g., [Dales et al. 2016, page 111];

it is easy to verify from this definition that if µ, ¿ are regular, then µ' ¿ is also
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regular). Finally, [Phelps 2001, Proposition 12.3] shows that if µ, ¿ ∈ M+(S) are

T -invariant, then µ' ¿ is also T -invariant (using an equivalent definition of the

lower bound in terms of the Radon–Nikodym derivative). Hence M
+
T
(S) is a lattice,

and so MT (S) is a Choquet simplex. □

Definition 2.38 (see [Phelps 2001, Section 11] or [Alfsen 1971, Chapter 2, §4]). A

compact convex set X ¦ E is a Bauer simplex if X is a Choquet simplex and ex(X)

is closed.

Definition 2.39. A point x ∈ E is the barycenter of a regular Borel probability

measure µ on X if f (x) = µ( f ) :=
∫

X
f dµ for any continuous linear function

f : E → R.

Remark 2.40. Both the property of being a Choquet simplex and the property

of being a Bauer simplex are preserved under affine homeomorphisms (see, e.g.,

[Phelps 2001, pages 52–53]).

Fact 2.41. (1) [Phelps 2001, Proposition 11.1] X is a Bauer simplex if and only

if the map sending a regular Borel probability measure µ on ex(X) (the

closure of the extreme points) to its barycenter is an affine homeomorphism of

M(ex(X)) and X (and thus a posteriori of M(ex(X)) and X ).

(2) [Alfsen 1971, Corollary II.4.4] Up to affine homeomorphisms, Bauer simplices

are exactly the sets of the form M(X) for X a compact Hausdorff space (where

ex(M(X))= {¶x : x ∈ X}).

3. Definable convolution on G and convolution on G/G00

Throughout the rest of the paper, T is a complete NIP theory expanding a group, G

is a monster model of T , G is a small elementary submodel of G, x, y, . . . denote

singleton variables, and for any ϕ(x) ∈ Lx(G), ϕ
′(x, y) = ϕ(x · y). We define

and study a natural pushforward map from Mx(G) to M(G/G00). We demonstrate

that this map is a homomorphism from the semigroup (Minv
x (G,G), ∗) of invariant

Keisler measures with definable convolution onto the semigroup (M(G/G00), ⋆)

of regular Borel probability measures on the compact group G/G00 with classical

convolution. In particular, the image of an idempotent, invariant Keisler measure

on G is an idempotent measure on the compact group G/G00. The proofs of these

theorems are primarily analytic, and the NIP assumption is used to ensure that G00

exists and definable convolution is well defined. We begin by recalling some

properties of G/G00 and define the corresponding pushforward map.

Fact 3.1. Suppose that T is NIP.

(i) There exists a smallest type-definable subgroup of G of bounded index, denoted

by G00. Moreover, G00 is a normal subgroup of G type-definable over ∅. Let

Ã : G → G/G00 be the quotient map, i.e., Ã(a)= aG00.
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(ii) G/G00 is a compact group with the logic topology: a subset B of G/G00 is

closed if and only if Ã−1(B) is type-definable over some/any small submodel

of G.

(iii) The map Ã : G → G/G00 induces a continuous map Ã̂ : Sx(G) → G/G00 via

Ã̂(q) := Ã(a), where a |H q|G and G is some/any elementary submodel of G.

Therefore, we can consider the pushforward Ã̂∗ : M(Sx(G)) → M(G/G00).

By Proposition 2.21, Mx(G) is affinely homeomorphic to M(Sx(G)) and so

(formally) we let Ã∗ : Mx(G) → M(G/G00) be the composition of Ã̂∗ and

this homeomorphism. We will primarily work with Ã∗, and usually identify

Ã̂∗ and Ã∗ without comment.

(iv) The map Ã∗ : Mx(G)→ M(G/G00) is continuous, affine, and surjective.

Proof. (i) This is a theorem of Shelah [2008].

(ii) This is from [Pillay 2004] (see also [Simon 2015, Section 8]).

(iii) First, Ã̂ is well defined. Indeed, let G1,G2 zG be small elementary submodels

and q ∈ Sx(G) be such that ai |Hq|Gi
for i ∈{1, 2}. It suffices to show Ã(a1)=Ã(a2).

Let U be an open subset of G/G00 such that Ã(a1) ∈ U , and we show that then

also Ã(a2) ∈ U . Since U is open, Ã−1(U ) is
∨

-definable over both G1 and G2.

Let
∨

j∈Ii
È i

j (x) be a definition of Ã−1(U ) over Gi . Hence there is some j1 ∈ I1

such that U |H È j1(a1), so È j1(x) ∈ q. As
⋃

j∈I1
[È1

j (x)] =
⋃

j∈I2
[È2

j (x)] (see

Definition 2.13), there exists some j2 ∈ I2 so that È j2(x) ∈ q . Now

a2 ∈ È2
j2
(U)¦

⋃

j∈I2

È2
j (U)= Ã−1(U )=⇒ Ã(a2) ∈ U.

Since G/G00 is Hausdorff and Ã(a1) and Ã(a2) are in the same open sets, we

conclude that Ã(a1)= Ã(a2).

By the previous paragraph, Ã̂ = f ◦ rG , where G is any small submodel, the

map rG : Sx(G)→ Sx(G) is the restriction map, and f : Sx(G)→ G/G00 is defined

via f (q)= Ã(a), where a |H q . Both f and rG are continuous maps and so Ã̂ is a

continuous map (the map f is continuous by (ii)).

(iv) This is by Fact 2.1(iii),(iv) and Proposition 2.21. □

Definition 3.2. We let Ã fs
G,∗ := Ã∗ ↾Mfs

x (G,G)
and Ã inv

G,∗ := Ã∗ ↾Minv
x (G,G). We will

typically write Ã inv
G,∗ simply as Ã inv

∗ when G is clear from the context, and Ã†
∗ to

mean “either Ã inv
∗ or Ã fs

∗ ”.

Remark 3.3. Both Ã inv
∗ and Ã fs

∗ are continuous and affine since these maps are

restrictions of Ã∗ to a closed convex subspace.

Proposition 3.4. The map Ã†
∗ : M†

x(G,G)→ M(G/G00) is surjective.

Proof. Since Mfs
x (G,G)¦Minv

x (G,G), it suffices to show that Ã fs
∗ is surjective. Fix

¿ ∈ M(G/G00). By the Krein–Milman theorem, the convex hull of the extreme
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points of M(G/G00) is dense inside M(G/G00). The extreme points of M(G/G00)

are the Dirac measures concentrating on the elements of G/G00 (see, e.g., [Simon

2011, Example 8.16]). Thus there exists a net (¿i )i∈I of measures in M(G/G00)

such that limi∈I ¿i = ¿ and for each i ∈ I , ¿i =
∑ni

j=1 r i
j¶bi

j
for some ni ∈ N,

bi
j ∈ G/G00 and r i

j ∈ R>0 with
∑ni

j=1 r i
j = 1. Since the map Ã is surjective, for

each bi
j there exists some ai

j ∈ G such that Ã(ai
j ) = bi

j . Let pi
j ∈ Sfs

x (G,G) be

a global coheir of tp(ai
j/G), and let µi :=

∑ni

j=1 r i
j¶pi

j
. Then Ã∗(µi ) = ¿i . Now

(µi )i∈I is a net in the compact space Mfs
x (G,G), so, passing to a subnet, we may

assume that it converges and let µ := limi∈I µi . Then

Ã∗(µ)= Ã∗(lim
i∈I
µi )= lim

i∈I
Ã∗(µi )= lim

i∈I
¿i = ¿,

where the second equality follows from continuity of Ã∗. Hence Ã fs
∗ is surjective. □

Lemma 3.5. Let p, q ∈ Sinv
x (G,G). Then

(i) Ã̂(p) · Ã̂(q)= Ã̂(p ∗ q),

(ii) Ã∗(¶p)= ¶Ã̂(p),

(iii) Ã∗(¶p ∗ ¶q)= Ã∗(¶p) ⋆ Ã∗(¶q).

Proof. (i) Let b |H q|G and a |H p|Gb. By definition (a · b) |H p ∗ q|G , and hence

Ã̂(p ∗ q)= Ã(a · b)= Ã(a) ·Ã(b)= Ã̂(p) · Ã̂(q).

(ii) Let f : G/G00 → R be a continuous function. Then

Ã∗(¶p)( f )=

∫
( f ◦ Ã̂) d¶p = f (Ã̂(p))=

∫
f d¶Ã̂(p) = ¶Ã̂(p)( f ).

Since Ã∗(¶p) and ¶Ã̂(p) agree on all continuous functions, by Fact 2.1(i) they belong

to the same open sets in a Hausdorff space, so Ã∗(¶p)= ¶Ã̂(p).

(iii) We have

Ã∗(¶p ∗ ¶q)= Ã∗(¶p∗q)= ¶Ã̂(p∗q) = ¶Ã̂(p)·Ã̂(q) = ¶Ã̂(p) ⋆ ¶Ã̂(q).

Here the first equality follows from [Chernikov and Gannon 2022, Proposition

3.12], the second and third equalities follow from (ii) and (i) respectively, and the

last equality is by Remark 2.6. □

To show that Ã inv
∗ is a homomorphism, we first observe some basic properties

of the action of G on its space of types and, in turn, on the space of continuous

functions from Sx(G) to R.

Definition 3.6. Let G be a model of T . For a ∈ G and p ∈ Sx(G), let p · a :=

{ϕ(x · a−1) : ϕ(x) ∈ p} ∈ Sx(G) and a · p = {ϕ(a−1 · x) : ϕ(x) ∈ p} ∈ Sx(G). This

defines a right (respectively, left) action of G on Sx(G) by homeomorphisms.
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Lemma 3.7. For any a ∈ G and q ∈ Sx(G) we have Ã(a) · Ã̂(p) = Ã̂(a · p) and

Ã̂(p) ·Ã(a)= Ã̂(p · a).

Proof. We notice that

Ã̂(p) ·Ã(a)= Ã̂(p) · Ã̂(tp(a/G))= Ã̂(p ∗ tp(a/G))= Ã̂(p · a),

where the second equality is by Lemma 3.5(i). The other computation is similar. □

Lemma 3.8. Let G be any model of T . Let h : Sx(G)→ R be a function, {[Èi ]}i∈[n]

a partition of Sx(G) with Èi ∈ Lx(G), ε ∈ R>0 and r1, . . . , rn ∈ R such that

supq∈Sx (G)

∣∣h(q)−∑n
i=1 ri 1[Èi ](q)

∣∣<ε. For a ∈ G, we define the functions h·a, a·h :

Sx(G)→ R via (h · a)(p)= h(p · a) and (a · h)(p)= h(a · p). Then

sup
q∈Sx (G)

∣∣∣∣(h · a)(q)−

n∑

i=1

ri 1[Èi (x ·a)](q)

∣∣∣∣< ε,

sup
q∈Sx (G)

∣∣∣∣(a · h)(q)−

n∑

i=1

ri 1[Èi (a·x)](q)

∣∣∣∣< ε.

In particular, if h is continuous, then h · a and a · h are both continuous maps from

Sx(G) to R (as uniform limits of continuous functions, using in item (2) of Fact 2.14).

Proof. We only prove the lemma for h · a (the case of a · h is similar). Assume the

conclusion fails. Then there exists some q ∈ Sx(G) such that

∣∣∣∣(h · a)(q)−

n∑

i=1

ri 1[Èi (x ·a)](q)

∣∣∣∣> ε.

Since {[Èi (x)]}i∈[n] is a partition, so is {[Èi (x · a)]}i∈[n]. For precisely one k ∈ [n],

we have that Èk(x ·a)∈q and
∑n

i=1 ri 1[Èi (x ·a)](q)= rk . So Èk(x ·a−1 ·a)∈q ·a, and

thus Èk(x)∈ q ·a. Since {[Èi (x)]}i∈[n] forms a partition,
∑n

i=1 ri 1[Èi (x)](q ·a)= rk .

Then ε >
∣∣h(q ·a)−

∑n
i=1 ri 1[Èi (x)](q ·a)

∣∣ = |(h ·a)(q)− rk |> ε by assumption, a

contradiction. □

Remark 3.9. The previous lemma follows also from the more general observation

that both the left and right action of G on (RSx (G), ∥ · ∥∞) are by isometries, where

RSx (G) is the space of all functions from Sx(G) to R with the uniform norm.

Theorem 3.10. Suppose µ, ¿ ∈ Minv
x (G,G). Then Ã∗(µ ∗ ¿)= Ã∗(µ) ⋆ Ã∗(¿).

Proof. It suffices to show that for any continuous function f : G/G00 → R we

have Ã∗(µ ∗ ¿)( f ) = Ã∗(µ) ⋆ Ã∗(¿)( f ). Fix a continuous f : G/G00 → R. Let

r : Sx(G) → Sx(G), p 7→ p|G be the restriction map. Fix ε > 0. Then f ◦ Ã̂

is a continuous function from Sx(G) to R (which factors through Sx(G)), so by

Fact 2.14(2) there exists a partition {[Èi (x)]}i∈[n] of Sx(G) with Èi (x) ∈ Lx(G)
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and r1, . . . , rn ∈ R such that

sup
p∈Sx (G)

∣∣∣∣( f ◦ Ã̂)(p)−

n∑

i=1

ri 1[Èi (x)](p)

∣∣∣∣< ε.

We now have the following computation for Ã∗(µ ∗ ¿)( f ):

Ã∗(µ ∗ ¿)( f )=

∫

G/G00

f dÃ∗(µ ∗ ¿)=

∫

Sx (G)

( f ◦ Ã̂) d(µ ∗ ¿)

≈ε

∫

Sx (G)

( n∑

i=1

ri 1[Èi (x)]

)
d(µ ∗ ¿)=

n∑

i=1

ri

(
(µ ∗ ¿)(Èi (x))

)

=

n∑

i=1

ri

(
(µx ¹ ¿y)(Èi (x · y)

)
=

n∑

i=1

ri

∫

Sy(G)

F
È ′

i

µ,G d(¿G)

(∗)
=

n∑

i=1

ri

∫

Sy(G)

(F
È ′

i

µ,G ◦ r) d¿ =

∫

Sy(G)

(( n∑

i=1

ri F
È ′

i

µ,G

)
◦ r

)
d¿.

The equality (∗) is justified by Fact 2.32.

Next we will show that the convolution product (Ã∗(µ)⋆Ã∗(¿))( f ) in M(G/G00)

is close to the final term in the above computation. Define h : G/G00 → R via

h(a) =
∫
G/G00 f (x · a) dÃ∗(µ). By Lemma 2.12, h is continuous. Fix p ∈ Sy(G)

and let b := Ã̂(p) ∈ G/G00 and b |H r(p) ∈ G. By definition, Ã̂(p)= Ã(b)= b. By

Lemmas 3.5 and 3.8, we have the following computation:

(h ◦ Ã̂)(p)= h(b)

=

∫

G/G00

f (x · b) dÃ∗(µ)=

∫

q∈Sx (G)

f (Ã̂(q) · b) dµ

=

∫

q∈Sx (G)

f (Ã̂(q) ·Ã(b)) dµ=

∫

q∈Sx (G)

f (Ã̂(q · b)) dµ=

∫

Sx (G)

(( f ◦ Ã̂) · b) dµ

≈ε

∫

Sx (G)

n∑

i=1

ri 1[Èi (x ·b)] dµ=

n∑

i=1

riµ(Èi (x · b))=

(( n∑

i=1

ri F
È ′

i

µ,G

)
◦ r

)
(p).

Since p was arbitrary in Sy(G), we conclude that

sup
p∈Sy(G)

∣∣∣∣(h ◦ Ã̂)(p)−

(( n∑

i=1

ri F
È ′

µ,G

)
◦ r

)
(p)

∣∣∣∣< ε.

Therefore,

(Ã∗(µ) ⋆ Ã∗(¿))( f )=

∫

G/G00

h dÃ∗(¿)=

∫

Sy(G)

(h ◦ Ã̂) d¿

≈ε

∫

Sy(G)

(( n∑

i=1

ri F
È ′

µ,G

)
◦ r

)
d¿ ≈ε Ã∗(µ ∗ ¿)( f ).

Since ε was arbitrary, we conclude that Ã∗(µ ∗ ¿)( f )= (Ã∗(µ) ⋆ Ã∗(¿))( f ). □



DEFINABLE CONVOLUTION AND IDEMPOTENT KEISLER MEASURES, II 203

Corollary 3.11. If µ ∈ Minv
x (G,G) and µ is idempotent, then Ã∗(µ) is an idempo-

tent measure on G/G00.

Proof. By Theorem 3.10 we have Ã∗(µ) ⋆ Ã∗(µ)= Ã∗(µ ∗µ)= Ã∗(µ). □

Corollary 3.12. Let ¼ ∈ M(G/G00) and assume that ¼ is idempotent. Then there

exists a measure ¿ ∈ Mfs
x (G,G) such that Ã∗(¿)= ¼ and ¿ is idempotent.

Proof. By Proposition 3.4, the set A := {¸ ∈ Mfs
x (G,G) : Ã∗(¸)= ¼} is nonempty.

Since Ã∗ is continuous by Fact 3.1(iv), A is a closed subset of Mfs
x (G,G). And for

any ¸1, ¸2 ∈ A we have ¸1 ∗ ¸2 ∈ A, as Ã∗(¸1 ∗ ¸2)= Ã∗(¸1) ⋆ Ã∗(¸2)= ¼ ⋆ ¼= ¼

by Theorem 3.10. Hence (A, ∗) is a compact left-continuous semigroup (using

Fact 2.29). By Fact 2.34, (A, ∗) contains an idempotent. □

4. G00-invariant idempotent measures and type-definable subgroups

In this section we use the properties of the pushforward map established in Section 3

to prove that if µ is idempotent, G00-right-invariant, and automorphism-invariant

over a small model, then µ is a translation-invariant measure on its type-definable

stabilizer subgroup of G.

Definition 4.1. (1) Let µ ∈ Mx(G). The right stabilizer of µ, denoted as Stab(µ),

is the subgroup of G defined by

Stab(µ) :=
⋂

ϕ∈Lx (G)

{g ∈ G : µ(ϕ(x))= µ(ϕ(x · g))}.

(2) Let H be a subgroup of G (not necessarily definable). We say that µ ∈ Mx(G)

is H-right-invariant (respectively, H-left-invariant) if for every formula ϕ(x)∈

Lx(G) and h ∈ H we have µ(ϕ(x · h))= µ(ϕ(x))
(
respectively, µ(ϕ(h · x))=

µ(ϕ(x))
)
. We say that µ is H-invariant if µ is both H-left-invariant and

H-right-invariant.

(3) Let H be a type-definable subgroup of G. We say that H is definably amenable

if there exists some µ ∈ Mx(G) such that µ̃([H])= 1 (where µ̃ is the unique

regular Borel probability measure extending µ) and µ is H-right-invariant.

Moreover, in this case we say that (H, µ) is an amenable pair.

The next proposition shows that if a Keisler measure witnesses the definable

amenability of some type-definable subgroup of G, then this subgroup must be its

stabilizer:

Proposition 4.2. Suppose that µ ∈Mx(G) and H is a type-definable subgroup of G.

Suppose that µ̃([H])= 1 and H ¦ Stab(µ). Then H = Stab(µ).

Proof. Suppose H ̸= Stab(µ), and let g ∈ Stab(µ)\H. The subsets [H] and [H] · g

of Sx(G) are disjoint and µ̃([H] ∪ ([H] · g)) = 2, where µ̃ is the unique regular

Borel probability measure extending µ to Sx(G). This is a contradiction. □
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Definition 4.3. An idempotent measure µ ∈ Minv
x (G,G) is said to be pairless

if there does not exist a type-definable subgroup H of G such that (H, µ) is an

amenable pair.

Remark 4.4. By Proposition 4.2, if Stab(µ) is type-definable, then µ is pairless if

and only if µ([Stab(µ)]) ̸= 1.

We now give two examples of pairless idempotent measures (in fact, types) in

NIP groups (one definable, the other finitely satisfiable). Our third example shows

that there can be many measures forming an amenable pair with a given group.

Example 4.5. Let T be the (complete) theory of divisible ordered abelian groups,

let G := (R,+, <) |H T , and let G { G be a monster model of T .

(1) Let p0+ be the unique global definable (over R) type extending

{x < a : a > 0, a ∈ G} ∪ {x > a : a f 0, a ∈ R}.

Then ¶p0+ ∈ Minv
x (G,G) is idempotent and pairless.

(2) Let pR+ be the unique global type finitely satisfiable in R and extending

{x > a : a ∈ R}.

Then ¶p
R+ ∈ Mfs

x (G,G) is idempotent and pairless.

(3) Let p+∞ and p−∞ be the unique global heirs (over R) extending the types

2+(x) := {x > a : a ∈ R} and 2−(x) := {x < a : a ∈ R},

respectively. Then (G, µr ) is an amenable pair for any r ∈ [0, 1], where

µr = r¶p−∞
+ (1 − r)¶p+∞

.

Proof. (1) Note that Stab(¶p0+ ) = {0} and ¶p0+ ({0}) = 0, so ¶p+
0

is pairless by

Proposition 4.2. We now check that ¶p0+ is idempotent. Fix some a ∈ G, some

small G ′ z G containing a and R, and a realization c |H p0+ |G ′ in G. Note that

(p0+ ∗ p0+)(x < a)= (p0+ ¹ p0+)(x + y < a)= p0+(x < a − c).

We now have two cases:

(a) If a > 0, then a − c > 0 and so (p0+ ∗ p0+)(x < a)= 1.

(b) If a f 0, then a − c < 0 and so (p0+ ∗ p0+)(x < a)= 0.

Hence, using quantifier-elimination, p0+ ∗ p0+ = p0+ , and so ¶p0+ ∗ ¶p0+ = ¶p0+ .

(2) The measure ¶p
R+ is idempotent by a computation analogous to the one in (1).

We have

Stab(¶p
R+ )= {a ∈ G : −n < a < n for some n ∈ N}.

We note that Stab(¶p
R+ ) is a

∨
-definable subset of G, but is not definable, so it

is not type-definable. Now suppose that there exists a type-definable subgroup H
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of G such that (H, ¶p
R+ ) is an amenable pair. Then, by definition, H ¦ Stab(¶p

R+ )

and ¶p
R+ ([H])= 1. By Proposition 4.2, we conclude that H = Stab(¶p

R+ ). Hence

Stab(¶p
R+ ) is type-definable, a contradiction. Alternatively, we get a contradiction

by regularity of the measure:

¶p
R+ ([Stab(¶p

R+ )])= sup{¶p
R+ ([−n < x < n]) : n ∈ N} = 0.

(3) Note that p+∞ and p−∞ are (left- and right-) G-invariant. Hence

µr := r¶p−∞
+ (1 − r)¶p+∞

∈ Mx(G)

is G-invariant for any r ∈ [0, 1]. Since µr is G-invariant, (G, µr ) is an amenable

pairing for every r ∈ [0, 1]. □

In the rest of this section we show that in an NIP group G, for any G00-invariant

idempotent µ ∈ Minv
x (G,G), Stab(µ) is type-definable and (Stab(µ), µ) is an

amenable pair.

Definition 4.6. Assume that µ ∈ Minv
x (G,G) is idempotent. By Corollary 3.11,

the measure Ã∗(µ) ∈ M(G/G00) is idempotent, and by Fact 2.8, supp(Ã∗(µ)) is a

closed subgroup of G/G00 and Ã∗(µ) ↾supp(Ã∗(µ)) is the normalized Haar measure on

this closed subgroup. Then Ã−1
(
supp(Ã∗(µ))

)
is a type-definable subgroup of G.

We let HL(µ) := Ã−1
(
supp(Ã∗(µ))

)
.

Proposition 4.7. Suppose µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

(i) If p ∈ sup(µ), then Ã̂(p) ∈ supp(Ã∗(µ)) (see Fact 3.1 for the definition of Ã̂ ).

(ii) If p ∈ sup(µ), then p ∈ [HL(µ)].

(iii) µ([HL(µ)])= 1.

(iv) If b ∈ Stab(µ), then Ã(b) ∈ Stab(Ã∗(µ)).

Proof. (i) Let U be an open subset of G/G00 containing Ã̂(p). Then Ã−1(U ) is∨
-definable, so Ã−1(U ) =

∨
i∈I Èi (x) for some Èi ∈ Lx(G). Hence there exists

some i ∈ I so that Èi (x) ∈ p. Since p ∈ sup(µ), we have that µ(Èi (x)) > 0. Then

Ã∗(µ)(U )= µ̃([Ã̂−1(U )])g µ(Èi (x)) > 0,

where µ̃ is the unique regular Borel probability measures extending µ. Therefore

Ã̂(p) ∈ supp(Ã∗(µ)).

(ii) This is obvious by (i).

(iii) Assume not. Thenµ(Sx(G)\[HL(µ)])>0. This set is open and so by regularity

there exists some [È(x)] ¢ Sx(G) \ [HL(µ)] such that µ(È(x)) > 0. Then there

exists some p ∈ sup(µ) so that È(x) ∈ p. This contradicts (ii).

(iv) By Theorem 3.10,

Ã∗(µ) ·Ã(b)= Ã∗(µ) ⋆ ¶Ã(b) = Ã∗(µ ∗ ¶b)= Ã∗(µ). □
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Lemma 4.8. Assume that f : Sx(G)→ R is Borel and factors through Ã̂ : Sx(G)→

G/G00, and let f⋆ : G/G00 → R be the factor map. Then f⋆ is Borel.

Proof. The map Ã̂ : Sx(G)→G/G00 is a continuous surjective map between compact

Hausdorff spaces. If the map f = f⋆ ◦ Ã̂ is Borel, then f⋆ is Borel by [Holický

and Spurný 2003, Theorem 10] (see [Conant et al. 2021, Theorem 2.1] for an

explanation). □

Lemma 4.9. Assume that µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

Suppose that p ∈ sup(µ|G) and a |H p in G. Then µ(ϕ(x)) = µ(ϕ(x · a)) for any

ϕ(x) ∈ Lx(G).

Proof. Fix p ∈ sup(µ|G), ϕ(x) ∈ Lx(G) and a ∈ G such that a |H p. Fix a small

model G ′ z G such that G ′ contains G, a, and all of the parameters of ϕ. Let

r : Sy(G)→ Sy(G
′), q 7→ q|G ′ be the restriction map. Since µ is idempotent,

µ(ϕ(x · a))= µ ∗µ(ϕ(x · a))=

∫

Sy(G ′)

F
ϕ′

a

µ,G ′ dµG ′ =

∫

Sy(G)

(F
ϕ′

a

µ,G ′ ◦ r) dµ,

where ϕa(x) := ϕ(x · a), so ϕ′
a(x, y) = ϕ(x · y · a) and F

ϕ′
a

µ,G ′(q) = µ(ϕ(x · c · a))

for some/any c |H q (see Definition 2.26). Let f := F
ϕ′

a
µ,G ′ ◦ r and h := F

ϕ′

µ,G ′ ◦ r .

Claim 1: Both f and h factor through Ã̂ : Sy(G)→ G/G00.

Proof. The proofs are essentially the same, so we only show that f factors through Ã̂ .

Fixing q1, q2 ∈ Sy(G)with Ã̂(q1)= Ã̂(q2), we want to show that then f (q1)= f (q2).

Let b1, b2 ∈ G be such that b1 |H r(q1) and b2 |H r(q2). Then Ã(b1)= Ã(b2). Since

G00 is a normal subgroup of G, we then have b1 = d · b2 for some d ∈ G00. Hence

f (q1)= (F
ϕ′

a

µ,G ′ ◦ r)(q1)= µ(ϕ(x · b1 · a))= µ(ϕ(x · d · b2 · a)).

And since µ is G00-right-invariant, we have µ(È(x · d)) = µ(È(x)) for È(x) :=

ϕ(x · b2 · a), that is,

µ(ϕ(x · d · b2 · a))= µ(ϕ(x · b2 · a))= (F
ϕ′

a

µ,G ′ ◦ r)(q2)= f (q2). □

We let f⋆ and h⋆ be the associated factor maps from G/G00 to R.

Claim 2: We have h⋆ · Ã(a) = f⋆, where h⋆ · Ã(a) : G/G00 → R is the function

defined by (h⋆ ·Ã(a))(b) := h⋆(b ·Ã(a)) for any b ∈ G/G00.

Proof. Fix b ∈ G/G00 and b ∈ G such that Ã(b)= b. Then

(h⋆ ·Ã(a))(b)

= (h⋆)(b ·Ã(a))= (h⋆)(Ã(b · a))= (F
ϕ′

µ,G ′ ◦ r)(tp(b · a/G))

= F
ϕ′

µ,G ′(tp(b · a/G ′))= µ(ϕ(x · b · a))= F
ϕ′

a

µ,G ′(tp(b/G ′))= f⋆(b). □

Claim 3: µ(ϕ(x · a))= µ(ϕ(x)).
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Proof. The maps f⋆, h⋆ : G/G00 → R are Borel by Lemma 4.8. By assumption

a |H p with p ∈ sup(µ|G). Then there exists p̂ ∈ sup(µ) such that p̂|G = p (see,

e.g., [Chernikov and Gannon 2022, Proposition 2.8]). By Proposition 4.7(i) we

then have Ã(a) = Ã̂( p̂) ∈ supp(Ã∗(µ)). The measure Ã∗(µ) is idempotent by

Corollary 3.11. Applying Fact 2.11 (to the compact group G/G00 and its closed

subgroup supp(Ã∗(µ)) ∋ Ã(a)) we get
∫

G/G00

(h⋆ ·Ã(a)) dÃ∗(µ)=

∫

G/G00

h⋆ dÃ∗(µ).

Using this and Claim 2 we have the following computation:

µ(ϕ(x · a))= (µ ∗µ)(ϕ(x · a))

=

∫

Sy(G)

f dµ=

∫

G/G00

f⋆ dÃ∗(µ)

=

∫

G/G00

(h⋆ ·Ã(a)) dÃ∗(µ)=

∫

G/G00

h⋆ dÃ∗(µ)

=

∫

Sy(G)

h dµ=

∫

Sy(G ′)

F
ϕ′

µ,G ′ dµG ′ = (µ ∗µ)(ϕ(x))= µ(ϕ(x)). □

This concludes the proof of Lemma 4.9. □

Lemma 4.10. Suppose that g ∈ supp(Ã∗(µ)). Then there exists some p ∈ sup(µ|G)

such that for any b |H p we have Ã(b)= g.

Proof. We use the fact that Ã∗ : M(Sx(G)) → M(G/G00) is a pushforward map.

Let µ̃ be the unique extension of µ to a regular Borel probability measure on Sx(G).

Let g ∈ supp(Ã∗(µ)) and let U ¦ G/G00 be an open set containing g. Because

g ∈ supp(Ã∗(µ)), we have that 0< Ã∗(µ)(U )= µ̃([Ã−1(U )]). Then there exists

some pU ∈ supp(µ̃) such that pU ∈ [Ã−1(U )]. The collection of open sets in G/G00

containing g forms a directed family under reverse inclusion, and we can consider

the net (pU )g∈U . Since supp(µ̃) is closed and hence compact, there exists a con-

vergent subnet (qi )i∈I with a limit in supp(µ̃). Let q := limi∈I qi . By continuity of

Ã̂ : Sx(G)→ G/G00, we have that Ã̂(q)= g. Since sup(µ)= supp(µ̃) we conclude

that q ∈ sup(µ). By definition of Ã̂ we have Ã̂(q)= Ã(b) for any b |H q|G , so the

lemma holds with p := q|G . □

Theorem 4.11. Suppose that µ∈Minv
x (G,G) is idempotent and G00-right-invariant.

Then

(1) Stab(µ)= HL(µ) (see Definition 4.6);

(2) Stab(µ) is a type-definable subgroup of G;

(3) (Stab(µ), µ) is an amenable pair.
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Proof. (1) As HL(µ) is a type-definable subgroup of G, by Proposition 4.2 it suffices

to show thatµ is HL(µ)-right-invariant andµ([HL(µ)])=1. By Proposition 4.7(iii),

we have µ([HL(µ)]) = 1, so it remains to show that HL(µ) ¦ Stab(µ). Fix

a ∈ HL(µ). Then g := Ã(a) ∈ supp(Ã∗(µ)) by Proposition 4.7(i). By Lemma 4.10,

there exists some p ∈ sup(µ|G) and b |H p such that Ã(b) = g. In particular,

a ·G00 = b ·G00, so a = c · b for some c ∈ G00. Now we have

µ(ϕ(x · a))= µ(ϕ(x · c · b))= µ(ϕ(x · b))= µ(ϕ(x)).

The second equality follows from the fact that µ is G00-right-invariant and the fourth

equality follows from Lemma 4.9.

(2) This follows from the fact that Stab(µ)= HL(µ) and HL(µ) is type-definable.

(3) This follows since µ([Stab(µ)])= µ([HL(µ)])= 1. □

5. The structure of convolution semigroups

By Fact 2.29, if T is an NIP theory expanding a group, then both (Minv
x (G,G), ∗)

and (Mfs
x (G,G), ∗) are left-continuous compact Hausdorff semigroups (and hence

satisfy the assumption of Fact 2.34). In this section we describe some properties

of the minimal left ideals and ideal groups which arise in this setting. Unlike the

better studied case of the semigroup (Sfs
x (G,G), ∗), we demonstrate that the ideal

subgroups of any minimal left ideal (in either Mfs
x (G,G) or Minv(G,G)) are always

trivial, i.e., isomorphic to the group with a single element. The following theorem

summarizes the properties that we will prove in this section.

Theorem 5.1. Assume that G is NIP, and let I be a minimal left ideal of M†
x(G,G)

(which exists by Fact 2.34). Then we have the following:

(1) I is a closed convex subset of M†
x(G,G) (Proposition 5.3).

(2) For any µ ∈ I , Ã∗(µ)= h, where h is the normalized Haar measure on G/G00

(Proposition 5.5).

(3) If G/G00 is nontrivial, then I does not contain any types (Proposition 5.7).

(4) For any idempotent u ∈ I , we have u ∗ I ∼= (e, · ). In other words, the ideal

group is always trivial (Proposition 5.10).

(5) Every element of I is an idempotent (Proposition 5.11).

(6) If µ, ¿ ∈ I then µ ∗ ¿ = µ (Proposition 5.11).

(7) For any µ ∈ I , I = {¿ ∈ M†
x(G,G) : ¿ ∗µ= ¿} (Corollary 5.12).

(8) For any definable measure ¿ ∈ M†
x(G,G) there exists a measure µ ∈ I such

that ¿ ∗µ= µ. In particular, for any g ∈ G there exists a measure µ ∈ I such

that ¶g ∗µ= g ·µ= µ (Proposition 5.13).
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(9) Assume that G is definably amenable.

(a) If † = fs, then I = {¿}, where ¿ ∈Mfs
x (G,G) is a G-left-invariant measure

(Proposition 5.16).

(b) If † = inv, then

I = {µ ∈ Minv
x (G,G) : µ is G-right-invariant}.

Moreover, I is a two-sided ideal, and is the unique minimal left ideal

(Proposition 5.18). The set ex(I ) of extreme points of I is closed and

equal to {µp : p ∈ Sinv
x (G,G) is right f -generic}, and I is a Bauer simplex

(Corollary 5.21).

(10) If G is fsg and µ ∈Mx(G) is the unique G-left-invariant measure, then I = {µ}

is the unique minimal left (in fact, two-sided) ideal in both Minv
x (G,G) and

Mfs
x (G,G) (Corollary 5.24).

(11) If G is not definably amenable, then the closed convex set I has infinitely many

extreme points (Remark 5.26).

We remark that (5) and (11) of Theorem 5.1 guarantee the existence of many

idempotent measures in nondefinably amenable NIP groups. All previous “con-

structions” of idempotent measures either explicitly or implicitly use definable

amenability or amenability of closed subgroups of G/G00. A priori, the idempotent

measures we find here have no connection to type-definable subgroups.

5A. General structure. Our first goal is to show that any minimal left ideal

of M†
x(G,G) is convex. We begin by showing that convolution is affine in both

arguments and therefore preserves convexity on both sides.

Lemma 5.2. Assume µ, ¼1, ¼2 ∈M†
x(G,G) and r, s ∈ R>0 with r +s = 1. We have:

(1) (r¼1 + s¼2) ∗µ= r(¼1 ∗µ)+ s(¼2 ∗µ).

(2) µ ∗ (r¼1 + s¼2)= r(µ ∗ ¼1)+ s(µ ∗ ¼2).

(3) If A ¦ M†
x(G,G) is convex, then both µ ∗ A and A ∗µ are convex.

Proof. Parts (1) and (2) were stated in [Chernikov and Gannon 2022, Proposition

3.14(4)], but no proof was provided there, so we take the opportunity to provide it

here.

(1) Fix a formula ϕ(x) ∈ Lx(G) and let G ′ be a small model containing G and the

parameters of ϕ. Then

((r¼1 + s¼2) ∗µ)(ϕ(x))

=

∫

Sy(G ′)

F
ϕ′

r¼1+s¼2
dµG ′ =

∫

Sy(G ′)

(r F
ϕ′

¼1
+ s F

ϕ′

¼2
) dµG ′
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= r

∫

Sy(G ′)

F
ϕ′

¼1
dµG ′ + s

∫

Sy(G ′)

F
ϕ′

¼2
dµG ′

= r(¼1 ∗µ)(ϕ(x))+ s(¼2 ∗µ)(ϕ(x))

= (r(¼1 ∗µ)+ s(¼2 ∗µ))(ϕ(x)).

(2) Fix a formula ϕ(x) ∈ Lx(G) and a small model G ′ containing G and the

parameters of ϕ. Then the map F
ϕ′

µ : Sy(G
′)→ [0, 1] is a bounded Borel function,

so for any ε > 0 there exist Borel subsets B1, . . . , Bn of Sy(G
′) and real numbers

k1, . . . , kn such that

sup
q∈Sy(G)

∣∣∣∣F
ϕ′

µ (q)−

n∑

i=1

ki 1Bi
(q)

∣∣∣∣< ε.

Now we compute the product:

(µ ∗ (r¼1 + s¼2))(ϕ(x))

=

∫

Sy(G ′)

Fϕ
′

µ d(r¼1 + s¼2)

≈ε

∫

Sy(G ′)

( n∑

i=1

ki 1Bi

)
d(r¼1 + s¼2)= r

n∑

i=1

ki¼1(Bi )+ s

n∑

i=1

ki¼2(Bi )

= r

∫

Sy(G ′)

( n∑

i=1

ki 1Bi

)
d¼1 + s

∫

Sy(G ′)

( n∑

i=1

ki 1Bi

)
d¼2

≈ε r

∫

Sy(G ′)

Fϕ
′

µ d¼1 + s

∫

Sy(G ′)

Fϕ
′

µ d¼2 = (r(µ ∗ ¼1)+ s(µ ∗ ¼2))(ϕ(x)).

(3) We first prove that A ∗µ is convex. Letting ¿1, ¿2 ∈ A ∗µ and r, s ∈ R>0 with

r + s = 1 be given, we need to show that r¿1 + s¿2 ∈ A ∗µ. By assumption there

exist some ¼1, ¼2 ∈ A such that ¼i ∗µ = ¿i for i ∈ {1, 2}. Since A is convex, we

have that r¼1 + s¼2 ∈ A. It follows by (1) that r¿1 + s¿2 = (r¼1 + s¼2)∗µ ∈ A ∗µ.

Now we prove that µ ∗ A is convex. Similarly, let ¿1, ¿2 ∈ µ ∗ A and r, s ∈ R>0

with r + s = 1 be given, and let ¼1, ¼2 ∈ A be such that µ ∗ ¼i = ¿i . Consider the

measure r¼1+s¼2 ∈ A. It follows by (2) that r¿1+s¿2 =µ∗(r¼1+s¼2)∈µ∗ A. □

Proposition 5.3. If I is a minimal left ideal in M†
x(G,G), then I is closed and

convex.

Proof. Any minimal left ideal is closed by Fact 2.34. Choose µ∈ I . By Fact 2.34(5),

we have M†
x(G,G) ∗µ= I . By Lemma 5.2 and the convexity of M†

x(G,G), I is

convex. □

We now consider the interaction between the pushforward map to G/G00 and the

minimal left ideal. The following lemma is standard.
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Lemma 5.4. Let S be a semigroup, L a minimal left ideal of S, and H a two-sided

ideal in S. Then L ¦ H.

Proof. Note that L ′ := L ∩ H is nonempty (for l ∈ L and h ∈ H , h · l ∈ L ∩ H )

and is a left ideal (as an intersection of two left ideals). As L ′ ¦ L , by minimality

L = L ′ ¦ H . □

Proposition 5.5. Let I be a minimal left ideal in M†
x(G,G). Then for every ¿ ∈ I

we have Ã†
∗ (¿)= h, where h is the normalized Haar measure on G/G00.

Proof. Since Ã†
∗ is surjective (Proposition 3.4) and continuous (Remark 3.3), the

set A := (Ã†
∗ )

−1({h}) is a nonempty closed subset of M†
x(G,G). Moreover, A is a

two-sided ideal: since Ã†
∗ is a homomorphism (Theorem 3.10) and h is both left-

and right-invariant, for any µ ∈ A and ¿ ∈ M†
x(G,G), we have

Ã†
∗ (¿ ∗µ)= Ã†

∗ (¿) ⋆ Ã
†
∗ (µ)= Ã†

∗ (¿) ⋆ h = h,

and a similar computation also shows that A is a right ideal. By Lemma 5.4 we

have I ¦ A, which completes the proof. □

Definition 5.6. Let µ ∈Mx(G). We say µ is strongly continuous if for every ε > 0,

there exists a finite partition {[È(x)]}i<n of Sx(G) with Èi ∈ Lx(G) such that

µ(È(x)) < ε for all i < n.

Proposition 5.7. Let I be a minimal left ideal in M†
x(G,G).

(1) If G/G00 is nontrivial, then I does not contain any types.

(2) If G/G00 is infinite, then every measure in I is strongly continuous.

Proof. (1) By Lemma 3.5(2) we have Ã†
∗ (¶p) = ¶Ã̂(p), which does not equal

the normalized Haar measure on G/G00 when it is nontrivial. This contradicts

Proposition 5.5.

(2) If G/G00 is infinite then the normalized Haar measure h on G/G00 is zero on

every point. Suppose that ¿ ∈M†
x(G,G) is not strongly continuous. By compactness

and [Bhaskara Rao and Bhaskara Rao 1983, Theorem 5.2.7], ¿ can be written as

¿ = r0µ0 +
∑

i∈É

ri¶pi
,

where µ0 ∈ M†
x(G,G) is strongly continuous, ri ∈ [0, 1] and pi ∈ S†

x (G,G) for

each i ∈É, and
∑

i∈É ri = 1. We then must have ri∗ > 0 for some i∗ ∈É\{0}. Since

the pushforward map is affine (Remark 3.3), we have

Ã∗(¿)= r0Ã∗(µ0)+
∑

i∈É

ri¶Ã̂(pi ).

Hence Ã∗(¿)({Ã̂(pi∗)})= ri∗ > 0, so Ã∗(¿) ̸= h, contradicting Proposition 5.5. □
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We now show that the ideal subgroup of any minimal left ideal is trivial. A

related result appears in [Cohen and Collins 1959, Theorem 3], but we are working

in a semigroup which is only left-continuous. Our proof is a generalization of the

proof that there do not exist any nontrivial convex compact groups and follows

[Abodayeh and Murphy 1997, Lemmas 3.1 and 3.2]. In particular, compactness

is used only to get an extreme point in some ideal subgroup. Some elementary

algebra is then used to show that the only possible ideal subgroups are isomorphic

to a single point.

Lemma 5.8. If I is a minimal left ideal in M†
x(G,G), then ex(I ) ̸= ∅.

Proof. By Proposition 5.3, I is a compact convex set. By the Krein–Milman

theorem, I contains an extreme point. □

Lemma 5.9. If I is a minimal left ideal in M†
x(G,G), then there exists an idempo-

tent µ in I such that µ ∈ ex(µ ∗ I ).

Proof. By Lemma 5.8, there exists a measure ¿ ∈ I which is extreme in I . By

Fact 2.34(4), there exists an idempotent µ in I such that ¿ ∈ µ ∗ I . Towards a

contradiction, suppose that µ ̸∈ ex(µ ∗ I ). Then there exist distinct ¸1, ¸2 ∈ µ ∗ I

and r ∈ (0, 1) such that r¸1 + (1−r)¸2 =µ. As µ is the identity of the group µ∗ I

by Fact 2.34(3), we get

¿ = ¿ ∗µ= r(¿ ∗ ¸1)+ (1 − r)(¿ ∗ ¸2).

Since ¿ ∈ ex(I ) and ¿ ∗¸i ∈ I as I is a left ideal, it follows that ¿ = ¿ ∗¸1 = ¿ ∗¸2.

Since ¿, ¸1, ¸2 ∈ µ ∗ I and µ ∗ I is a group, this implies ¸1 = ¸2, contradicting the

assumption. Hence µ ∈ ex(µ ∗ I ). □

Proposition 5.10. The ideal subgroup of M†
x(G,G) is trivial.

Proof. Let I be a minimal left ideal of M†
x(G,G). By Lemma 5.9, there exists

an idempotent µ ∈ I such that µ is extreme in µ ∗ I . Let ¸1, ¸2 ∈ µ ∗ I . We will

show that ¸1 = ¸2. By Lemma 5.2 and Proposition 5.3, µ ∗ I is convex. Hence

³ := 1
2
(¸1 +¸2) ∈ µ∗ I . Since µ∗ I is a group with identity µ, µ∗ I contains ³−1

(i.e., ³−1 ∗³ = ³ ∗³−1 = µ). Then

µ= ³−1 ∗³ = ³−1 ∗
(

1
2
¸1 + 1

2
¸2

)
= 1

2
(³−1 ∗ ¸1)+

1
2
(³−1 ∗ ¸2).

Since µ is extreme in µ ∗ I and ³−1 ∗ ¸i ∈ µ ∗ I , we get µ= ³−1 ∗ ¸1 = ³−1 ∗ ¸2

and hence ¸1 = ¸2. □

We have shown that any ideal subgroup of M†
x(G,G) is trivial. Since the minimal

left ideals can be partitioned into their ideal subgroups, it follows that the convolution

operation is trivial when restricted to a minimal left ideal.

Proposition 5.11. Let I be a minimal left ideal in M†
x(G,G). Then every element

of I is an idempotent. Moreover, for any elements µ, ¿ ∈ I , we have that µ∗ ¿ = µ.
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Proof. By Fact 2.34(4) and Proposition 5.10,

I =
⊔

µ∈id(I )

µ ∗ I =
⊔

µ∈id(I )

{µ} = id(I ).

The “moreover” part also follows from the observation that µ ∗ I = {µ}. □

Corollary 5.12. Let I be a minimal left ideal of M†
x(G,G) and assume that µ ∈ I .

Then I = {¿ ∈ M†
x(G,G) : ¿ ∗µ= ¿}.

Proof. By Proposition 5.11 we have I ¦ {¿ ∈ M†
x(G,G) : ¿ ∗µ= ¿}. And since I

is a left ideal and µ ∈ I , we have {¿ ∈ M†
x(G,G) : ¿ ∗µ= ¿} ¦ I . □

We also observe that the action of the underlying group G on the minimal left

ideal is far from being a free action (this is of course trivial in the definably amenable

case, but is meaningful when G is not definably amenable).

Proposition 5.13. Let I be a minimal left ideal of M†
x(G,G). For any definable

measure ¿ ∈ M†(G,G) there exists a measure µ ∈ I such that ¿ ∗ µ = µ. In

particular, for every element g ∈ G, there exists a measureµ∈ I such that ¶g∗µ=µ.

Proof. Consider the map ¿∗− :M†
x(G,G)→M†

x(G,G) sending ¼ to ¿∗¼. Since I

is a minimal left ideal, the image of (¿ ∗−)|I is contained in I . Since ¿ is definable,

the map (¿∗−)|I : I → I is continuous by Lemma 2.30. By Lemma 5.2, this map is

also affine. By the Markov–Kakutani fixed-point theorem, there exists some µ ∈ I

such that ¿∗µ=µ. The “in particular” part of the statement follows since ¶g, g ∈ G

is a definable measure. □

5B. Definably amenable groups. We now shift our focus to the dividing line of de-

finable amenability. We first describe all minimal left ideals in both (Mfs
x (G,G), ∗)

and (Minv
x (G,G), ∗) when G is definably amenable. We then make an observation

about what happens outside of the definably amenable case. Recall that T is a

complete NIP theory expanding a group, G is a monster model of T , G is a small

elementary submodel of G. The group G is definably amenable if there exists

µ ∈ Mx(G) such that µ is G-left-invariant.

Remark 5.14. (1) The group G is definably amenable if and only if for some

G ′ |H T there exists a G ′-left-invariant µ ∈ Mx(G
′), if and only if for every

G ′ |H T there exists a G ′-left-invariant µ ∈ Mx(G
′) (see [Hrushovski et al.

2008, Section 5]).

(2) If G ′ ¯G and µ∈Mx(G
′) is G ′-left-invariant, then the measure µ−1 ∈Mx(G

′)

defined byµ−1(ϕ(x))=µ(ϕ(x−1)) for any ϕ(x)∈Lx(G
′) is G ′-right-invariant,

and vice versa. If µ ∈ M†
x(G,G), then also µ−1 ∈ M†

x(G,G) (see [Chernikov

and Simon 2018, Lemma 6.2]).

We will need the following fact.
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Fact 5.15. Assume that G is definably amenable and NIP.

(i) [Chernikov et al. 2014, Proposition 3.5] For any G-left-invariant measure

µ0 ∈ Mx(G) (which exists by Remark 5.14(1)) there exists µ ∈ Minv
x (G,G)

such that µ is G-left-invariant and extends µ0. The same holds for right-

invariant measures by item (2) of Remark 5.14.

(ii) [Chernikov et al. 2014, Theorem 3.17] There exists ¿ ∈ Mfs
x (G,G) such that ¿

is G-left-invariant (but not necessarily G-left-invariant).

We remark that Fact 5.15(ii) follows from [Chernikov et al. 2014, Theorem 3.17]

as Sfs
x (G,G)= Sx(G

ext) (where Gext is the Shelah’s expansion of G by all externally

definable subsets) and M(Sfs
x (G,G))= Mfs

x (G,G) (see Corollary 2.23). We now

compute the minimal left ideals in definably amenable NIP groups, first in the

finitely satisfiable case and then in the invariant case.

Proposition 5.16. The group G is definably amenable if and only if |I | = 1 for

some (equivalently, every) minimal left ideal I in Mfs
x (G,G). And if G is definably

amenable, then the minimal left ideals of Mfs
x (G,G) are precisely of the form {¿}

for ¿ a G-left-invariant measure in Mfs
x (G,G).

Proof. Let I be a minimal left ideal, and assume that I = {µ}. Then for any

g ∈ G we have g ·µ= ¶g ∗µ= µ, so µ is G-left-invariant. In particular, µ|G is a

G-left-invariant measure on Mx(G), so G is definably amenable by Remark 5.14(1).

And all minimal left ideals have the same cardinality by Fact 2.34(6).

Conversely, assume that G is definably amenable. By Fact 5.15(2) there exists

some µ ∈ Mfs
x (G,G) such that µ is G-left-invariant. We claim that for any such µ,

{µ} is a minimal left ideal of Mfs
x (G,G). Let ¿ be any measure in Mfs

x (G,G).

Since ¿ is finitely satisfiable in G, by Lemma 2.25 there exists a net of measures

in Mfs
x (G,G) of the form (Av(āi ))i∈I such that each āi = (ai,1, . . . , ai,ni

) ∈ (Gx)ni

for some ni ∈ N and limi∈I (Av(āi ))= ¿. Fix any ϕ(x) ∈Lx(G). By the “moreover”

part of Fact 2.29, the map ¼ ∈ Mfs
x (G,G) 7→ (¼ ∗µ)(ϕ(x)) ∈ [0, 1] is continuous.

Therefore,

(¿ ∗µ)(ϕ(x))= lim
i∈I

(
(Av(āi ) ∗µ)(ϕ(x))

)

= lim
i∈I

(
1

ni

ni∑

j=1

µ(ϕ(ai, j · x))

)
(a)
= lim

i∈I
µ(ϕ(x))= µ(ϕ(x)).

Equality (a) follows as µ is G-left-invariant and each ai, j is in G. It follows that

¿ ∗µ= µ, and hence {µ} is a left ideal. □

We now compute the minimal left ideals in the invariant case, but first we record

an auxiliary lemma.
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Lemma 5.17. Assume that f : Sx(G)→ [0, 1] is a Borel function. For any b ∈ G,

we define the function f · b : Sx(G) → [0, 1] via ( f · b)(p) := f (p · b) (recall

Lemma 3.8). If µ ∈ Mx(G) is G-right-invariant then
∫

Sx (G)

f dµ=

∫

Sx (G)

( f · b) dµ.

Proof. For b ∈ G, consider the map µb : Sx(G)→ Sx(G) defined by µb(p) := p · b.

The map µb is a continuous bijection. Hence we can consider the pushforward map

(µb)∗ : Mx(G)→ Mx(G). Denote (µb)∗(µ) as µb. Fix a formula ϕ(x) ∈ Lx(G).

We claim that µ−1
b ([ϕ(x)])= [ϕ(x · b)].

We first show that (µb)
−1([ϕ(x)])= [ϕ(x ·b)]. Assume that p ∈ [ϕ(x ·b)]. Then

ϕ(x) ∈ p ·b and so p ·b ∈ [ϕ(x)]. Hence (µb)
−1(p ·b) ∈ (µ−1

b )([ϕ(x)]). Since µb is

a bijection, we have that p = µ−1
b (p ·b), which implies that p ∈ (µ−1

b )([ϕ(x)]). So

[ϕ(x · b)] ¦ (µb)
−1([ϕ(x)]). Now assume that p ∈ (µb)

−1([ϕ(x)]). Then µb(p) ∈

[ϕ(x)], and hence p ·b ∈ [ϕ(x)], so ϕ(x)∈ p ·b. By definition, ϕ(x ·b)∈ (p ·b)·b−1,

and since (p ·b) ·b−1 = p, we conclude that ϕ(x ·b) ∈ p. Hence p ∈ [ϕ(x ·b)] and

(µb)
−1([ϕ(x)])= [ϕ(x · b)].

Now we show that µb = µ. Indeed, by G-right-invariance of µ and the previous

paragraph we have

µb(ϕ(x))= µ(µ−1
b [ϕ(x)])= µ(ϕ(x · b))= µ(ϕ(x)).

And so by Fact 2.1(iii) we have
∫

Sx (G)

f dµ=

∫

Sx (G)

f dµb =

∫

Sx (G)

( f ◦ µb) dµ=

∫

Sx (G)

( f · b) dµ. □

Proposition 5.18. Assume that G is definably amenable. Let

I inv
G := {µ ∈ Minv

x (G,G) : µ is G-right-invariant}.

Then I inv
G is a closed, nonempty, two-sided ideal. Moreover, I inv

G is the unique

minimal left ideal in Mx(G,G).

Proof. The set I inv
G is closed since it is the complement of the union of basic open

sets in Minv
x (G,G):

Minv
x (G,G)\ I inv

G =
⋃

ϕ(x)∈Lx (G)

⋃

s<t∈[0,1]

⋃

g∈G

(
{µ :µ(ϕ(x))< s}∩{µ :µ(ϕ(x ·g))> t}

)
.

By Fact 5.15(1), we know that the set I inv
G is nonempty. We first show that I inv

G is a

left ideal. Let µ ∈ I inv
G and ¿ ∈ Minv

x (G,G). It suffices to show that the measure

¿ ∗ µ is G-right-invariant. That is, we need to show that for any ϕ(x) ∈ Lx(G)

and b ∈ G we have (¿ ∗µ)(ϕ(x · b))= (¿ ∗µ)(ϕ(x)). Let G ′ z G be a small model
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containing G, b and the parameters of ϕ. For any q ∈ Sy(G
′) and a |H q in G,

letting ϕb(x) := ϕ(x · b) and noting that a · b |H q · b, we have

F
ϕ′

b

¿,G ′(q)= ¿(ϕ(x · a · b))= F
ϕ′

¿,G ′(q · b)= (F
ϕ′

¿,G ′(q)) · b.

Hence, by Lemma 5.17,

(¿ ∗µ)(ϕ(x · b))=

∫

Sy(G ′)

F
ϕ′

b
¿ dµG ′

=

∫

Sy(G ′)

((Fϕ
′

¿ ) · b) dµG ′ =

∫

Sy(G ′)

Fϕ
′

¿ dµG ′ = (¿ ∗µ)(ϕ(x)).

We now argue that I inv
G is a right ideal. Again let µ ∈ I inv

G and ¿ ∈ Minv
x (G,G),

and fix ϕ(x) ∈ Lx(G) and G ′ z G containing G and the parameters of ϕ. Using

G-right-invariance of µ, we have

(µ ∗ ¿)(ϕ(x))=

∫

Sy(G ′)

Fϕ
′

µ d¿G ′ =

∫

Sy(G ′)

µ(ϕ(x)) d¿G ′ = µ(ϕ(x)).

Hence I inv
G is a two-sided ideal.

Note that the previous computation shows that µ ∗ ¿ = µ for any µ ∈ I inv
G and

¿ ∈ Minv
x (G,G). So if J is any minimal left ideal of Minv

x (G,G), then I inv
G ¦ J .

Since I inv
G is two-sided, we have that J ¦ I inv

G (by Lemma 5.4). Hence J = I inv
G ,

and I inv
G is the unique minimal left ideal. □

We recall some terminology and results from [Chernikov and Simon 2018]

(switching from the action on the left to the action on the right everywhere).

Definition 5.19. (1) A type p ∈ Sx(G) is right f -generic if for every ϕ(x) ∈ p

there is some small model G z G such that for any g ∈ G, ϕ(x · g) does not

fork over G.

(2) A type p ∈ Sx(G) is strongly right f -generic if there exists some small G z G

such that p · g ∈ Sinv
x (G,G) for all g ∈ G. This is equivalent to the definition in

[Chernikov and Simon 2018] since in NIP theories, a global type p does not

fork over a model M if and only if p is M-invariant (see, e.g., [Hrushovski

and Pillay 2011, Proposition 2.1]).

(3) Given a right f -generic p, let µp be defined via

µp(ϕ(x)) := h
(
{Ã(g) ∈ G/G00 : g ∈ G, ϕ(x) ∈ p · g}

)
,

where Ã :G →G/G00 is the quotient map and ϕ(x)∈Lx(G). Then µp ∈Mx(G)

and, assuming additionally that G is definably amenable, µp is G00-right-

invariant (see [Chernikov and Simon 2018, Definition 3.16] for the details).

Fact 5.20. Assume that G is definably amenable NIP.
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(1) If p ∈ Sinv
x (G,G) is right f -generic then p is strongly right f -generic over G

and µp ∈Minv
x (G,G). The set of all right f -generic types in Sx(G) (and hence

in Sinv
x (G,G)) is closed.

(2) Let I(G) be the (closed convex) set of all G-right-invariant measures in Mx(G).

Then the set ex(I(G)) of the extreme points of I(G) is the set of all measures

of the form µp for some right f -generic p ∈ Sx(G).

(3) The map p 7→ µp from the (closed) set of global right f -generic types to the

(closed) set of global G-right-invariant measures is continuous.

Proof. (1) Any f -generic p∈ Sinv
x (G,G) is strongly f -generic over G by [Chernikov

and Simon 2018, Proposition 3.9]. For any f -generic p, sup(µp)¦ p ·G, where X

is the topological closure of X in Sx(G) and p · G = {p · g ∈ Sx(G) : g ∈ G} is the

orbit of p under the right action of G (by [Chernikov and Simon 2018, Remark

3.17(2)]). As p is strongly f -generic over G, we have p ·G ¦ Sinv
x (G,G), and thus

sup(µp)¦ Sinv
x (G,G)= Sinv

x (G,G). Hence µp ∈ Minv
x (G,G) by Fact 2.22(2).

(2) This is [Chernikov and Simon 2018, Theorem 4.5].

(3) This is [Chernikov and Simon 2018, Proposition 4.3]. □

Adapting the proof of [Chernikov and Simon 2018, Theorem 4.5], we can

describe the extreme points of the minimal ideal I inv
G .

Corollary 5.21. Assume that G is definably amenable NIP. Then

(1) ex(I inv
G )= {µp : p ∈ Sinv

x (G,G) is right f -generic};

(2) ex(I inv
G ) is a closed subset of I inv

G , and I inv
G is a Bauer simplex.

Proof. If p ∈ Sinv
x (G,G) is right f -generic, then µp is G-right-invariant and

µp ∈ Minv
x (G,G) by Fact 5.20(1), so µp ∈ I inv

G . By Fact 5.20(2), µp is extreme

in I(G), and thus, in particular, it is extreme in I inv
G ¦ I(G).

Conversely, assume that µ ∈ ex(I inv
G ), and let

S := {µp : p ∈ Sinv
x (G,G) is right f -generic}.

Let conv(S) be the closed convex hull of S. Then conv(S)¦ I inv
G by Propositions

5.3 and 5.18. As µ is G-right-invariant, by [Chernikov and Simon 2018, Lemma

3.26], for any ε > 0 and ϕ1(x), . . . , ϕk(x)∈Lx(G), there exist some right f -generic

p1, . . . , pn ∈ sup(µ) such that µ(ϕ j (x))≈ε (1/n)
∑n

i=1 µpi
(ϕ j (x)) for all j ∈ [k].

While [Chernikov and Simon 2018, Lemma 3.26] is stated for a single formula, it

also applies to finitely many formulas by encoding them as appropriate instances of

a single formula — formally, we apply [Chernikov and Simon 2018, Lemma 3.26]

to the formula

¹(x; y0, . . . , yk) :=
∨k

i=1(y0 = yi 'ϕk(x)).
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As we have pi ∈ Sinv
x (G,G) for all i ∈[n], by Fact 2.22(2), it follows thatµ∈conv(S),

and it is still an extreme point of conv(S) ¦ I inv
G . It follows that µ ∈ S, by the

(partial) converse to the Krein–Milman theorem (see, e.g., [Chernikov and Simon

2018, Fact 4.1] applied to C := conv(S)). By Fact 5.20(3), the map p 7→ µp from

Sinv
x (G,G) to Minv

x (G,G) is a continuous map from a compact to a Hausdorff space

and thus also a closed map. It follows that S = S, so µ ∈ S.

By Corollary 2.23(2), we have an affine homeomorphism between Minv
x (G,G)

and M(Sinv
x (G,G)), which restricts to an affine homeomorphism between I inv

G and

the set MG(S
inv
x (G,G)) of all right-G-invariant regular Borel probability measures

on Sinv
x (G,G). By Fact 2.37, MG(S

inv
x (G,G)) is a Choquet simplex, so I inv

G is a

Bauer simplex (using Remark 2.40). □

Question 5.22. Can every Bauer simplex of the form M(X) with X a com-

pact Hausdorff totally disconnected space be realized as a minimal left ideal

of (Minv
x (G,G), ∗) for some definably amenable NIP group G?

Example 5.23. Let G := (R;<,+), and let G { G be a monster model. As G

is abelian, it is amenable as a discrete group and hence definably amenable. By

Proposition 5.18, Minv
x (G,R) has a unique minimal left ideal I inv

G . One checks

directly that p−∞ (the unique type extending {x < a : a ∈ G}) and p+∞ (the

unique type extending {x > a : a ∈ G}) are the right f -generics in Sinv
x (G,G), and

µp+∞
= ¶p+∞

, µp−∞
= ¶p−∞

. Hence, by Corollary 5.21, |ex(I inv
G )| = 2 and

I inv
G = {r¶p+∞

+ (1 − r)¶p−∞
: r ∈ [0, 1]}.

(See also Example 6.21(1).)

Recall that G is uniquely ergodic if it admits a unique G-left-invariant measure

µ ∈ Mx(G) (see [Chernikov and Simon 2018, Section 3.4]). Recall that G is fsg

if there exists a small G z G and p ∈ Sx(G) such that g · p is finitely satisfiable

in G for all g ∈ G. All fsg groups are uniquely ergodic (see, e.g., [Simon 2015,

Proposition 8.32]), but there exist uniquely ergodic NIP groups which are not fsg

(see [Chernikov and Simon 2018, Remark 3.38]).

Corollary 5.24. (1) If G is uniquely ergodic, then I inv
G = {µ}, where µ is the

unique G-left-invariant measure.

(2) If G is, moreover, fsg, letting µ ∈ Mx(G) be the unique G-left-invariant

measure, {µ} is the unique minimal left ideal of Mfs
x (G,G) (which is also

two-sided).

Proof. (1) For any G-left-invariant measure µ, the measure µ−1 is G-right-invariant

(see Remark 5.14(2)), and vice versa. Moreover, from the definition, µ1 =µ2 if and

only if µ−1
1 =µ−1

2 . It follows that if there exists a unique G-left-invariant measure µ,

then there exists a unique G-right-invariant measure µ−1. By [Chernikov and Simon
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2018, Lemma 6.2] there also exists a measure ¿ which is simultaneously G-left-

invariant and G-right-invariant. But then µ= ¿=µ−1, so µ is also G-right-invariant.

And µ ∈ Minv
x (G,G) by Fact 5.15 and uniqueness, so I inv

G = {µ}.

(2) By, e.g., [Simon 2015, Propositions 8.32, 8.33], G is fsg if and only if there exists

a G-left-invariant generically stable measure µ ∈ Mx(G), and then G is uniquely

ergodic, so µ is also the unique G-right-invariant measure. By Fact 5.15(i) and

uniqueness of µ it follows that µ is invariant over G and hence generically stable

over G (in fact, over an arbitrary small model). In particular, µ ∈ Mfs
x (G,G), and

it is the unique measure in Minv
x (G,G) extending µ|G (by [Hrushovski et al. 2013,

Proposition 3.3]). Now assume that ¿ ∈ Mfs
x (G,G) is an arbitrary G-left-invariant

measure. We have ¿|G =µ|G , as by Fact 5.15(i) there exists some G-left-invariant ¿ ′

extending ¿|G , and thus ¿ ′ =µ, so ¿|G =¿ ′|G =µ|G . But as µ is the unique measure

in Minv
x (G,G) extending µ|G , it follows that ¿ = µ. If follows by Proposition 5.16

that {µ} is the unique minimal left ideal of Mfs
x (G,G). Finally, in any semigroup, if

the union of its minimal left ideals is nonempty, then it is a two-sided ideal [Clifford

1948]. Hence in our case {µ} is a two-sided ideal. □

Question 5.25. Can the fsg assumption be relaxed to unique ergodicity in Corollary

5.24(2)?

Our final observation in this section deals with nondefinably amenable groups.

Remark 5.26. Assume that G is not definably amenable. Let I be a minimal left

ideal in M†(G,G). Then ex(I ) is infinite.

Proof. For any g ∈ G, the map ¶g∗−: ex(I )→ex(I ) is a bijection. Towards a contra-

diction, assume that ex(I ) is finite, say ex(I )={µ1, . . . , µn}. Consider the measure

¼∈M†
x(G,G) defined by ¼=

∑n
i=1(1/n)µi . Then for any g ∈ G we have ¶g ∗¼=¼.

Hence the measure ¼|G is in Mx(G) and is G-left-invariant. This contradicts the

assumption that G is not definably amenable, by (1) and (2) of Remark 5.14. □

6. Constructing minimal left ideals

In this section, under some assumptions on the semigroup (S†
x (G,G), ∗) (applicable

to some nondefinably amenable groups, e.g., SL2(R)), we construct a minimal

left ideal of (M†
x(G,G), ∗) using a minimal left ideal and an ideal subgroup

of (S†
x (G,G), ∗), and demonstrate that this minimal left ideal is parametrized by a

space of regular Borel probability measures over a compact Hausdorff space.

6A. Basic lemmas. We will need some auxiliary lemmas connecting convolution

and left ideals. We assume that T = Th(G) is NIP throughout.

Lemma 6.1. Let µ, ¿ ∈ M†
x(G,G). If µ ∗ ¶p = µ for every p ∈ sup(¿), then

µ ∗ ¿ = µ.
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Proof. Fix a formula ϕ(x) ∈ Lx(G). Let G ′ z G be a small model containing G and

the parameters of ϕ. We have

(µ ∗ ¿)(ϕ(x))=

∫

sup(¿|G′ )

F
ϕ′

µ,G ′ d(¿G ′).

By Fact 2.22, sup(¿) is a subset of S†
x (G,G). For any q ∈ sup(¿)we have F

ϕ′

µ,G ′(q)=

µ(ϕ(x · b))= (µ ∗ ¶p)(ϕ(x))= µ(ϕ(x)), where b |H q. Hence
∫

sup(¿|G′ )

F
ϕ′

µ,G ′ d(¿G ′)=

∫

Sy(G ′)

µ(ϕ(x)) d(¿G ′)= µ(ϕ(x)),

so µ ∗ ¿ = µ. □

Lemma 6.2 (T is NIP). Assume that I is a left ideal of (S†
x (G,G), ∗). Then M(I )

(see Definition 2.16) is a left ideal of (M†
x(G,G), ∗).

Proof. Let p ∈ S†
x (G,G) and µ ∈ M(I ). We first argue that ¶p ∗ µ ∈ M(I ).

Assume towards a contradiction that ¶p ∗ µ ̸∈ M(I ). Then there exists some

q ∈ sup(¶p ∗µ) such that q ̸∈ I . Then there exists È(x)∈Lx(G) such that È(x)∈ q

and [È(x)]∩ I =∅. SinceÈ(x)∈q and q ∈ sup(¶p∗µ), we have (¶p∗µ)(È(x))>0.

Let now G ′ z G be a small model containing G and the parameters of È . Then

(¶p ∗µ)(È(x))=

∫
F
È ′

¶p,G ′ d(µG ′) > 0,

so there exists some t ∈ sup(µ|G ′) such that F
È ′

¶p,G ′(t) = 1. Fix t̂ ∈ sup(µ) such

that t̂ |G ′ = t (which exists by, e.g., [Chernikov and Gannon 2022, Proposition 2.8]),

and since µ ∈M(I ) we have t̂ ∈ supp(µ)¦ I ¦ S†
x (G,G). Unpacking the notation,

we conclude that È(x) ∈ p ∗ t̂ . Since t̂ ∈ I , it also follows that p ∗ t̂ ∈ I . Hence

[È(x)] ∩ I ̸= ∅, a contradiction.

Now letting ¿ ∈M†
x(G,G), we want to show that ¿ ∗µ∈M(I ). By Lemma 2.25,

we have that ¿ = limi∈I Av( p̄i ) for some net I , with p̄i = (pi,1, . . . , pi,ni
) ∈ I ni ,

ni ∈ N for each i ∈ I . By left continuity of convolution (Fact 2.29) we have

¿ ∗µ= lim
i∈I
(Av( p̄i ) ∗µ)= lim

i∈I

(
1

ni

ni∑

j=1

(¶p j
∗µ)

)
.

By the previous paragraph ¶p ji
∗ µ ∈ M(I ) for each i ∈ I . Then by convexity

of M(I ) (Lemma 2.17), also Av( p̄i ) ∗µ ∈ M(I ) for each i ∈ I . Since M(I ) is

closed (again, Lemma 2.17), ¿ ∗µ= limi∈I (Av( p̄i ) ∗µ) ∈ M(I ). Therefore M(I )

is a left ideal. □

Remark 6.3. We remark that minimality of the left ideal need not be preserved

in Lemma 6.2. Indeed, let G := (S1, · ,−1 ,C(x, y, z)) be the standard unit circle

group over R, with C the cyclic clockwise ordering, and let TO be the corresponding

theory. If G is a monster model of TO , then the semigroup (Sfs
x (G, S1), ∗) has a
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unique proper (and hence minimal) left ideal I := Sfs
x (G, S1) \ {tp(a/G) : a ∈ S1}.

Let ¼ be the Keisler measure corresponding to the normalized Haar measure

on S1. The measure ¼ is smooth and right-invariant; in particular, G is fsg (see

[Chernikov and Gannon 2022, Example 4.2] and [Simon 2015, Proposition 8.33]).

By Lemma 6.2, M(I ) is a left ideal of (Mfs
x (G,G), ∗). Note that Mfs

x (G, S1) con-

tains a unique minimal left ideal {¼} by Corollary 5.24(2), and {¼}ªM(I ) since the

latter contains ¶p for every global type p finitely satisfiable in S1 but not realized in it.

We now recall how the ideal subgroups act on a minimal left ideal. The fol-

lowing is true in any compact left topological semigroup; we include a proof for

completeness in our setting.

Corollary 6.4. Let I be a minimal left ideal in S†
x (G,G) and u an idempotent in I .

Let p be any element in I . Then the map (−∗ p)|u∗I : u ∗ I → u ∗ I is a continuous

bijection. Moreover, (− ∗ p)|u∗I = (− ∗ (u ∗ p))|u∗I .

Proof. We have (u ∗ I )∗ p = u ∗ (I ∗ p)= u ∗ I as I ∗ p = I by Fact 2.34(5) (using

Fact 2.28).

To show surjectivity, fix r ∈ u ∗ I ; as u ∗ p ∈ u ∗ I and u ∗ I is a group with

identity u, there exists some s ∈ u ∗ I such that s ∗ (u ∗ p)= u; then r ∗ s ∈ u ∗ I ,

and (r ∗ s) ∗ p = (r ∗ s ∗ u) ∗ p = r ∗ (s ∗ (u ∗ p))= r ∗ u = r . To show injectivity,

assume r ∗ p = t ∗ p for some r, t ∈ u ∗ I ; as also r ∗ u = r and t ∗ u = t , we have

r ∗ (u ∗ p)= t ∗ (u ∗ p), and therefore, taking inverses in the group u ∗ I , we have

r ∗ (u ∗ p)∗ (u ∗ p)−1 = t ∗ (u ∗ p)∗ (u ∗ p)−1, so r ∗u = t ∗u, so r = t . Finally, the

map is continuous as a restriction of a continuous map −∗ p : S†
x (G,G)→ S†

x (G,G).

The “moreover” part follows directly from associativity. □

6B. Compact ideal subgroups (CIG1). We define CIG1 semigroups and show that

under this assumption, we can describe a minimal left ideal of the semigroup of

measures.

Definition 6.5. We say that the semigroup (S†
x (G,G), ∗) is CIG1 (or “admits com-

pact ideal subgroups”) if there exists some minimal left ideal I and idempotent u ∈ I

such that u ∗ I is a compact group with the induced topology from I . We let hu∗I

denote the normalized Haar measure on u ∗ I , and define the Keisler measure

µu∗I ∈ Mx(G) as follows:

µu∗I (ϕ(x)) := hu∗I ([ϕ(x)] ∩ u ∗ I ).

Remark 6.6. Suppose that (S†
x (G,G), ∗) is CIG1. Then any minimal left ideal

witnesses this property, i.e., for any minimal left ideal J of S†
x (G,G) there exists

an idempotent v ∈ J such that v ∗ J is a compact group with the induced topology.

Proof. Suppose (S†
x (G,G), ∗) is CIG1. Fix a minimal left ideal I and an idempo-

tent u in I such that u ∗ I is a compact group. Let J be any other minimal left ideal.
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By Fact 2.34(6) there exists an idempotent v ∈ J such that u ∗ v = v, v ∗ u = u,

and the map (− ∗ v)|I : I → J is a homeomorphism mapping u ∗ I to v ∗ J . Note

that the restriction to u ∗ I is a group homomorphism (indeed, for p1, p2 ∈ u ∗ I ,

(p1∗v)∗(p2∗v)= p1∗v∗u∗ p2∗v= p1∗u∗ p2∗v= (p1∗ p2)∗v) and hence a con-

tinuous group isomorphism. Since it is also a homeomorphism onto its range v ∗ J ,

as the restriction of a homeomorphism, it follows that v ∗ J is a compact group. □

Lemma 6.7. The semigroup (S†
x (G,G), ∗) is CIG1 if either of the following holds:

(1) For some minimal left ideal I , every p ∈ I is definable.

(2) The ideal group of S†
x (G,G) is finite.

Proof. (1) Fix p ∈ I and let u ∈ I be the unique idempotent such that p ∈ u ∗ I (by

Fact 2.34(4)). Since p is definable, the map (p ∗ −)|I : I → I is continuous (by

Lemma 2.30) and hence also closed. Since I is compact, the image of (p ∗ −)|I is

compact and is equal to u ∗ I . Hence (u ∗ I, ∗) is a compact Hausdorff space, an

abstract group, and both left multiplication and right multiplication are continuous.

By Fact 2.35, (u ∗ I, ∗) is a compact group.

(2) This is obvious. □

Example 6.8. (1) Let G := (Z,+, <), and consider the sets

I + := {q ∈ Sinv
x (G,Z) : (a < x) ∈ q for all a ∈ G},

I − := {q ∈ Sinv
x (G,Z) : (x < a) ∈ q for all a ∈ G}.

Then I := I + ∪ I − is the unique minimal left ideal of (Sinv
x (G,Z), ∗). Note that

every type in I is definable (over Z). By Lemma 6.7, the semigroup (Sinv
x (G,Z), ∗)

is CIG1. The ideal subgroups are (I −, ∗) and (I +, ∗), both isomorphic to Ẑ as

topological groups.

(2) Consider G := SL2(R) as a definable subgroup in (R, ·,+). If I is a minimal

left ideal of
(
Sfs

x (G,SL2(R)), ∗
)

and u is an idempotent in I , then u ∗ I ∼= Z/2Z by

[Gismatullin et al. 2015, Theorem 3.17], so the semigroup is CIG1. Note that SL2(R)

is not definably amenable [Hrushovski et al. 2008, Remark 5.2; Conversano and

Pillay 2012, Lemma 4.4(1)].

(3) There exist fsg groups that are not CIG1. Consider the circle group from

Remark 6.3. The minimal left ideal of (Sfs(G, S1), ∗) is precisely Sfs(G, S1). As

in (1), this left ideal can be decomposed into two ideal subgroups as follows. Let

st : G → S1 be the standard part map. Consider the sets

I R := {q ∈ Sfs
x (G,G) : if b |H q , then C(st(b), b, a) for any a ∈ S1},

I L := {q ∈ Sfs
x (G,G) : if b |H q, then C(a, b, st(b)) for any a ∈ S1}.

Then both I R and I L are ideal subgroups which are isomorphic (as abstract

groups) to S1, and Sfs
x (G, S1)= I R ⊔ I L . Moreover, I R and I L are dense subsets
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of Sfs
x (G, S1). Note that if I R were compact (with the induced topology), we would

have I R = Sfs
x (G, S1), a contradiction. The same argument applies to I L . Therefore,(

Sfs
x (G,SL2(R)), ∗

)
is not CIG1.

Lemma 6.9. Assume that (S†
x (G,G), ∗) is CIG1. Let I ¦ S†

x (G,G) be a minimal

left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for any

p ∈ u ∗ I we have µu∗I ∗ ¶p = µu∗I and ¶p ∗µu∗I = µu∗I .

Proof. Fix p ∈ u ∗ I and ϕ(x) ∈ Lx(G). Let G ′ z G be a small model containing G

and the parameters of ϕ. Let a |H p|G ′ , and let p−1 be the unique element of the

group u ∗ I such that p ∗ p−1 = u.

Claim 1: (µu∗I ∗ ¶p)(ϕ(x))= µu∗I (ϕ(x)).

Proof. We have the following computation, using right-invariance of the Haar

measure hu∗I on u ∗ I :

(µu∗I ∗ ¶p)(ϕ(x))

=

∫

Sy(G ′)

Fϕ
′

µu∗I
d(¶p|G ′)= Fϕ

′

µu∗I
(p|G ′)= µu∗I (ϕ(x · a))

= hu∗I

(
[ϕ(x · a)] ∩ u ∗ I

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x · a) ∈ q}

)

= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q ∗ p}

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q} ∗ p−1

)

= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Claim 2: (¶p ∗µu∗I )(ϕ(x))= µu∗I (ϕ(x)).

Proof. Let r : Sy(G) → Sy(G
′) be the restriction map. Let µ̃u∗I be the exten-

sion of µu∗I to a regular Borel probability measure on Sx(G). By construction,

supp(µ̃u∗I )= sup(µu∗I )= u ∗ I and µ̃u∗I |u∗I = hu∗I . Using left-invariance of hu∗I

we have

(¶p ∗µu∗I )(ϕ(x))

=

∫

Sy(G ′)

F
ϕ′

¶p
d(µu∗I |G ′)=

∫

Sy(G)

(F
ϕ′

¶p
◦ r) dµu∗I

= µ̃u∗I

(
{q ∈ Sx(G) : (F

ϕ′

¶p
◦ r)(q)= 1}

)
= µ̃u∗I

(
{q ∈ Sx(G) : ϕ(x) ∈ p ∗ q}

)

= µ̃u∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ p ∗ q}

)
= hu∗I

(
p−1 ∗ {q ∈ u ∗ I : ϕ(x) ∈ q}

)

= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Hence the statement holds. □

Lemma 6.10. Assume that (S†
x (G,G), ∗) is CIG1. Let I ¦ S†

x (G,G) be a minimal

left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for

any p ∈ I we have µu∗I ∗ ¶p = µu∗I .
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Proof. For any p ∈ I we have

µu∗I ∗ ¶p = (µu∗I ∗ ¶u) ∗ ¶p = µu∗I ∗ (¶u ∗ ¶p)= µu∗I ∗ ¶u∗p = µu∗I ,

where the first and the last equalities are by Lemma 6.9, as u, u ∗ p ∈ u ∗ I . □

Theorem 6.11. Assume (S†
x (G,G), ∗) is CIG1. Let I ¦ S†

x (G,G) be a minimal left

ideal and u an idempotent in I such that u∗ I is a compact group. Then M(I )∗µu∗I

is a minimal left ideal of (M†
x(G,G), ∗), containing an idempotent µu∗I .

Proof. We first argue thatµu∗I is an element of some minimal left ideal of M†
x(G,G).

We know that M(I ) is a closed (by Fact 2.34 and Lemma 2.17) left ideal of

(M†
x(G,G), ∗) (by Lemma 6.2). Hence there exists some L ¦ M(I ) such that L is

a minimal left ideal of (M†
x(G,G), ∗), and we show that µu∗I ∈ L . Let ¿ ∈M(I ) be

arbitrary. If p ∈ sup(¿), then p ∈ I . By Lemma 6.10, we then have µu∗I ∗¶p =µu∗I

for every p ∈ sup(¿). By Lemma 6.1 this implies µu∗I ∗ ¿ = µu∗I , and therefore

µu∗I ∗M(I )= {µu∗I }. In particular, µu∗I ∗ L = {µu∗I }, and since L is a left ideal

this implies µu∗I ∈ L (and also that µu∗I is an idempotent).

Then M†
x(G,G) ∗µu∗I = L by Fact 2.34(5). We also have that L ∗µu∗I = L

since µu∗I ∈ L and L is a minimal left-ideal. Thus

L = L ∗µu∗I ¦ M(I ) ∗µu∗I ¦ M†
x(G,G) ∗µu∗I = L .

Hence M(I )∗µu∗I = L , so M(I )∗µu∗I is a minimal left ideal of (M†
x(G,G), ∗). □

Corollary 6.12. Suppose that (S†
x (G,G), ∗) is CIG1. Let I be a minimal left ideal

and u an idempotent in I such that u ∗ I is a compact group. Let J be any minimal

left ideal of (M†
x(G,G), ∗). Then J and M(I ) ∗µu∗I are affinely homeomorphic.

Proof. By Fact 2.34(6), Lemma 5.2, and Theorem 6.11. □

6C. Compact ideal subgroups in minimal ideals with Hausdorff quotients (CIG2).

In this section we define CIG2 semigroups and show that under this stronger

assumption, any minimal left ideal of (M†
x(G,G), ∗) is affinely homeomorphic to

the space of regular Borel probability measures over a certain compact Hausdorff

space given by a quotient of a minimal left ideal in (S†
x (G,G), ∗).

Definition 6.13. Let I be a minimal left ideal in (S†
x (G,G), ∗). We define the

quotient space K I := I/ ∼, where p ∼ q if and only if p and q are elements

of the same ideal subgroup of I , i.e., there exists some idempotent u ∈ I such

that p, q ∈ u ∗ I . We endow K I with the induced quotient topology and write

elements of K as [u ∗ I ], where u is an idempotent in I .

The quotient topology on K I is automatically compact, but may not be Hausdorff.

CIG2 stipulates that this quotient is Hausdorff.
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Definition 6.14. We say that the semigroup (S†
x (G,G), ∗) is CIG2 if there exists a

minimal left ideal I such that

(i) for any idempotent u ∈ I , u ∗ I is compact;

(ii) for any p ∈ I and u′ ∈ id(I ), the map (p ∗ −)|u′∗I is continuous (note that the

range of this map is u ∗ I , where u ∈ id(I ) is such that p ∈ u ∗ I );

(iii) K I is Hausdorff.

We remark that in the above definition, (i) follows from (iii) since each u ∗ I is a

preimage of a point (and hence a closed set) in K I under the quotient map.

Lemma 6.15.2 The semigroup (S†
x (G,G), ∗) is CIG2 if either of the following holds:

(1) The ideal group of (S†
x (G,G), ∗) is finite.

(2) For some minimal ideal I ¦ S†
x (G,G), every p ∈ I is definable.

Proof. (1) Assume that the ideal group of (S†
x (G,G), ∗) is finite. Then the first two

conditions of CIG2 are clearly satisfied, and we show (iii) from Definition 6.14.

Suppose that I is a minimal left ideal in (S†
x (G,G), ∗), and let u be an idempotent

in I . Let us denote elements of u ∗ I as g. Then u ∗ I acts on I on the right via

p · g := p ∗ g, and the orbit equivalence relation under this group action is the

same as the equivalence relation ∼ in the definition of K I . Indeed, u is the identity

of u ∗ I and p ∗ u = p for all p ∈ I by Fact 2.34(2); if p · g = q and p ∈ u′ ∗ I

for some u′ ∈ id(I ), then q = p ∗ g ∈ (u′ ∗ I ) ∗ g = u′ ∗ (I ∗ g) ¦ u′ ∗ I ; and

conversely, if p, q ∈ u′ ∗ I , using that u′ ∗ I is a group and Fact 2.34(2), we have

p = (q ∗q−1)∗ p = q ∗(q−1 ∗ p)= q ∗(u′ ∗r)= q ∗(u′ ∗u)∗r = (q ∗u′)∗(u ∗r)=

q ∗ (u ∗ r)= q · g for some r ∈ I and g := u ∗ r . This action is continuous by left

continuity of convolution.

So K I = I/(u ∗ I ), and the quotient of any Hausdorff space by a continuous

finite group action remains Hausdorff. Hence K I is Hausdorff.

(2) The conditions (i) and (ii) of CIG2 hold since every type in the minimal left

ideal I is definable, as in the proof of Lemma 6.7(1). Let u ∈ I be an idempotent.

Arguing as in (1) we get K I = I/(u ∗ I ). The right action of the group u ∗ I on I is

continuous on the right, and by the assumption and Lemma 2.30 it is also continuous

on the left and therefore continuous by the Ellis joint continuity theorem (Fact 2.35).

Thus I/(u ∗ I ) is Hausdorff, as the quotient of a Hausdorff space by the continuous

action of a compact group. □

The next fact follows directly from the definitions and Fact 2.35.

Remark 6.16. If (S†
x (G,G), ∗) is CIG2, then it is CIG1. Moreover, if I is a minimal

left ideal of (S†
x (G,G), ∗) witnessing CIG2, then for any idempotent u ∈ I , u ∗ I is

2We thank the referee for pointing out a more general version of Lemma 6.15, as well as

Remark 6.17.
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a compact group with the induced topology. Thus for every idempotent u in I , the

measure µu∗I is well defined.

Remark 6.17. (1) In the proof of Lemma 6.15(2), it suffices to assume that for

some idempotent u ∈ I , u ∗ I is closed and that for all p ∈ I , the map p∗−|u∗I

is continuous.

(2) We also have the following equivalence: CIG2 holds if and only if CIG1 holds,

and the map u′ ∗−|u∗I is continuous for some u witnessing CIG1 and every

idempotent u′ ∈ I .

Indeed, since u ∗ I is compact, it follows that each u′ ∗ I is compact, and

thus closed and u′ ∗ −|u∗I is a homeomorphism. Since it is also a group

isomorphism, each u′ ∗ I is a compact group. Now, given any p ∈ u′ ∗ I , we

have p = u′ ∗ p = u′ ∗ u ∗ p, so left multiplication by p of elements of u ∗ I is

the composition of left multiplication by u ∗ p ∈ u ∗ I (continuous since u ∗ I is

a topological group) and left multiplication by u′ (continuous by assumption),

and therefore it is continuous and we conclude by (1).

Example 6.18. Both examples (1) and (2) from Example 6.8 are CIG2.

(1) The semigroup (Sinv
x (G,Z), ∗) is CIG2 by Lemma 6.15(2) as all types in I are

definable (note that we have |K I | = 2).

(2) The ideal group of
(
Sfs

x (G,SL2(R)), ∗
)

is finite (∼= Z/2Z), so it is CIG2 by

Lemma 6.15(1).

Lemma 6.19. Assume that (S†
x (G,G), ∗) is CIG2, and let I be a minimal left ideal

witnessing it. Then for any p ∈ I and u ∈ id(I ) we have ¶p ∗µu∗I =µu′∗I , where u′

is the unique idempotent in I such that p ∈ u′ ∗ I .

Proof. Fix u, u′ ∈ id(I ). Then the transition map Äu,u′ := (u′∗−)|u∗I : u∗ I → u′∗ I

is an isomorphism of topological groups (it is a group isomorphism by Fact 2.34(3)

and continuous by (ii) in CIG2, and Äu′,u ◦ Äu,u′ = idu∗I ). Let 8u,u′ : M(u ∗ I )→

M(u′∗ I ) be the corresponding pushforward map. Note that8u′,u◦8u,u′ = idM(u∗I ).

Moreover, 8u,u′(hu∗I ) = hu′∗I because 8u,u′(hu∗I ) is a regular Borel probability

measure on u′ ∗ I which is right-invariant, and this property characterizes the

normalized Haar measure. By a computation similar to the proof of Claim 2 in

Lemma 6.9, for any ϕ(x) ∈ Lx(G) we have

(¶u ∗µu′∗I )(ϕ(x))= hu′∗I

(
{q ∈ u′ ∗ I : ϕ(x) ∈ u ∗ q}

)

= (8u,u′(hu∗I ))
(
{q ∈ u′ ∗ I : ϕ(x) ∈ u ∗ q}

)

= hu∗I

(
Ä−1

u,u′

(
{q ∈ u′ ∗ I : ϕ(x) ∈ u ∗ q}

))

= hu∗I

(
u ∗ {q ∈ u′ ∗ I : ϕ(x) ∈ u ∗ q}

)

= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)),
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and hence ¶u ∗µu′∗I = µu∗I . Now let p ∈ u′ ∗ I . By Lemma 6.9 and the above

computation, using that p = p ∗ u′ by Fact 2.34(2), we have

¶p∗µu∗I = ¶p∗u′ ∗µu∗I = (¶p∗¶u′)∗µu∗I = ¶p∗(¶u′ ∗µu∗I )= ¶p∗µu′∗I =µu′∗I . □

Theorem 6.20. Suppose that (S†
x (G,G), ∗) is CIG2. Let I ¦ S†

x (G,G) be a min-

imal left ideal witnessing CIG2. Then all minimal left ideals of (M†
x(G,G), ∗)

are affinely homeomorphic to M(K I ) (in particular, they are Bauer simplices by

item (2) of Fact 2.41).

Proof. Let u ∈ id(I ). By Remark 6.16 and Corollary 6.12, it suffices to show

that M(I ) ∗µu∗I
∼= M(K I ). For ease of notation, denote the minimal left ideal

M(I ) ∗ µu∗I as L . Let q : I → K I denote the (continuous) quotient map, and

q∗ :M(I )→M(K I ) the corresponding pushforward map. Note that q∗ is affine by

Fact 2.1(iii). By Proposition 2.21, we have an affine homeomorphism µ : M(I )→

M(I ). Let 8 := (q∗ ◦ µ )|L . We claim that 8 is an affine homeomorphism. Note

that 8 is the restriction of the composition of two continuous affine maps, so 8

itself is a continuous affine map. It suffices to show that 8 is a bijection (since it is

automatically a closed map as L is compact and M(K I ) is Hausdorff by Fact 2.1(i)

as K I is compact Hausdorff by CIG2).

Claim 1: 8 is surjective.

Proof. The extreme points of M(K I ) are the Dirac measures concentrating on the

elements of K I (see, e.g., [Simon 2011, Example 8.16]). By the Krein–Milman

theorem, the set
{ n∑

i=1

ri¶[ui ∗I ] : [ui ∗ I ] ∈ K I , ri ∈ R>0,

n∑

i=1

ri = 1, n ∈ N

}

is dense in M(K I ). Fix some u1, . . . , un ∈ id(I ) and r1, . . . , rn ∈ R>0 such that∑n
i=1 ri = 1. It suffices to find some µ ∈ L such that 8(µ)=

∑n
i=1 ri¶[ui ∗I ] (as 8

is a closed map, it will follow that 8(L)= M(K I )).

Let ¼ :=
∑n

i=1 ri¶ui
∈ M†

x(G,G). Since µu∗I ∈ L (by Theorem 6.11) and L is a

left ideal, also ¼ ∗µu∗I ∈ L . By Lemmas 5.2 and 6.19, we have

¼ ∗µu∗I =

( n∑

i=1

ri¶ui

)
∗µu∗I =

n∑

i=1

ri (¶ui
∗µu∗I )=

n∑

i=1

riµui ∗I ,

and as µ and q∗ are affine this implies

8(¼ ∗µu∗I )=8

( n∑

i=1

riµui ∗I

)
=

n∑

i=1

ri q∗(µ̃ui ∗I )=

n∑

i=1

ri¶[ui ∗I ],

where µ̃ui ∗I ∈ M(I ) is the unique regular Borel probability measure extending

µui ∗I , i.e., µ̃ui ∗I (X) = hui ∗I (X ∩ ui ∗ I ) for any Borel X ¦ I , where hui ∗I is the

Haar measure on ui ∗ I . Hence 8 is surjective. □
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Claim 2: 8 is injective.

Proof. Suppose that ¼ and ¿ are in L and ¼ ̸= ¿. It suffices to find a continuous

function f : K I → R such that
∫

K I

f d(8(¼)) ̸=

∫

K I

f d(8(¿)).

Since ¼ ̸=¿, there exists someÈ(x)∈Lx(G) such that ¼(È(x)) ̸=¿(È(x)). Consider

the function fÈ : I → R defined via fÈ(p) := (¶p ∗ µu∗I )(È(x)). This map is

continuous since the map (− ∗ µu∗I )(È(x)) : M†
x(G,G) → R is continuous by

the “moreover” part of Fact 2.29 (and the map p ∈ S†
x (G,G) 7→ ¶p ∈ M†

x(G,G) is

continuous). Moreover, fÈ factors through q. Indeed, assume that q(p1)= q(p2)

for some p1, p2 ∈ I . Then there exists some w ∈ id(I ) such that p1, p2 ∈ w ∗ I .

Then by Lemma 6.19 we have

fÈ(p1)= (¶p1
∗µu∗I )(È(x))= µw∗I (È(x))= (¶p2

∗µu∗I )(È(x))= fÈ(p2).

By the universal property of quotient maps, there exists a unique continuous func-

tion f : K I → R such that fÈ = f ◦ q. Since ¼ ∈ L ¦ M(I ) (by the proof of

Theorem 6.11), by Lemma 2.25 there exists a net of measures (Av( p̄ j )) j∈J such that

p̄ j = (p j,1, . . . , p j,n j
) ∈ I n j and lim j∈J Av( p̄ j )= ¼ for each j ∈ J . Because µ is

an affine homeomorphism, we then have µ (¼)= lim j∈J

(
(1/n j )

∑n j

k=1 ¶p j,k

)
. Hence

we have the following computation:∫

K I

f d(8(¼))

=

∫

K I

f d
(
q∗(µ (¼))

)
=

∫

I

( f ◦ q) d(µ (¼))=

∫

I

fÈ d(µ (¼))

=

∫

Sx (G)

fÈ d(µ (¼))=

∫

Sx (G)

fÈ d

(
lim
j∈J

(
1

n j

n j∑

k=1

¶p j,k

))

= lim
j∈J

∫

Sx (G)

fÈ d

(
1

n j

n j∑

k=1

¶p j,k

)
= lim

j∈J

(
Av( p̄ j )∗µu∗I (È(x))

)
(by Fact 2.1(ii))

=
(
(lim

j∈J
Av( p̄ j ))∗µu∗I

)
(È(x))= (¼∗µu∗I )(È(x))=¼(È(x)),

where the last equality holds by Fact 2.34(2), as µu∗I is an idempotent in L . A

similar computation shows that
∫

K I
f d(8(¿)) = ¿(È(x)) ̸= ¼(È(x)), so 8 is

injective. □

Claims 1 and 2 establish the theorem. □

Example 6.21. (1) Let G := (R,+, <). Then the semigroup Sinv
x (G,R) is CIG2.

Indeed, the unique minimal left ideal of Sinv
x (G,R) is I = {p−∞, p+∞}, and both

elements of I are idempotents (see Example 4.5(3)). The ideal subgroups of I
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are {p−∞} and {p+∞}, both of which are obviously compact groups under induced

topology. We have M(I ) = {r¶p−∞
+ (1 − r)¶p+∞

: r ∈ [0, 1]}, and if u = p±∞

then µu∗I = ¶p±∞
.

Now we let ¿ ∈ M(I ), and then ¿ = r¶p−∞
+ s¶p+∞

for some r, s ∈ [0, 1] with

r +s = 1. Then ¿∗µp±∞∗I = (r¶p−∞
+s¶p+∞

)∗µp±∞∗I = (r¶p−∞
+s¶p+∞

)∗¶p±∞
=

r(¶p−∞
∗¶p±∞

)+s(¶p+∞
∗¶p±∞

)=r¶p−∞
+s¶p+∞

. Therefore M(I )∗µp±∞∗I =M(I ),

and so M(I ) ∗µp±∞∗I
∼= M({0, 1}) is a minimal ideal of (Minv

x (G,R), ∗).

(2) Let G := (Z,+, <). Then the semigroup Sinv
x (G,Z) is CIG2, the unique minimal

left ideal of Sinv
x (G,Z) is I = I + ⊔ I − and the ideal subgroups of I are I + and I −

(see Examples 6.8 and 6.18). Both ideal subgroups are compact groups under

induced topology, isomorphic to Ẑ as a topological group.

Let u+ ∈ I + and u− ∈ I − be the identity group elements in I − and I +, respectively.

Then µu±∗I is the Haar measure on I ± ∼= Ẑ. For every ¿ ∈ M(I ) we can write

¿ = r¿− + s¿+ for the measures ¿− and ¿+ defined by

¿−(ϕ(x))=
¿(ϕ(x)' x < b)

¿(x < b)
, ¿+(ϕ(x))=

¿(ϕ(x)' x > c)

¿(x > c)
and b < Z< c.

We also have ¿ ∗µu±∗I = (r¿− + s¿+)∗µu±∗I = r(¿− ∗µu±∗I )+ s(¿+ ∗µu±∗I )=

rµu−∗I + sµu+∗I . Therefore M(I ) ∗µu±∞∗I = {rµu−∗I + sµu+∗I : r + s = 1} ∼=

M({0, 1}) is a minimal ideal of (Minv
x (G,R), ∗).

Fact 6.22 [Gismatullin et al. 2015]. Let R z R be a saturated real closed field,

G := SL2(R) and G := SL2(R). Consider the definable subgroups of G given by

T :=

{([
x −y

y x

])
: x2 + y2 = 1

}
and H :=

{([
b c

0 b−1

])
: b ∈ R>0, c ∈ R

}
.

Let p0 := tp((b, c)/R) such that b > R and c > dcl(R ∪ {b}). We view p0 as a

type in SH(R)
3 identifying (b, c) with the matrix

[
b
0

c
b−1

]
. Let q0 := tp((x, y)/R),

where y is positive infinitesimal and x > 0 is the positive square root of 1 − y2.

We view q0 as a type in ST (R) identifying (x, y) with the matrix
[

x
y

−y
x

]
. We let r0

be tp(t ·h/R)∈ SG(R), where h ∈H realizes p0 and t ∈ T realizes the unique coheir

of q0 over R ∪ {h}. Then

(1) Sfs
G
(R,R) ∗ r0 is a minimal left ideal of Sfs

G
(R,R);

(2) any ideal subgroup of Sfs
G
(R,R)∗r0 is isomorphic to Z/2Z; in particular, if we

let r1 be the unique element in Sfs
G
(R,R)∗ r0 such that r1 ∗ r1 = r0 and r1 ̸= r0,

then {r0, r1} is an ideal subgroup.

3As usual, we denote by SH(−) the space of types concentrating on the definable set H; all of our

results can be modified in an obvious manner to apply to definable groups in an arbitrary theory, as

opposed to theories expanding a group.
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Example 6.23. Let G = SL2(R) and Sfs
G
(R,R) be the collection of global types

concentrated on G which are finitely satisfiable in SL2(R). By Fact 6.22, {r0, r1} is

an ideal subgroup of Sfs
G
(R,R) which is trivially a compact group with the induced

topology, and 1
2
(¶r0

+ ¶r1
) is the normalized Haar measure on it. By Theorem 6.11,

M(Sfs
G
(R,R)∗r0)∗

1
2
(¶r0

+¶r1
) is a minimal left ideal in Mfs

G
(R,R). Moreover, this

minimal left ideal is affinely homeomorphic to M(KSfs
G
(R,R)∗r0

) by Theorem 6.20

(see the notation there), which is a Bauer simplex with infinitely many extreme

points (by Remark 5.26).

More generally, we have:4

Remark 6.24. If G is NIP, not definably amenable and (S†
x (G,G), ∗) is CIG2,

then the quotient K I is infinite for each minimal ideal I in (S†
x (G,G), ∗), and the

minimal ideals in (M†
x(G,G), ∗) are Bauer simplices, each with infinitely many

extreme points (by Fact 2.41(2), Remark 5.26 and Theorem 6.20).

Remark 6.25. Assume that G is NIP and (Sfs
x (G,G), ∗) is CIG2. Then the following

are equivalent:

(1) G is definably amenable.

(2) |K I | = 1 for each minimal left ideal I in Sfs
x (G,G).

(3) K I is finite for some minimal left ideal I in Sfs
x (G,G).

Proof. (1) ⇒ (2) By definable amenability and Proposition 5.16, |J | = 1 for

every minimal left ideal J in (Mfs
x (G,G), ∗). By Theorem 6.20, J is affinely

homeomorphic to M(K I ) for some minimal left ideal I of (Sfs
x (G,G), ∗) and

therefore |K I | = 1 also. By Fact 2.34(6), we have |K I ′ | = 1 for every minimal left

ideal I ′ of (Sfs
x (G,G), ∗).

(2)⇒ (3) This is trivial.

(3)⇒ (1) This is by Remark 6.24 applied for † = fs. □

Remark 6.26. The implication (1) ⇒ (2) in Remark 6.25 does not hold when

(Sfs
x (G,G), ∗) is replaced by (Sinv

x (G,G), ∗). Indeed, (Z,+, <) is NIP, definably

amenable, CIG2, but |K I | = 2 (see Example 6.18(1)).

Question 6.27. It would be interesting to describe minimal left ideals of the

semigroup (M†
x(G,G), ∗) for some nondefinably amenable groups G where a

description of the minimal left ideals/ideal subgroups of (S†
x (G,G), ∗) is known

(other than SL2(R)), including certain algebraic groups definable in Qp [Penazzi

et al. 2019; Bao and Yao 2022] or in certain dp-minimal fields [Jagiella 2021].

Question 6.28. Is the set of extreme points of a minimal left ideal of (M†
x(G,G), ∗)

always closed, or at least Borel, in a (not necessarily definably amenable) NIP

group G?

4We thank the referee for suggesting the following two remarks.
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