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Abstract
In recent years, the increase in the frequency and intensity of hurricanes has posed a sig-
nificant threat to coastal infrastructures, particularly the electricity supply system. In 
response to these challenges, several policies have been proposed to improve the resilience 
of electricity systems, specifically focusing on expediting the restoration of disrupted utili-
ties. However, implementing these resilience plans comes with considerable costs, which 
must be balanced against the potential benefits experienced by households. This study 
examines the willingness of Florida residents to financially support the improvement of 
the electricity infrastructure resilience in response to hurricanes in Florida. We conduct a 
Discrete Choice Experiment involving 1138 Floridians to assess their willingness to pay 
for different scenarios aimed at improving electricity system resilience. Three panel mixed 
logit models are estimated, accounting for preference heterogeneity. Results indicate that 
the annual welfare estimates per individual range from $525.51 to $604.70 across the res-
toration scenarios. The findings offer compelling evidence, indicating strong support for 
minimizing hurricane-induced power disruptions by implementing the proposed resilience 
programs in Florida.
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Introduction

Hurricanes have the potential to cause substantial damages and disruptions to the public 
utility systems, including electricity, transportation, telecommunications, as well as drink-
ing water and wastewater infrastructures (Kwasinski et  al. 2006; Campbell and Lowry 
2012; Sajadi 2019). The strong winds, storm surges, heavy rainfall, and flooding associated 
with hurricanes often lead to widespread power outages, affecting a large number of resi-
dents in affected areas. These power outages and interruptions can last from a few hours 
to several days and weeks, depending on the severity of the hurricane. The duration of 
these outages has profound impacts on various sectors, including businesses, manufactur-
ing, transportation, other utility supply, healthcare, and emergency services (Campbell and 
Lowry 2012; FEMA 2017; Zimmerman et al. 2017).

The economic impacts of hurricane-induced power outages in the United States are sub-
stantial, with estimated losses ranging from $20 to $55 billion annually (Campbell and 
Lowry 2012). The growing trend of extreme weather-induced electricity outages, and 
their cascading impacts indicate the increasing vulnerability to these events. In addition 
to power disruptions, hurricanes can also disrupt other essential utility services such as 
drinking water treatment and wastewater systems, leading to potential water supply crises 
(Duffy 2013; Zimmerman et al. 2017; Matthews 2016). Hurricanes have the potential to 
cause severe damage to critical transportation infrastructure, including roads, bridges, and 
transportation networks. The combined impact of hurricane-induced flooding, fallen trees, 
and downed transmission and distribution lines often leads to road closures, impeding the 
repair process and making transportation and other related services inaccessible. Finally, 
hurricanes can inflict substantial damage on telecommunication networks through hurri-
cane-induced power outages. These outages can disrupt access to essential communication 
services such as telephones and the internet. Consequently, this disruption can hinder com-
munication with individuals in need of urgent help or medical care (Kwasinski et al. 2006).

Florida has experienced a series of devastating hurricanes in recent years, making it one 
of the most vulnerable regions to these catastrophic events. The frequency of hurricanes 
in Florida is particularly notable, with the state being impacted by an average of one hur-
ricane every two years and a major hurricane every four years (Malmstadt et  al. 2009). 
In the span of just two years, Florida faced significant devastation from a series of major 
hurricanes. In 2004, the state was hit by four major hurricanes: Charley, Frances, Ivan, 
and Jeanne (Baker 2011). The following year, Florida experienced the impact of two more 
major hurricanes: Dennis and Wilma (Baker 2011). Among these, Hurricane Wilma stands 
out as one of the most destructive storms since Hurricane Katrina in 2005. It made multi-
ple landfalls and caused widespread damage throughout Florida, resulting in over 3 million 
electricity outages (Chatterjee and Mozumder 2015).

In recent years, Florida faced the impact of several devastating hurricanes. In 2016 and 
2017, the state was hit by a series of powerful storms. In 2016, Hurricanes Hermine and 
Matthew struck Florida, followed by Hurricane Irma in 2017 (Florida Public Service Com-
mission 2018). Hurricane Irma, which made landfall as a Category 3 hurricane in the Flor-
ida Keys and as a Category 4 hurricane in southeastern Florida on September 10, 2017, 
had a profound impact. The hurricane’s high-speed winds and heavy rainfall left approxi-
mately 6.5 million customers without electricity, disrupted access to potable water, and 
resulted in an estimated $50 billion in damages in the United States. This made Hurricane 
Irma the fifth costliest hurricane in U.S. history (Issa et al. 2018; Cangialosi et al. 2018). 
Given the intensified risk posed by these extreme weather events, critical infrastructures 
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are now more vulnerable than ever before. It becomes crucial to prioritize resilience as a 
vital factor in protecting these infrastructures and the coastal communities relying on them 
(NIAC 2009).

Critical infrastructure resilience can be defined by considering three key factors: robust-
ness, resourcefulness, and quick recovery (NIAC 2009). Robustness refers to the capac-
ity of critical infrastructures to maintain their critical operations even when faced with 
disasters. Resourcefulness is defined as the capacity to respond and cope effectively as a 
disaster expands. Quick recovery signifies the capability to quickly return to normal opera-
tions after an interruption caused by a crisis. Infrastructure resilience, as defined by NIAC 
(2009), is the ability to minimize the impact and duration of disruptive events. The efficacy 
of a resilient infrastructure hinges on its capacity to foresee, absorb, adjust to, and recover 
quickly from potential disruptions.

In response to the impact of climate change and extreme weather events on criti-
cal infrastructure, substantial efforts have been undertaken in recent years to enhance 
the resilience of vital infrastructure systems, including electricity in Florida. After 
the devastating hurricane seasons of 2004 and 2005, the Florida Public Service Com-
mission initiated a series of programs aimed at strengthening the state’s electricity 
infrastructures. These programs included measures such as the hardening of electrical 
transmission and distribution lines, improved vegetation management, and the strategic 
placement of electrical lines underground. The primary objectives of these initiatives 
were to mitigate hurricane related damages, shorten restoration times, lower restora-
tion costs, and enhance the overall reliability (Campbell and Lowry 2012; Florida Pub-
lic Service Commission 2008, 2018).

The Commission also requested investor-owned electric utilities (IOUs) to periodically 
renew their hurricane hardening strategies and provide updated plans every three years. 
These continuous hardening efforts have proven to be instrumental in enhancing the resil-
ience of the electricity infrastructure over the past few years. The effectiveness of the 
hardening plans was put to the test during the 2016 and 2017 hurricane seasons. In 2018, 
the Commission reported that the utilities that had undergone hardening performed bet-
ter than the non-hardened ones (Florida Public Service Commission 2018). Furthermore, 
in October 2019, the Florida legislature passed Storm Protection Plans (SPP) cost recov-
ery Bill 786, which was subsequently signed into law by the Governor. Accordingly, the 
Florida Public Service Commission mandates IOUs to develop 10-year restoration plans 
and update them regularly. These plans (i.e., SPPs), build upon the strategies that IOUs 
have been implementing since the 2004–2005 hurricane seasons to enhance the resilience 
of electricity infrastructures. Regulators have recognized the benefits of SPPs, as they con-
tribute to reducing the extent and duration of power outages and the associated restoration 
costs, ultimately benefiting electricity customers (Walton 2020).

However, implementing these resilience plans comes with considerable costs, which 
must be balanced against the potential benefits experienced by households from having 
a resilient electricity transmission and distribution infrastructure. Despite the efforts to 
enhance the resilience of electricity systems in Florida, little is known about Floridians’ 
preferences and their perceptions regarding improvements in the resilience of electricity 
systems in response to hurricanes. Hence, exploring household perceptions about these 
resilience plans can provide decision-makers with valuable insights regarding residents’ 
preferences and the potential benefits of resilient infrastructure for utilities. Moreover, by 
aligning resilience strategies with household preferences and support, decision-makers can 
devise effective pricing plans to generate sufficient funding for future projects.
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The key aspect within this context is assessing household willingness to pay (WTP), 
as this measure plays an important role in determining the feasible level of invest-
ment for strengthening the electricity system (Baik et al. 2020). In essence, WTP helps 
determine the financial contribution households are willing to make towards secur-
ing and improving the electricity systems. It also sheds light on the anticipated ben-
efits they expect to receive from minimizing potential negative impacts of disruptions 
caused by hurricanes.

The primary objective of this study is to investigate public preferences and WTP for 
improving the resilience of electricity infrastructures in Florida, particularly in response to 
hurricanes. To achieve this goal, we conducted a discrete choice experiment (DCE) as part 
of a “household survey on the socioeconomic, health, political, and environmental aspects 
of Hurricane Irma in Florida.” Following the framework proposed by NIAC (2009), 
resilience in this study is defined as the ability to shorten the time required for restoring 
disrupted electricity utilities and providing services to a higher percentage of customers 
within specific days following a hurricane event.

This study makes significant contributions to the literature in two ways. First, to our 
knowledge, this is the first study that applies a DCE approach to investigate households’ 
preferences and WTP for improving the resiliency of power infrastructures in response to 
hurricanes in Florida, one of the most hurricane-prone regions in the whole world. Second, 
this study provides decision-makers with essential information that enables them to make 
more effective investments in resilience programs in response to coastal hazards in vulner-
able communities in the State of Florida and beyond.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive 
review of the literature on improving the resiliency of critical infrastructures to climate 
risks and extreme weather events. Section 3 outlines the DCE approach involving discrete 
choice modeling and design. Section 4 presents the survey and data collection process. In 
Section 5, we discuss the main findings of the study, and in Section 6, we provide conclud-
ing remarks and implications of the research.

Literature Review

There is a body of research exploring the WTP of both households and manufactur-
ing firms to avoid short term and long term outages in electricity and water supply 
using Contingent Valuation method (CVM) and DCE approaches (Del Saz-Salazar 
et al. 2016; Appiah et al. 2019; Cooper et al. 2019; Ozbafli and Jenkins 2016; Ghosh 
et al. 2017; Kim et al. 2018; Morrissey et al. 2018; Amoah et al. 2019; Carlsson et al. 
2020; Wen et al. 2022). However, few studies have analyzed preferences for enhancing 
the resiliency of critical infrastructures in response to extreme weather events such as 
hurricanes, cyclones, floods, and cold waves. For instance, Baik et al. (2020) examined 
customers’ WTP for improving the resilience of electricity systems during very cold 
winters using a CVM. In this case, resilience was defined as providing back-up power 
services during long-term power outages. Their findings indicated that customers in 
the Northeastern U.S. were willing to pay more to support collective power backup 
services than sustaining their own private backup services.

In the context of hurricane events, Wang et al. (2018) used a DCE to assess public 
preferences for enhancing the resilience of transportation systems in New York City. 
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Their definition of resilience focused on reducing the time required to restore disrupted 
transportation systems. The DCE included two hypothetical scenarios of improve-
ments in the resilience of transportation infrastructures, alongside a status quo sce-
nario. These scenarios are differentiated based on the level of operational improvement 
in the transportation system within specific time frames: 1–3 days, 4–6 days, 1 week, 
and 2 weeks. Using mixed logit models, they found that respondents’ WTP to improve 
system resiliency falls within the range of $75 to $450 per year. These findings provide 
strong evidence of support for funding resilience programs in New York City’s trans-
portation systems.

In a study focusing on flood events, Price et al. (2019) explored public preferences for 
enhancing water supply infrastructure in Canada to mitigate the risk of flooding, flood-
related boil water advisories, and flood-related power loss. Employing the random-effects 
probit model, they found that households exhibited a substantial WTP for a policy pro-
gram that effectively addresses flood risks. Additionally, the researchers identified signifi-
cant heterogeneity across different regions and sociodemographic groups. Notably, resi-
dents in rural areas and those living in regions with higher housing value demonstrated 
a higher WTP for the proposed policy programs. In a study focusing on cyclone events, 
Islam et al. (2019) employed a CVM to assess household WTP for enhancing the resil-
ience of drinking water systems in Southwestern Bangladesh. The findings revealed a 
positive response from most households, as they demonstrated a positive WTP for the 
implementation of cyclone resilient drinking water systems. The mean WTP amounted 
to 263 Taka/month (approximately 1 US$ =110 Taka), indicating the value they placed 
on improved resilience. Notably, the primary factor influencing household’ WTP was the 
accessibility to functional water sources. This suggests that households experiencing lim-
ited access to reliable water sources were more likely to support the development of resil-
ient water systems.

In a recent study, Maldonado et  al. (2023) employed a CVM to investigate public 
preferences for enhancing water supply continuity during extreme weather conditions in 
the Metropolitan Region of Chile. The results revealed significant heterogeneity among 
consumers, with the mean WTP varying from USD 1.09 to USD 5.79 per month. Addi-
tionally, the study identified political views as one of the most influential factors deter-
mining respondents’ WTP. Lastly, a growing body of literature also addresses man-
made risks. For instance, Rulleau (2023) utilized a DCE method to explore preferences 
for enhancing the resilience of water distribution systems to cyber-attacks in France. 
The present study contributes to this growing body of literature by investigating cus-
tomer preferences for enhancing the resilience of electricity infrastructure to hurricanes 
in Florida. By means of a DCE approach, we assess the extent of support from Florida 
residents for funding resilience programs in electricity infrastructures using a specific 
payment mechanism.

Discrete Choice Experiment

DCEs  were originally employed in the fields of transportation and marketing, where 
they were used to analyze trade-offs between different attributes of transportation pro-
jects and private goods. Over time, DCEs have also gained prominence in environmen-
tal economics to value non-market goods and services (Alpizar et al. 2001).
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In DCEs respondents are presented with multiple choice sets, each containing vari-
ous hypothetical alternatives. These alternatives are defined by levels of different attrib-
utes (e.g., price, quality) and if a price or cost attribute is included, marginal WTP values 
for other attributes can be estimated. When choosing one of the alternatives, respondents 
implicitly make trade-offs between different attribute levels, allowing researchers to iden-
tify the marginal value of the attributes and levels (Alpizar et al. 2001).

Modeling

The response to the choice between alternatives can be effectively demonstrated within a 
Random Utility Maximization (RUM) framework. This model assumes that respondents 
select the alternative that maximizes their utility. This model is also based on the hypoth-
esis that respondents know and are certain about their utility, but researchers are not able 
to detect or observe the respondents’ utility. Thus, there exist unobservable factors that are 
captured in a random error term. The overall utility that respondent k derives from select-
ing alternative i from choice set t can be written as (McFadden 1974; Ropars-Collet et al. 
2017; Holmes et al. 2017):

Based on Eq. (1), the utility is the sum of a systematic component (V) and a random 
component (ε). In Eq. (1), βk is a vector of preference parameters to be estimated, xkit repre-
sents a vector of attribute levels, and εkit is the error term.

The underlying assumption in applying a RUM model is that the error terms are inde-
pendently and identically distributed (IID). This assumption induces a logistic distribution, 
leading to the multinomial logit (MNL) model (Holmes et al. 2017). Given that a choice 
set contains I alternatives, the probability of respondent k selecting alternative i in choice 
set t is given by:

The MNL model is widely used for its simplicity in estimation; however, it is subject 
to two limiting assumptions. Firstly, it assumes that the alternatives are independent, and 
secondly, it imposes restrictions on modeling variations in preferences among respondents. 
The first assumption leads to the Independence of Irrelevant Alternatives (IIA) property, 
which states that changes in the alternatives do not affect the ratio of chances of choosing 
between any two alternatives in a choice set. If this assumption is not met, the MNL model 
should not be applied. The second limitation relates to dealing with observed and unob-
served heterogeneity. Observed heterogeneity can be incorporated into the model by intro-
ducing interaction terms between sociodemographic characteristics and attributes. How-
ever, the IID assumption is highly restrictive regarding unobserved heterogeneity (Alpizar 
et al. 2001; Holmes et al. 2017).

The MNL model can be extended to address its limitations, such as capturing prefer-
ence heterogeneity (Holmes et al. 2017). An advanced extension of the MNL model is the 

(1)Ukit = Vkit + �kit = ��
k
xkit + �kit, k = 1, ...,N

(2)Pkit =

exp
�
��
k
xkit

�

∑I

i=1
exp

�
��
k
xkit

�



241Economics of Disasters and Climate Change (2024) 8:235–261	

1 3

Panel Mixed Logit (PML) model, also known as random parameter logit. The PML model 
assumes that parameters can vary randomly across respondents. Additionally, it explic-
itly considers correlation across repeated choices made by each respondent (Revelt and 
Train 1998). In the PML model, the probability of respondent k selecting alternative i in 
choice set t can be defined as the integral of the MNL probability over the distribution of βk 
(Train 2009):

where f(βk| θ) is the density function of βk described by a vector of parameters θ.
If utility is a function of a price or cost attribute, DCEs allow to calculate WTP val-

ues for welfare gains resulting from alterations in the attribute levels. (Holmes et al. 2017).
Assuming a linear utility function, the WTP for a marginal change in the level of attrib-

ute A is given by the negative ratio of the parameter for attribute A (βA) to the parameter for 
the price attribute (βp) (Holmes et al. 2017):

Indeed, the marginal WTP (which is also known as implicit price) displays how much 
respondents are willing to pay for a marginal change in the attribute (Ropars-Collet et al. 
2017; Holmes et al. 2017).

Furthermore, we calculate the compensating surplus (CS) for various improvement sce-
narios, which involve combinations of different restoration levels. Following Holmes et al. 
(2017), we define it as:

where βp is the price parameter; V1 is the utility after a scenario or program is imple-
mented, and V0 is the initial utility (Holmes et al. 2017).

Experimental Design

To design our DCE, we carefully selected five attributes that capture key features of resil-
ient electricity infrastructures. We chose these attributes in collaboration with experts 
from the electricity sector and based on insights from the existing literature. Following 
Wang et  al. (2018), each choice set in our DCE comprises two hypothetical alternatives 
for improving the resilience of the electricity infrastructure (Option A and Option B) and a 
status quo alternative. In this context, resilience is defined as the ability to restore disrupted 
electricity services in a reduced time frame and to provide services to a higher percentage 
of customers within a specific period.

Accordingly, each alternative has four attributes that demonstrate the enhancement of 
electricity infrastructure resilience in terms of the percentage of customers receiving power 
supply within specific timeframes following disruptions caused by a severe hurricane 
event, such as Hurricane Irma. These timeframes consist of 1–3 days, 4–6 days, 1 week, 
and 2 weeks after the hurricane event. In the DCE respondents were presented with the 
cumulative percentage of customers receiving power in each timeframe; for example: 40% 
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within 1–3 days, 50% within 4–6 days, 70% within 1 week, and 80% within 2 weeks. Cus-
tomers whose power was not restored during these timeframes were assumed to experience 
a power outage of more than two weeks (i.e., power was restored at an unspecified time 
more than two weeks after the hurricane event). This category of customers—those receiv-
ing power after two weeks—serves as the reference category in the analysis.

While respondents were presented with the cumulative percentages of customers receiv-
ing power, we used the incremental improvement between timeframes in the statistical 
analysis.1 Thus, estimated parameters for power resilience attributes indicate the utility 
associated with a marginal increase in the percentage of customers receiving power in a 
timeframe relative to the  reference category of more than two weeks. Subsequently, we 
were able to obtain WTP values for marginal increases in percentages of customers recov-
ered, providing valuable insights into the degree of support for a faster restoration of elec-
tricity supply.

To facilitate the improvement in the resilience of electricity infrastructure, we intro-
duced two hypothetical alternatives, both of which include a funding mechanism. For 
this purpose, we asked the respondents to consider the proposal of the “Power Resiliency 
Fund” (PRF) initiated by the Florida State Government. The PRF aims to enhance and sup-
port the resiliency of electricity infrastructures in preparation for future hurricanes, thereby 
minimizing damages, outages, and recovery time for customers. Under this hypothetical 
funding mechanism, respondents were asked to indicate their willingness to support the 
PRF through an annual payment. The specific amount of money they would be willing to 
contribute (depending on the attributes and their levels in the alternatives) would be added 
to their annual electricity bill for a duration of 10 years. (For more detailed information, 
see the appendix).2 Table 1 displays the attributes and their levels used in designing the 
choice sets for the study.

We generated 16 choice sets, each containing 3 alternatives representing various lev-
els of resilient electricity attributes. To construct the electricity restoration choice sets 

Table 1   Attributes and levels for improving the resilience of electricity infrastructure

Attributes Levels

Percentage of electricity customers receiving the power service 
restored in 1–3 days after a strong hurricane.

10%, 20%, 30%, 40%, 50%

Percentage of electricity customers receiving the power service 
restored in 4–6 days after a strong hurricane.

20%, 30%, 40%, 50%, 60%

Percentage of electricity customers receiving the power service 
restored in 1 week after a strong hurricane.

40%, 50%, 60%, 70%, 80%

Percentage of electricity customers receiving the power service in 
2 weeks after a strong hurricane

60%, 70%, 80%, 90%, 100%

Fee for improvement in the resilience of electricity infrastructure 
(defined as an increase in annual electricity bill)

$0, $60, $80, $100, $120, $140, $160,

2  It is important to note that to mitigate potential hypothetical bias, respondents were presented with a real-
istic payment mechanism and a reminder of their budget constraints.

1  For example, cumulative percentages of 40% in 1–3 days, 50% in 4–6 days, 70% in 1 week, and 80% in 
2 weeks are coded as 40% in 1–3 days, an additional 10% in 4–6 days, an addition 20% by 1 week, and an 
additional 10% by 2 weeks.
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that provide us with the most precise parameter estimates in the analysis, we adopted a 
Bayesian D-optimal design approach. Because choice models are nonlinear in the param-
eters, the efficacy of the design hinges on the unknown parameters. Bayesian designs 
provide a solution to this issue as they are optimized over a prior distribution of possible 
parameter values. This distribution takes the form of a multivariate normal distribution, 
denoted as N(β|β0, Σ0), where β0, represents the prior mean and Σ0 is the prior variance-
covariance matrix. Bayesian optimal designs exhibit robust performance across a wide 
range of parameter values by effectively dealing with uncertainties related to the specified 

Fig. 1   Sample choice set for improving the resilience of electricity infrastructures
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parameters (Kessels et al. 2011). For the 3 options in each choice set, we incorporated the 
restriction that option B had the same or higher levels than option A, which in turn, had 
the same or higher levels than the status quo. We split the 16 electricity choice sets into 8 
groups, where each respondent was randomly assigned a group of 2 choice sets. We created 
the Bayesian D-optimal design using JMP Pro 16 software. Figure 1 illustrates a sample of 
a hypothetical electricity restoration choice set presented to the respondents.3

Survey and Data Collection

The survey was structured into three sections. In section one, we introduced the pur-
pose of the questionnaire and collected data on the socioeconomic characteristics of 
the respondents. This included age, ethnicity, level of education, gender, marital sta-
tus, political identity, and household income. Section two focused on understanding 
respondents’ experience with Hurricane Irma and their decisions regarding evacuation. 
We investigated experiences during hurricanes in general and perceptions of utility dis-
ruptions. Additionally, we explored concerns regarding future hurricanes and views on 
funding mechanisms employed to enhance the resilience of electricity infrastructure in 
preparing for such risks. In section three, we presented the respondents with the choice 
sets designed to assess their preferences for power infrastructure resilience and service 
restoration after a hurricane event.4

The online questionnaire was administered through Qualtrics and conducted from 
September 2020 to early December 2020. Prior to the main study, a pilot survey was 
conducted in September 2020 to refine the questionnaire and ensure its effectiveness. 
A total of 1138 responses were collected from the final sample (excluding pilot sur-
veys) by December 2020.5 It is important to note that our survey was conducted during 
the hurricane season in Florida in 2020. The timing of the survey administration dur-
ing this specific period allowed us to capture respondents’ perceptions and attitudes 
towards infrastructure resilience in a context where and when the threat of hurricanes 
was more prominent. However, it is essential to acknowledge that the results obtained 
during the hurricane season would not necessarily be the same if the survey had been 
conducted during the non-hurricane season.

Data summary of the 16 electricity choice sets revealed that among the respondents, 
34% chose plan A, 44% chose plan B, and 22% chose the status quo option. These results 
indicate a higher preference for plan B compared to plan A and the status quo option. The 
distribution of choices for each choice set is reported in Table 2. The descriptive statistics 

4  In the survey, we highlighted the area impacted by Hurricane Irma, specifically the whole state of Florida, 
and noted that the majority of residents in Florida were affected by the hurricane.
5  For the PML model, we limited the analysis to respondents with complete socioeconomic information 
and respondents living in single-family homes, condos, duplexes, and townhomes. Respondents living in 
apartments were excluded from the analysis.

3  We compared models that simultaneously estimated separate parameters for choice task 1 and choice task 
2. We then tested for differences in estimated parameters and WTP values across tasks. Wald tests showed 
no significant differences between parameters (i.e., SQASC, cost attribute, time-to-restoration attributes) 
or WTP values. These results suggest that respondent’s hypothetical behavior does not meaningfully differ 
between the two choice tasks.
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Table 2   Frequency distribution 
of resilience for power 
infrastructure choice sets

Power Choice Set Alternative Freq. Percent

Survey Version 1: Choice set 1
Plan A 46 32.62
Plan B 61 43.26
Status quo 34 24.11
Total 141 100

Survey Version 1: Choice set 2
Plan A 46 32.62
Plan B 60 42.55
Status quo 35 24.82
Total 141 100

Survey Version 2: Choice set 1
Plan A 46 31.08
Plan B 69 46.62
Status quo 33 22.3
Total 148 100

Survey Version 2: Choice set 2
Plan A 53 35.81
Plan B 60 40.54
Status quo 35 23.65
Total 148 100

Survey Version 3: Choice set 1
Plan A 49 35.25
Plan B 64 46.04
Status quo 26 18.71
Total 139 100

Survey Version 3: Choice set 2
Plan A 46 33.09
Plan B 62 44.6
Status quo 31 22.3
Total 139 100

Survey Version 4: Choice set 1
Plan A 43 30.07
Plan B 65 45.45
Status quo 35 24.48
Total 143 100

Survey Version 4: Choice set 2
Plan A 64 44.76
Plan B 56 39.16
Status quo 23 16.08
Total 143 100

Survey Version 5: Choice set 1
Plan A 54 37.76
Plan B 56 39.16
Status quo 33 23.08
Total 143 100
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of the sample are presented in Table 3. As Table 3 depicts, 58% of the respondents were 
female, and 38% fell within the age range of 30–45  years. Moreover, over 40% of the 
respondents had educational attainment beyond a bachelor’s degree. A similar percentage 
of respondents reported an average net annual income level ranging between $42,000 and 
$96,000.

In comparing our sample to the total population of the State of Florida, some differ-
ences were notable. The sample consists of a slightly higher percentage of females (58% in 

Table 2   (continued) Power Choice Set Alternative Freq. Percent

Survey Version 5: Choice set 2

Plan A 39 27.46
Plan B 62 43.66
Status quo 41 28.87
Total 142 100

Survey Version 6: Choice set 1
Plan A 49 34.75
Plan B 70 49.65
Status quo 22 15.6
Total 141 100

Survey Version 6: Choice set 2
Plan A 58 41.13
Plan B 53 37.59
Status quo 30 21.28
Total 141 100

Survey Version 7: Choice set 1
Plan A 47 34.81
Plan B 67 49.63
Status quo 21 15.56
Total 135 100

Survey Version 7: Choice set 2
Plan A 36 26.67
Plan B 72 53.33
Status quo 27 20
Total 135 100

Survey Version 8: Choice set 1
Plan A 49 34.27
Plan B 65 45.45
Status quo 29 20.28
Total 143 100

Survey Version 8: Choice set 2
Plan A 58 40.56
Plan B 53 37.06
Status quo 32 22.38
Total 143 100
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the sample vs. 50% in the population of Florida). In terms of income, the sample exhibits 
a slightly lower median household income of $57,000 compared to the population median 
income of $61,777 (in 2021 dollars). Additionally, the sample shows a slightly lower level 
of racial diversity, with 74% identifying as white compared to 76% in the population, 11% 
identifying as Black or African American compared to 17% in the population, and 10% 
identifying as Hispanic or Latino compared to 27% in the population.6 Some of these dif-
ferences may be due to the use of different racial and ethnicity categorization schemes in 
the two data sources. However, it is worth noting that the differences in these socioeco-
nomic characteristics between the sample and the Florida population are not substantial, 
and the variability is relatively small. Therefore, the data from our sample can still pro-
vide meaningful estimates of WTP for resilient electricity infrastructure in Florida.

Table 3   Descriptive statistics and definitions of variables used in the analysis

Characteristics Level Mean SD N

Education Education [1]: Less than a high school 
diploma

0.0443 0.2058 1138

Education [2]: High school degree 0.2099 0.4074 1138
Education [3]: College degree 0.3339 0.4718 1138
Education [4]: Bachelor’s degree 0.2046 0.4036 1138
Education [5]: Postgraduate degree 0.2073 0.4055 1138

Age (years) Age [1]: age > =18 & age < 30 0.2542 0.4356 1138
Age [2]: age > =30 & age < 45 0.3853 0.4869 1138
Age [3]: age > =45 & age < 60 0.1683 0.3743 1138
Age [4]: age > =60 0.1922 0.3942 1138

Net annual income Low Income: Less than $42,000 0.1391 0.3463 1138
Medium Income: Between $42,000–

$96,000
0.4202 0.4938 1138

High Income: more than $96,000 0.2987 0.4579 1138
Gender Gender [1]: Female 0.5846 0.493 1138
Race Race [1]: White 0.7414 0.4381 1138

Race [2]: Black or African American 0.1107 0.3139 1138
Race [3]: Hispanic or Latino 0.1019 0.3026 1138
Race [4]: Other races (including Native 

American, Asian / Pacific Islander)
0.0456 0.2088 1138

Political party Liberal 0.2882 0.4529 1138
Conservative 0.3224 0.4674 1138
Independent 0.3892 0.4876 1138

Hurricane Iram-induced power outage Experienced at least 1 day power outage 0.7322 0.4428 1138
Home ownership owned 0.5462 0.4981 1138

rented 0.4538 0.4981 1138
Living in a coastal county Coastal county [1]: living in a coastal 

county
0.6499 0.4770 1138

6  U.S. Census Bureau, American Community Survey (ACS). For more information, see: (https://​www.​cen-
sus.​gov/​quick​facts/​fact/​table/​flora​lcity​cdpfl​orida​,FL,US/​PST04​5221)

https://www.census.gov/quickfacts/fact/table/floralcitycdpflorida,FL,US/PST045221
https://www.census.gov/quickfacts/fact/table/floralcitycdpflorida,FL,US/PST045221
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Results

Panel Mixed Logit Model Estimates

We employed PML modeling to assess the respondents’ marginal utility obtained from 
choosing an alternative for improving the resilience of electricity infrastructures. The PML 
deals with the heterogeneity across respondents’ preferences since it assumes that prefer-
ence parameters vary randomly across respondents (Train 2009).7 In particular, we mod-
eled the restoration attributes and a status quo alternative specific constant (SQASC) as 
normally distributed random parameters. The annual payment is modeled using a non-ran-
dom parameter.

Three distinct PML models are estimated, and the parameter estimates are presented 
in Table 4. In the first model, we consider only the restoration attributes. The second and 
third models, however, expand upon the first model by incorporating the effects of socio-
economic characteristics to account for preference heterogeneity. Accordingly, we included 
interactions between the SQASC and various socioeconomic factors to capture the 
observed heterogeneity. To capture unobserved heterogeneity, the SQASC was included in 
the vector of random variables across all PML models.

In Model 1, the payment estimate, which represents the marginal utility of money, is 
statistically significant and has an expected negative sign, indicating that the respondents 
prefer alternatives with lower payments. The coefficients associated with the restoration 
attributes (including power services restored within 1–3  days, 4–6  days, 1  week, and 2 
weeks after a hurricane) are significant and have expected positive signs. Although the 
magnitude of these coefficients suggests marginal utility declines with the time needed for 
power restoration (i.e., faster power restoration is preferred), Wald tests indicate there are 
no significant differences between estimated parameters. The inclusion of the SQASC in 
the model allows us to separate the effect of the restoration alternatives from the status 
quo option. The negative estimated coefficient on the SQASC suggests that the status quo 
option is associated with lower utility than the restoration alternatives (i.e., option A or 
option B). In other words, respondents benefit from the upgraded restoration policy regard-
less of the specific changes in electricity restoration.

Model 2, presented in Table  4, expands upon Model 1 by introducing interactions 
between the socioeconomic variables (including income, gender, age, and race) and the 
SQASC to capture observed heterogeneity in preferences among respondents. The model 
also incorporates the location of residence via interactions between the SQASC and an indi-
cator for living in a coastal county. Like Model 1, all the estimated coefficients associated 
with the time-to-restoration attributes remain statistically significant and have the expected 
positive signs. The order of valuation across these attributes is decreasing as expected, but 
again the differences are not statistically significant.

The estimated coefficient of the SQASC in Model 2 provides insights consistent with 
those of Model 1 regarding the benefits respondents derive from selecting restoration 
alternatives over the status quo option. The introduction of interaction terms allows us 
to further explore the influence of socioeconomic factors on preferences. The estimated 

7  In addition to the PML model, we analyzed the choices of our DCE using a latent class model (LCM). 
In the LCM, populations are assumed to contain a finite number of preference classes; thus, unobserved 
heterogeneity is modeled with class-specific rather than respondent-specific preferences. The results from a 
LCM with two classes are reported in the appendix.
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coefficient of the interaction term SQASC*high income is negative, significant, and has a 
higher magnitude compared to the interaction term SQASC*medium income. This income 
effect suggests that as income increases, respondents are more likely to select a restoration 
alternative.

The estimated coefficient on SQASC*female suggests that female respondents are less 
likely to support the restoration policy.8 Younger respondents are more likely to support 
the resilient power infrastructure policy. This may reflect a stronger environmental and 
climate consciousness among younger respondents. Younger individuals are often more 
engaged and concerned about environmental issues (Han et al. 2022). Lastly, interaction 
terms between race attributes and SQASC were found to be insignificant except for the 
interaction term other race* SQASC. This implies that compared to Hispanic respondents, 
Native Americans/Asian/Pacific Islanders are less likely to support the resilience policy. 
The estimated coefficient on the interaction between the SQASC and living in a coastal 
county indicator shows that the likelihood of selecting the status quo option did not signifi-
cantly differ across regions.

In Model 3, we expand the analysis by incorporating two additional interactions: 
political party affiliation and experience of at least one day power outage induced by 
Hurricane Irma, with the SQASC. The signs and statistical significance of the estimated 
coefficients on the restoration attributes, SQASC, payment, and the interaction terms 
align with our expectations and are consistent with the results obtained in Model 1 and 
Model 2. We observe that liberal respondents tend to show greater support for restoration 
policies compared to those who identify as independent, possibly due to differences in 
the degree of trust placed in the public sector to implement the proposed program. How-
ever, there is no statistically significant difference between individuals who experienced 
at least one day power outage (induced by Hurricane Irma) and those who did not in 
terms of supporting the resilience policy.9

The standard deviations (SD) of the random parameters are presented in Table 4. 
Results indicate that the SD of restoration attributes for 1 week and 2 weeks are not 
statistically significant across all three models. For Model 1, the SD of the restora-
tion attribute for 4–6 days is not statistically significant, but it becomes significant in 
Models 2 and 3. On the other hand, the SD of the restoration attribute for 1–3 days 
and the SQASC option is statistically significant in all three models. These findings 
suggest there is considerable heterogeneity among respondents regarding their prefer-
ences for the status quo option and the time-to-restoration attribute in 1–3  days. In 
contrast, preferences for other restoration attributes show less heterogeneity and tend 
to be more homogeneous.

9  We also estimated alternative specifications of Model 2 and Model 3 that incorporated the region of resi-
dence via interactions between the SQASC and regional indicators (i.e., Panhandle, North, Central, and 
South). Model results showed that the likelihood of selecting the status quo option did not significantly dif-
fer across regions.

8  It is unclear why female respondents are more likely than males to select the status quo option. One pos-
sible explanation is that females, particularly in lower income households, have less agency over household 
resources and are thus less likely to support a program that increases monthly utility payments. We find 
some support for this hypothesis in an alternate set of models that included three-way interactions between 
the SQASC, female respondent indicator, and household income indicators. Results suggest that the differ-
ence in female and male choices is substantially more pronounced among low-income households.
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WTP Estimates for Greater Resilience of the Power Infrastructure

We present the marginal WTP estimates or implicit prices for improvements in the resilience 
of electricity infrastructure. The calculations are based on the results of Model 1 (see Table 4) 
and derived using Eq. (4). The results in Table 5 show that respondents are willing to pay 
more for a faster restoration of electricity supply after an extreme hurricane event like Irma. 
More specifically, these estimates suggest that, for example, on average, each respondent is 
willing to pay $5.54 for a 1% increase in the number of customers with power within 1–3 days, 
relative to power being restored after more than two weeks. Likewise, respondents are willing 
to pay $4.84, $3.86, and $3.51 for the marginal improvements in the restoration of disrupted 
power services within 4–6 days, 1 week and 2 weeks, respectively. Notably, the WTP for the 
status quo option is negative. A negative WTP represents the additional amount of income that 
individuals would require to accept the current situation scenario.10

However, the marginal WTP estimates do not provide comprehensive welfare meas-
ures (compensating surplus). To estimate the overall annual WTP for a greater resilient 
power infrastructure (i.e., total annual WTP for a change from the status quo scenario), 
further computations are required. To demonstrate this process, four hypothetical resil-
ience power infrastructure scenarios and a current situation scenario are presented. 
Each hypothetical resilience scenario depicts varying restoration times with regard to 
the current situation scenario. The current situation scenario assumes that the power 
services are provided to 10% of the customers within 1–3 days, 20% within 4–6 days, 
50% within 1 week, and 70% within 2 weeks following a severe hurricane like Hurri-
cane Irma.11 The resilience scenarios are organized in a progressively faster restoration 
of power supply.12

Using Eq. (5), we estimated the compensating surplus (CS) for the change from the current 
situation scenario to each resilience scenario. The CS was calculated for all four scenarios, 
with the inclusion of the SQASC effect. The existing literature provides no clear consensus on 
whether SQASC effects are essential elements of welfare; in this case their inclusion greatly 
increases welfare measures (Meyerhoff et al. 2021). The estimates of welfare measures for the 
four scenarios are reported in Table 6. Among the four scenarios, scenario 4 exhibits the high-
est CS of $604.70 per individual per year, followed by scenario 3 with $559.80, scenario 2 
with $542.30, and scenario 1 with $525.51. These results suggest a progressive increase in the 
CS measure for each resilience scenario compared to the base scenario.

By aggregating the per respondent CS measures, we can estimate the welfare meas-
ures for the Florida population associated with the four scenarios aimed at enhancing 
power infrastructure resilience in the state. The aggregate values are based on the num-
ber of households (see Table 6).13 The Scenario 4 stands out with the largest welfare 

10  Although the survey was administered 2–3 years after a major hurricane, the estimated WTP values may 
be higher than they would be if more time had passed since the last hurricane.
11  Our SQ scenario aligns with reality in highly affected areas by Hurricane Irma. For instance, the paper 
published by Mitsova et al. (2018) shows that the power restored in Collier County (i.e., one of the highly 
affected counties by Hurricane Irma) within the first 3 days are less than 10%. We designed our SQ scenario 
and improvement scenarios accordingly.
12  The assessment of compensating surplus for various improvement scenarios involves examining the 
changes in their attribute levels relative to the status quo scenario.
13  According to the Bureau of Economic and Business Research at the University of Florida, there are 
8,676,264 households in Florida (by April 1, 2021). For more information, see: https://​www.​bebr.​ufl.​edu/​
wp-​conte​nt/​uploa​ds/​2022/​02/​house​holds_​2021.​pdf

https://www.bebr.ufl.edu/wp-content/uploads/2022/02/households_2021.pdf
https://www.bebr.ufl.edu/wp-content/uploads/2022/02/households_2021.pdf


252	 Economics of Disasters and Climate Change (2024) 8:235–261

1 3

estimate, totaling $5.246 billion dollars, with scenario 3 following at $4.857, scenario 
2 at $4.705, and scenario 1 at $4.559 billion dollars. These welfare estimates provide 
valuable insights for policymakers, as they can be used to assess the potential positive 
outcomes of different resilience improvement policies for the community.

The power infrastructure in the State of Florida has revealed significant vulner-
abilities following Hurricane Irma and it is projected that these vulnerabilities will 
be further exacerbated by future hurricanes. To address these issues, various initia-
tives and policies are currently underway to enhance the resilience of power systems 
in Florida. Nevertheless, it is crucial to explore alternative funding mechanisms, 
such as taxes, surcharges, fees etc. to implement and sustain these initiatives effec-
tively, and ensure that customers are willing to contribute financially towards these 
resilience-focused policies. The findings provide evidence that customers revealed 
a significant level of WTP for funding the resilience programs in electricity infra-
structure in Florida.

Discussion and Conclusion

In recent years, infrastructures in Florida that provide public utility services have 
encountered an unprecedented threat due to the intensification of hurricanes. These 
destructive extreme weather events have posed significant challenges to the resil-
ience of the region’s electricity infrastructure. To address these challenges, sub-
stantial projects and funding efforts have been undertaken to enhance the resilience 
of the electricity systems, specifically focusing on expediting the restoration of 
disrupted utilities. Nonetheless, it is essential to gain empirical insights into the 
impact and implementation of infrastructure resilience programs from the perspec-
tives of residents. By understanding their preferences, decision-makers can refine 

Table 5   Marginal willingness to pay (WTP) estimates

95% confidence intervals, reported in parentheses, were calculated using the delta method

Mixed logit

Factor WTP
Improvement in power service restored within 1–3 days after a hurricane 5.5418

(4.2548–6.8287)
Improvement in power service restored within 4–6 days after a hurricane 4.8433

(2.3416–7.3449)
Improvement in power service restored within 1 week after a hurricane 3.8636

(1.5026–6.2245)
Improvement in power service restored within 2 weeks after a hurricane 3.5101

(1.4678–5.5524)
SQASC −425.2031

(−645.3026–205.1035)
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their approach, leading to more effective and community-centered strategies. This, 
in turn, fosters stronger community-based decision-making practices for building 
resilience (Taeby and Zhang 2019).

In this study, a DCE was conducted on 1138 respondents in Florida, to derive the 
customers’ WTP for the PRF. In the DCE, each respondent was faced two choice sets 
containing two hypothetical scenarios of improved resilience of electricity systems 
in terms of the percentage of customers regaining power service within specific time 
frames (i.e., 1–3  days, 4–6  days, 1  week, and 2  weeks) following a major hurricane 
event.

Three PML models were estimated, accounting for observed and unobserved 
preference heterogeneity. We found a clear preference among respondents for faster 
power restoration and a substantial WTP for funding this type of resilience program 
in Florida. Factors such as income, gender, age, and political affiliation influenced 
respondents’ preferences. For example, respondents with higher income were more 
likely to pay a higher amount for improving power system resilience, while female 
respondents were less likely to participate in this program. Younger respondents and 
liberals demonstrated greater support for restoration policy. However, there was no 
statistically significant difference in terms of supporting the program between indi-
viduals who experienced at least one day of power outage (due to Hurricane Irma) 
and those who did not.

Our findings are consistent with the limited existing literature analyzing public 
preferences to assess the economic viability of enhancing the critical infrastructure 
resilience in response to natural disasters (Wang et  al. 2018; Baik et  al. 2020). Our 
findings demonstrate that the annual welfare gain per individual for four restora-
tion scenarios falls within the range of $525.51 to $604.70, which aligns with the 
results reported by Wang et al. (2018). In their study, the observed welfare estimate 
per household per year ranged from $75 to $450 for improving the resilience of New 
York City’s transportation system. By building on prior research, our study fur-
ther strengthens the understanding of public preferences and economically feasible 
investment levels for enhancing the resilience of critical infrastructure systems. Such 
insights can inform policymakers and stakeholders in making informed decisions to 
allocate resources effectively and prioritize resilience initiatives for mitigating the 
impacts of natural disasters.

A comprehensive benefit-cost analysis is beyond the scope of the current study, but we 
can offer a rough comparison using available cost estimates. Florida Power and Light, the 
largest power utility in the state, recently undertook a project for installing underground 
power lines at a cost of $633,000 per mile (Dunkelberger 2019). When extrapolated, this 
value implies that it would cost $30 billion to bury all power lines in the State of Florida 
(Dunkelberger 2019). Our findings indicate total annual welfare gains of $4.5 to $5.2 bil-
lion from building a more resilient electric system. The present value of these benefits over 
a 10-year period, using an annual discount rate of 2%, falls in the range of $40.4 to $46.7 
billion. Thus, although costs and welfare gains will vary across different types of projects, 
these calculations suggest that enhancing the resiliency of Florida’s electric system would 
be welfare improving.
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The results of our study have important policy implications. First, decision-
makers should pay attention to household preferences regarding critical infrastruc-
ture resilience programs. Incorporating household perspectives can contribute to 
more efficient decision-making processes for crafting resilience strategies. By 
actively involving households into the planning and execution of resilience initia-
tives, decision-makers can enhance the effectiveness of these strategies within the 
community. Second, our findings highlight the importance of addressing income 
inequality when implementing resilience plans. The higher WTP of high-income 
respondents for funding resilience programs in electricity infrastructures suggests 
that income disparities can significantly impact the feasibility and success of such 
initiatives. It is therefore crucial to pay attention to vulnerable social groups (e.g., 
low-income households) and implementing measures such as discounts or other 
types of financial support to ensure their inclusion and participation in proposed 
resilience plans. By addressing income disparities and providing support to those 
in need, policymakers can foster a more equitable and effective implementation of 
infrastructure resilience plans.

Appendix

Enhancing Resiliency of Power Infrastructure in Florida

Hurricane Irma was one of the most destructive and the costliest hurricanes in 
U.S. history. It struck Florida on September 10, 2017 as Category 4 hurricane 
and led to millions of residents experiencing electricity outage and water sup-
ply disruption in the state during and after the hurricane. In this regard, sup-
pose that the State of Florida is proposing to establish ‘Florida Power Resil-
iency Fund’ (FL-PRF), which will mobilize resources statewide to improve 
resiliency of electricity infrastructures to hurricanes and other natural hazards 
in Florida. Using ‘FL-PRF’, the State Government in collaboration with local 
utility providers will be able to modify and upgrade the power and electricity 
infrastructure to minimize power outages and disruptions and reduce the recov-
ery time for the residents. Considering this, would you be willing to support 
‘FL-PRF’ by contributing a specific amount of money which will be added to 
your annual electricity bill for next 10 years (which can be f lexibly distributed 
across billing cycles each year).

You have several options to select the type of the ‘Florida Power Resiliency Fund’ (FL-
PRF) with varying contribution levels. Option A will ensure a moderate level of investment 
in power infrastructure to provide a faster restoration of electricity supply compared to the 
‘Current Situation’. Option B will provide even faster restoration than Option A. Remem-
ber If you choose neither Option A nor Option B, it means that you are supporting the 
‘Current Situation’ (Opt Out Option).

Please select the option that you prefer most for each of the two sets of scenarios pre-
sented (see Fig. 1).

see Table 7
see Table 8
see Table 9
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