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Abstract: The integration of machine learning in power systems, particularly in stability and dy-
namics, addresses the challenges brought by the integration of renewable energies and distributed
energy resources (DERs). Traditional methods for power system transient stability, involving solving
differential equations with computational techniques, face limitations due to their time-consuming
and computationally demanding nature. This paper introduces physics-informed Neural Networks
(PINNs) as a promising solution for these challenges, especially in scenarios with limited data avail-
ability and the need for high computational speed. PINNs offer a novel approach for complex
power systems by incorporating additional equations and adapting to various system scales, from a
single bus to multi-bus networks. Our study presents the first comprehensive evaluation of physics-
informed Neural Networks (PINNs) in the context of power system transient stability, addressing
various grid complexities. Additionally, we introduce a novel approach for adjusting loss weights to
improve the adaptability of PINNs to diverse systems. Our experimental findings reveal that PINNs
can be efficiently scaled while maintaining high accuracy. Furthermore, these results suggest that
PINNs significantly outperform the traditional ode45 method in terms of efficiency, especially as the
system size increases, showcasing a progressive speed advantage over ode45.

Keywords: physics-informed Neural Network; power system transient stability; swing equation;
gradient descent algorithm

1. Introduction

The use of machine learning in power systems, particularly in the realms of power
system stability and dynamics, is not a new concept in the field [1]. In recent years, the
integration of renewable energies and the incorporation of distributed energy resources
(DERs) have led to significant transformations in power systems [2–4]. These changes have
raised serious concerns about system security and stability, as they introduce variability
and necessitate precise simulations of transients. The conventional view of networks as
passive entities is no longer viable. Consequently, there is an increasing demand for the
development of simulation tools that can accurately capture these transients, enabling
comprehensive stability studies and ensuring system reliability [5].

Traditionally, power system transient stability was addressed using standard scientific
computational methods; the primary challenge involved solving differential equations
using various numerical methods as approximations to obtain accurate solutions [6,7].
Typically, ordinary differential equations (ODEs) were solved using computational tech-
niques such as the Euler, Adams, Runge–Kutta, and Newton–Raphson methods. Partial
differential equations (PDEs) were usually tackled using mathematical methods like finite
difference, finite element, finite volume, and (pseudo-)spectral methods [8–15]. Recently,
researchers have employed some advanced mathematical techniques [16,17]. While these
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methods are highly accurate, they are often time-consuming and computationally de-
manding. This becomes a critical concern with the transition to unpredictable and rapidly
changing sources like renewable energy, where increased variability leads to sharp and fast
transients, making simulations more complex. Therefore, the primary focus of this paper
is to find new simulation tools capable of efficiently handling these challenges, with an
emphasis on flexibility and speed to meet current demands.

Various data-driven approaches have been explored in the context of power systems. A
review of more data-driven approaches is available in [1], with specific examples in [18,19].
Traditional data-driven techniques excel in scenarios where speed is essential and ample
data are available, especially when applied to energy systems [20–22]. These methods have
faster inference speeds compared to traditional computational methods. However, they
have fundamental limitations: (1) they require significant amounts of data; (2) the data
might be polluted, leading to unrealistic physical models; and (3) predicting corner cases
can be challenging.

One solution to these limitations is building a direct connection to the underlying
physical principles. Thankfully, advancements in computational capabilities [23] and auto-
matic differentiation methods [24] have successfully bridged the gap between data-driven
approaches and a comprehensive understanding of the underlying physical problems. This
integration of physics-based knowledge into machine learning algorithms has improved
accuracy and reliability in the models employed. Figure 1 shows a representation of this
new scientific machine learning approach: physics-informed Neural Networks (PINNs).

Figure 1. New scientific machine learning representation: physics-informed Neural Networks.

In scenarios where only limited data are available, computational speed is crucial, and
when there is a solid understanding of the underlying theoretical model, the application of
physics-informed Neural Networks (PINNs) emerges as a promising approach for tackling
differential equations in power system transient stability. Particularly for complex multiple-
bus power systems, PINNs offer an appealing alternative by leveraging their flexibility to
incorporate additional equations, thereby benefiting large-scale systems. Unlike traditional
methods, PINNs utilize direct function mapping for notably swift inference processes, and
they do not require extensive datasets, distinguishing them in the field. These concepts
have been explored in the literature, with Ref. [25] presenting an example of employing
PINNs in converter dynamics, and Refs. [26,27] demonstrating their application in rotor
angle stability. A comprehensive review of PINNs in power system stability was developed
in [28].

Previous research has explored the application of PINNs in power systems, but no
comprehensive evaluation has been conducted to date. In our study, we pioneer an in-
depth analysis of physics-informed Neural Networks (PINNs) in the realm of power system
transient stability, exploring their application across a spectrum of grid complexities. This
marks the first endeavor of its kind. Our research ambitiously extends across power
systems of varying scales, from single-bus systems to intricate 14-bus networks, and from
configurations with a single generator to those incorporating five generators. A significant
finding is that PINNs maintain their scalability without any loss in accuracy, even as system
complexity increases. This insight demonstrates the robustness of PINNs in diverse settings.
Furthermore, we introduce a revolutionary method for adjusting loss weights, enhancing
the adaptability of PINNs to a wide range of systems. Additionally, our research includes
a meticulous evaluation of several metrics, providing a comprehensive understanding
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of their impact on the performance of PINNs in complex power systems. Through this
holistic approach, our study aims to illuminate the broader applicability and performance
implications of PINNs in diverse power system environments.

The remainder of this paper is organized as follows: Section 2 introduces related works.
Section 3 provides a detailed explanation of the construction of the power system case, the
database, and the specific considerations for applying physics-informed Neural Networks
(PINNs) in power systems. Section 5 presents an analysis of the four simulation cases along
with their corresponding results. Furthermore, we delve into a thorough discussion of
optimal neural network tuning strategies, considering the scalability of power systems.
Finally, Section 6 concludes the paper and outlines future research directions based on
our findings.

2. Related Works

Recent literature highlights the diverse applications of physics-informed Neural Net-
works (PINNs) in power system transient stability, with a particular focus on the ordinary
differential equation (ODE) swing equation. These applications vary from simple setups
involving a single infinite bus [26] to more intricate configurations involving nine buses [29],
all examining rotor angle behavior in synchronous generators. However, there is a notice-
able lack of comprehensive analyses of PINNs across different scales of power systems.
Further implementation in systems of varying scales is essential to fully ascertain and
validate their effectiveness. Moreover, recent studies have investigated model reduction
techniques for power system transient stability at the transmission level using partial
differential equations (PDEs) [30]. This approach provides a more detailed representation
of system dynamics compared to ODEs and offers a promising direction for future research,
potentially serving as an alternative for investigating transient stability in power systems.
It is important to recognize, though, that the ODE version of the swing equation remains
vital for understanding power system transient stability.

This paper also explores a key advantage of PINNs over traditional computational
methods: their effective scalability. Scalability can be assessed in two primary ways: by
increasing the number of buses and generators or by broadening the input dimensionality,
which includes varying the number and range of input variables. Of these methods,
increasing the number of buses has shown significant potential (as evidenced in [29]), while
expanding input dimensionality poses more challenges and is yet to be conclusively proven.
Another novel approach to scalability is the use of graphical neural networks, specifically
physics-informed graphical networks, which solve complex problems by integrating system
physics into graph nodes [31,32].

Additionally, this paper investigates the unique flexibility of PINNs compared to
other methods. PINNs have recently shown advantages in employing “transfer learning”,
allowing adjustments to the power system topology with minimal changes to the differential
equations in the neural network. This method considerably reduces training time and
yields more effective solutions by incorporating a theoretical model through the loss
function [33–35]. PINNs have also proven effective in addressing variable initial conditions,
as demonstrated in reference [36].

Conversely, a primary challenge for PINNs lies in handling sharp solution transitions,
often due to imbalances in the neural network’s loss function. In electrical power systems,
such abrupt changes may occur during events like power blackouts affecting the grid or the
integration of renewable energies. To tackle these nonlinearities, a novel method involving
PINNs with adaptive localized artificial viscosity was proposed in [37]. This approach
balances theoretical and data-driven losses in a PINN, enabling more effective management
of sharp transients. Further strategies to adjust loss imbalance were discussed in [38,39],
inspiring the new method introduced in this paper.

In summary, this paper focuses exclusively on using PINNs to address the ODE
swing equation for rotor angle stability in various bus systems, thoroughly assessing their
effectiveness in power system transient stability across a range of scales.
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3. Power System Transient Stability and Swing Equations

Power system stability is a critical aspect that concerns the system’s ability to maintain
a balanced and steady state, not only during routine operations but also following sudden
disturbances. One particular aspect of this stability is transient stability, which focuses
on the system’s ability to recover and regain its stable operational state after unexpected
events such as load changes, faults, or the loss of generators. To analyze transient stability
in greater detail, engineers often rely on the swing equation. This equation is a fundamental
model for examining the behavior of three-phase synchronous generators under transient
conditions. It essentially captures the dynamics of rotor angles, offering a simplified yet
insightful view of the system’s response, particularly during the initial stages of stability
analysis. Although the swing equation might not provide the most precise results due to
its inherent simplifications, it remains a valuable tool for gaining preliminary insights into
how a power system will respond to disruptions. The swing equation, as indicated by
(1) and (2), is used to simulate the behavior of rotor angles δi for the i-th generator:

dδi
dt

= wi − w0, (1)

d2δi
dt2 =

w0

2Hi
(Pmi − Pei − Di

dδi
dt

), (2)

where wi represents the electrical radian frequency, while w0 stands for the synchronous
electrical radian frequency. Pei signifies the electrical power output of the generator, ac-
counting for electrical losses. Conversely, Pmi refers to the mechanical power supplied
by the prime mover, after subtracting mechanical losses, all expressed per unit. Di is the
damping constant, and Hi is the normalized inertia constant, as cited in [8]. To compute
the electrical power at each bus Pei from (2), we have to solve the power flow problem
represented by (3):

Pei = Vi

N

∑
n=1

binVn cos(θi − θn − θYin) + Pli, (3)

where the variable bin refers to the susceptance matrix of the system, while θi, θn, and θYin
represent the power angles at buses i and n and the corresponding impedance angle of the
transmission line, respectively. The variables Vi and Pli represent the voltage magnitude
and the load at each bus, respectively. Additionally, establishing the connection between
the power angle θ and the rotor angle δ is crucial. The synchronous generator model shown
in Figure 2 demonstrates this link, which hinges on the generator’s internal inductance
X. This model explicates how the power angle θ at a specific bus, the site of the generator,
correlates with the rotor angle δ.

Figure 2. Simplified synchronous generator model.

On the other hand, (4) calculates the power angle at a specific bus where no generator
is present, and the dynamics of the load determine the evolution of the power angle [29].
To maintain consistent notation throughout the paper, we will represent the power angle δ
as θ at the buses where only loads are connected in all subsequent discussions.

dθi
dt

= −Pei
Di

. (4)
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By employing this approach, we are able to simulate the dynamic behavior of the rotor
angles for each generator within the system, as well as the dynamics of the power angles at
the buses where only loads are connected.

4. Method: PINNs on Power Systems

In this section, we explore the architecture and methodology of physics-informed
Neural Networks (PINNs) in power systems. As shown in Figure 3, PINNs are similar
to conventional neural networks, which consist of four main components: the input, the
mapping represented by neural networks, the output, and the loss function. However,
there are significant differences in these four components in PINNs compared to those
in conventional neural networks. The input is divided into two distinct terms: one is
data-driven, while the other is derived from a theoretical physical model, defined by
ODEs/PDEs. In the data-driven part, xu and tu are power and time data samples from
initial/boundary conditions, respectively, and u corresponds to the ground truth of (xu, tu).
The variables x f and t f represent the power and time, respectively, in the general region for
a set of points N f within the domain. These points are validated by the theoretical physical
model, specifically the swing equation of the system. By incorporating this theoretical loss
term, the need for additional data u is eliminated, allowing the differential equations to be
used instead.

Figure 3. Description of the PINN. N f , x f , and t f refer to the number of data points, power, and
time inside the domain checked by the differential equations, respectively. Nu, xu, and tu refer to the
data-driven data points, power, and time inside the boundaries of the domain checked by the MSE
term of the loss function, respectively.

The set of ODEs for each bus representing both the generator and the load dynamics
will be denoted as f (x), following the formulation presented in (5). This formulation
aligns with our observations from (1) and (2). The domain of these ODEs, denoted as
Ω = (0, T] × [0, P], corresponds to the time t and input mechanical power Pmi ranges
specified in the dataset subsection.

f (x) =


2Hi
w0

d2δi
dt2 + Pei + Di

dδi
dt − Pmi if i = generator

dθi
dt

− Pei
Di

if i = load

(5)

PINNs only rely on some data along with theoretical information obtained from known
differential equations. Notably, the neural network only requires boundary and initial
condition data for its training process. (6) defines the three crucial terms for generating the
training data: the first term corresponds to the initial condition data, while the second and
third terms refer to the boundary condition data. The final output of our model u(x) will
represent the corresponding rotor angles throughout the entire domain x ∈ [0, T]× [0, P].
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β(u(x)) = g(x) =


f (x) x ∈ 0 × [0, P]
f (x) x ∈ [0, T]× {0}
f (x) x ∈ [0, T]× {P}

(6)

For the initial condition data, f (x) will be governed by (5) at all Pm points when t is
equal to zero. As for the boundary condition data, when P equals 0, f (x) will also be zero;
whereas when P equals 1.51, f (x) will follow (5) with Pm fixed at 1.51. This corresponds to
the first term of the loss function referenced in (7) representing the data-driven component
of the neural network. Overall, the ultimate objective of the neural network is to discover
the most suitable θ parameters while aiming to minimize a specific loss function:

LMSE = LMSE,u + LMSE, f =
1

Nu

Nu

∑
i=1

∣∣∣u(ti
u, xi

u

)
− ūi

∣∣∣2 + 1
N f

N f

∑
j=1

∣∣∣ f
(

tj
f , xj

f

)∣∣∣2. (7)

In the equation denoted by (7), the first term encapsulates data from the initial condi-
tion, characterized by the known ground truth ūi. This component signifies the supervised
aspect of the training process. Conversely, the second term mandates the differential equa-
tion f to equate to zero, representing the unsupervised segment of training that integrates
the theoretical foundations of the neural network.

Additionally, another interesting aspect involves the adjustment of weights for these
two losses. (8) introduces an additional term λ f to adjust the weight of the differential
loss component within the overall neural network loss. This methodology will be used
in Sections 5.3 and 5.4 to properly tune our neural networks.

LMSE = LMSE,u + λ fLMSE, f . (8)

One of the main challenges in adjusting a physics-informed Neural Network (PINN)
is determining the optimal weighting of the losses (λ f from Equation (8)) to achieve the
desired solution. When working with ordinary differential equations (ODEs) or partial
differential equations (PDEs), it is well-known that without appropriate boundaries or
initial conditions, these equations can have infinitely many solutions. Therefore, it is crucial
to ensure that the magnitudes of the gradients of both Lossu (representing the boundary
condition loss) and Loss f (representing the differential equation loss) are properly balanced.
Failure to achieve this balance may lead the neural network to learn solutions that satisfy
the equation but do not accurately represent the desired outcomes. This behavior was
observed during the experiments and highlighted the importance of precisely adjusting
both loss functions to implement PINNs in power system stability [37–39].

Initially, the adjustment of these losses relied on a trial-and-error technique. We
experimented with different values of λ f , namely 1, 0.01, 0.001, and 0.0001, for the 1-bus,
3-bus, 6-bus, and 14-bus power systems, respectively, in Sections 5.3 and 5.4. While a
correlation between the value of λ f and the size of the power system was observed, this
relationship proved insufficiently accurate for extrapolation to larger systems or systems
with different boundary conditions.

Fortunately, based on a method proposed in [38], we implemented a more effective
approach for appropriately adjusting these losses, which yielded successful results across all
tested scenarios in Section 5.5. The key is to update the parameters of the neural network θ
(i.e., the weights and biases of the neural network) through a gradient-based update algorithm:

λ̂u =

∣∣∣∇θL f (θn)
∣∣∣

|∇θLu(θn)|
. (9)

At the n-th iteration, θn represents the parameters of the neural network. The ex-

pression
∣∣∣∇θL f (θn)

∣∣∣ denotes the mean absolute value of the differential operator for the
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differential equation loss and |∇θLu(θn)| represents the mean absolute value of the dif-
ferential operator for the initial condition loss. The logic underlying (9) revolves around
determining the relative significance in updating the model between the second and the
first loss terms. To achieve a balance between these two loss terms, it is necessary to amplify
the first loss term when (9) yields a high value and, conversely, to decrease it when (9)
is low. This new weight value should be updated according to penalty term (10) with a
recommended value for α of 0.1:

λu = (1 − α)λu + αλ̂u. (10)

Thus, the overall loss of the PINN can be represented by (11), where the new parameter
λu is introduced to effectively balance the influence of both individual losses:

L(θ) = λuLu(θ) + L f (θ). (11)

As previously mentioned, Section 5.5 will report an ablation study using the auto-
updated weight method presented above. In the simulations, we set the Nu hyperparameter
to 100 and N f to 15,000. The chosen optimizer was Adam, with a learning rate of 5 × 10−3.
The maximum number of fixed iterations was 5000, 7500, and 10,000 for the 3-bus, 6-bus,
and 14-bus power systems, respectively.

5. Results

The proposed physics-informed Neural Network (PINN) was evaluated across various
scenarios featuring an increasing number of buses and generators. Specifically, this project
investigated four distinct scenarios: infinite-bus, three-bus, six-bus, and fourteen-bus
configurations. We validated our method by comparing it with results obtained from the
ode45 solver, which we considered the ground truth. The error calculation involved using
the ℓ2 norm to quantify the difference between the ground truth and the predictions made
by the PINNs. This final error metric was derived by aggregating the errors across various
buses and then dividing by the total number of buses.

5.1. Dataset

The dataset used in this paper was created using Matlab (R2020a, by MathWorks,
Natick, MA, USA). Two different files were developed: one for the PINN in a single-
generator system and another for the PINN in multi-generator power systems. The first
file focused solely on the simplest scenario, while the second generated a comprehensive
dataset covering three different bus systems. The Matlab ode45 solver was used to solve
the set of differential equations in all cases.

All systems follow the same methodology: At the n-th bus of the system, there is
always a load (or an infinite bus in the simplest case). This load undergoes a unit step
function, transitioning from 0.51 to 1.51 per unit (p.u.), resulting in a corresponding increase
in generated power at the slack bus, always located at bus 1. This is feasible as long as the
resistance of the lines is ignored. The power system experiences a transient period, which
was simulated using the Matlab ode45 solver. This allowed us to record the evolution of
the rotor angles of the generators and the power angles of the buses where only loads
were connected. To simplify the simulation, we assumed the magnitudes of the internal
machine voltages E and the internal machine currents I to be constant. A summary of this
methodology is illustrated in Figure 4 for each power bus system scenario.
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Figure 4. Problem methodology.

In this research, we conducted simulations for a comprehensive set of 100 cases,
exploring a power range from 0.51 to 1.51 per unit (p.u.) both at the n-th bus where the load
was located and the slack where a generator was placed. The simulations were performed
with a time step consisting of 201 values, covering a time span from 0 to n seconds. Again,
n corresponds to the total number of buses present in the system. Thus, the larger the
system, the larger the range of the span simulation time. These simulations provided
valuable insights and analysis for further understanding and optimizing the system’s
behavior under varying power and time conditions.

5.2. Problem Setting

The schematic for each scenario is depicted below:

• One-Bus Power System
The system was initially turned off, and the load was considered an infinite bus.
Figure 5 depicts this first case of study. The inertia constant H1 was equal to 80 p.u.,
and the damping constant D1 to 1 p.u. Both the line and internal generator reactance
were equal to 0.1j.
The goal of this system was to test the simplest case that the PINN could handle to
provide some useful insight into how to tackle more complex systems.

• Three-bus Power System
The increase in difficulty was achieved by introducing an additional generator into the
system. Furthermore, the presence of a load was accounted for using (4). Following
the initial examination of the simple one-bus system, this represented the first step
towards assessing the scalability of the PINNs. Figure 6 presents a schematic of the
three-bus power system in addition to the line data employed and a summary of the
chosen initial conditions.

• Six-bus Power System
The six-bus system scenario is represented in Figure 7. One extra generator and two
extra loads were added to test the increased scalability of the PINNs. Figure 7 also
presents the line data employed in the six-bus system and a summary of the chosen
initial conditions.

• Fourteen-bus Power System
The last bus system comprised 14 buses, with a total of five generators and nine loads.
This system, considered the most intricate in the scope of this paper, is believed to offer
abundant data, allowing for the extrapolation of comparable results in larger systems.
Figure 8 depicts the 14-bus system. Again, the line data were simplified to ease the
experimental process, though similar results could be obtained by changing X and
B/2 to different zero values. The line data employed in the 14-bus system and a
summary of the chosen initial conditions are also provided.

Figure 5. Infinite-bus power system.
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From Bus To Bus R (p.u.) X (p.u.) B/2 (p.u.)

1 2 0 0.1 0.0
1 3 0 0.1 0.0
2 3 0 0.1 0.0

Bus V (p.u.) delta (deg) Pg (MW) Qg (MW) Pl (MW) Ql (MW)

1 1 0.000 50 0 0 0
2 1 0.000 50 0 0 0
3 1 -2.867 0 0 100 0

Figure 6. Three-bus power system: figure on the left side, line data and initial conditions tables on
the right side.

From Bus To Bus R (p.u.) X (p.u.) B/2 (p.u.)

1 2 0.0 0.10 0.0
1 4 0.0 0.10 0.0
2 3 0.0 0.10 0.0
2 4 0.0 0.10 0.0
3 6 0.0 0.10 0.0
4 5 0.0 0.10 0.0
5 6 0.0 0.10 0.0

Bus V (p.u.) delta (deg) Pg (MW) Qg (MW) Pl (MW) Ql (MW)

1 1.0000 0.0000 50 1.19 0 0
2 0.9997 -1.4329 0 0.00 50 0
3 1.0000 -0.7165 50 1.38 0 0
4 1.0000 0.0000 50 1.19 0 0
5 0.9997 -1.4329 0 0.00 50 0
6 0.9997 -2.1496 0 0.00 50 0

Figure 7. Six-bus power system: figure on the left side, line data and initial conditions tables on the
right side.

From Bus To Bus R (p.u.) X (p.u.) B/2 (p.u.)

1 2 0.00 0.1 0.0
1 5 0.00 0.1 0.0
2 3 0.00 0.1 0.0
2 4 0.00 0.1 0.0
2 5 0.00 0.1 0.0
3 4 0.00 0.1 0.0
4 5 0.00 0.1 0.0
4 7 0.00 0.1 0.0
4 9 0.00 0.1 0.0
5 6 0.00 0.1 0.0
6 11 0.00 0.1 0.0
6 12 0.00 0.1 0.0
6 13 0.00 0.1 0.0
7 8 0.00 0.1 0.0
7 9 0.00 0.1 0.0
9 10 0.00 0.1 0.0
9 14 0.00 0.1 0.0
10 11 0.00 0.1 0.0
12 13 0.00 0.1 0.0
13 14 0.00 0.1 0.0

Bus V (p.u.) delta (deg) Pg (MW) Qg (MW) Pl (MW) Ql (MW)

1 1.0000 0.0000 50 3.98 0 0
2 1.0000 0.2321 100 11.10 0 0
3 1.0000 1.4218 100 8.33 0 0
4 0.9950 -3.1456 0 0.00 50 0
5 0.9975 -3.1062 0 0.00 50 0
6 1.000 -6.6382 100 18.30 0 0
7 0.9934 -3.8893 0 0.00 50 0
8 1.0000 1.8882 100 11.66 0 0
9 0.9923 -7.5438 0 0.00 50 0

10 0.9936 -10.137 0 0.00 50 0
11 0.9960 -9.8257 0 0.00 50 0
12 0.9977 -9.6281 0 0.00 50 0
13 0.9967 -9.7456 0 0.00 50 0
14 0.9940 -10.097 0 0.00 50 0

Figure 8. Fourteen-bus power system: figure on the upper panel left side, line data and initial
conditions tables on the upper panel right side and lower panel, respectively.

5.3. PINNs on One-Bus System

The simplest model for power system dynamics can be represented by a single machine
and an infinite-bus system. This system was already analyzed by [26] and can provide
some interesting insights about the behavior in future scalable scenarios.

The testing time of the physics-informed Neural Network was 0.0232 s, which can be
compared with the average computational time of 0.1512 s for solving all the differential
equations using ode45. The neural network demonstrated more than five-times faster
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computational speed. The next section will discuss whether this difference increased for
larger systems with more buses.

The parameters employed for the best scenario identified are included in Figure 9.
Although the number of Nu could be significantly reduced, even with only 50 boundary
condition points, we could achieve decent results with reduced training time. However,
the ℓ2 error increased. In this regard, it is advisable to employ a relatively large number of
initial condition points for higher accuracy in the one-bus system case. Other optimization
algorithms such as Adam or SGD can also be considered, yielding similar results in this
particular case. There is no need to weight any of the losses for this simpler scenario either.

Nu N f Hidden Layers λ f Optimizer LR Iterations ℓ2 Error Lossu Lossf Training Time Testing Time

500 15000 [10 10 10 10 10] 1 LBFGS 1 3200 1.09×10−2 5.46×10−7 3.53×10−6 120.9625 0.0232

Figure 9. Infinite-bus (one-bus) power system. Comparison between the exact solution given by
ode45 in MATLAB and the predicted solution provided by the physics-informed Neural Network for
three different Pm values. Table with parameters of the neural network.

5.4. PINNs on Larger Power Systems

This section provides an analysis of the remaining three power bus systems. Figure 10
depicts the analysis of the three-bus power system utilizing a PINN, with a specific set of
parameters that yielded good results. One notable change was the weighting of LMSE, f .
Initially, both losses were equally weighted for the first 100 iterations. However, after that,
λ f was adjusted from 1 to 0.01 to enhance the performance of the neural network. This
change aimed to guide the neural network during the initial iterations, ensuring the proper
functioning of the training process. The importance of tuning the weighting of the losses
accurately for each power bus system will also be discussed in the following subsection.

Nu N f Hidden Layers λ f Optimizer LR Iterations ℓ2 Error Lossu Lossf Training Time Testing Time

40 15000 [10 10 10 10 10] 0.01 LBFGS 1 5000 1.85×10−2 1.46×10−6 1.40×10−4 145.2713 0.0185

Figure 10. Three-bus power system. Comparison between the exact solution given by ode45 in
MATLAB and the predicted solution provided by the physics-informed Neural Network for three
different Pm values. Parameters of the neural network.

The ℓ2 error represents the cumulative error across the three buses divided by the
total number of buses. For this specific case, it can be observed that for an Nu of 40, the
final results were quite satisfactory, indicating that a substantial amount of initial condition
data may not be necessary. This is something that can always be adjusted in a PINN at the
expense of a slight decrease in the accuracy depending on the specific case.
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During the testing phase, the average time taken by Matlab ode45 to solve the ODEs
for the three-bus system amounted to 0.6212 s. In contrast, for this specific case, PINNs
accomplished the task in just 0.0185 s. This remarkable difference clearly highlights the
substantial advantages of PINNs, making them approximately 33-times faster than the
traditional ode45 solver for this particular scenario. These findings underscore the efficacy
of using PINNs for power system transient analysis.

Figure 11 displays the analysis of the six-bus power system, employing a PINN.
Given its increased complexity, certain hyperparameters were adjusted, e.g., the number of
iterations was increased to ensure the effective training of this system.

Nu N f Hidden Layers λ f Optimizer LR Iterations ℓ2 Error Lossu Lossf Training Time Testing Time

500 15000 [10 10 10 10 10] 0.001 LBFGS 1 7500 0.677 1.54×10−3 3.24 727.3631 0.038

Figure 11. Six-bus power system. Comparison between the exact solution given by ode45 in MATLAB
and the predicted solution provided by the physics-informed Neural Network for three different
Pm values. Parameters of the neural network.

For solving the differential equations, the average computational time of ode45 was
1.371 s, while the PINN took over 0.0185 s. This represents an increase of almost 35 times
compared to the speed of ode45. Moreover, to ensure optimal performance, the λ f value
needed to be adjusted from 1 to 0.001 starting from iteration 100 as in the previous case.
Given the wider range of angle changes in this case, the impact of loss weights became
even more significant. It may be possible to reduce the number of Nu or N f at the expense
of slightly reduced accuracy. However, in this particular case, the difference in accuracy
was almost negligible.

A favorable case for the last system studied, i.e., the 14-bus power system, is depicted
in Figure 12. Despite the heightened complexity, it is notable that the training and testing
speed remained similar to the previous case, as did the ℓ2 error. To appropriately adjust the
loss weights, the value of λ f was decreased to 0.0001. In addition, different ranges of Nu
and N f points were explored. Increasing the number of Nu points proved beneficial for
accuracy at the initial condition points; however, it sometimes affected the accuracy of the
remaining points. Therefore, in each specific case, tuning these points becomes crucial in
order to achieve the best accuracy while considering the trade-offs within the problem.

The speed of the PINN also increased significantly to 0.1133 s, compared to 4.7291 s
for ode45, making it roughly 42-times faster.
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Nu N f Hidden Layers λ f Optimizer LR Iterations ℓ2 Error Lossu Lossf Training Time Testing Time

100 15000 [10 10 10 10 10] 0.0001 LBFGS 1 6120 0.128 0.0436 105 1722.95 0.1133

Figure 12. Fourteen-bus power system. Comparison between the exact solution given by ode45 in
MATLAB and the predicted solution provided by the physics-informed Neural Network for three
different Pm values. Parameters of the neural network.

Errors in PINNs can stem from various factors: (1) Model Complexity and Architecture—
errors can occur if the neural network’s architecture is too simplistic to effectively model the
underlying physical processes; on the flip side, overly complex models may overfit, struggling
to generalize to new conditions and leading to inaccuracies when applied to scenarios not
encountered during training. (2) Quality and Quantity of Data—despite PINNs needing less
data than traditional neural networks, the data’s quality, particularly the initial and boundary
conditions, is vital; data that are lacking or contain noise can hinder the learning process of
the network. (3) Loss Function and Regularization—the error can also be influenced by the
chosen loss function and how its various components (like data loss and physics-informed
loss) are balanced; an imbalance can cause the network to disproportionately focus on one
aspect, leading to inaccuracies. (4) Numerical Stability and Optimization—the optimization
process itself can be a source of error; issues like local minima, slow convergence, or numerical
instabilities can affect the model’s accuracy. Additionally, the choice of optimizer and the
learning rate setting are crucial in determining the network’s performance.

Observations from the one-bus system, three-bus system, and six-bus system showed
the convergence of angles under various p values, indicating stability across multiple
scenarios in these systems. Conversely, the 14-bus system displayed instances of non-
convergence, particularly in curves like G3 and L10, when the p values were set at 0.51, 1.27,
and 1.51. This indicates that PINNs can capture accurate physical phenomena and inform us
about stable or unstable systems. Analyzing Figures 10–12, it is evident that the predictions
made by physics-informed Neural Networks (PINNs) across all systems closely aligned
with the ground truths, which are depicted using results from ode45. This alignment
underscores PINNs’ proficiency in accurately handling each system. Interestingly, the
highest accuracy was observed in the 14-bus system, followed by the 3-bus system, and
then the 6-bus system. This pattern indicates that the accuracy of PINNs may not be
directly related to the size of the system but rather influenced by other factors. This
observation reinforces the notion that PINNs adeptly maintain accuracy while scaling up
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in size. Therefore, engineers can use PINNs for various system sizes. Figure 13 presents
the training and testing times on a logarithmic scale, further highlighting the superior
efficiency of PINNs compared to ode45. Notably, PINNs exhibited an increasing speed
advantage over ode45 as the system size expanded. This efficiency stems from PINNs’
unique approach of direct function mapping, which enables significantly faster inference
than traditional methods.

Figure 13. Training vs. testing vs. ode45 time for the 3-, 6-, and 14-bus power systems on a
logarithm scale.

Lastly, the careful exploration of the learning rate and hidden layer size was also
conducted. The best results were achieved with the values presented in the tables, leading
to the decision to maintain these parameter settings. Similarly, a deliberate choice was made
to use the same optimizer across all cases, ensuring consistency in the experimental setup.

5.5. Ablation Study of PINNs in Power Systems

Based on the empirical findings presented in the preceding sections, several signifi-
cant observations can be derived. Firstly, certain parameters exhibit stability and remain
relatively unchanged regardless of the system’s scalability. These parameters can include
the neural network’s size and depth, the choice of the optimizer, and its corresponding
learning rate. Conversely, the remaining parameters require adjustments depending on the
system’s scalability.

The optimal number of iterations seems more dependent on the complexity of the
angle curves rather than the system’s dimensions. Consequently, it is advisable to establish
the maximum iteration value based on a tolerance threshold, rather than relying on a fixed
numerical quantity. In the preceding subsection, it was observed that the LBFGS optimizer
lacks the ability to set a specific maximum number of iterations. Instead, the maximum
training time is contingent upon either the maximum number of evaluations or a specified
tolerance level. Nevertheless, in the case of using other optimizers, our experimental
investigations consistently revealed that a maximum of 10,000 iterations proved adequate
for all tested scenarios.

The adjustment of Nu, N f , and λ f presents the main challenge. In order to com-
pare how changes in these parameters may impact the neural network’s performance,
we modified the employed optimizer to Adam with a fixed learning rate of 5 × 10−3

and incorporated the gradient-based algorithm from (9). By adopting this approach, we
effectively overcame the challenge of manually selecting the loss weight λ f , as it was now
determined by the algorithm. Moreover, we could now set the value of the maximum
number of iterations to a fixed number depending on the system and N f to 15,000 and then
proceed to fine-tune Nu. This enabled us to observe and understand how variations in the
parameter Nu impacted the L2 error of the neural network.

Figure 14 illustrates the impact of varying the number of Nu points on the accuracy of
the PINN model for power systems with different numbers of buses. Surprisingly, unusual
behavior was observed, attributed to the imbalance of the N f hyperparameter in the neural
network’s loss function. Intuitively, one might expect that increasing the number of Nu
data points would lead to a reduction in the normalized error. However, based on the
results, there appeared to be minimal difference in the selection of this hyperparameter.
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Figure 14. L2 Error depending on the number of Nu data points for 3-, 6-, and 14-bus systems.

Figure 15 displays the results obtained from employing the gradient-based update
algorithm that adjusted both losses for the six-bus system. Observing the graph, we notice
that the training time increased, while the testing time remained relatively stable. Moreover,
there was a decrease in the L2 error, indicating a positive effect from the algorithm’s use in
terms of accuracy. Similar behavior could be expanded to the rest of the bus power systems.

Nu N f Hidden Layers λ f Optimizer LR Iterations ℓ2 Error Lossu Lossf Training Time Testing Time

100 15000 [10 10 10 10 10] Algorithm Adam 0.005 7500 0.35 1.52×10−3 12.7 2139.9361 0.0413

Figure 15. Six-bus power system. Comparison between the exact solution given by ode45 in
MATLAB and the predicted solution provided by the physics-informed Neural Network for three
different Pm values using the gradient-based update algorithm for the loss function. Parameters of
the neural network.

As mentioned earlier in this section, altering the number of neurons did not appear to
adversely affect the experiments either. Figure 16 demonstrates this relationship for the
last two cases. Intuitively, increasing the number of neurons had the potential to decrease
the Lu loss, but it could also result in an increase in the L f loss. As a result, the overall loss
behavior did not follow a specific pattern and could vary depending on the specific case
and configuration.



Electronics 2024, 13, 391 15 of 17

Figure 16. L2 error depending on the number of neurons in each hidden layer for 3-, 6-, and
14-bus systems.

Lastly, to ensure accuracy across the entire domain Ω, the proper adjustment of both
Nu and N f is also crucial. Increasing Nu can improve the accuracy of initial condition
points, but it is equally important to increase N f in tandem. From the experimental results,
a recommended guideline is to maintain at least a 30-fold difference between the numbers
of N f and Nu. This balanced proportion contributes to better accuracy. Moreover, to further
enhance accuracy, it is advantageous to increase both Nu and N f while maintaining their
proportional difference. However, this approach comes with the trade-off of significantly
increased the training time and the number of iterations required.

It is important to note that PINN-based methods are fundamentally distinct from
traditional approaches. The key difference lies in their direct function mapping, which
allows for exceptionally rapid inference. Given this unique characteristic, there are currently
no existing methods that can match PINNs in terms of inference speed. Moreover, the
primary focus of our work was a comprehensive in-depth analysis of PINNs, specifically
in the context of power system transient stability across various levels of grid complexity.
This specialized focus on PINNs and their unique advantages in inference speed made a
direct comparison with other methods less relevant to the goals and scope of our research.

6. Conclusions

Our study breaks new ground in evaluating physics-informed Neural Networks
(PINNs) for power system transient stability across various grid complexities. It is the
first to investigate PINNs in a range of power system scales, demonstrating their ability
to maintain accuracy even as complexity increases. This finding is crucial, proving the
robustness of PINNs in diverse settings. Another notable contribution of our research is
the development of a novel method for adjusting loss weights, significantly improving
PINNs’ adaptability to different power system models and enhancing PINNs’ flexibility
and effectiveness in different system setups. Overall, our findings position PINNs as a
potent tool in power system analysis, effectively merging data-driven approaches with
core physical principles. This study not only enhances the understanding of PINNs’
performance in complex scenarios but also opens new avenues for their application in
real-world power system challenges. Future research could explore PINNs in more complex
systems and real-time applications, further optimizing their performance in power system
stability and dynamics. Additionally, future directions could include maintaining the key
physical properties and structures of systems [17,40] and providing theoretical guarantees
for these methods.
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