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Abstract: (Ultra)light spin-1 particles — dark photons — can constitute all of dark matter
(DM) and have beyond Standard Model couplings. This can lead to a coherent, oscillatory
signature in terrestrial detectors that depends on the coupling strength. We provide a signal
analysis and statistical framework for inferring the properties of such DM by taking into
account (i) the stochastic and (ii) the vector nature of the underlying field, along with (iii) the
effects due to the Earth’s rotation. Owing to equipartition, on time scales shorter than the
coherence time the DM field vector typically traces out a fixed ellipse. Taking this ellipse and
the rotation of the Earth into account, we highlight a distinctive three-peak signal in Fourier
space that can be used to constrain DM coupling strengths. Accounting for all three peaks,
we derive latitude-independent constraints on such DM couplings, unlike those stemming
from single-peak studies. We apply our framework to the search for ultralight B − L DM
using optomechanical sensors, demonstrating the ability to delve into previously unprobed
regions of this DM candidate’s parameter space.
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1 Introduction

Dark matter (DM) dominates the non-relativistic matter content in our cosmos. However,
we know exceptionally little about the constituent particles/fields of DM. Apart from the
fact that they must interact gravitationally, we do not know their mass, spin, and other
potential interactions [1, 2]. Astrophysical observations allow for a broad range of masses
for the dark matter “particles”: 10−19eV ≲ few × M⊙ [3, 4]. Theoretical models include
particle masses that span this range, with ultralight bosons at the lower end and composite
particles/primordial black holes at the upper end [5–10].
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Among the variety of possibilities, the case of ultralight, bosonic dark matter is particularly
intriguing. These include, for instance, the QCD axion [11–13], axion-like particles and other
scalars [14–17], and vector particles [18, 19]. A wide-ranging observational and experimental
program is currently exploring models that can be tested with contemporary technology.
Assuming a local dark matter density ρ ∼ GeV cm−3 with a typical virial velocity of v0 ∼
10−3c, for particle masses smaller than a few eV, the typical particle number within a de
Broglie volume becomes sufficiently large, allowing for a classical field theory description:
NdB ≃ ρ/m(h/mv0)3 ∼ 1066(10−15 eV/m

)4.
A widely pursued DM candidate is the (ultra-)light vector dark matter (VDM) particle.

Several early-universe production mechanisms exist for such dark matter [20–30] and, recently,
numerical simulations of structure formation of light vector dark matter in the nonlinear
regime have been carried out (e.g. [31–33]). Our focus here is on the detection prospects of
this kind of dark matter. Many dedicated studies have been conducted on the detection or
exclusion of vectors [34–42] as well as scalars [35, 39, 42–49]. However, for the vector case, the
analyses focusing on the Fourier space signal did not fully account for the vector nature and
stochastic aspects of the field in their statistical treatment, and nor did they model the effect
of the rotation of the Earth [36, 38]. In this work, we take these effects into account when
studying the sensitivity of mono-directional accelerometers to ultralight vector dark matter.

In our detection scheme, the sensor points in a fixed direction relative to the lo-
cal tangent plane of the experiment, rotating with the Earth at an angular frequency
ω⊕ ≡ 2π/(1 sidereal day) ≈ 7.5 × 10−5 Hz. We will show that the signal in Fourier space
contains three distinct peaks located at the angular frequencies m, m − ω⊕, and m + ω⊕,
with the last two arising due to the Earth’s rotation.1 Since ω⊕ corresponds to a mass
scale of ∼ 5 × 10−20 eV, which is already outside of the allowed mass window, we naturally
have m > ω⊕. To resolve these three distinct peaks, we shall therefore enforce that the
observation time always satisfies Tobs > 1 d. With this basic setup, we will concentrate on
the short observation time regime in this paper: experimental expedition timescales which
are much smaller than the coherent timescale of the wave DM field, Tobs ≪ τcoh ≡ h/mv2

0.
Thus, our observation time will always lie between

1 d ≲ Tobs ≪ 10 d
(

5 × 10−15 eV
m

)
. (1.1)

This means that, at most, our framework is valid for masses that give a coherence time of at
least 1 d, corresponding to m ≲ 5 × 10−15 eV. For longer expedition times, this upper mass
limit decreases: for example, for a runtime of 1 yr, we have that m ≲ 10−16 eV. This gives us
the mass range of 5 × 10−20 eV ≲ m ≲ 5 × 10−15 eV where our analysis is appropriate.2

We limit ourselves to working within the coherent regime for two reasons. Foremost,
we wish to highlight how the inherent stochasticity of the full 3-dimensional vector field
should be treated when drawing inferences. This randomness is roughly only manifest for

1For the detection scheme and dark matter model we focus on in this work, the signal will manifest as
three peaks; however, more peaks can present themselves in general. For example, oscillatory signals at LIGO
can lead to five peaks arising in Fourier space [50].

2Later, in section 5.2, we shall discuss a plausible detection scheme where the sensor is instead made to
rotate manually at higher frequencies, allowing us to probe masses above ∼ 5 × 10−15 eV.
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observation times shorter than a coherence time since the random variables dictating the
behaviour of the field can be treated to be sampled once every coherence patch. For longer
observation times, this randomness is averaged over. Secondly, remaining in the coherent
regime allows us to treat the signal as only appearing within three bins in Fourier space.
For observation times outside of this regime, we would instead begin to resolve the shape
of the dark matter halo velocity distribution, complicating our inferencing. Constraining
ourselves to this regime thus simplifies the problem, emphasizing the role that the vector
nature of this type of dark matter plays when performing inferences.

Given the recent and substantial research and development efforts in quantum technologies,
we are specifically interested in timely studies aimed at understanding the potential of quantum
optomechanical sensors in the direct detection of dark matter. Mechanical detectors have a
rich history in tests of gravity, including LIGO, and in recent years there has been a surge in
efforts to explore their potential in quantum sensing for fundamental physics investigations
(see reviews [51–53]). We are only beginning to understand the new opportunities for dark
matter searches [54–59] in light of significant advances in quantum readout and control of
mechanical sensing devices using optical or microwave light [60–62]. Accurately modeling the
dark matter signal and the associated statistics is crucial for drawing representative inferences,
guiding these quantum research and development efforts and aiding in experimental design.
This is particularly relevant for large-scale accelerometer projects, such as the one proposed
by the Windchime collaboration [63]. Such sensors have demonstrated potential as powerful
probes for the wavelike signature produced by ultralight dark matter [64].

In this paper, we devise the analysis strategy for ultralight vector dark matter in the
coherent regime to draw more representative exclusion inferences in the future. We begin
by laying the theoretical groundwork for this DM paradigm in section 2. Considering
equipartition between the longitudinal and transverse modes of the VDM field, we derive
the associated signal in both the time and frequency domains. We do this by taking into
account both its stochastic and polarization properties, as well as accounting for the rotation
of the Earth. We then perform statistical analyses of the DM signal in the frequency domain
in section 3. We derive a limit on a generalised parameter that is independent of the vector
dark matter model and experimental parameters, which can be recast to concrete choices
of them. Unlike other studies that focus solely on a single peak, our findings reveal that
the signal power is distributed across three distinct peaks. Accounting for this distribution
ensures the retention of constraining power, regardless of the experiment’s location on Earth.
Finally, in section 4, we apply our framework to a concrete dark matter model and sensor:
B − L dark matter and the canonical optomechanical light cavity.

We have also included 5 appendices in this paper. In appendix A, we discuss the stochastic
behaviour of the vector field given an unequal distribution of power amongst its longitudinal
and transverse modes, as well as their ultimate equipartition (owing to non-linear gravitational
dynamics). In appendix B, we derive the marginal likelihood for the three-peak signal and
also show that the powers in the three peaks are uncorrelated. In appendix C, we discuss the
applicability of our results in the context of the gradient of a scalar, deriving limits on the
appropriate generalized parameter. In appendix D, we derive the likelihood in the case that
the vector field is ‘linearly polarized’ and also show that the covariance matrix is not diagonal.
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Finally, in appendix E, we derive an updated limit on the gauge coupling of a new, long-range
B−L coupled fifth force given the latest MICROSCOPE results. Throughout the rest of this
paper, we will work in natural units, whereby ℏ = c = 1. Moreover, we sometimes quote the
DM mass in units of Hz where it is more appropriate to treat it as an angular frequency. The
conversion from Hz to eV is given by the relation m = ℏω/c2 ≈ 4.14 × 10−15 eV[ω/(2πHz)].

2 Calculating the stochastic wave vector dark matter signal

2.1 The dark photon field

The random vector field Â of mass m, at any given location and time, can be decomposed as

Â(x, t) = 1√
2m

e−imtΨ̂(x, t) + c.c. , (2.1)

where, in the non-relativistic limit and assuming free field evolution, each Fourier mode of
the complex 3-vector field Ψ̂(x, t) evolves as Ψ̂k(t) = Ψ̂k e

−i k2
2m

t. We use hatted notation
to indicate that a quantity is stochastic.

With non-linear gravitational clustering, we expect an equipartition between longitudinal
and transverse polarizations of the plane waves in our vicinity, regardless of whether the early
universe production mechanism favors one over the other. In appendix A, we discuss this
equipartition in greater detail, providing evidence for it via halo-formation 3D simulations
of the Schrödinger field Ψ.

Given this equipartition, the spectrum ⟨Ψ̂†
k · Ψ̂p⟩ = δk,p fk, where fk is the Milky Way

halo distribution function3 with V −1∑
k fk = ρ/m. Here, V is the volume and ρ is the

local mass density. To be explicit, we work with a finite volume V so that k is discretized.
We can define Ψ̂k =

√
fk ϵ̂k such that, for every k, ϵ̂k is a set of 6 real (3 complex) i.i.d.s

(independent and identically distributed random variables) with unit norm ⟨ϵ̂†
k · ϵ̂p⟩ = δk,p.

In other words, for every k there are 5 real random numbers that are uniformly distributed
on a unit S5. With this, a realization of the random vector field is

Â(x, t) =
√

2
m

ℜ
{

1√
V

∑
k

eik·x√fk ϵ̂k e−i

(
m+ k2

2m

)
t
}
. (2.2)

In this paper, we are interested in the short observation time limit, Tobs ≪ τcoh = m/k2
0

(where k0 = mv0 denotes the typical wavenumber). In this case, we can neglect the k2/2m
factor from the time-varying sinusoid. Subsequently, we have a summation over many
monochromatic waves (all oscillating with frequency m), with different amplitudes and phases
for different values of k. Assuming that the halo function is well behaved (meaning any nth

3The halo function can be given as fk = [N (2π/(mσV 1/3))]−3(ρV/m)e−(k−k̄)2/(2m2σ2) where N (x) =
ET(3, 0, e−x2/2) is the elliptic theta function (which goes as

√
2π/x as x → 0). Here, k̄/m is our velocity

w.r.t. the rest frame of the halo, and σ is the velocity dispersion.
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moment ∑k k
n fk is finite), we can use the central limit theorem to arrive at the following:4

Â(x, t)
∣∣∣
t≪τcoh

≈
√

2
m

ℜ
{
e−imt ŵ(x)

}
,

where ⟨ŵ(x)⟩ = 0 and ⟨ŵi ∗(x)ŵj(y)⟩ = δij

3 × 1
V

∑
k

eik·(x−y)fk .

(2.3)

For Tobs ≪ τcoh, we can also safely assume that the distance Earth sweeps during the
observation time is negligible compared to the de Broglie length. As such, we shall set x = y

and further set x = 0 assuming statistical homogeneity of the DM field. Decomposing the
complex Gaussian random variables ŵ into Euler form, ŵj = α̂j e−iφ̂j , we may write

Âj(t)
∣∣∣
t≪τcoh

≈
√

2ρ
3m2 α̂

j cos
(
mt+ φ̂j

)
. (2.4)

The three α̂j are independent Rayleigh distributed random variables, while the three φj are
independent uniformly distributed angles (ranging from 0 to 2π):

P (αj) = 2αje−(αj)2
and P (φj) = 1

2π . (2.5)

The three components become statistically independent, mimicking three independent scalars.5
Also note that our result is similar to the case of the gradient of a scalar [45], in the sense
that there are 6 independent normal random variables to describe the DM field at a given
location and short time scales.

2.1.1 Equipartion and ellipses

In this subsection, we further justify our assumption of equipartition in the previous section.

Equipartion and vector field ellipses. There exist various production mechanisms where
disparate amounts of longitudinal (spin-0) and transverse (spin-1) helicities are produced [20,
21, 23, 25]. That is, for every k, there could be different amounts of longitudinal and
transverse components of Ψk. However, owing to non-linear gravitational clustering, such
disparity within the two sectors is expected to have disappeared by now within our local
cosmic vicinity. With non-linear gravitational clustering, we expect virialization, leading to
the equipartition of energy within all three degrees of freedom (dof). This would result in 2/3
of the total power being contained within the (two) transverse dof and the remaining 1/3
within the longitudinal ones. In this case, the vector field at each point (within a coherence
region), which is formed out of a sum over a large number of Fourier modes, roughly traces out
a randomly oriented ellipse (as opposed to oscillating along some fixed direction). This can be
seen by noting that within time scales and length scales much smaller than the coherent ones,
the spin current [31, 65] is negligible since it scales with the typical speed σ. Hence, the local

4We note that, if it were not for equiparition, the statistics for w would follow a more complicated form.
We derive this in appendix A. In particular, see eq. (A.9).

5This can be generalized to the many-components case. In particular, for multi-component scalar dark
matter (with naturally different masses and also different energy densities for each component), we can simply
replace the mass and density by their respective values, mj and ρj .

– 5 –
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spin density (given by s = A× Ȧ) is conserved, implying that the local field vector A can
execute a two-dimensional sinusoidal motion in general, i.e. it sweeps an ellipse. See figure 1
for a visualization and a description of this evolution, and visit this webpage for a video.
Such elliptical motion is appropriately used in, for example, [66–68].

Random linear polarization. Some studies make the assumption of linear polarization;
i.e. the vector field oscillates along a line in a fixed direction with this direction changing
randomly every coherence time (see for example [40, 69–71]). However, as we argued above
based on equipartition, an elliptical motion of the vector field is what one should expect.
Nevertheless, we note that a preference for linear (circular) polarization could be generated
by allowing for a non-gravitational attractive (repulsive) self-interaction [72–74]. While these
works argue for such a preference in isolated soliton-like configurations, whether a significant
preference for linear (circular) polarization within each coherence patch can be achieved
dynamically remains to be seen.

Fixed direction. There could exist a misalignment production mechanism for vectors where
the entire observable Universe (or at least a large portion of it) has the vector field oscillating
in a fixed direction [75, 76]. Such setups indeed lead to a fixed direction of oscillation of
the vector field (apart from randomly oriented small perturbations). This would be distinct
from the equipartition case we consider. However, there are difficulties associated with their
production mechanisms [77–79].

2.2 The detector signal

Let ζ(t) be the “antenna” direction — the time series signal is then given by Ŝ(t) = g ζ(t) ·
Ê(t) ≈ g ζ(t) · ∂tÂ(t). Here, g is some overall coefficient containing the coupling constant
and any other possible model parameters, and we have used the fact that the produced dark
electric field is approximately given by E ≈ ∂tA in the non-relativistic limit of the vector DM
field. In this work, we will take the antenna to always point towards the zenith; however, we
will comment on this assumption in section 3. With ϕ denoting the latitude (where ϕ = 0◦

and ϕ = 90◦ respectively correspond to the equator and poles), and ω⊕ denoting the angular
rotation frequency of the Earth, we have ζ(t) = (cosϕ cos(ω⊕t), cosϕ sin(ω⊕t), sinϕ)⊺. Then,
the signal Ŝ(t) is

Ŝ(t)|T ≪τcoh ≈ g
√

2ρ/3
[
α̂x cosϕ cos(mt+ φ̂x) cos(ω⊕t) + α̂y cosϕ cos(mt+ φ̂y) sin(ω⊕t)

+ α̂z sinϕ cos(mt+ φ̂z)
]
. (2.6)

Ultimately, we perform our analysis in Fourier space, considering the (one-sided) periodogram
generated by eq. (2.6). This is proportional to the mod-square of the discrete Fourier
transform of Ŝ(t) and is given by

P̂(ω) ≡ 2(∆t)2

Tobs

∣∣∣∣∣
N−1∑
n=0

Ŝ(tn)eiωn∆t

∣∣∣∣∣
2

. (2.7)

Here, ω is the angular frequency, N is the number of points sampled in the time domain,
and ∆t ≡ Tobs/N is the sampling frequency. The factor of two accounts for the ‘folding’ of
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Figure 1. At each spatial point with a coherence region of size 2π/mv0 (scale of interference
“granules”), the dark matter field A (orange vector) traces out an approximately fixed ellipse (for
2π/mc2 = τComp ≪ t ≪ τcoh = 2π/mv2

0). These ellipses change their size and orientations on the
coherence time scale and smoothly connect with each other from one coherence region to another.
For the duration of the measurement, we expect to find ourselves within one such coherence region.
The detection signal S(t) is proportional to the dot product of the dark electric field E ≃ ∂tA and
the detector orientation ζ(t) (green arrow). Also see figure 2. Snapshot of the actual simulated
field — leftmost panel — taken from [31]. For a movie of the vector field behaviour based on the
simulations, visit https://www.youtube.com/watch?v=bbw6yFRLS7s. Reproduced from [31]. © 2022
IOP Publishing Ltd and Sissa Medialab. All rights reserved.

the result from negative angular frequencies to positive angular frequencies, producing the
one-sided periodogram that ignores the former. We define the dimensionless parameter

β ≡

√
A2Tobs

2σ2 , with A ≡ g
√

2ρ/3 , (2.8)

where σ is the noise power spectral density (PSD). Typically, A is an acceleration or a force
for accelerometer studies. With these definitions, the signal periodogram, normalised by the
noise PSD (which we call the excess power λ̂), is given by

λ̂(ω) ≡ P̂(ω)
σ2 = β2

4
{[
α̂2

x + α̂2
y + 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ δω, s

+
[
α̂2

x + α̂2
y − 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ δω, d

+ 4 α̂2
z sin2 ϕ δω, m

}
.

(2.9)

Here, we have defined the ‘sum’ and ‘difference’ angular frequencies, s ≡ m + ω⊕ and
d ≡ m− ω⊕, respectively. The δa, b are Kronecker delta functions over angular frequencies.

We note that σ can be frequency dependent. This means that the expected noise PSD
within each signal-containing bin can be different. However, for the remainder of this work,
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Figure 2. An example of the expected signal S(t) ≈ gζ(t) · ∂tA(t). This depends on the shape,
orientation and period of the vector field A(t), as well as the detector axis ζ(t), which rotates with the
Earth, and a model-dependent coupling g. Also refer to figure 1. We show the signal in the time (left)
and Fourier (right) domains. For the time domain signal, we show its behaviour over several coherent
times (upper) and sidereal days (lower), the latter of which is the expected observed signal in our
sensor. The inset shows the oscillation of the signal over several Compton times. Note the appearance
of three peaks: a single Compton peak at frequency m in the middle and two additional ones appearing
due to Earth’s rotation — a difference peak at d ≡ m− ω⊕ and a sum peak at s ≡ m+ ω⊕. The time
domain signal is simulated from eq. (2.6), the periodogram of which is taken via eq. (2.7). For the
simulation, we have used the observation time Tobs = 10T⊕, and the results are expressed in terms
A ≡ g

√
2ρ/3 (where ρ is the local DM density). For additional details on the simulation, see text.

The peaks are contained within bins whose widths correspond to the resolution of the frequency space
data, given by ∆ω = 2π/Tobs. Note that the general elliptical behavior of the DM field allows for
different power in the sum and difference peaks. In contrast, the linearly polarized DM field would
lead to equal power in these peaks.

we take σ to be approximately constant, which is a good approximation in the frequency
range of the signal, ∆ω ∼ ω⊕ ≡ 2π/T⊕ ≈ 7.3 × 10−5 Hz, where T⊕ = 23.93 h is the Earth’s
sidereal period. We comment on this approximation further in section 4 when we consider
a concrete sensor and DM model.

figure 2 shows an example of a signal in the short observation time regime, in both the
time (eq. (2.6)) and Fourier (eq. (2.9)) domain. To generate them, we have taken A = 1 [A],
m = 2πHz, ϕ = 45◦, Tobs = 10T⊕, and, for the purposes of fast convergence, T⊕ = 100 s. Here,
[A] are the units of A, which depend on the quantity being measured by the experiment. We
have also taken α ≡ (αx, αy, αz)⊺ = (1, 0.7, 0.2)⊺ and φ ≡ (φx, φy, φz)⊺ = (π/2, π/4, π/3)⊺.
When running our future simulations, we sample these six variables independently from
their respective distributions.
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There are three characteristic timescales within the signal: the Compton scale, the
Earth’s rotation period, and the coherent (de Broglie) scale. The first two of these are present
in the larger panels of figure 2. The Earth’s rotation period is evident from the time domain
signal, which we have shown for three full rotation periods. The Compton scale is much faster
than this scale (see inset), making the signal appear solid in shape. Crucially, we see that
the vector ULDM field leaves a characteristic three-peak signal in the Fourier domain.6 One
peak is present at the Compton frequency ω = m, which previous frequency-space analyses
have focused on [36, 38]. However, a further two peaks manifest as a result of the Earth’s
rotation, which are spaced ω⊕ away from the Compton peak. These additional peaks, the
use of which has been ignored in previous accelerometer analyses,7 only appear as Tobs ≥ T⊕;
shorter observation times do not give us enough resolution in the frequency domain to resolve
them.8 We call the peak at the Compton frequency the Compton peak, that at s the sum
peak, and that at d the difference peak.

We argued earlier that, within a coherence patch, we expect the vector field to undergo
an elliptical motion with period 2π/m (see figure 1), as opposed to a linear one commonly
used in the literature. In both the linear and elliptical cases, the time domain signal, S(t), is
sinusoidal and contains the angular frequencies m and m±ω⊕. Repeating the analysis of [40]
in the time domain, but without the linear polarization assumption, we expect qualitatively
similar results (with more statistical spread on the time averaged power). However, there are
some important differences when analysing the expected signal in Fourier space.

In the elliptical case, the power contained in the m and m ± ω⊕ peaks is statistically
uncorrelated (see appendix B). On the other hand, for the linear polarization case, the power
at m and m±ω⊕ is correlated, with equal power in the sum and difference peaks. This can be
seen by noting that, in this case, all the components of the vector are in phase. The statistical
independence in the elliptical case significantly simplifies our analysis pipeline for projected
sensitivities. Furthermore, the distinction in power at m± ω⊕ is also relevant in case of a
detection since we would expect different powers in the elliptical case. We show the statistical
independence arising from the elliptical case in appendix B and the statistical dependence of
the sum and difference peaks arising from the linear polarization case in appendix D.

3 Statistical analysis

We now consider the projected exclusion limits that a generic experiment would be able to
set using our three-peak analysis. To do this, we use a series of likelihood-ratio tests.

3.1 Signal likelihood

For our likelihood, we follow a hybrid frequentist-Bayesian approach, defining a marginalized
likelihood in which all nuisance parameters are integrated out. In our case, these are the

6Such a signal would also be seen in the case of the gradient of a scalar field, as mentioned in ref. [45], and
its form is similar to that of eq. (2.6). See appendix C for details.

7Ref. [36] also noted this spectral splitting; however, the focus was on the Compton peak for the purposes
of that analysis. In ref. [68], this splitting as it relates to a global network of magnetometers was used.

8For us, the observation time is defined as the amount of time that data are continuously taken. As such,
the total expedition time of the entire experiment is equivalent to Tobs.
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random Rayleigh parameters, α, and random uniform DM phases, φ. Such a hybrid approach
has already been used in the context of ultralight bosonic dark matter [42, 80]. Our work
differs from ref. [80] since they focused on an axion-like signal as opposed to that from
vector DM. It goes beyond ref. [42] since they did not consider the peaks arising from the
rotation of the Earth in their analysis.

The full likelihood in Fourier space is well-known to follow a non-central χ2 with two
degrees of freedom [81]. In our case, the non-centrality parameter is the total signal amplitude
in eq. (2.9). The marginalized likelihood is then given by

Lmarg(β, ϕ; p) =
∫

d3α d3φ
[
χ2

nc(p; k = 2, λ(β, ϕ, α, φ)) Π(α, φ)
]
, (3.1)

where Π describes the priors of our random parameters and p is the random variable we expect
to measure in an experiment. We can express the result of eq. (3.1) completely analytically
and provide a full derivation of it in appendix B, only quoting the final result here. The
likelihoods in the signal-containing bins, which we call the Compton and sum/difference
likelihoods, are respectively

Lm(β, ϕ; p) = 1
2 + β2 sin2 ϕ

exp
[
− p

2 + β2 sin2 ϕ

]
,

Ls/d(β, ϕ; p) = 1
2 + (β2 cos2 ϕ)/2 exp

[
− p

2 + (β2 cos2 ϕ)/2

]
.

(3.2)

Note that, when β = 0, we correctly retrieve central χ2 distributions in each bin, corresponding
to the background-only case. The result for the Compton peak matches that of refs. [42, 80].
The result for the sum/difference peaks is new. For completeness, we also derive the equivalent
of eq. (3.2) for the linear polarization case in appendix D.

In figure 3, we show a comparison between a numerical simulation of the signal likelihoods
and the analytical results of eq. (3.2). For the former, we begin from eq. (2.6), simulating 106

realisations of the time-domain signal. We take A = 1 [A], Tobs = 10T⊕, σ2 = 5 [A]2 Hz−1,
and ϕ = 45◦. For the purposes of fast convergence in our simulations, we take m = 2πHz
and T⊕ = 100 s. For each run, we sample α and φ from independent Rayleigh and uniform
distributions respectively, as given by eq. (2.5). To generate the time domain signal, we add
Gaussian-distributed white noise with zero mean and variance given by σ2

t = σ2∆t. Finally,
we compute the periodogram of the signal following eq. (2.7), dividing by σ2 to produce the
excess power in each frequency bin. The resulting normalised distribution of p(ω) for the
Compton bin (ω = m) and the sum/difference bins (ω = m± ω⊕) are in excellent agreement
with our analytical result. We also show the likelihood governing the deterministic result
for the Compton peak: a non-central χ2 with two degrees of freedom and non-centrality
parameter given by the last term of eq. (2.9). Without the nuisance parameter α2

z integrated
out, we instead set it to its expectation value: ⟨α2

z⟩ = 1. We see that higher values of p are
favoured in this case, which would ultimately lead to an overly aggressive constraint on β.

The full likelihood over all frequency space is then given by the product of the likelihoods
in each frequency bin,

L(β, ϕ; p) =
Nbins∏
i=1

Lmarg(β, ϕ; pi) , (3.3)
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Figure 3. Example likelihoods for each of the three signal peaks once the stochastic variables have
been marginalised over. The bars show the result of a numerical simulation of the noise-normalised
periodogram values beginning from eq. (2.6), while the solid lines show the analytical result of eq. (3.2).
Here, ϕ is the latitude of the experiment, p (a random variable) is the value of the measured excess
power, and β is defined as per eq. (2.8). Also shown as a dashed line is the deterministic result for the
Compton peak, where the stochastic variable α2

z is set to its expectation value, ⟨α2
z⟩ = 1.

where pi represents the excess power density in the ith frequency bin, p is the full data
vector, and the product runs over all Nbins frequency bins. Ultimately, since our signal only
manifests in three bins, it suffices for us to consider only those bins that could potentially
contain a signal, and we may ignore all other bins. We can express the likelihood in this
way because each bin is statistically uncorrelated, as we show in appendix B. This is in
contrast with the analysis performed in ref. [45], where a similar study was conducted in
the case of the gradient of a scalar in the time domain. There, a complicated covariance
matrix had to be computed to account for correlations in the signal at different times. In
Fourier space, these covariances disappear. The power of performing this analysis in the
frequency domain is thus not only that the signal is contained within a small number of
bins, but also that these bins are statistically independent, which allows us to treat the
statistics in a significantly simpler way.

Crucially, once the latitude of the experiment, ϕ, is fixed, the likelihood depends on the
product of all experimental variables via the dimensionless parameter β. This means that
we can set a more holistic limit that is independent of the specifics of an experiment. Once
the form of A (which depends on both the experiment and the DM model), the observation
time Tobs, and the noise profile σ are known, the ensuing limit on β can be recast to one
on the model parameters of interest. This makes our analysis, both the results and overall
logic, as generally useful as possible.
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3.2 Projected exclusions

To derive our limits, we construct the one-sided log-likelihood-ratio test statistic, defined as

qβ ≡

−2 ln
[

L(β, ϕ;p)
L(β̂, ϕ;p)

]
if β̂ ≥ β

0 else
, (3.4)

where β̂ is that value of β which maximises the likelihood given the observed data set p,
characterising the best-fit model. This statistic is defined as a piecewise function as we only
expect excess signals to be disfavoured when excluding a value of β in a one-sided test. This
corresponds to values of β greater than the best-fit value. Values below this are deemed
under-fluctuations and considered consistent with observation. This statistic tells us how
consistent the data are with a signal defined by β compared to the best-fit model, with zero
representing perfect consistency and large values indicating high inconsistency.

The general idea is that we want to exclude those values of β that lead to excessive values
of qβ. We do this by considering the distribution f(qβ) that we expect to arise when many
hypothetical experiments perform a measurement. Generating the αconf% confidence level
(CL) limit then depends on finding the value of the test statistic, qlim

β , for which an experiment
has an αconf% probability of attaining that value or below. That is, we solve for qlim

β in

∫ qlim
β

0
f(qβ) dqβ = αconf . (3.5)

From qlim
β , we then find that βlim which gives us this value for the test statistic. This is

our αconf% CL limit on our parameter of interest, β.
Ultimately, we compute 90% CL limits (αconf = 0.90) via a series of Monte Carlo (MC)

simulations, following the above procedure in each MC run.9 For a given choice of β, we begin
by simulating the distribution f(qβ). We do this by simulating 106 experiments, sampling
the data p for each signal bin directly from the verified likelihoods given in eq. (3.2). In
each run, we find β̂ and compute the distribution of qβ for a range of β and ϕ values. We
then fit our distributions to the ansatz

f(qβ) = (1 −ϖ) δ(qβ) +ϖχ2(qβ ; k = 1), (3.6)

where ϖ ∈ [0, 1] is a scale factor ensuring that the distribution is normalised to 1. This
ansatz is inspired by the asymptotic result of Chernoff (where ϖ = 1/2), which itself is a
limiting case of Wilk’s theorem when the true value of β lies on the boundary of its domain
(which is true in our case, since our background-only data set if defined by β = 0) [83, 84].
For each run, we find the best-fit value of ϖ. From eq. (3.6), we can then invert eq. (3.5)
to find qlim

β . For the αconf% CL limit, we have that

qlim
β = 2

[
Erf−1

(
1 + αconf − 1

ϖ

)]2
. (3.7)

9While asymptotic formulae exist for computing exclusion limits, we have opted for an MC approach to
ensure proper coverage [82]. Since we are following a hybrid frequentist-Bayesian approach, we found this to
be an especially pertinent check.
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Figure 4. The 90% CL limits (βlim) on the dimensionless parameter β ≡
√

A2Tobs/(2σ2) (see
eq. (2.8)) derived from our MC analysis. We show the results of our three-peak analysis and those of
two single-peak analyses focusing on the Compton peak and on one of the sum or difference peaks.
The shaded region indicates the 1σ error bar on our three-peak analysis. The dotted line indicates
the latitude of Houston, which we use in section 4. Our three-peak analysis generally provides a
better/comparable limit to either of the two single-peak analyses and is largely latitude-independent.

In generating our distributions, we find a weak dependence on the chosen values of β and ϕ.
However, this leads to a small change in the ultimate value of qlim

β . We take the mean value
of it over our fits as its best estimator, yielding qlim

β ≃ 2.43, and use this throughout the rest
of our study. Note that this is close to the asymptotically expected result of qlim

β ≃ 2.71 for a
1 d.o.f. problem [82]. We could have derived a similar result by integrating the resulting qβ

histograms; however, we attain a good fit to eq. (3.6), and it provides us with a closed-form
solution for qlim

β , as per eq. (3.7).
With qlim

β at hand, we may derive the main result of this section, βlim. We once
again follow an MC approach, generating 106 data sets consistent with a background-only
observation (setting β = 0), and finding, for each hypothetical experiment, that value of β
for which eq. (3.4) returns qβ = qlim

β . This produces a distribution of limits, for which we
take the median as our best estimator. We also produce the 1σ error bars on our limits by
finding the 16th- and 84th-percentile of the distribution in βlim.

We show the 90% CL limit arising from our three-peak analysis in figure 4. Also shown
are the corresponding results from two single-peak analyses focusing solely on the Compton
and either one of the sum or difference peaks. These results follow the same MC procedure
as above but take as the full likelihood only the Compton or the sum/difference likelihood
given in eq. (3.2). We see that the three-peak analysis produces a limit that is largely
latitude-independent, rising slightly towards the pole. This is because the sensitivity axis
at this latitude only has a component parallel to the Earth’s rotation axis and is thus only
able to pick out the Compton peak.
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This latitude-independent limit is in contrast with the analyses that focus on only single
peaks, which are both highly sensitive to where the experiment is placed. For the study
focusing on the Compton peak, the constraining power is optimal at the pole, where all of the
power is contained in the Compton frequency bin, and it rapidly declines towards the equator,
where the Compton peak disappears. Note that this and the three-peak results join at this
point, with no difference between the approaches. Conversely, for an analysis focusing on one
of the sum or difference peaks, the situation is the opposite. In this case, the results of this
and the three-peak methods do not converge since half the power is contained in a single one of
the sum or difference peaks at the equator; the three-peak analysis captures all of this power,
whereas the single-peak analysis misses half of the power. Thus, the strength of our analysis
is that the constraining power is retained no matter where an experiment is placed, such that
its latitude is rendered largely irrelevant from the viewpoint of constraining a ULDM signal.

We emphasize that the interpretation of figure 4 is as a set of exclusion lines whereby
background pseudodata is generated and the assumed DM signal strength is constrained.
The key point is that the level of this constraint depends on the assumption one makes on the
nature of the DM signal given a non-detection. Taking this signal to be only a single peak in
Fourier space then leads to constraints that are generally dependent on the latitude of the
experiment, rapidly weakening towards latitude extremes. On the other hand, employing
the full signal model consisting of three peaks yields stronger constraints that are almost
independent of the experiment placement.

Throughout the above analysis, we assumed that the sensitivity axis pointed in the
zenith direction. However, we can relax this assumption and consider what our results
would look like if this axis pointed in some different direction, say for instance directions
perpendicular to the zenith — namely, the East/West and North/South directions.10 If
North/South-pointing, all of the curves in figure 4 would be flipped about the line ϕ = 45◦.
While the strongest limit for the Compton peak would now occur at the equator instead
of the pole (and vice versa for both the sum and difference peaks), crucially we would still
retain a largely latitude-independent constraint for our three-peak analysis. This is because,
throughout the experiment, the directionality of the detector makes a cone, making it sensitive
to the vector DM power in all the three directions. If, instead, the axis pointed towards the
East/West, we would only see the sum and the difference peaks. This is because, throughout
the experimental expedition, the directionality of the detector is restricted to lie on a plane
(which would necessarily be perpendicular to the rotation axis of the Earth). Therefore, it is
always insensitive to the power contained across the perpendicular direction, which is tied to
the standalone Compton peak. One final possibility is when the directionality of the detector
traces out a line throughout the experiment. This is only possible when it points parallel
to the Earth’s rotation axis (at any given latitude). In this case, we would naturally be
oblivious to the Earth’s rotation and hence to the sum and difference peaks, and we would
only be able to resolve the Compton peak.

In summary, the best-case scenario is when the detector’s sensitivity axis traces out a
cone. In this case, we capture all the three peaks since we are sensitive to the vector DM
power across all three directions (Earth’s rotation axis and the two orthogonal directions).

10Here we assume that the sensitivity axis of the detector is locally fixed with respect to the zenith.
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For comparison, we also derive the scaling relationship of the limits on β under the
assumption of linear polarization in appendix D using a simpler two-peak Asimov analysis.
We find that the limits are mostly affected towards the equator, with the largest scaling
factor being ∼ 1.2. This difference becomes larger for higher desired confidence levels.

4 Application to accelerometer studies

As an application of our analysis strategy, we consider a concrete sensor and DM model.
As our sensor, we take the canonical optomechanical light cavity, which can be used to
perform acceleration measurements by continuously measuring the distance between fixed
and movable cavity mirrors. As our model, we consider ‘dark photon’ DM stemming from a
gauged U(1)B−L symmetry, leading to wavelike DM in the ultralight regime that couples to
the difference between baryon number, B, and lepton number, L. Gauging such a charge
is popular in the context of particle physics, since it naturally leads to the introduction of
right-handed neutrinos and, hence, can account for the non-zero neutrino masses [85–87].
Motivation for such an ultralight gauge boson can also be found in [88, 89]. The associated
Lagrangian density reads

L ⊃ −1
4A

′µνA′
µν − 1

2m
2A′µA′

µ − gB−Lj
µ
B−LA

′
µ , (4.1)

where A′µν ≡ ∂µA′ν − ∂νA′µ is the field strength tensor for the new field, m is the mass of
the field, and jµ

B−L is the B − L vector current. Explicitly, it is given by

jµ
B−L =

∑
f

Qf
B−Lf̄γ

µf , (4.2)

where the sum runs over all fermions in the SM and where Qf
B−L is the B − L charge of

the fermion f . A multitude of studies have considered this combination and set limits or
projections on B − L coupled DM [35, 36, 38, 41, 42, 44].

However, those works that performed a Fourier space analysis only had access to the
Compton peak. This is because the total experiment integration times had to be such that
Tobs ∼ 1 h < T⊕ to maintain experimental stability, dictated by retaining the coherence of
the laser in optomechanical cavity setups. In the event that one can instead measure for
at least ∼ 1 day, other peaks can be resolved. As we discussed in section 3, an analysis for
an axial sensor that then does not account for these additional peaks is sub-optimal, as it
fails to capture the full signal and therefore suffers from a signal loss at a range of latitudes.
Moreover, ignoring the randomness of the nuisance variables leads to an overly aggressive
constraint, as was illustrated in figure 3. Our more holistic three-peak strategy, which also
considers this stochasticity, retains the full signal and is largely latitude-independent in its
constraining power. Therefore, this choice of sensor and DM model makes for an excellent
case study with which to showcase the improved constraining power of our method.

Furthermore, a proper vector treatment of the DM field in Fourier space, which includes
the stochasticity of the ULDM field variables and the effect of the rotation of the Earth,
has not been done. Ignoring the randomness of the nuisance variables leads to an overly
aggressive constraint, as was also pointed out in refs. [42, 80].

– 15 –



J
C
A
P
0
6
(
2
0
2
4
)
0
5
0

4.1 Recasting generalised limits onto B − L dark matter

To recast our limits on β shown in figure 4 into one on the parameter of interest for this
model, the gauge coupling strength gB−L, we must define four quantities. Firstly, we must
make clear what the quantity A is for this experiment, which will depend on both the model
and the signal of interest for this sensor. Secondly, we must choose an observation time,
Tobs. Thirdly, we must elaborate on what the concrete noise profile, σ(ω), for this type of
experiment is. Lastly, and least importantly following from our discussion above, we must
choose a latitude for the experiment. Once these are known, eq. (2.8) can be re-arranged
for gB−L, giving us our model- and experiment-specific 90% CL limit.

For B−L coupled dark photon dark matter, the relevant signal is a differential acceleration.
This is given by eq. (2.6) in the time domain, with a now concrete choice for A,

A ≡ gB−L∆ija0 . (4.3)

Here, gB−L is the gauge coupling strength of the model, ∆ij is the differential B − L charge
per nucleon between materials i and j, given by

∆ij ≡
∣∣∣∣Zi

Ai
− Zj

Aj

∣∣∣∣ , (4.4)

and a0 ≡
√

2ρ/3u−1 ≃ 1012 m s−2 is a characteristic acceleration imparted by the field to
each nucleon (with u being the atomic mass unit). For most materials, ∆ij ∼ 0.1, which we
take in the following analysis [36]. Note that, for this particular model, g ≡ gB−L∆ij/u.

For our observation time, we take Tobs = 10T⊕ to be firmly in the regime where the three
peaks can be resolved. For light cavities, which may only be able to remain coherent over
the scale of hours rather than days, such a runtime is optimistic. However, since our aim
here is merely to showcase how our method can be used concretely and compare to the works
of refs. [36, 38], we do not see this as an issue. Our strategy is general and can be applied
to any axial sensor and vector-like DM model, and we have settled on this configuration
only for the sake of argument; other sensor technologies, such a magnetically levitated
sensors, do not have this issue. Moreover, multiple cavities or data-stacking techniques can
be employed to mitigate this issue.

We model the background according to refs. [36, 38]. Namely, we split the total expected
background PSD σ2, which we will write as Saa as per convention, into a thermal, shot-noise,
and back-action component,

Saa = STh
aa + SSN

aa + SBA
aa . (4.5)

In what follows, we do not discuss the forms of these noise terms; we instead refer the reader
to refs. [53, 90] for a review on the topic. The thermal component is given by

STh
aa ≡ 4kBTγ

ms
, (4.6)

where γ represents the couplings between the sensor and the thermal bath of temperature T ,
ms is the mass of the sensor, and kB is Boltzman’s constant. Typically, we parametrise the
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Quantity Value

Sensor Mass (ms) 10 mg
Bath Temperature (T ) 10 mK
Quality Factor (Q) 109

Cavity Loss (κ) 106 Hz
Laser Wavelength (λL) 1.55 µm
Cavity Length (L) 10 cm

Table 1. The optomechanical cavity configuration we have assumed in this work.

thermal coupling as γ ≡ ω0/Q, where ω0 is the resonance frequency of the cavity and Q is
its quality factor. The measurement-added noise terms — the shot-noise and back-action
noise — are respectively given by

SSN
aa (ω) ≡ ℏκL2

2ωLPL
|χc(ω)|−2|χm(ω)|−2 , (4.7)

and
SBA

aa (ω) ≡ 2ℏωLPL

m2
sL

2κ
|χc(ω)|2 . (4.8)

Here, κ is the cavity loss, which quantifies the efficiency of the optical modes of the cavity,
L is the cavity length, ωL is the angular frequency of the laser, and PL is its power. The
mechanical susceptibility is given by

χm(ω) ≡ 1
ω2

0 − ω2 + iγω
(4.9)

and the cavity susceptibility by

χc(ω) ≡
√
κ

iω − κ/2 . (4.10)

Our choices for all of the above parameters except for the laser power, which we expand on
below, are summarised in table 1. These are in keeping with the choices made in refs. [36, 38].

The choice of where to tune the laser power is critical to give us competitive limits for
a wide range of dark matter masses. We have found that we can achieve excellent limits
for low dark matter masses, which are of most relevance to our work, by tuning the laser
power such that the back-action and shot-noise components are minimised at low frequencies.
That is, by finding that PL for which ∂PL

[SSN
aa (ω → 0) + SBA

aa (ω → 0)] = 0 for a given choice
of ω0. The required laser power to achieve this is given by

Pmin
L = msκ

2L2ω2
0

8ωL
. (4.11)

For the resonant frequencies we have considered, the laser power ranges from PL ∼ 10−12 W
for f0 = 0.1 Hz to PL ∼ 10−8 W for f0 = 10 Hz.

We note that this choice of power tuning is different from the strategies usually employed
in other studies. Typically, the laser power is tuned so that the measurement-added noise is
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either minimised on resonance or, as LIGO implements it, well above resonance [91]. However,
we found that both of these choices detriments the limit that we can draw at low masses,
increasing the background at low frequencies beyond the thermal noise floor. For these other
strategies to be beneficial at both the respective frequency targets and at low frequencies,
the thermal noise would have to be significantly lower than that achieved with our choice
of sensor mass, quality factor, and bath temperature.

In the treatment of our backgrounds, we have neglected seismic noise, which can become
important at frequencies below ∼ 10 Hz. Since we require the use of two materials to measure
the differential acceleration peculiar to B − L DM, we can envision constructing two sensors:
one with a moveable mirror made of material i and another of material j. By subtracting
their signals, we both isolate the differential acceleration signature and remove backgrounds
common to both — this includes the seismic noise component [64]

Finally, we choose Houston as the location of our experiment, ϕ = 29.76◦. From figure 4,
we find that βlim ≃ 3.1 for this latitude. However, we note that this information is almost
unnecessary for the three-peak analysis since it is largely location-independent. We may then
re-arrange eq. (2.8) accounting for eq. (4.3) to give us our limit on ultralight B−L-coupled DM,

gB−L = βlim

a0∆ij

√
2Saa

T
(4.12)

We show our limits in figure 5 for three choices of resonance frequency: 0.1 Hz, 1 Hz
and 10 Hz. For all but the last of these frequencies, we are able to exclude new regions of
the UDLM B − L parameter space, best excluded by the fifth-force satellite experiment
MICROSCOPE [97] and torsion-balance experiment Eöt-Wash [92]. This showcases the
power of such sensors in searching for this DM candidate, as was first pointed out in ref. [64].
In a single-peak analysis focusing solely on the Compton peak, our limits would be weakened
by approximately a factor of 2, as can be seen from figure 4. This difference becomes more
dramatic for sensors located closer to the equator.

For the existing limits outlined above, we extract the Eöt-Wash limit from [93]; however,
we recompute the MICROSCOPE limit. This is because the result of [93], at the time of
writing, is based on [95], which computed constraints based on the first MICROSCOPE
results [94, 96]. We update this limit to reflect the final results given in [97] following
the reasoning outlined in [98, 99]. See appendix E for details. At low masses, we find
that gB−L ≲ 7 × 10−26, improving the limit given in [93], which we also show in figure 5,
by approximately a factor of 6.2. For the B − L limits computed in [98, 99], we find an
improvement by approximately a factor of 2.6.

We only extend our limits to where they are appropriate. At the higher mass range, we
are limited by keeping our observation time shorter than the coherence time, Tobs ≪ τcoh ≃
10 d (5×10−15 eV/m). At the lower mass range, we must keep our observation time longer than
a day (corresponding to m ≃ 5×10−20 eV) to be able to resolve the three peaks Tobs ≳ 2π/ω⊕.
This leads to the mass range 5 × 10−20 eV ≲ m ≲ 5 × 10−15 eV for where our study is valid.

We note that σ(ω), though mostly slowly varying in the frequency width ∆ω = ω⊕, does
exhibit a large gradient around the resonance frequency of the cavity. In the neighbourhood
of this frequency, our assumption that σ(ω) does not vary greatly in the above range is
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f0 = 0.1 Hz

f0 = 1 Hz

f0 = 10 Hz

Eöt-Wash

MICROSCOPE (First)

MICROSCOPE (Final)

10−4 10−3 10−2 10−1 100 101

f [Hz]

10−19 10−18 10−17 10−16 10−15 10−14 10−13

m [eV]

10−27

10−26

10−25

10−24

10−23
g B
−
L

Tobs > τcoh

Figure 5. The 90% CL limits on the gauge coupling for ultralight B − L DM placed by an
optomechanical cavity setup using our statistical framework. The limits using our three-peak analysis
strategy (solid) for three resonance frequencies, f0 = 0.1 Hz, 1 Hz and 10 Hz are shown. Existing bounds
from the Eöt-Wash [92, 93] and MICROSCOPE experiments are shown in grey. For MICROSCOPE,
we show the bound based on the first [93–96] and final [97] results, the latter of which we compute in
appendix E. The vertical shaded region indicates where the observation time Tobs = 10T⊕ becomes
greater than the coherence time, where our framework is no longer valid. The top axis shows the
Compton frequency for a given DM mass in Hz.

incorrect, and a more careful analysis in which all three peaks take on different noise levels
would have to be conducted for more representative limits. However, we do not expect that
our limits would differ greatly from our calculation and, at any rate, would still smoothly
join to the regimes on either side of the resonance frequency, where our assumption holds.

5 Future directions

5.1 Longer observation times

In this work, we have focused on the wave vector DM signal within time scales much shorter
than the coherence time, τcoh = 2π/mv2

0 ≃ 50 d (10−15 eV/m). This allowed us to treat
the amplitudes and phases of the three different components of the vector to be constant
random variables. Realistically, there would be modulations giving these random variables
time dependence — corrections of the order O(t/τcoh). Simultaneously, there would be
spatial variations/correlations due to the finite distance covered by the Earth/detector during
the observation, leading to corrections of the order O(v0t/ℓcoh) = O(t/τcoh) again. For
longer observation times, Tobs ≫ τcoh, such modulations necessarily need to be taken into
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account. While we can easily generate the realistic time-series for such long time-scale
signals (see top panel of figure 2), a more comprehensive treatment of how it affects our
limits is left for future work.

Nevertheless, we comment on a simplified study that could be done within the incoherent
regime. In this limit, the stochasticity of the field is averaged over as O(Tobs/τcoh) coherent
patches cross the Earth. Thus, for Tobs ≫ τcoh, the randomness in the signal disappears,
and we are left with a deterministic signal. Moreover, the signal in Fourier space loses its
coherent Tobs enhancement, reaching its maximal value at Tobs = τcoh (cf. eq. (2.8)).

In a simplified experimental study, one could then analyse the data by first splitting the
long-time time series into Ncoh ∼ Tobs/τcoh smaller, independent time series of coherence-time
durations. Each one of these series would lead to our three-peak signal in Fourier space
with randomly drawn Rayleigh amplitudes and uniform phases. One could then average over
all Ncoh PSDs, resulting in a deterministic amplitude where the randomness is no longer
manifest. Crucially, this procedure would lead to the noise within each signal-containing
bin to also be averaged over, resulting in a noise suppression by the factor N−1/2

coh . Similar
arguments have been made in refs. [36, 38]. To make inferences, we could then proceed by
redefining our β parameter as an ‘incoherent’ version of it,

β → βinc ≡

√
A2

2σ2 (τcohTobs)1/4 . (5.1)

This parameter can then be used in the deterministic likelihood, which is of the form of
a non-central χ2 distribution (cf. eq. (3.1)), to find the limit βlim

incoh given the observed
(averaged) PSD.

5.2 Expanding the mass window

The detection scheme considered in this paper is one where the detector points in a specific
fixed direction locally on Earth while rotating along with it. As noted above, in the
short observation time scenario we are bounded from below by a day (corresponding to
m ≃ 5 × 10−20 eV) and from above by the coherence time scale τcoh ≃ 10 d (5 × 10−15 eV/m)
to be able to resolve the distinctive 3 peaks. To have a larger working window where we
can neglect the previously mentioned corrections, the masses we can probe using this setup
lie in the range 5 × 10−20 eV ≲ m ≲ 5 × 10−15 eV. To expand this window towards higher
masses, we need to push the lower bound coming from Tobs > 1 d.

Instead of a fixed detector rotating with the Earth, a detector can also be made to rotate
at an angular frequency faster than a day. For example, if ωexp ≃ 2π/(1 min), then the
detector needs to collect data for only a few minutes to be able to isolate the three peaks.
With τcoh ≃ 15 min (5 × 10−12 eV/m), we can probe masses up to m ≃ 5 × 10−12 eV. Note
that while the time signal would contain modulations due to Earth’s rotation, the effects
would be suppressed by O(ω⊕/ωexp). Furthermore, in the frequency space, this modulation
would split the three peaks at ωleft = m − ωexp, ωmiddle = m, and ωright = m + ωexp, into
nine peaks (each splitting into three). However, unless the frequency resolution ∆ω becomes
smaller than ∼ ω⊕, the experiment would not be able to resolve this splitting due to the
Earth’s rotation. Thus, we expect our whole analysis in this paper to carry forward, with
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ω⊕ replaced by ωexp everywhere. Furthermore, such a setup would also be beneficial for the
optomechanical light cavities we considered in section 4, where their typical laser coherence
times are of the order of hours and not days.

6 Conclusions

We have provided an analysis strategy for inferring the properties of ultralight vector dark
matter from terrestrial experiments, taking into account the stochastic and vector nature
of the field (see figure 1). Our main results are suited for observation times that are longer
than a sidereal day, but shorter than the coherence time. They are as follows:

• We focused on the signal in Fourier space, deriving the power spectral density that such
dark matter is expected to leave on an axial sensor that is sensitive to its oscillatory
signal. Accounting for the rotation of the Earth, we found that the signal manifests as
three peaks at definite frequencies but with random amplitudes (see figure 2).

• We derived the likelihoods in each of the signal-containing bins in Fourier space. We did
this by considering the marginal likelihood after integrating out the six random variables
exhibited by the ULDM signal in the coherent regime: the three Rayleigh amplitudes
and the three uniformly distributed DM phases (see eq. (3.2) and figure 3). We found
that the general elliptical motion of the vector field, arising out of equipartition, afforded
us a simpler analysis in Fourier space than the linear polarization assumption. This is
because in the former, all peaks become statistically uncorrelated.

• We drew exclusion limits on a generalised, dimensionless parameter that can be re-
interpreted in the context of a concrete sensor setup and dark matter model. We did
this via a series of log-likelihood ratio tests following a hybrid frequentist-Bayesian
approach. Crucially, we found that, unlike analyses focusing on only a single peak, our
approach retains constraining power for experimental setups at all latitudes. This is
because we make use of the entire DM signal, which is distributed across all three peaks,
instead of constraining ourselves to the signal in any one peak, which is dependent on
the latitude of the experiment (see figure 4).

• We considered a specific sensor technology (the optomechanical light cavity) and dark
matter model (ultralight dark matter stemming from a new gauged U(1)B−L symmetry)
as a concrete application of our analysis strategy. We recast our general limit onto one
on the gauge coupling of this model, gB−L, finding that long-exposure cavities can rule
out previously unexplored regions of the B − L parameter space (see figure 5).

In this work, we have established a framework for future experimental efforts in the detec-
tion of ultralight vector dark matter. Novel direct-detection probes require an understanding
of how the signal of ultralight vector dark matter behaves in our local neighborhood and
manifests itself in a sensor. We hope that our work aids in (i) designing search strategies
using emerging detector technologies that are not traditionally used for dark matter searches,
and (ii) in understanding how well a given model can be tested in the context of calls for
Big Science projects using quantum sensing [63].
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A On the longitudinal and transverse modes of the vector field

A.1 Signal for arbitrary power spectrum

In this section, we describe the stochastic behavior of the random vector dark matter field
for the case that there is an unequal partitioning of power amongst its longitudinal and
transverse modes. Requiring the two-point correlation ⟨Ψ̂†

k · Ψ̂p⟩ = δk,p fk (where fk is the
halo function), we can parameterize the power spectrum as

⟨ψ̂ i ∗
k ψ̂ j

p ⟩ = δk,p fk
[
Υ0 P ij

k⊥
+ (1 − 2Υ0)P ij

k||

]
, (A.1)

where

P ij
k⊥

≡
(
δij − kikj

|k|2

)
and P ij

k||
≡ kikj

|k|2
(A.2)

are the two mutually orthogonal projection matrices. The parameter Υ(t) quantifies the
partitioning of the power spectrum into longitudinal and transverse modes at arbitrary times.
In particular, for our purposes here, Υ0 ≡ Υ(t = t0) is the partitioning in the halo today.
While Υ ∈ [0, 1/2] in general, Υ = 0 gives a longitudinal-only spectrum, and Υ = 1/2 gives a
transverse-only spectrum. For Υ = 1/3, we achieve equipartition. In greater generality, we
note that Υ could be k-dependent; we leave a detailed analysis of this case for future work.

Rescaling Ψ̂k such that Ψ̂k =
√
fk ϵ̂k gives the two-point correlation as ⟨ϵ̂ i ∗

k ϵ̂ j
p⟩ =

δk,p

[
Υ0 P ij

k⊥
+ (1 − 2Υ0)P ij

k||

]
. We can break ϵ into a transverse piece, ϵ̂ i

k⊥
= P ij

k⊥
ϵ̂ j
k , and a

longitudinal piece, ϵ̂ i
k||

= P ij
k||
ϵ̂ j
k , with zero cross-correlation and following self-correlations:

⟨ϵ̂ i ∗
k⊥
ϵ̂ j
p⊥

⟩ = Υ0 δk,p P ij
k⊥

and ⟨ϵ̂ i ∗
k||
ϵ̂ j
p||

⟩ = (1 − 2Υ0)δk,p P ij
k||
. (A.3)

The above suggests that, for every k, we can pick a real 6-dimensional random variable
ûk restricted to lie uniformly on an S5. We can package this as a 3-dimensional complex
random variable (i.e. ⟨û i ∗

k û j
p⟩ = δk,p δ

ij), and then hit it with the transverse and longitudinal
projection operators scaled by

√
Υ0 and

√
1 − 2Υ0, respectively, to get ϵ̂k⊥ and ϵ̂k|| .

With this, the full field can be broken into longitudinal and transverse pieces:

Âi(x, t) =
√

2
m

ℜ
{

1√
V

∑
k

eik·x√fk (√Υ0 P ij
k⊥

+
√

1 − 2Υ0 P ij
k||

)
û j
k e

−i

(
m+ k2

2m

)
t
}
. (A.4)
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Using the central limit theorem, this yields the following:

Âj(0, t)
∣∣∣
t≪Tcoh

=
√

2
m

ℜ
[
e−imt

(√
Υ0 â

j +
√

1 − 2Υ0 b̂
j
)]
, (A.5)

where â and b̂ are two 6-dimensional independent random variables (represented as two
3-dimensional complex random variables) with zero mean and following self-correlations
in the large volume limit:

⟨âi∗ âj⟩ =
∫ d3k

(2π)3 fk P ij
k⊥

= ρ

m

[
(1 − F)δij − (1 − 3F) k̄

ik̄j

k̄2

]

⟨b̂i∗ b̂j⟩ =
∫ d3k

(2π)3 fk P ij
k||

= ρ

m

[
F δij + (1 − 3F) k̄

ik̄j

k̄2

]
. (A.6)

Here,

F = (mσ)2

k̄2

[
1 −

√
π

2
mσ

k̄
e

− k̄2
2(mσ)2 Erfi

(
k̄√

2mσ

)]
, (A.7)

and the cross correlation between â and b̂ is zero, i.e. ⟨âi ∗b̂j⟩ = 0. Here, k̄/m is our velocity
relative to the rest frame of the halo, and σ is the velocity dispersion. Owing to their Gaussian
nature, we can further combine the two random variables and define ŵj ≡ Υ0 â

j +
√

1 − 2Υ0 b̂
j .

This new combined random variable will have zero mean, and its variance will be equal to the
sum of the individual two in eq. (A.6) (weighted by Υ0 and (1 − 2Υ0), respectively). Also,
we can extract the factor

√
ρ/m. With all of this, we have that

Âj(0, t)
∣∣∣
t≪Tcoh

=
√

2ρ
m

ℜ
[
e−imt ŵj

]
, (A.8)

where ⟨ŵj⟩ = 0 and

⟨ŵi∗ ŵj⟩ = W ij ≡
[
(F − 3Υ0F + Υ0) δij + (1 − 3F)(1 − 3Υ0) k̄

ik̄j

k̄2

]
. (A.9)

With the form of the stochastic vector field derived, we now need to generate these random
variables ŵs. We can do this by finding an operator matrix G such that its square gives the
right-hand side of the above two-point correlation in eq. (A.9). Then, we can simply pick a
3-dimensional normal complex random variable, say ĥ (which can be equivalently thought of
as a 6-dimensional normal random variable), and hit it with G to get ŵ. That is, we have

ŵi = Gij ĥj , (A.10)

where

Gij =
√

F − 3Υ0F + Υ0

δij −

1 −

√
1 − 2(F − 3Υ0F + Υ0)

F − 3Υ0F + Υ0

 k̄ik̄j

k̄2

 . (A.11)

While this serves as a procedure to generate the stochastic random vector field Â, the
problem simplifies dramatically when the power is equipartitioned between the longitudinal
and transverse modes. That is, when Υ0 = 1/3. We expect this to be the case when the
vector field accounts for (at least the majority of) the virialized dark matter around us.
We discuss this next.
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A.2 Equipartition between longitudinal and transverse modes

The equation of motion for the field Ψ (written in Fourier space) is

iΨ̇i
k = |k|2

2mΨi
k − (4πGm2) 1

V

∑
p, q, ℓ

δk+p−q−ℓ |q − p|−2 Ψj ∗
p Ψj

qΨi
ℓ , (A.12)

where Ek = |k|2/2m. Now, we wish to decompose the field into transverse and longitudinal
pieces. Let us call them ηk and ζk. That is,

ηi
k = P ij

k⊥
Ψj
k and ζi

k = P ij
k||

Ψj
k , (A.13)

where P ij
k⊥

and P ij
k||

are the two mutually orthogonal projection matrices defined in the previous
section. Let us hit the above equation of motion by the transverse (longitudinal) projection
operator to get the evolution for ηi

k (ζi
k). Also splitting each Ψi

k into ηi
k and ζi

k, we get

iη̇i
k = Ekη

i
k − (4πGm2) 1

V

∑
p, q, ℓ

δk+p−q−ℓ |q − p|−2 (ηn ∗
p + ζn ∗

p )(ηn
q + ζn

q )(P ij
k⊥
ηj
ℓ + P ij

k⊥
ζj
ℓ )

iζ̇i
k = Ekζ

i
k − (4πGm2) 1

V

∑
p, q, ℓ

δk+p−q−ℓ |q − p|−2 (ηn ∗
p + ζn ∗

p )(ηn
q + ζn

q )(P ij
k||
ηj
ℓ + P ij

k||
ζj
ℓ ) .

(A.14)

Notice that not only are the longitudinal and transverse pieces coupled to one another, but
more importantly they also source each other. Hence, we expect virialization between them
due to such non-linear gravitational dynamics during DM halo formation, ultimately leading
to the equipartition of power amongst them. That is, 2/3 of the total power would be in
the transverse sector, with the remaining 1/3 in the longitudinal sector.

Using codes based on the split-Fourier technique [74, 100–102], we have performed
simulations of the Schrödinger-Poisson vector system [31, 65, 103] (physical space version
of eq. (A.12)):

i
∂

∂t
Ψ = − 1

2m∇2Ψ +mΦ Ψ , ∇2Φ = 4πGm2 Ψ†Ψ , (A.15)

with different initial conditions. Parameterizing the initial power spectrum by Υ(0), cf.
eq. (A.1), we have

⟨ψ̂ i ∗
k ψ̂ j

p ⟩ = δk,p f̃k
[
Υ(0) P ij

k⊥
+ (1 − 2Υ(0))P ij

k||

]
, (A.16)

where f̃k is some arbitrary Fourier profile function (we shall take it to be a Gaussian in
our simulations, such that the mean density is larger than the critical Jeans density so
as to form a halo).

To begin with, for every mode k, we pick a real 6-dimensional normal random variable,
packaged as a 3-dimensional complex number ϵ̂k, that is further restricted to lie uniformly
on an S5 so that it is unit normalized. That is, ⟨ϵ̂i∗k ϵ̂

j
p⟩ = δk,p δ

ij . We then hit it with the
transverse and longitudinal projection operators to get ϵ̂ik⊥

= P ij
k⊥
ϵ̂jk and ϵ̂k|| = P ij

k||
ϵ̂jk. With

these, we construct the full transverse and longitudinal initial fields as

{ηi(x, 0), ζi(x, 0)} = 1√
V

∑
k

{ηi
k(0), ζi

k(0)}e−ik·x = 1√
V

∑
k

√
f̃k {ϵ̂ik⊥

, ϵ̂ik||
}e−ik·x , (A.17)

– 24 –



J
C
A
P
0
6
(
2
0
2
4
)
0
5
0

0 20 40 60 80 100

Simulation Time, t [arb. units]

0.0

0.2

0.4

0.6

0.8

1.0

Υ(0) = 0

Υ(0) = 1/6

Υ(0) = 1/3

Υ(0) = 1/2

Power Fraction in Transverse Modes

Power Fraction in Longitudinal Modes

Figure 6. Evolution of the fractional powers in the transverse and longitudinal modes (eq. (A.19))
around halo formation for four different simulations with different Υ(0): Υ(0) = 0 (solid), Υ(0) = 1/6
(dashed), Υ(0) = 1/3 (dot-dashed), and Υ(0) = 1/2 (dotted). The convergence of the fractional
power in transverse modes towards 2/3 and that in longitudinal modes towards 1/3 demonstrates the
ultimate equipartition of power. That is, Υ(t) → 1/3.

with the full field being

Ψi(x, 0) =
√

Υ(0) ηi(x, 0) +
√

1 − 2Υ(0) ζi(x, 0) . (A.18)

With this as the initial condition, we evolve the SP system (A.15). In figure 6, we present
simulation results for various different initial conditions, including different values of Υ(0).
Here, we plot the fractional powers in the two different sectors:

F⊥(t) =
∫

d3x [η∗(x, t) · η(x, t)]∫
d3x [ψ∗(x, t) ·ψ(x, t)] and F||(t) =

∫
d3x [ζ∗(x, t) · ζ(x, t)]∫

d3 x [ψ∗(x, t) ·ψ(x, t)] . (A.19)

With Υ → Υ0 = 1/3, we achieve equipartition. The stochastic vector field, cf. eq. (A.8),
takes the simple form

Âj(0, t)
∣∣∣
t≪Tcoh

=
√

2ρ
m

ℜ
[
e−imt ŵj

]
, where ⟨ŵj⟩ = 0 and ⟨ŵi∗ ŵj⟩ = 1

3δij , (A.20)

and is the form that we have used in eq. (2.3). This gives rise to the “random ellipse” picture,
discussed in the main text.

To conclude, we have shown that even if the vector field is initialized with an unequal
distribution of power between its longitudinal and transverse modes, non-linear gravitational
dynamics leads to its equipartition eventually. However, we have only begun to explore this
topic and leave a detailed study (including a k-dependent Υ) for future work.
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B Derivation of marginal likelihood with stochastic field amplitude

The full signal in time space is given by

Ŝ(t) = signal(t) + N̂ (t) , (B.1)

where N̂ ∼ N(0, σt), with σ2
t ≡ σ2/∆t and σ2 being the equivalent of the noise PSD in

frequency space. From this, we get that the (two-sided) periodogram, P ′, normalised by
the noise PSD is given by

P̂ ′

σ2 = ∆t2
T

|Ŝ2(ω)|
σ2 = |X̂R + signalR(ω)|2 + |X̂I + signalI(ω)|2 . (B.2)

Here, both X̂R and X̂I are such that X̂i ∼ N(0, 1/
√

2). The one-sided, noise-normalised peri-
odogram, P̂/σ2, therefore follows a non-central χ2 distribution with non-centrality parameter

λ̂ = signal2R(ω) + signal2I(ω)

= A2T

8σ2

{
cos2 ϕ

[
α̂2

x + α̂2
y + 2α̂xα̂y sin(φ̂y − φ̂x)

]
δω,s

+ cos2 ϕ
[
α̂2

x + α̂2
y − 2αxα̂y sin(φ̂y − φ̂x)

]
δω,d

+ 4 sin2 ϕ α̂2
zδω,m

}
. (B.3)

Introducing randomness in the parameters α’s and φ’s, with prior Π′({αi, φi}), the marginal-
ized likelihood is

L =
∫

dαxdαydαzdφxdφy Π′(φx, φy, αx, αy, αz) e−(λ+p)/2I0(
√
λp) , (B.4)

where I0 is the modified Bessel function of the first kind. To evaluate the above integral, we
first note that the prior is factorizable into that for αz and for the set {αx, αy, φx, φy}. The
latter 4 random variables (which correspond to the ω = s and ω = d peaks), can be redefined
as two 2D random vectors x and y with relative angle π/2 − (φx − φy), in order to give
α2

x +α2
y ± 2αxαy sin(φy −φx) → |x± y|2 = (x1 ± y1)2 + (x2 ± y2)2. Here the subscript 1 and

2 correspond to the two components of the vectors, in the two directions of the 2D Euclidean
space respectively. Since α’s are Rayleigh distributed and φ’s are uniformly distributed
from (0, 2π), the four variables {x1, x2, y1, y2} are normally distributed with zero mean and
variance equal to 1/2. Furthermore, we can now redefine x’s and y’s as xi + yi = ui and
xi − yi = vi for i = {1, 2}, to get the following expression

L ∝
∫

dαz Π′(αz)du1du2dv1dv2 Π(u1, u2, v1, v2) e−(λ+p)/2I0(
√
λp) , (B.5)

with Π(u1, u2, v1, v2) = e−(u2
1+u2

2+v2
1+v2

2)/2, Π′(αz) = 2αz e
−α2

z , and

λ = A2T

8σ2

{
cos2 ϕ

[
u2

1 + u2
2

]
δω,s + cos2 ϕ

[
v2

1 + v2
2

]
δω,d + 4 sin2 ϕα2

zδω,m

}
. (B.6)
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Using the series representation of the Bessel function, together with Gamma function identities,
the 5 random variables can be integrated out analytically. We arrive at the following
marginalized (and normalized) likelihood:

L = e
− p

2

(
1

1+Xδω,s

)
+ e

− p
2

(
1

1+Xδω,d

)
+ e

−p

(
1

2+Y δω,m

)
− 2e− p

2

2(1 +Xδω,s) + 2(1 +Xδω,d) + (2 + Y δω,m) − 4 , (B.7)

where

X = A2T

8σ2 cos2 ϕ and Y = A2T

2σ2 sin2 ϕ . (B.8)

This likelihood can be split into three individual likelihoods for the sum/difference peaks
and the Compton peak, as given in eq. (3.2). The form of the likelihoods for the sum and
difference peaks is equivalent.

To treat the total likelihood as the product of the individual likelihoods in each frequency
bin, we must check that the covariance matrix is diagonal. We will consider a signal-only
analysis, discarding the noise, since the noise merely adds to the power and is uncorrelated
between different frequency bins. We may write the values of the three peaks as

P̂1 = A2Tobs
8

[
α̂2

x + α̂2
y + 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ ,

P̂2 = A2Tobs
8

[
α̂2

x + α̂2
y − 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ ,

P̂3 = A2Tobs
2 α2

z sin2 ϕ .

(B.9)

We wish to compute the quantity

Σij ≡ ⟨P̂iP̂j⟩ − ⟨P̂i⟩⟨P̂j⟩ . (B.10)

We can do this using the expression for the raw moments,

⟨αn⟩ = 2n/2σnΓ
(

1 + n

2

)
, (B.11)

where, for us, σ = 1/
√

2. Aside from this, we need to know that

⟨sin(φ̂y − φ̂x)⟩ = 0 ,

⟨sin2(φ̂y − φ̂x)⟩ = 1
2 .

(B.12)

We then get the diagonal covariance matrix

Σ = A4T 2
obs

16

cos4 ϕ 0 0
0 cos4 ϕ 0
0 0 4 sin4 ϕ

 . (B.13)

Crucially, we get that the covariance between peaks is 0, allowing us to treat them as
statistically independent and hence permitting us to express the total likelihood as the
product of the individual likelihoods.

– 27 –



J
C
A
P
0
6
(
2
0
2
4
)
0
5
0

C The case of the gradient of a scalar

In this case, there is a preferential direction because ∇a points in the direction of the local
DM velocity. Aligning the lab’s working coordinate system such that this local velocity
vector is parallel to the z axis, the amplitudes associated with the three different directions
in eq. (2.9) are not all the same. Effectively, there is an extra factor associated with the z
direction, and the random signal in frequency space (cf. eq. (2.9)) takes the following form

ˆ̃λ(ωn) = β̃2

4
{[
α̂2

x + α̂2
y + 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ δωn,s

+
[
α̂2

x + α̂2
y − 2α̂xα̂y sin(φ̂y − φ̂x)

]
cos2 ϕ δωn,d

+ 4Υ̃ α̂2
z sin2 ϕ δωn,m

}
,

(C.1)

where (and following the notation of [45])

β̃ ≡
√
ρ g2

eff σ
2
v Tobs

σ2
n

and γ̃ ≡ 1 +
(
v⊙
σv

)2
≃ 2.1 . (C.2)

Proceeding similarly as in appendix B, the marginalized likelihood is

L′ =
∫

dαxdαydαzdφxdφy Π′(φx, φy, αx, αy, αz) e−(p+λ̃)/2I0

(√
pλ̃

)
, (C.3)

which we can evaluate by proceeding in the same fashion as in appendix B; i.e. making
redefinitions of the variables so they become independent and the integral becomes analytically
tractable. We arrive at the following:

L′ = e
− p

2

(
1

1+Xδω,s

)
+ e

− p
2

(
1

1+Xδω,d

)
+ e

− p
2

(
1

1+Y δω,m

)
− 2e− p

2

2(1 +Xδω,s) + 2(1 +Xδω,d) + 2(1 + Y δω,m) − 4 , (C.4)

where

X = β̃2

4 cos2 ϕ and Y = β̃2γ̃

2 sin2 ϕ . (C.5)

The overall result is that Y simply gets rescaled by γ̃.
Following the same MC analysis as outlined in section 3, we show the 90% CL limits

for the case of the gradient of a scalar in figure 7. The largest difference in this case is the
increased constraining power of the Compton peak compared to the vector case shown in
figure 4. This is because of the scaling that its amplitude receives by the factor γ̃ > 1.

D Linear polarization statistics

Here we present the marginal likelihood for the linear polarization case. To get the relevant
non-centrality parameter, we can set φx = φy in eq. (2.9) to get

λ̂′(ω) ≡ P̂(ω)
σ2 = β2

4
{[
α̂2

x + α̂2
y

]
cos2 ϕ (δω, s + δω, d) + 4 α̂2

z sin2 ϕ δω, m

}
. (D.1)
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Figure 7. The 90% CL limits (β̃lim) on the dimensionless parameter β̃ ≡
√
ρ g2

eff σ
2
v Tobs/σ2

n (see
eq. (C.2)) derived from our MC analysis (the same as in figure 4 but for the case of the gradient of a
scalar). We show the results of our three-peak analysis and those of two single-peak analyses focusing
on the Compton peak and on one of the sum or difference peaks. The shaded region indicates the 1σ
error bar on our three-peak analysis. Our three-peak analysis generally provides a better/comparable
limit to either of the two single-peak analyses and is largely latitude-independent.

Once again proceeding as in appendices B and C, the marginal likelihood is

L′′ =
∫

dαxdαydαzd Π′(αx, αy, αz) e−(p+λ′)/2I0(
√
pλ′) , (D.2)

which upon integrating out αs, gives the following

L′′ = 2
2Aδω, m + (2 +Bδω, Σ)2

[
e

− p
2+Aδω, m +

(
1 + pBδω, Σ

2(2 +Bδω, Σ)

)
e

− p
2+Bδω, Σ − e− p

2

]
, (D.3)

where δω, Σ ≡ δω, s + δω, d, A ≡ β2 sin2 ϕ, and B ≡ β2 cos2 ϕ/4. From this, it follows that
the individual likelihoods are

Lm = 1
2 +A

exp
[
− p

2 +A

]
Ls/d = 2

(2 +B)2

(
1 + pB

2(2 +B)

)
exp

[
− p

2 +B

] (D.4)

As in section 3, we verify our analytical expressions for the likelihoods via a series of MC
simulations. We begin from eq. (2.6), this time setting all φi to be equal, drawing them from
a single uniform distribution, φi ∼ U(0, 2π). We draw each of the three Rayleigh variables
independently from their respective distributions, as given in eq. (2.5). For each simulation,
we compute the PSD as in eq. (2.7) and consider the distributions of the values of each of the
Compton, sum, and difference peaks, normalised by some noise level. For our simulations,
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Figure 8. Example likelihoods for each of the three signal peaks once the stochastic variables have
been marginalised over in the linear polarization case. The bars show the result of a numerical
simulation of the noise-normalised periodogram values beginning from eq. (2.6), while the solid lines
show the analytical result of eq. (D.4). Here, ϕ is the latitude of the experiment, p (a random variable)
is the value of the measured excess power, and β is defined as per eq. (2.8).

we take A = 1 [A], Tobs = 10T⊕, σ2 = 5 [A]2 Hz−1, and ϕ = 45◦. For the purposes of fast
convergence, we also take m = 2πHz and T⊕ = 100 s. Our results for 104 simulations are
shown in figure 8, displaying excellent agreement with our derived likelihoods in eq. (D.4).

As in appendix B, we can also compute the covariance matrix for the linear polarization
case. Following the approach there, we find a non-diagonal covariance matrix Σ with

Σ = A4T 2
obs

32

cos4 ϕ cos4 ϕ 0
cos4 ϕ cos4 ϕ 0

0 0 8 sin4 ϕ

 . (D.5)

We thus find that the sum and difference peaks have a non-zero covariance, with the Compton
peak remaining statistically uncoupled from the other two peaks. Due to this non-diagonal
covariance matrix, we cannot simply write the total likelihood as in eq. (3.3), and we instead
require a more complicated treatment accounting for the non-zero covariances.

D.1 Effect of elliptical versus linear polarization on limits

We comment on the effect that the linear polarization assumption has on our limits compared
to the more realistic elliptical polarization treatment. Since the sum and difference peaks are
correlated in the linear polarization case (cf. eq. (D.5)), a full three-peak analysis is difficult
to perform without accounting for the full covariance matrix. However, we can conduct a
simplified, uncorrelated two-peak analysis in which we consider both the Compton peak and
one of the sum/difference peaks. We can then compare the results of this analysis with a
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Figure 9. Scaling for limit on the dimensionless parameter β (cf. eq. (2.8)) assuming elliptical versus
linear polarization with latitude ϕ. The 90% (solid) and 99.7% (dashed) limits are shown, with the
latter equivalent to a 3σ confidence level. Near the equator, the difference is more pronounced because
the difference in the likelihoods is greater; the likelihoods are equal at the poles.

similar two-peak one done in the elliptical polarization case to learn how the limits should
scale between these assumptions. Since we are only interested in this scaling, we perform a
simpler Asimov analysis in which the data are assumed to be perfectly consistent with the
background [82]. The result of an Asimov analysis is expected to asymptotically converge
to the true result in the limit of high statistics.

The two-peak likelihood when considering the Compton peak and one of the two
sum/difference peaks is given by

Lell/lin
2-peak(β, ϕ; p) = Lell/lin

m (β, ϕ; p) Lell/lin
s/d (β, ϕ; p) , (D.6)

where we have indexed the likelihoods to use for the elliptical and linear polarization cases,
respectively following from eq. (3.2) and eq. (D.4). In an Asimov analysis, we replace the
data vector p with the expectation values in the background-only case, which can be shown
to be p = 2 for each bin. In this case, using the log-likelihood-ratio test statistic given in
eq. (3.4), we will get that β̂ = 0 for this data. The problem then becomes finding that β for
which qβ reaches a value that we can exclude to our desired confidence level. This is the same
procedure we followed in section 3, and we take qlim

β ≃ 2.43 for the 90% CL limit as we found
there. For comparison, we also consider the case when one wants to draw a limit at the 3σ
level, equivalent to a ∼ 99.7% CL limit. Solving eq. (3.7), we get that qlim

β ≃ 8.49 in this case.
We show our results in figure 9. We find that the scaling is greater towards the equator.

This is because the difference in the form of the likelihoods is greater there, since only the
sum/difference likelihood changes between the two polarization assumptions. At the poles,
only the Compton peak is present and the two likelihoods are equivalent. This leads the two
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limits to converge towards the same value. At the 90% CL, which we have used throughout
this work, we see that the limit at worst scales by the factor ∼ 1.2. As the CL grows, this
factor increases; for example, at the 3σ level, the scaling from the linear to the elliptical
assumption becomes ∼ 2.3. Nevertheless, in the incoherent regime, we expect both the limits
to match since the stochasticity of the field vanishes in that limit.

E Updated MICROSCOPE limit

We update the MICROSCOPE limit in the B − L parameter space using the final results
reported in [97]. To the best of our knowledge, the current limit (at the time of writing)
stems from [93], which were based on the first MICROSCOPE results [96]. We thank Pierre
Fayet for bringing this to our attention. Following the logic outlined in their work [98, 99],
we derive the updated limit below.

The Yukawa potential for a long-range B−L force, as it is relevant for the MICROSCOPE
experiment, is given by

VY, i(r) = αEMε
2
B−LN⊕Ni

e−mr

r
. (E.1)

Here, αEM ≈ 1/137 is the fine-structure constant, εB−L is the coupling strength of the new
B − L force relative to electromagnetism, N⊕ and Ni are respectively the total number of
neutrons in the Earth and test mass i, m is the mass of the new gauge boson, and r is the
distance to the test mass from the center of the Earth. The force experienced by i is then

FY, i(r) = −V ′
Y, i(r) = αEMε

2
B−LN⊕Ni(1 +mr)e

−mr

r2 . (E.2)

The strength of this new force can be constrained through measurements of the Eöt-Vös
parameter, defined as the normalised differential acceleration between two masses in free fall:

η ≡ 2a2 − a1
a1 + a2

, (E.3)

where ai is the acceleration of test mass i. Writing ai = (1 + δi)g and expanding in small
δi, we get that

η ≃ δ12 ≡ a1 − a2
g

= δ1 − δ2 .

For the force given in eq. (E.2), we have that

δi(r) = FY, i(r)
mig

= −αEMM
2
P

miM⊕
ε2

B−LN⊕Ni(1 +mr)e−mr

= −αEMM
2
P

u2 ε2
B−L

(
N

A

)
⊕

(
N

A

)
i
(1 +mr)e−mr ,

(E.4)

where we have written the Planck mass as M2
P = 1/GN . We have also expressed each mass

in terms of the atomic mass unit u via mi/⊕ ≃ Ai/⊕u, where A is the (average) atomic
mass of each body. Note that, when writing the fractional charges N/A, the total number
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of charges is irrelevant; only the average ratios over the compositions of the Earth and the
test mass are relevant for the calculation. From this, we get the following expression for
the Eöt-Vös parameter:

δ12 = −αEMM
2
P

u2 ε2
B−L

(
N

A

)
⊕

[(
N

A

)
1

−
(
N

A

)
2

]
(1 +mr)e−mr

≃ −1.25 × 1036 ε2
B−L

(
N

A

)
⊕

[(
N

A

)
1

−
(
N

A

)
2

]
(1 +mr)e−mr .

(E.5)

We can compare this with the value of δ12 measured by the MICROSCOPE collaboration
to constrain εB−L. For two free-falling, equally massive titanium and platinum test masses,
their final results yielded [97]

δ(Ti, Pt) = [−1.5 ± 2.3 (stat) ± 1.5 (syst)] × 10−15 . (E.6)

Adding the statistical and systematic errors in quadrature and expressing the range in δ

at the 90% CL, equivalent to 1.645σ, we have that

−6.0 × 10−15 ≲ δ(Ti, Pt) ≲ 3.0 × 10−15 . (E.7)

To re-interpret this as a limit on εB−L using eq. (E.5), we must know the values of (N/A)⊕
and (N/A)Ti − (N/A)Pt. We retrieve both of these values from [98], given as 0.5138 and
−0.05625, respectively. This gives a positive value for δ12, and we therefore compare it with
the positive value in the range shown in eq. (E.7). Our limit is then given by

|εB−L| ≲ 8.93 × 10−19
(
N

A

)−1/2

⊕

[(
N

A

)
Ti

−
(
N

A

)
Pt

]−1/2 emr/2
√

1 +mr

≃ 2.89 × 10−25 emr/2
√

1 +mr
. (E.8)

Finally, comparing the gauge coupling gB−L to εB−L via |gB−L| = (4/5)|εB−L|e [98], we
arrive at the result

|gB−L| ≲ 7.0 × 10−25 emr/2
√

1 +mr
. (E.9)

To evaluate the remaining expression, we use the fact that the MICROSCOPE experiment
operated at a height of 710 km. This gives r ≃ 7066 km, yielding

mr ≃ m

2.79 × 10−14 eV . (E.10)

We show the final limit in figure 5.
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