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Lazy evaluation is a powerful tool that enables better compositionality and potentially better performance in
functional programming, but it is challenging to analyze its computation cost. Existing works either require
manually annotating sharing, or rely on separation logic to reason about heaps of mutable cells. In this paper,
we propose a bidirectional demand semantics that allows for extrinsic reasoning about the computation cost
of lazy programs without relying on special program logics. To show the effectiveness of our approach, we
apply the demand semantics to a variety of case studies including insertion sort, selection sort, Okasaki’s
banker’s queue, and the implicit queue. We formally prove that the banker’s queue and the implicit queue are
both amortized and persistent using the Rocq Prover (formerly known as Coq). We also propose the reverse
physicist’s method, a novel variant of the classical physicist’s method, which enables mechanized, modular
and compositional reasoning about amortization and persistence with the demand semantics.
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1 Introduction

The power of laziness is great, but formal reasoning about its costs is notoriously elusive. After
all, lazy evaluation is stateful and produces interleaved computation, with the cost of functions
depending on future demand. We believe that mechanized reasoning can help ensure the rigor
of the analysis needed to understand these costs. To realize this vision, we present a shallow-
embedding-based model of cost analysis. Our approach allows us to mechanically and extrinsically
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reason about the computational cost of lazy functional programs and lazy, amortized, and persistent
functional data structures.

Our solution is based on a bidirectional demand semantics. The semantics was first described
by Bjerner and Holmstrom [1989] in an untyped setting. We adapt and expand it to a typed and
total semantics. Given a lazy function f : A — B, we can use the bidirectional demand semantics
to systematically derive a demand function f° : A — BP — N x AP, where AP represents the
demand on type A and N is the computation cost. That is, given the input (A) to function f and
the demand on its output (BP), the demand function fP calculates the minimal demand on the
input (AP), as well as the computation cost required to obtain the demanded output (N). In a sense,
the demand function tells the “story of a lazy function’s life,” including what happens when it is
subjected to future demands. We can calculate such an input demand because, in a deterministic
language, given any valid input and output demand, there exists exactly one minimal input demand.
The use of input/output demand and demand functions distinguishes our work from alternative
approaches based on heaps of mutable cells, such as Mével et al. [2019] and Pottier et al. [2024],
which rely on separation logic for reasoning.

To demonstrate the effectiveness of our demand semantics, we have developed a wide variety of
case studies. We use our model to formally prove the computation cost of lazy insertion sort, lazy
selection sort, Okasaki’s banker’s queue and implicit queue [Okasaki 1999]. For the banker’s queue
and the implicit queue, we also show that these data structures are both amortized and persistent.

To reason about amortization and persistence in a modular way, we propose the reverse physicist’s
method, a novel variant of the classical physicist’s method for amortized computational complexity
analysis in strict semantics [Tarjan 1985]. Similar to the classical physicist’s method, the reverse
physicist’s method makes use of a potential function, which we apply to approximations of datatypes
to describe their accumulated potential. All proofs are mechanized using the Rocq Prover (formerly
known as the Coq theorem prover). All Rocq Prover definitions and proofs can be found in our
artifact, which is publicly available [Xia et al. 2024].

In summary, we make the following contributions:

e We propose a bidirectional demand semantics for lazy functional programs based on Bjerner
and Holmstrom [1989] (Section 3). Our demand semantics is typed and total, allowing it to
be formalized in proof assistants such as the Rocq Prover.

e We formally prove that the bidirectional demand semantics is equivalent to the natural seman-
tics of laziness [Launchbury 1993] in the Rocq Prover, by showing its equivalence to another
semantics that is equivalent to natural semantics, namely clairvoyant semantics [Hackett
and Hutton 2019; Li et al. 2021] (Section 3.3).

e We show how the demand semantics can be used to systematically derive demand functions
for a realistic programming language by proving computation cost theorems for insertion
sort and selection sort (Section 4).

e We propose the reverse physicist’s method, a novel method for analyzing amortized computa-
tion cost and persistence for lazy functional data structures based on demand semantics (Sec-
tion 5).

e We present a mechanized proof in the Rocq Prover which shows that Okasaki’s banker’s
queue and implicit queue are amortized and persistent using the reverse physicist’s method.
Our mechanized proof does not rely on trusting the demand functions (Section 5.2-5.3).

In addition, we provide a sketch of our method with motivating examples in Section 2. We discuss
related work in Section 6 and future work in Section 7.
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1 Fixpoint insert (x : nat) (xs : list nat) : list nat :=
2 match xs with

3 | [1=>x::[]

4 | 'y :: ys => if y <=? x then

5 let zs := insert x ys iny :: zs

6 else x :: y :: ys

7 end.

8

9 Fixpoint insertion_sort (xs : list nat) : list nat :=
10 match xs with

11 | nil => nil

12 |y :: ys =

13 let zs := insertion_sort ys in insert y zs

14 end.

Fig. 1. The Gallina implementation of insert and insertion_sort in ANF (A-normal form) [Sabry and
Felleisen 1992]. For simplicity, we define these functions on lists of natural numbers (nat). The infix operator
<=7 shown in insert is Gallina’s “less than or equal” operator on natural numbers, which returns a boolean.

2 Motivating Examples
2.1 A Demand Semantics

To introduce and motivate our method of reasoning about lazy programs, we will consider
insertion_sort as an example. This algorithm is known to run in O(n?) time for a list of length n
under eager evaluation. In contrast, a lazy implementation only computes each successive sorted
element when a result is demanded, potentially causing asymptotically lower time costs if only
part of the list is needed.

To model the improvements to the computation cost of a lazy insertion_sort, we first compose
the take and insertion_sort functions (Fig. 1). We implement these functions in Gallina, the
underlying specification language of the Rocq Prover. Even though Gallina is not a lazy language,
we can imagine a “translator” that converts these functions from a lazy functional language to
Gallina (e.g., hs—to-coq for Haskell [Breitner et al. 2021]).

Representing demand. To model laziness, we first need a notion of input and output demand. We
use the approximation data types proposed by Li et al. [2021] to represent both approximations
and demands. An approximation is a partial value with a placeholder for unevaluated thunks. For
example, the finite list data structure has the approximation data type listA:

Inductive listA (a : Type) : Type :=

NilA | ConsA (x : T a) (xs : T (listA a)).
The T data type is a sum type that can be either an unevaluated thunk Undefined (also denoted as
1) or an evaluated value Thunk a. Approximation data types can be used to specify demands—e.g., a

listA nat of ConsA (Thunk @) Undefined represents a demand on a list nat such that only the
first item in the list must be evaluated and it evaluates to 0.

Definedness ordering. Before we can state any theorems, we need a definedness order between
ordinary data types and approximation data types, as well as between different approximation data
types. For example, consider the following two approximation data types:

Definition 1A1 := ConsA (Thunk @) Undefined.
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1 Fixpoint insertD (x:nat) (xs: list nat)

2 (outD : listA nat) : Tick (T (listA nat)) :=
3 tick >>

4 match xs, outD with

5 | [1, ConsA zD zsD => ret (Thunk NilA)

6 | y :: ys, ConsA zD zsD =>

7 if y <=? x then

8 let+ ysD := thunkD (insertD x ys) zsD in
9 ret (Thunk (ConsA (Thunk y) ysD))

10 else ret zsD

11 | _, _ => bottom (* absurdity case *)
12 end.

13

14 Fixpoint insertion_sortD (xs: list nat) (outD : listA nat) :
15 Tick (T (listA nat)) :=

16 tick >>

17 match xs with

18 | [1 => ret (Thunk NilA)

19 |y :: ys =>

20 let zs := insertion_sort ys in

21 let+ zsD := insertD y zs outD in

22 let+ ysD := thunkD (insertion_sortD ys) zsD in
23 ret (Thunk (ConsA (Thunk y) ysD))

24 end.

Fig. 2. The demand functions of insert and insertion_sort.

Definition 1A2 := ConsA (Thunk @) (ConsA (Thunk 1) Undefined).

We say that 1A1 is less defined than 1A2 because 1A2 is defined on the first and second elements of
the list, while 1A1 is defined only on the first. We also say that both 1A1 and 1A2 are approximations
of [0; 1; 21, but only 1A1 is an approximation of [0; 2]. We defer formal definitions of these
definedness orders to Section 3.1.

Demand functions. As we saw in the introduction, each lazy function has a corresponding
demand function. Given an output demand, the demand function computes the minimal input
demand required for the function to satisfy the output demand, as well as the time cost incurred.
We show the demand functions of insert and insertion_sort in Fig. 2. As a convention, we suffix
a function’s name with capital letter D to indicate that it is a demand function.

For a concrete example, we first look at insertD, the demand function of insert. In addi-
tion to the arguments of insert (line 1), the demand function insertD takes an extra argument
(outD : listA nat), which represents the output demand (line 2). The function returns the minimal
input demand T (listA nat) and wraps it in a Tick data type (line 2). Tick is a monad defined
as Tick a = nat * a, where nat is the type of natural numbers representing the time cost of a
wrapped function. It is essentially a writer monad specialized to nat.

The tick operation increments the time cost by one (line 3). We count the number of function
calls by invoking tick at the beginning of every function. The function then matches on its input
as well as the output demand (line 4).
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y ys I
l ysD
insertion_sort

zs I

l zsD
insert

l evaluation
I I demand
outD

Fig. 3. An illustration of how the input demand is computed in insertion_sortD.

If xs is an empty list, we know from the definition of insert that the output demand must be an ap-
proximation ofax :: nil, so we also match outD to ensure that it has the form ConsA zD zsD (line 5).
Based on the implementation of insert, we also must evaluate the pattern matching to determine
that the input is empty, so we return the minimal input demand as NilA (line 5).

If xs is not an empty list, we know from insert that the output must be an approximation of a
non-empty list, so we match outD to the form ConsA zD zsD (line 6). Like in insert, we then proceed
to check whether y <=? x (line 7). If y <=? x, we make a recursive call to insertD to get the input
demand of the recursive call to insert (lines 8-9). Otherwise, we return zsD (line 10). The let+
notation on line 8 is a custom notation for bind in the Tick monad. The thunkD combinator on line 8
is a function of type (A -> B) -> T A -> T B, i.e, it applies a function to data wrapped in a Thunk.

The demand function insertD has a similar structure to insert. This is not a coincidence. We will
show that, given a pure function, we can systematically derive its demand function in Section 3.

Bidirectionality. Figure 2 shows insertion_sortD, the demand function of insertion_sort, which
has a more advanced implementation than insertD. The first case (line 20) is straightforward,
but the second case (line 21) is more complex. This is because insertion_sort first calls itself
recursively, and then applies insert to the result of the recursive call (lines 14-15 in Fig. 1). In Fig. 3,
we illustrate how we compute the input demand for insertion_sortD via a demand dependency
graph of insertion_sort. We start with the input y and ys, as well as the output demand outD. To
calculate the input demand of a insertion_sort, we need the input demand of the recursive call ysD.
However, ysD relies on the input ys and the output demand of the recursive call zsD, which in turn
relies on the input y, the output demand outD, and the input zs which is the result of evaluating
insertion_sort.

Fig. 3 shows that the demand function needs to run computation in both directions: an evaluation
direction that computes output from input (blue arrows in the figure), and a demand direction
that computes the input demand from pure input and output demand (red arrows in the fig-
ure). It also reveals how we should define insertion_sortD. Starting from the top, we first call
insertion_sort (line 22, Fig. 2), then we call insertD (line 23), and finally insertion_sortD (line 24).

Specification and proof sketches. From here, we can prove properties about these demand functions.
For example, we can prove the following theorems for insertion_sortD:

Theorem insertion_sortD_approx (xs : list nat) (outD : listA nat)
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: outD “is_approx” insertion_sort xs ->
Tick.val (insertion_sortD xs outD) “is_approx™ xs.

Theorem insertion_sortD_cost (xs : list nat) (outD : listA nat) :
Tick.cost (insertion_sortD xs outD) <= (sizeX' 1 outD + 1) * (length xs + 1).

The theorem insertion_sortD_approx describes the functional correctness of insertion_sortD. It
states that, if the given output demand is an approximation of the output, then the input demand is
an approximation of the original input.

The theorem insertion_sortD_cost describes the time cost of insertion_sortD. It states that the
cost of insertion_sort is bounded by (max(1, JoutD|) + 1) X (|xs| + 1). In other words, for each
element of the sorted list we compute, we will have to linearly search through the input list once
(plus some constant overhead). This is an overestimation—the input list will shrink after each
recursive call and we don’t have to go through the entire list when inserting a new elements—but
this still provides a useful upper bound.

As programmers, we may also be interested in the demands exerted by functions that call the
functions we analyze. Using take : nat -> list A -> list A as an example: the function call
take n xs takes the first n cells from list xs. We can prove that the demand of takeD n xs outD has
a size bounded by the length of outD. Using this lemma, we can then describe the cost of running a
function composing take with insertion_sort, and then prove that the composed function satisfies
that cost. This new cost is linear with respect to n, the first parameter of take. When n is a constant,
the cost is an asymptotic improvement over the eager version of insertion_sort. This formalizes
a common pattern in lazy programming—computing only the necessary parts of an expensive
function call to reduce costs.

This example demonstrates that our approach is compositional. Even though a functional call
under lazy evaluation is not local (as a future demand may cause the function to run further), we can
specify each function individually using demand semantics. If we wish to compose these functions
with others and reason about the cost of their composition, we can do so by proving theorems for
external functions individually and composing their specifications. For example, we may want to
compose take with a different sorting algorithm, e.g., selection_sort. We demonstrate how we use
demand semantics to reason about all these interactions in Section 4.

2.2 Amortized Analysis for Persistent Data Structures

Besides the usual benefits of lazy evaluation such as compositionality [Hughes 1989], lazy evaluation
also enables the combination of persistence (old values can be reused) and amortization (we average
the cost of operations over multiple calls) [Okasaki 1999]. For example, a call to pop on a banker’s
queue may have a high initial cost to evaluate many thunks, so that subsequent calls to pop again
on the same old queue will be cheap. That is not possible with eager evaluation, where all repeated
calls on the same value have the same cost.

In the Rocq Prover, we formally verified amortized cost bounds for both the banker’s queue and
the implicit queue under persistence. Our final theorems show that the cost of executing a program
trace of either the banker’s queue or the implicit queue is always linear with respect to the number
of operations.

Proving these theorems directly is challenging. Instead of reckoning with arbitrary program
traces for each queue, we develop a modular framework that allows us to reason about the cost of
both queues’ functions based on their respective demand functions. The framework is based on the
reverse physicist’s method, a novel variant of the classical physicist’s method that we propose in
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AB ==bool |listA|TA|AxB
M,N :=x|letx=MinN | tick M | lazy M | force M
| cons M N | nil | foldr (A x y. M;) My M3
| pair M N | fst M | snd M | true | false | if M; M, Ms

Fig. 4. Syntax

this paper. We provide more details about the verification of the banker’s queue and implicit queue
in Section 5.

3 Bidirectional Demand Semantics

In this section, we show the definition of the demand semantics (Section 3.1) and its proper-
ties (Section 3.2). To show that the demand semantics correctly models laziness, we show its
equivalence with natural semantics [Launchbury 1993] by showing its equivalence to clairvoyant
semantics [Hackett and Hutton 2019; Li et al. 2021] (Section 3.3). All the lemmas and theorems
shown in this section have been formally proven in the Rocq Prover.

3.1 Lazy Semantics

Syntax. We consider a pure, total, first-order calculus with explicit thunks. Evaluation is ea-
ger by default. This calculus can be viewed either as a subset of ML with a type for memoized
thunks (e.g., lazy in OCaml, denoted T here), similar to the language used in Okasaki [1999], or
as an intermediate representation which lazy languages such as Haskell can be translated into.
Making explicit the constructs (lazy and force) to manipulate thunks makes our semantics rather
simple.

We show the syntax of the language in Fig. 4 and the typing rules in Fig. 5. The language includes
types such as booleans, lists, products, and a thunk type T that is a sum type of unevaluated
thunk and evaluated value.! The language is first-order: higher-order functions are not allowed,
as evidenced by the lack of function type, but it is equipped with a primitive foldr for defining
recursions. Most of the language’s operators are standard. The tick operation increases the count of
the current computation cost by 1. The lazy and force operations are the opposite of each other: lazy
creates a new thunk T with suspended computation and force triggers the suspended computation
in a thunk (and does nothing if it’s a value).

Semantics. Given a lazy function, we can automatically translate it to a demand function. We
present such a translation as a denotational semantics. The semantics is compositional: the denota-
tion of a term is depends only on the denotation of its immediate subterms. It can be viewed as a
translation from our calculus to a metalanguage able to express our semantics, which mainly con-
sists of pattern-matching and recursion on the list approximation type. The denotational semantics
consists of two denotation functions on well-typed terms T + M : A, a pure forward interpretation
[M]leval and a demand interpretation [M] gem-

Forward evaluation. The “forward evaluation” [M]eval : [T ]leval = [A]eval is the natural functional
interpretation. Our calculus is total, so all terms have a value. Thunks can always be evaluated,
so the interpretation of a lifted type [T A]eva is the same as the unlifted [A]eva. The demand

IThis is the same datatype T as shown in Section 2.
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VAR LET Tick
I'x)=A TrM:A I''x:A+rN:B I'rM:A
Trx:A IF'tletx=MinN : B TrtickM: A
Lazy ForcE
T'rM:A T'tM:TA

I'+lazyM:TA T+ forceM: A

Cons
IT'rM:TA I'+N:T(listA)

Tt+consMN :listA

FoLpr
INx:TAy:TB+M;:B I'-M,:B T'rM;:listA

I+ foldr (Axy. My) My M3 : B

Fig. 5. Typing rules.

[Alevar : Set
[bool]eval = {0, 1}
[T Alevar = [Aleval
[list A]eval = {nil} w {consa b|ac€[Alevab € ﬂlistA]]eval}

[A].

HbOOIH approx — {0 1}
ﬂ def
|

approx : S

[T Alapprox = T [Alapprox = {L} ¥ {thunka | @ € [A]approx}
[list A approx = {nil} ¥ {cons ab|aeT][A]ipprox, b € T [list A]]appmx}

Fig. 6. Sets of total values [A] ey, and sets of approximations [A]approx

semantics [Bjerner and Holmstrom 1989] is defined by “backwards evaluation”: [M]gem : [T ]eval X
[[Aﬂ approx T N x Hrﬂapprow

Lattice of approximations. Intuitively, lazy evaluation is driven by demand: the evaluation of a
term depends on how much of its result will be needed. Let us first describe the representation
and structure of demands as approximations. The set of approximations [A].pprox consists of values
with the same shape as in [A]eyal, possibly with some subterms replaced with a special value L
representing an unneeded thunk. [A],,prox is defined formally in Figure 6. Approximations are
ordered by definedness. This partial order, denoted a < b, is defined inductively in Figure 11: L < a
for all a. The < relation is reflexive, and all constructors (cons and thunk in our calculus) are
monotone. By contrast, we say that elements of [A]eval are total values.

An approximation value a’ : [A].pprox is an approximation of a total value a : [A]cval, a relation
denoted @’ < a, when informally “a’ has the same shape as a”, ignoring thunks, and some subterms
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[T+ M: Aleval ¢ [Cleval = [Alleval
[x]evar(9) = g(x)
[force Mevai(9) = [M]evar(9)
[lazy Meva(9) = [M]eva(9)
[letx = Min Nevai(9) = [N]eva({g, x = [M]evar(9)})
[cons M Nevai(g9) = cons [M]evai(9) [N]evar(9)
[nil]evar(9) = nil
[foldr (Axy.My) M Nevai(g9) = foldreya (g, My, Mz, [N]evai (9))
foldreya (9, My, My, mil) = [M]evar(9)
foldreyai (g, M1, Mz, (cons a; az)) = [Mi]eva ({9, x = a1,y + foldreya (g, My, My, az) })

Fig. 7. Forward evaluation.

(ems dm) ¥ (en,dN) = (em + N, dm LI dN)
[[I‘ FM: A]]dem : [[rﬂeval X [[A]]appwx — Nx [[r]]appmx
[x]aem (g, @) = (0, {x — a})
[tick M]gem(g,a) = (1 +¢,d)  where (¢,d) = [M]gem(9, @)
[force M]gem (g, @) = [M]dem (g, thunk a)
[lazy M]em (g, L) = (0, Ly)
[lazy M] dem (g, thunk a) = [M]4em (g, a)
[letx = Min N]gem (g, @) = (en + ey, dn U diyp)
where (cn, {dn.x = b}) = [N]dem ({9, X = [M]evai(9)}, @)
and (cp, dy) = [M]aem (g, b)
[cons M N gem(g, cons ab) = [M]gem (g, @) ¥ [N]dem (g, b)
[nil] gem (g, mil) = (0, L)
[foldr (Axy.Mi) My N]dem (9. d) = (¢,g") ¥ [N]dem (9. 1)
where (¢, g’,n’) = foldrgen, (g, My, My, thunk ([N]evai(g)), thunk d)

Fig. 8. Demand semantics: backward evaluation.

of a may have been replaced with L in a’. The set of approximations of a is defined by

[AJZ% o € {a’ € [Alupprox | @' < a}

approx
The following transitivity property composes < and < into <.

LEMMA 3.1 (TRANSITIVITY). Ifa’ < a” anda” < a thena’ < a.

The set [A] 3} ox is a semi-lattice: two approximations a; < a and a, < a can be joined into a

supremum a; Ly ay (abbreviated as a; Ll a, when the type is clear): it is the smallest approximation
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237:10 Li-yao Xia, Laura Israel, Maite Kramarz, Nicholas Coltharp, Koen Claessen, Stephanie Weirich, and Yao Li

foldrgem (9. My, Ma, n, 1) = (0, Ly, 1)
foldrgen (g, My, My, thunk nil, thunk d) = [M;] dgem (g, d)
foldr e (g, My, My, thunk (cons a; az), thunk d) = (¢; + ¢z, g1 Ll g2, thunk (cons a] a3))

where (c1, {g1,x = al,y = by}) = [Mi]gem ({9, x = a1,y > foldreya (g, My, My, az)}, d)
and (CZs 92’ a;) = fOIdrde (ga Ml» MZ; a, bé)

Fig. 9. Definition of foldrge,,

. a<b asc b<d
reflexivity 1-least thun cons
a<a 1<a thunk a < thunk b consab < conscd
Fig. 10. Definedness ordera <b
) cE {nil, true, false} 1 [[Aﬂeval - [[A]]approx
1- t - .
1 <a cas c<c¢ e J_x:J_ lfaB,A:TB
Lconsab =cons L L
a<b a<c b=<d .
m<-thunk b d*'COIlS Lnil = nil
thunka < consab < consc Lixioa)ieg = {x; — J—ai}iel

Fig. 11. Approximation relation a < b Fig. 12. Least approximation

of a more defined than both a; and a;. The join is defined formally in Figure 13; it is also extended
to environments {x; — a;}; : [[l"ﬂapprox. We remark that a meet a; M4 a; could also be defined so
that approximations of an element form a lattice, but we won’t need it.

LEMMA 3.2 (SUPREMUM). For all aq, a; < a,

(1) ayUaz < a

(2) ay <a;Uaz anda; < a;Uay

(3) foralld’ <a,a1<a ANay<d = aUa, <d

An element a : [A]eyal has a least approximation L, : [A]approx. This is simply L when A is of
the form TB, but otherwise L is not an element of [A].pprox, and L, must be the head constructor
of a applied to least approximations of its fields. The least approximation is defined formally in
Figure 12, also extended to environments {x; — a;}; : [I']approx- As its name implies, it is smaller
than all other approximations of a.

LEMMA 3.3 (BoTTOM). Ifd’ < a, then L, < a’.

Backwards evaluation. Given an input g : [I]eval and an approximation a of the output (a <
[M]evai(9)), the demand semantics [M]gem (g, @) : Nx [[F]]:prmx describes the cost of lazily evaluating
M with demand a, that is, evaluating M to a value a’ “at least as defined as a,” a relation which will
be denoted by a < a’. The resulting semantics is the cost of doing that evaluation, as well as the
demand on the input, i.e.,, the minimal approximation of the input g that is sufficient to match the
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0 TATE o X TAT e = TAT e
llpaLl=1
L Ut 4 thunk b = thunk b
thunk b Ut 4 L = thunk b
thunk b Ut 4 thunk ¢ = thunk (b L4 ¢)
cons b ¢ Ll 4 consd e = cons (b Ur 4 d) (¢ Ut ist 4) €)
nil L 4 nil = nil

{x - gx}(x:A)eF Ur {x — 9;}(x:A)er ={x gy lUa 9;}(x:A)er

Fig. 13. Joining approximations (NB: cases with mismatched constructors cannot happen)

output demand a. The demand semantics is defined in Figure 8. Let us remark that the equation
Of [Jdem for letx = Min N contains occurrences of both [M]eva and [M]gem (and similarly for
foldr). If we view this semantics as a translation, the size of the demand function may thus grow
quadratically with respect to the size of the original function. This effect is mitigated in practice
because functions bodies are usually small.

3.2 Properties of Demand Semantics

We have seen that our semantics consists of a pair of forward and backward evaluation functions.
Let us describe a few key properties of these functions.
For the rest of this section, let ' + M : A be a well-typed term, g € [[]eval, and a = [M]eval(g)-
Totality says that the demand semantics is defined for all approximations of outputs of the pure
function [M]eval- This property is pictured as a commutative diagram in Figure 14, where the dotted

arrows are existentially quantified. Let a be an output of [M]eva (in Figure 14, this is represented

M]|eval
by the arrow g m a, meaning that a = [M]eva(9)). Given an approximation a’ of the output

. . . . IIM]] em(g")
(@ < a) the demand semantics is defined on a’ (i.e, there exists an arrow ¢’ — g,

meaning that (n,¢’) = [M]gem (g, a’) for some n) yielding an approximation of the input (¢’ < g).
As the demand semantics is a partial function, we write 3(n,g’) = [M]4em(g, @’) to assert that
[M]dem (g, @’) is defined. Lemma 3.4 expresses this property formally.

We abuse notation slightly, writing 3(n, ¢’) = [M]4em (g, a’) AP as shorthand for A(n, ¢’), (n,g’) =
[M] dem (gs @’) AP, meaning that [M] 4em (g, a’) is defined and its value (n, g’) satisfies the proposition
P.

LEMMA 3.4 (ToTALITY). Let g € [[[eval and @’ € [Alapprox such that a’ < [M]eval(9).
3(n,g) = [Mlaem(g,a") Ag' < g

In Figure 8, [M]4em Was given a signature as a partial function. Knowing that [M] e, satisfies
that totality property, we can indeed view it as a total function with a type depending upon the
first argument g : [Teyar:

M eval
[T+ M : Aldem ¢ (9 [Meva) X [Alabrdles @ s N [T]59),0

The demand semantics is monotone: the more output is demanded from M, the more input it
demands, and the higher cost it takes to produce the demanded output.
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HMﬂevaI
g————a
<A <T

: M(em "
g’ <[[]]|(g) a’

Fig. 14. Diagram of Lemma 3.4 (totality). Full arrows are quantified universally. Dotted arrows are quantified
existentially.

[[M H eval
— a
A

.

<
, M]ev y
g — a

(a) Theorem 3.7 (functional correctness)

|IM ]] eval

A
< < a<a;
[M]es :
g2 y ————— (n,a2) | <
= ? -~ n<n, Rt ¢
glsng e aisag 91592 a1§azT
g0 oy @ n9) oy @
(b) Theorem 3.8 (cost existence) (c) Theorem 3.9 (cost minimality)

Fig. 15. Diagrams of correctness theorems between demand semantics and clairvoyant semantics

LEMMA 3.5 (MONOTONICITY). Letg € [['[eval and ay, az € [Alapprox such thatay < a; < [M]eval(9).
[[Mﬂdem(g’ al) < [[Mﬂdem(g, a2)

def
where (n1,g1) < (n2,92) & n; <ny A gy < go.

The demand semantics almost commutes with join (U). The input demand for a union of output
demands is the union of their individual input demands. However, the cost may be less than the
sum: the shared parts of the output demands only need to be evaluated once. For example, when
a; = ay and n; = ny, we have n; < n; + n; when n; # 0.

LEMMA 3.6 (U-HOMOMORPHISM). Let g € [[eva and ay, az < [M]eval(9)-
HMﬂdem(gaal U az) = [Mﬂdem(ga al) ] [[M]]dem(g> az)
def def
where (ny,g1) H (na, g2) = (n1 +ng, g1 U gs) and (n1,91) £ (n3,92) & n; < na Agp = ge.

3.3 Correctness: Correspondence with Clairvoyant Semantics

Our framework relies on interpreting lazy programs as demand functions. Bjerner and Holmstrom
[1989] introduced demand semantics in an untyped setting, but they did not prove a correspondence
with any other semantics. Here, we formally relate that semantics to clairvoyant semantics [Hackett
and Hutton 2019; Li et al. 2021], a forward and nondeterministic semantics that was previously
related to the (operational) natural semantics of laziness [Launchbury 1993] by Hackett and Hutton.
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The monadic clairvoyant semantics of Li et al. [2021] is denoted [T' + M : A]¢y @ [T]approx —
P (N X [A]approx). Note a minor difference from our calculus to the one in Li et al. [2021]: the
present calculus is essentially a call-by-value calculus with an explicit thunk type, whereas Li et al.
[2021] defines a calculus with laziness by default, introducing thunks in the denotation of types.
Intuitively, the clairvoyant semantics of Li et al. [2021] can be decomposed into an elaboration
to the present calculus, followed by its clairvoyant semantics [M] .. The calculus presented here
corresponds more closely to the core combinators of the clairvoyance monad in Li et al. [2021].

Functional correctness says that the clairvoyant semantics [M], approximates the pure function
[M] evar- This theorem is pictured as a commutative diagram in Figure 15a. Let g be an environment,

M eval
let a = [M]eval(g) (diagrammatically: g M, a),let g’ < g, and let @’ be a nondeterministic output

Moy
of [M]c(g’) (diagrammatically: ¢’ Mo, a’; formally: (n,a’) € [M](g’) for some n). Then a’

approximates a.

THEOREM 3.7 (FUNCTIONAL CORRECTNESS). Let g € [[Jeval, and g’ < g.
V(n,a') € [M]e(g), @' < [M]eva(9)

The demand semantics [M]dem (g, a1) finds a minimal pair (n, g’) such that to produce a result at
least as defined as the output demand g, the clairvoyant semantics must be applied to an input
at least as defined as ¢’ and the associated cost will be at least n. The minimality of (n,g’) can
formalized as the conjunction of an existence property (the minimal cost is achievable) and a
universality property (all other candidate executions have a higher cost). Those theorems are
illustrated diagrammatically in Figure 15b and Figure 15c.

THEOREM 3.8 (COST EXISTENCE). Let g € [T ]eval, @1 < [M]eval(9), let (n,g1) = [M]dem (g, a1), and
let g, such that g; < g, < g.

g1 < go = 3(?’12,(12) c [[Mﬂcv(gz), n=n; ANay <a

THEOREM 3.9 (COST MINIMALITY). Let g € [[eval, &1 < [M]evai(9), let (n,g1) = [M]dem (g, a1),
and let g; < g.
V(ng, az) € [M]cy(g2), a1 <az = n<nyAgi <g,

3.4 Deriving the Definition of [M]em

We can use the properties above to derive the definition of [M]4em by inequational reason-
ing. For example, to find the value of [force M] e as a function of [M]gen, totality requires
[force M]gem(g, @’) < g, given @’ <4 [force M]eval(g) = [M]evai(9), and given the totality property
for M, [M]gem(g, @) < g for all "’ <7 4 a. With a” = thunk a’, we have [M]em (g9, thunk a’) < g.
This suggests the definition [force M]4em (g, a’) = [M]dem(g, thunk a’). In a similar way, we can
derive the tricky-looking definition of [foldr M; M, N 4em by inequational reasoning.

Note that the minimality property forbids the trivial definition [M]4em (g, @) = (0, Lg).

3.5 Limitations of This Work

All of our examples of demand functions were translated manually. Although the demand seman-
tics (Section 3) could be used to systematically translate from a pure function to a demand function,
further efforts are necessary to simplify the generated code into a readable result conducive to
mechanical reasoning. An automatic translation would significantly improve the usability of our
framework.

Nevertheless, as manual translations can be error-prone, we have developed a method to ensure
our translation is correct by cross-validating it with the clairvoyant semantics [Hackett and Hutton
2019; Li et al. 2021]. We will explain this framework in more detail in Section 4 and Section 5.
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The bidirectional demand semantics presented here does not support general recursive and
higher-order functions, which limits the expressiveness of the demand semantics. However, our case
studies show that even with those restrictions, the demand semantics is still useful for mechanically
reasoning about the time cost of many lazy functions as well as amortized and persistent data
structures.

The lack of general recursion is not restrictive in the context of time complexity analysis. We
can simulate general recursion using a fuel parameter which decreases with every recursive call.
This does not change the asymptotic complexity of programs, and time complexity bounds will
determine how much fuel is enough.

Many classical data structures and algorithms in complexity analysis only involve first-order
functions such as push and pop for queues. That is what our present work focuses on. It would be
useful to support higher-order functions to reason about operations such as maps, traversals, filters,
and folds. The bidirectional demand semantics originally presented by [Bjerner and Holmstrom
1989] does not feature higher-order functions either. Extending those semantics with higher-order
functions would complicate the results of this section. Currently, we use the same denotation of
types ([A]approx) for both the demand semantics and the clairvoyant semantics, allowing us to easily
compare values between the two semantics. In the clairvoyant semantics, the interpretation of
function types A — B as monadic functions [A]lapprox — P (N X [B]approx) is specific to clairvoyant
semantics. It does not seem suitable to represent the demand on a function. Intuitively, functions
propagate demand in two ways. When a function is applied, the demand on its result is mapped to
the demand on its arguments and the function itself. When a function is defined, the demand on the
function is mapped to a demand on the context of the lambda abstraction. It would be interesting
to find a representation of demand for functions that meets those needs.

Demand semantics let us reason about total time cost, but not real-time (i.e., non-amortized)
cost, or space cost. This is because demand functions only calculate if a thunk is evaluated, not
when a thunk is evaluated.

4 Case Studies: Sorting Algorithms

In this section, we analyze insertion sort and selection sort using our bidirectional demand semantics
to demonstrate how our model can be used in practice. These algorithms are known to exhibit
O(n?) time complexity under eager evaluation. However, we can achieve O(k - n) complexity under
lazy evaluation if we only need the smallest k elements of a list. More formally, given the following
functions:

Definition p1 (k : nat) (xs : list nat) := take k (insertion_sort xs).
Definition p2 (k : nat) (xs : list nat) := take k (selection_sort xs (length xs)).

We will prove that the computation cost of both p1 k xs and p2 k xs are bounded by O(k - n)
where n = |xs|. All the lemmas and theorems we show in this section have been formally proven
in the Rocq Prover. This code can be found in our artifact [Xia et al. 2024].

4.1 The take Function

We show the definitions of take and takeD in Fig. 16. Surprisingly, take is not expressible in the
calculus defined in the previous section: indeed, to define take using foldr, we also need first-class
functions. We were not able to remove this unfortunate limitation without significantly increasing
the complexity of our calculus. In practice, we are still able to manually define a demand function for
take and many similar functions. As a safeguard, we cross-validate this demand function takeD with
the clairvoyant semantics, which is simply a monadic translation takeA. We prove a correspondence
between takeD and takeA in the form of the theorems of Section 3.3.
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1 Fixpoint take {A} (k : nat) (xs : list A) : list A :=
2 match k, xs with

3 | 0, _ =>nil

4 | S _, nil => nil

5 | S k', x :: xs' =>

6 let zs := take k' xs' in

7 X :: ZS

8 end.

9

10 Fixpoint takeD {A} (k : nat) (xs : list A)

11 (outD : listA A) : Tick (T (listA A)) :=
12 tick >> match k, xs, outD with

13 | 0, _, _ => ret Undefined

14 | _, nil, _ => ret (Thunk NilA)

15 | S k', x :: xs', ConsA zD zsD =>

16 let+ ysD := thunkD (takeD k' xs') zsD in

17 ret (Thunk (ConsA (Thunk x) ysD))

18 | _, _, _ => bottom (* absurdity case %)

19 end.

Fig. 16. The Gallina implementation of take and takeD.

To define takeD, we apply [ - [dem (g, d) (Fig. 8) to the definition of take to obtain the following:

[foldr (A(n, y) 2s. cons y zs) nil e (9, ) = (€,9') & [ecrs (95 )
where (c, ¢’,n") = foldrgem (g, cons y zs, nil, thunk ([[]eva(9)), thunk d)

Because t is an argument of function takeD so we use the rule for evaluating variables to get
[t]aem (g, n") = (0,{t — n’}). However, before we move on, we would like to treat specially the
numbers contained in argument ¢. Even though we use the inductive nat data type in Gallina to
represent numbers for simplicity, numbers are primitive data types in most programming languages.
As such, we are not interested in an approximation of a nat, so we make a simplification in takeD
such that we only return the demand of the argument xs. For this reason, we will ignore the
numbers in ¢ in the rest of the translation process.

The foldrge,, function is a recursive function that supports pattern matching (Fig. 9). It lives in
the universe of denotations that we would like to replace with Gallina definitions—in fact, this will
be our definition of takeD. In the case that ¢ = nil, we return thunk nil (line 14, Fig. 16). In the case
that t = cons (n, y) ts, there are two steps. First, we need to run the following:

(c1, {91,y = aj,zs = by}) =[Mi]aem ({9, y = a1, zs > foldreya (g, My, My, az) }, d)

= [[cons y ZSH dem({g:y — 1y,
zs > foldrey,1 (g, cons y zs, thunk nil, zs) }, d)

However, this expression only makes sense when d = cons zD zsD according to Fig. 8, so we
perform a pattern match on d as well (line 15). We will handle d = nil as one of the absurdity cases
(line 18). If we continue running the demand semantics, we will see that this part evaluates to
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(c1, {91,y > aj,zs = by}) = (0,{y > zD, zs = zsD}). After that, we need to run:
(CZ, 92» a’z) =f01drdem(g’ M1> MZa as, b;)

=foldry., (g, cons y zs, nil, zs, zsD)

This is equivalent to a recursive call applied to zsD (line 16). According to the definition of foldrgep,,
we obtain (c; + ¢z, g1 U g2, thunk (cons a] a;)). Finally, combining this result with the denotational
semantics, we obtain the cost ¢; + ¢; and the input demand thunk (cons a] a;). As explained
previously, we use the Tick data type to represent the tuple of computation cost and input demand.
It is defined as a writer monad such that costs are added together in a monadic bind (the let+
notation on line 16). Thanks to the use of monads, we only need to ret the input demand (line 17).

After these steps, we need to add back the nat argument k to the definition. In the case thatk = 0,
the original take function returns nil. By the rule for nil in Fig. 8, we know that we should return
Undefined (L) in this case (line 13). We also handle the case in which the output demand is L and
the case in which we apply [cons y zs] gem to a d that is not a cons. In these cases, we return bottom,
which represents a cost of 0 and the minimal input demand, i.e., Undefined in this case (line 18).

Finally, we manually add a tick in the beginning of the function (line 12) so that we can count
the number of function calls.

Cost. Now that we have defined takeD, we can use it to reason about the cost of take. We can
state and prove the following cost theorems:

Theorem takeD_cost : forall {A : Type} (n : nat) (xs : list A) outD,
Tick.cost (takeD n xs outD) <= 1 + n.

Theorem takeD_cost' : forall {A : Type} (n : nat) (xs : list A) outD,
Tick.cost (takeD n xs outD) <= sizeX' 1 outD.

Both theorems define aspects of the cost of a lazy take. The function Tick.cost projects the
computation cost from the Tick monad. The first theorem states that the cost is bounded by its
parameter n + 1. The second theorem states that the cost is also bounded by the size of the output
demand. The function sizeX' is defined such that sizeX' 1 outD is equivalent to max(1, |outD]).

Functional correctness. Since our translation is manual, we additionally prove the following
functional correctness theorem for takeD:

Lemma takeD_approx (n : nat) (xs : list nat) outD :
outD “is_approx”™ take n xs ->
Tick.val (takeD n xs outD) “is_approx” xs.

The function Tick.val projects the value from the Tick monad. We prove a similar theorem for
every demand function that we translate so that we can be more confident about our translation.

4.2 Insertion Sort

We have shown the pure implementation of the insertion sort and its corresponding demand
functions in Fig. 1 and Fig. 2, respectively. The process of translating insert is similar to translating
take except for the need to translate an i f-expression. Translating insertion_sort, however, is more
challenging. Doing so involves translating let-expressions with function calls. According to the
let-rule of the demand semantics (Fig. 8), we first need to run insert in the forward direction, then
use its result to run insertion_sort in the backward direction (i.e., insertion_sortD), and finally
use the input demand from insertion_sortD to run insert in the backward direction (i.e., insertD).
This process corresponds to our illustration in Fig. 3.
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(* Computation cost. *)
Theorem insertD_cost x (xs : list nat) (outD : listA nat) :
Tick.cost (insertD x xs outD) <= leb_count x xs + 1.
Theorem insertD_cost' x (xs : list nat) (outD : listA nat) :
Tick.cost (insertD x xs outD) <= sizeX' 1 outD.
Theorem insertD_cost'' x (xs : list nat) (outD : listA nat) :
Tick.cost (insertD x xs outD) <= length xs + 1.
Theorem insertion_sortD_cost (xs : list nat) (outD : listA nat) :
Tick.cost (insertion_sortD xs outD) <= (sizeX' 1 outD + 1) * (length xs + 1).
Theorem selectD_cost (x : nat) (xs : list nat) (yD : nat) (ysD : listA nat) :
Tick.cost (selectD x xs (pairA yD ysD)) <= length xs + 1.
Theorem selection_sortD_cost (xs : list nat) (n : nat) (outD : listA nat)
n >= length xs ->
Tick.cost (selection_sortD xs n outD) <= (sizeX' 1 outD) * (length xs + 1).

(* Functional correctness. *)
Theorem insertD_approx (x : nat) (xs : list nat) (outD : listA nat) :
outD “is_approx™ insert x xs —>
Tick.val (insertD x xs outD) ~is_approx™ xs.
Theorem insertion_sortD_approx (xs : list nat) (outD : listA nat) :
outD “is_approx” insertion_sort xs ->
Tick.val (insertion_sortD xs outD) ~is_approx” xs.
Theorem selectD_approx (x : nat) (xs : list nat) (outD : prodA nat (listA nat)):
outD “is_approx” select x xs ->
Tick.val (selectD x xs outD) “is_approx™ xs.
Theorem selection_sortD_approx (xs : list nat) (n : nat) (outD : listA nat) :
outD “is_approx” selection_sort xs n ->
Tick.val (selection_sortD xs n outD) ~is_approx™ xs.

(* Composition. *)

Theorem take_insertion_sortD_cost (n : nat) (xs : list nat) (outD : listA nat)
Tick.cost (take_insertion_sortD n xs outD) <= (n + 1) * (length xs + 2) + 1.

Theorem take_selection_sortD_cost (n : nat) (xs : list nat) (outD : listA nat)
Tick.cost (take_selection_sortD n xs outD) <= n * (length xs + 2) + 1.

Fig. 17. Main theorems we have proven for both insertion sort and selection sort.

We show the main theorems we have proven for insertion sort in Fig. 17. Proofs for these
theorems are relatively straightforward. Theorems regarding insertD and insertion_sortD can
all be proven by an induction over the list arguments xs. All the inequalities involved in these
theorems can be solved by Rocq Prover’s built-in tactics 1ia and nia [Besson and Makarov 2023].
We also defined our custom own tactics to help solve is_approx relations.

In addition, we combine the theorems takeD_cost and insertion_sortD_cost to prove the theorem
take_insertion_sortD_cost (Fig. 17). The function take_insertion_sortD is the demand function
of take_insertion_sort, which composes take and insertion_sort. By proving this theorem, we
formally prove that the cost of take_insertion_sortD k xs outD is bounded by O(k - n) where
n = |xs|.
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Definition select (x: nat) (l: list nat) : nat * list nat.
Definition selection_sort (1 : list nat) (n : nat) : list nat.
Definition selectD (x : nat) (1 : list nat)

(outD : prodA nat (listA nat)) : Tick (T (listA nat)).
Definition selection_sortD (1 : list nat) (n : nat)

(outD : listA nat) : Tick (T (listA nat)).

Fig. 18. Type signatures of all definitions related to the selection sort.

Theoretically, we can show a tighter bound in take_insertion_sortD_cost, as the list argument
for insertion_sort decreases after each recursive call. However, the bound we show here is sufficient
to show that the function has O(k - n) time complexity. Proving this tighter bound would not
change the asymptotic cost.

4.3 Selection Sort

The computation cost of selection_sort is bounded by the same time complexity as insertion_sort.
To show that, we take the implementation of select and selection_sort from Verified Functional
Algorithms [Appel et al. 2023], then manually translate them into demand functions. For the sake of
space, we only show the types of all relevant definitions in Fig. 18. In addition to the list argument xs,
the selection_sort function takes an additional argument n : nat, which is our “fuel” for running
selection sort. We use this fuel to convince the Gallina termination checker that selection_sort
will terminate.? In practice, we always want to use a fuel size that is at least as large as the length
of xs. The complete definitions and proofs for selection sort are included in our artifact.

Compared to insertion_sort, selection_sort is more challenging because it returns a product
type. Accordingly, we need to use prodA A B = T A x T B, an approximation of the product type,
as the type of outD in selectD. This typing is crucial as, unlike insert, the cost of select is not
bounded by the demand on the output list. In fact, even when the demand on the output list is
Undefined, as long as the demand on the output number (the smallest number in the list) is not
Undefined, select still must traverse the entire input list to select such a number.

We show the main theorems we have proven for selection sort in Fig. 17. Compared to insertD
in insertion sort, selectD is only bounded by length xs + 1, not sizeX' 1 outD, because the func-
tion always traverses the entire input argument xs. Nevertheless, we show a similar bound for
selection_sortD as long as the fuel we use is greater than or equal to length xs. We also addi-
tionally prove the functional correctness theorems of selectD and selection_sortD to validate our
manual translation. In the end, we can compose takeD_cost with selection_sortD_cost to prove
the bounds stated in take_selection_sortD_cost.’

5 Amortized and Persistent Data Structures

In this work, we apply our method to mechanically reason about two lazy, amortized, and per-
sistent data structures, Okasaki’s banker’s queue and implicit queue [Okasaki 1999]. Both data
structures implement first-in-first-out (FIFO) queues with amortized constant time operations. The
banker’s queue achieves amortization and persistence by maintaining a balancing invariant on
two lists. The implicit queue achieves both properties using a technique called “implicit recursive
slowdown” [Kaplan and Tarjan 1995; Okasaki 1999].

21t is possible to manually prove that selection_sort terminates without using this “fuel” construct. We demonstrate the
fuel version here for simplicity, as it requires fewer proofs.
3The take_selection_sort function runs selection_sort with a fuel equal to length xs.
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let q@ = empty in

let g1 = push g0 a in

let g2 = push g1 b in (* D qz2@2 = (a:nil,b:bot) *)
let g3 = push g2 ¢ in (* D qz2@3 = (a:nil,b:bot) *)
let g4 = push g3 d in (* D q2e@4 = (bot, bot) D q4@4 = (a:b:bot,bot) *)
(_, 95) <- pop g4 ;; (* D q2@5 = (bot, bot) D q4@5 = (a:b:bot,bot) *)
(_, g6) <- pop g5 ;; (* D gq2@6 = (bot, bot) D q4@6 = (a:bot,bot)  *)
(_, q7) <- pop 94 ;; (* D g2@7 = (bot, bot) D q4@7 = (bot,bot) *)
(* ... *)

Fig. 19. A program that uses the banker’s queue, with demands of 2 and g4 labeled at each step.

5.1 The Reverse Physicist’s Method

The banker’s method and the physicist’s method are the two classical methods for analyzing
amortized computation costs [Tarjan 1985]. However, these methods only work for “forward”
and strict semantics, where we first accumulate credits (in the banker’s method) or potential (in
the physicist’s method) before making an “expensive” operation to spend the accumulation. Our
demand semantics works differently: we compute a minimal input demand from an output demand,
working “backwards”. Therefore, we propose a new method, called the reverse physicist’s method,
to analyze amortized computation cost based on this semantics.

The key idea of the reverse physicist’s method is to consider the demand semantics as an
evaluation on approximations that happen “backward”. Under this view, future operations are
accumulating potential that is going to be used by expensive operations that happen earlier.
Therefore, our solution is to assign potential to demands. Taking the banker’s queue as an example,
we assign a potential ® to each demand of a queue ¢° = {nf, f°, nb, bP} as:

o({nf, f°,nb,b"}) = max(2 x (|f| - nb),0) (1)

We use fP to represent the demand of the front list and nb to represent the length of the back list.
We overload the | - | operator to represent the length of a demand of a list, so | f?| represents the
length of fP. We use nb instead of |bP| in the potential function because moving a back list to the
front list requires reversing the entire back list, regardless of the length of b”. Note that |fP| < nf
and |bP| < nb.

For each operation of the a queue (i.e., push and pop), we show that the following inequality
holds:

cost < d(gD,) - @(qgl) + const (2)

®(gl) and ®(q>),,) represent the potential for the input queue and the output queue of the operation,
respectively. The cost is bounded by the difference between the input demand’s potential and the
output demand’s potential plus a constant number (const).

To show that a queue is amortized and persistent over arbitrary program traces, we consider
the demands for all versions of the queue generated in program points. We use q?@ ; to denote the
demand for i-th queue at the j-th operation (both indices start from 0). We constrain j to be at
least as large as i for any qlp@ ;- Note that we do not put any constraints on the program trace—one
version of a queue can be reused for any number of times in a program trace.

Taking the program shown in Fig. 19 as an example. We start from ql% ;= (L, 1) forany j > 8,
because there is no more demand after the program has finished. Using the initial list of q?@g for all
is as the output demand, we can compute the minimal input demands for every queue at each step
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1 Definition Physicist'sArgumentD : Prop :=

2 forall (o : op) (vs : list value), well_formed vs ->

3 forall output : stackA, output “is_approx™ eval o vs ->

4 forall input cost, Tick.MkTick cost input = demand o vs output ->

5 sumof potential input + cost <= budget o vs + sumof potential output.
6
7
8

Definition AmortizedCostSpec : Prop :=
forall os : trace, (cost_of (exec_trace os) <= budget_trace os).

Fig. 20. Definitions of the reverse physicist’s method (Physicist'sArgumentD) as well as amortization and
persistence (AmortizedCostSpec) formalized in the Rocq Prover.

using our demand semantics (Section 3). The demands of g2 and g4 at each operation are shown as
comments in Fig. 19.

This notion allows us to lift inequality over a single operation, i.e., Inequality (2), to the following
inequality over parts of a program trace:

j i

cost[;j] < Z <I>(qf@j) - Z (D(qf@i) + (j —i) - const (3)
k=0 k=0

We use cost; ;) to represent the computation cost incurred from the i-th operation to the j-th

operation. When j =i + 1, cost[; j] is the cost for a single operation. In addition, we compute the

difference between the sum of all the potential of all queue demands at step j and that at step i.

If we suppose that our program has ¢ operations in total, then the cost of the entire program
is costyo,]. At the beginning of a program, the empty queue is the only possible queue, and its
demand is qéJ@O =1 and @(qé)@o) = 0. At the end of a program, there cannot be any more demands,
SO qiD@t =1 forall0 <i<tand Y7} @(q?@t) = 0. Therefore, if we can show that Inequality (3) is
true for all i and j in one program trace, we can conclude that the cost of the entire program is
bounded by constant cost multiplied by the number of queue operations.

We show our Rocq Prover formalization of Inequality (3) in lines 1-5 of Fig. 20. The definition
Physicist'sArgumentD is defined generally so that we can use it on both the banker’s queue and
the implicit queue. The definition states that for any list of values vs (line 2), if we have a “stack” of
approximations output of running vs using the pure function of operation o, where o can be either
a push or a pop (line 3), and if we can run the demand function of operation o on vs and output
to obtain a computation cost cost and an input demand input (line 4), then the sum of all input’s
potential plus cost is smaller than or equal to a budget assigned to operation o over value vs plus
the sum of all output’s potential (line 5).

The final theorem that states a queue is both amortized and persistent is shown in lines 7-8 in
Fig. 20. We show that for any queue q, if we can show that a queue and all its operations satisfy
Physicist'sArgumentD, it implies that the queue also satisfies AmortizedCostSpec. In this way, we
only need to show that the banker’s queue and the implicit queue both satisfy Physicist'sArgumentD.

5.2 Banker’s Queue

We show a Gallina implementation of the banker’s queue in Fig. 21. We first declare a record Queue
whose internal representation is two lists and two numbers: a front list and a back list, with two
numbers nfront and nback that keep track of the lengths of these two lists, respectively (lines 1-2).
When pushing an element to the queue, we add it to the head of the back list (lines 9-10). When
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Record Queue (A : Type) : Type := MkQueue
{ nfront : nat; front : list A; nback : nat; back : list A }.

Definition mkQueue {A : Type}
(nf : nat) (f : list A) (nb : nat) (b : list A) : Queue A :=
if nf <? nb then MkQueue (nf + nb) (append f (rev b)) @ []
else MkQueue nf f nb b.

Definition push {A : Type} (g : Queue A) (x : A) : Queue A :=
mkQueue (nfront q) (front q) (nback g + 1) (x :: back q).

Definition pop {A : Type} (q : Queue A) : option (A * Queue A) :=
match front q with
| x :: f => Some (x, mkQueue (pred (nfront q)) f (nback q) (back q))
| [1 => None
end.

Fig. 21. The banker’s queue implemented in Gallina.

Record QueueA (A : Type) : Type := MkQueueA
{ nfrontA : nat; frontA : T (listA A); nbackA : nat; backA : T (listA A) }.

Definition pushD {A} (g : Queue a) (x : A)
(outD : QueueA A) : Tick (T (QueueA A) * T A) :=
tick >> let+ (frontD, backD) := mkQueueD (nfront q) (front q)
(S (nback q)) (x :: back g) outD in
ret (Thunk (MkQueueA (nfront q) frontD (nback q) (tailX backD)), Thunk x).

Definition popD {A} (g : Queue A)
(outD : option (T A * T (QueueA A))) : Tick (T (QueueA A)) :=

tick >>
match front q, outD with
| [1, _ => Tick.ret (exact q)

| x :: f, Some (XA, pop_gA) =>
let+ (fD, bD) := thunkD (mkQueueD (pred (nfront q)) f
(nback q) (back q)) pop_gA in
ret (Thunk (MkQueueA (nfront q) (Thunk (ConsA xA fD)) (nback g) bD))
| _, _ => bottom
end.

Fig. 22. Demand functions of the banker’s queue.

poping an element from the queue, we remove it from the head of the front list (lines 12-16). Both
functions use a smart constructor mkQueue to maintain the “balance” of the queue, by reversing and
moving the back list to the end of the front list when front is shorter than back (lines 4-7).
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Definition potential (g: QueueA A) : nat :=
2 * (sizeX @ (frontD q) - nbackD q).

Definition const : nat := 7.

Theorem pushD_cost {A} (g : Queue A) (x : A) (OutD : QueueA A) :
well_formed q ->
qOutD “is_approx” push g x —->
let (cost, gInD) := pushD g x gOutD in

10 potential gqInD + cost <= potential qOutD + const.

12 Lemma popD_cost {A} (g : Queue A) (outD : option (T A x T (QueueA A))) :
13 well_formed q —>

14 outD “is_approx™ pop q ->

15 let gA := Tick.val (popD q outD) in

16 let cost := Tick.cost (popD g outD) in

17 potential gA + cost <= const + potential outD.

18

19 Lemma pushD_spec {A} (q : Queue A) (x : A) (outD : QueueA A) :
20 outD “is_approx”™ push q x ->

21 forall gD xD, (gD, xD) = Tick.val (pushD g x outD) ->
22 let dcost := Tick.cost (pushD g x outD) in
23 pushA gD xD [[ fun out cost => outD ~less_defined™ out /\ cost <= dcost ]1].

25 Lemma popD_spec {A} (q : Queue A) (outD : option (T A * T (QueueA A))) :
26 outD “is_approx™ pop q ->

27 forall gD, gD = Tick.val (popD g outD) ->

28 let dcost := Tick.cost (popD g outD) in

29 popA gD [[ fun out cost => outD ~less_defined™ out /\ cost <= dcost ]].

Fig. 23. Cost specification for the banker’s queue.

We manually derive all the demand functions of the banker’s queue, shown in Fig. 22. We show
the cost theorems we have proven for the banker’s queue in Fig. 23. We define the potential (lines
1-2) of the queue to be twice the length of the demand of the queue’s front list’s minus the length
of its back list, as described in Equality (1). The function sizeX measures the “length” of a demand
list. It is parameterized by a natural number which represents how long we consider the length of
NilA, i.e, sizeX @ means that a demand list of NilA has a length of . We do need a max function to
make sure that the potential is at least 0, because the type of the potential function specifies that
the potential must be a natural number.

We then define the cost specification of pushD as an inequality between the potential of its
input demand (qInD) plus the cost (cost) and the potential of its output demand (qoutD) plus a
constant (const) (lines 6—-10). This is the same as Inequality (2) but we change the inequality to
only include the + operation so that we only need to use natural numbers in the specification. The
theorem additionally requires the queue q to be well formed (well_formed, line 7), which is the
invariant that all the banker’s queue’s operations maintain: (1) the back list is not longer than the
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front list, and (2) the nfront and nback fields correctly represent the lengths of the front list and
the back list, respectively. Similarly, we prove a cost theorem for popD (lines 12-17).

However, we do not wish to trust our demand semantics, as functions in the banker’s queue are
more complicated than insertion sort or selection sort. To show that our mechanized cost analysis
is correct, we additionally translate the banker’s queue using another model of laziness, namely
the clairvoyant semantics [Hackett and Hutton 2019; Li et al. 2021]. The advantage of a clairvoyant
semantics is that its translation from pure functions is more mechanical: it can be done by adding
the right combinators to the pure function.

We show that the demand functions of the banker’s queue agree with the clairvoyant transla-
tion on computation cost in lines 19-29 in Fig. 23. Theorems pushD_spec and popD_spec state the
equivalence relation between the demand functions pushD and popD with the clairvoyant functions
pushA and popA. The [[...]] notation is called an optimistic specification [Li et al. 2021], which is a
form of incorrectness logic [O'Hearn 2020] that shows the existence of an output approximation
and computation cost that satisfies the property specified in [[...]1].

5.3 Implicit Queue

The implicit queue is another persistent data structure that exhibits amortized constant computation
cost shown by Okasaki. We show key Gallina definitions of the implicit queue in Fig. 24.

An implicit queue of type A is an inductive data type that is either an empty queue Nil (line 2)
or a “deep” structure (lines 3) that contains: (1) a Front, which contains one or two As, (2) a Rear,
which contains zero or one A, and (3) an inner queue of a product A x A.

When pushing a new element to the queue, we first perform a pattern match on the input
queue q (line 7). If q is empty, we add the new element to Front directly (line 8). If q is a Deep
structure (line 9), we pattern match on its Rear (line 11). If its Rear contains zero elements, we put
the new element in its Rear (line 12). If q is a Deep structure that already has an element y in the
Rear (the maximal number of element in Rear), we make a polymorphic recursive call to push the
product of y and the new element x to the inner queue (line 13). The use of polymorphic recursion
is important for the efficiency of the implicit queue—the technique is known as recursive slowdown.

When poping an element from the queue, we again first perform a pattern matching on q (line 20).
When q is Nil, there is simply nothing to pop so we return None (line 21). When q is a Deep structure,
we first check its Front. If the Front contains only one element (the minimal number of elements
in Front), we pop two elements from the inner queue to make the new Front if the inner queue still
contains some elements (lines 27-30). If there is no more element from the inner queue (line 31),
we move the Rear element to Front if there is one (line 33) or Nil otherwise (line 34). However, if
the Front contains two elements, we just need to retrieve the first one (line 37).

We carefully defined the push and pop functions for the implicit queue in Fig. 24 so that they can
take advantage of lazy let-bindings in lazy languages. For example, the push function can return a
Deep structure without evaluating the input queue. Similarly, the push function can evaluate the
Front elements in a Deep structure without evaluating the Rear of the input queue.

We define demand functions pushD and popD of the implicit queue. One challenge with these
demand functions is polymorphic recursion. For example, the push function over a polymorphic
type A runs a recursive call on the type A * A (line 13). In a lazy setting, the type A * A can be
half evaluated—it might have an evaluated value as its first element while its second element is
unevaluated. This requires the demand functions to be even “more polymorphic” because it needs
to keep track of both pure values and demands. In practice, we define two extra demand functions
pushD' and popD' that are the result of demand translation of push and pop but with one more
polymorphic type as their parameters. We then define pushD and popD in terms of pushD' and popD'.
We show the approximation of the implicit queue’s Queue datatype, the type signatures of pushD'
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1 Inductive Queue (A : Type) : Type :=

2 | Nil : Queue A

3 | Deep : Front A -> Queue (A * A) -> Rear A -> Queue A.
4

5 Fixpoint push (A : Type) (g : Queue A) (x : A) : Queue A :=
6 let '(f, m, r) :=

7 match g with

8 | Nil => (FOne x, Nil, RZero)

9 | Deep f m r =>

10 let (m, r) :=

11 match r with

12 | RZero => (m, ROne x)

13 | ROne y => (push m (y, x), RZero)

14 end in

15 (f, m, r)

16 end in

17 Deep f m r.

18

19 Fixpoint pop (A : Type) (q : Queue A) : option (A * Queue A) :=
20 match g with

21 | Nil => None

22 | Deep f mr =>

23 let (x, q) :=

24 match f with

25 | FOne x =>

26 let q :=

27 match (pop m) with

28 | Some yzm' =>

29 let '"(Cy, z), m') := yzm' in

30 Deep (FTwo y z) m' r

31 | None =>

32 match r with

33 | ROne y => Deep (FOne y) Nil RZero
34 | RZero => Nil

35 end

36 end in (x, )

37 | FTwo x y => (x, Deep (FOne y) m r)

38 end in

39 Some (x, Q)
40 end.

Fig. 24. The Gallina implementation of the implicit queue. Compared to the implementation presented by
Okasaki [1999], we slightly simplify the base case to make it only represent an empty queue. This does not
affect the computation cost of the implicit queue. We also simplify the code for readability. The actual code
in our artifact is written in ANF for an easier translation.
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Inductive QueueA (A : Type) : Type :=
| NilA : QueueA A
| DeepA : T (FrontA A) -> T (QueueA (prodA A A)) -> T (RearA A) -> QueueA A.

Definition pushD' {A B : Type} “{Exact A B}
(g : Queue A) (x : A) (outD : QueueA B) : Tick (prodA (QueueA B) B).

Definition pushD {A : Type} :
Queue A -> A -> QueueA A -> Tick (prodA (QueueA A) A) :=
pushD'.

Definition popD' {A B : Type}
(g : Queue A) (outD : option (T (prodA B (QueueA B)))) : Tick (T (QueueA B)).

Definition popD {A : Type} :
Queue A -> option (T (prodA A (QueueA A))) -> Tick (T (QueueA A)) :=
popD' .

Fig. 25. The approximation of the implicit queue’s Queue datatype, the type signatures of pushD' and popD',
and the definitions of pushD and popD of the implicit queue.

and popD', and the definitions of pushD and popD in Fig. 25. Interested readers can find detailed
definitions of these functions, which are too long to be shown in this paper, in Appendix A.1 and
in our artifact.

We also proved all the cost theorems for these demand functions similar to the banker’s queue,
which include that the demand functions agree with a clairvoyant translation of push and pop
on computation cost. The cost theorems that we have proven can be found in Appendix A.2
and in our artifact. At last, we proved that the implicit queue satisfy Physicist'sArgumentD and
AmortizedCostSpec (Fig. 20), which means that the implicit queue is both amortized and persistent.

6 Related Work

Verification of lazy functional programs. Analyzing computation cost of lazy languages usually
requires modeling and reasoning about mutable heaps [Launchbury 1993], which is challenging.
Prior works on formalized cost analysis of lazy programs can be divided into three categories. The
first approach uses a tick monad [Danielsson 2008] to model computation cost in a functional way.
To model sharing, a pay combinator needs to be manually inserted at proper places to preemptively
force the computation of the shared part of a data structure. Liguip HaskerL [Handley et al. 2020;
Vazou 2016] uses a similar approach.

Alternatively, one can reason about mutable heaps using separation logics. This approach is
taken by Pottier et al. [2024] to verify an OCaml implementation of the lazy banker’s queue, the
physicist’s queue, and implicit queues in Coq based on the Iris® framework [Mével et al. 2019].
Pottier et al.’s method is based on an imperative style, as their code directly encodes thunks in
OCaml and their reasoning is based on the Iris separation logic [Jung et al. 2018; Spies et al. 2022].
However, what they expose to the users are abstract and in the style of Okasaki’s debit-based
reasoning with no mutation or reasoning about ownership involved.

Instead of dealing with the complexity caused by mutable heaps directly, the third approach
uses alternative semantics models instead of natural semantics [Launchbury 1993]. Prior works on
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clairvoyance semantics fall in this category [Hackett and Hutton 2019; Li et al. 2021]. The key idea of
the clairvoyance semantics is simulating laziness using a nondeterministic call-by-value model. Our
work is based on Bjerner and Holmstrom [1989]’s demand semantics, which is untyped and relies
on partial functions, whereas our version is typed, allowing the semantics to be defined in terms of
total functions, making the semantics simpler to formalize and use in a proof assistant based on type
theory such as Coq. We have also formally proved a correspondence between the demand semantics
and a preexisting model of laziness, namely the clairvoyant semantics, which prior work [Hackett
and Hutton 2019; Li et al. 2021] has connected to the natural semantics of Launchbury [1993].
Compared with the clairvoyant semantics, demand semantics allows us to sidestep the need for
both nondeterminism and the need for incorrectness logic [Li et al. 2021], by including output
demands as parts of input for the demand functions.

One drawback of our method is that, due to changing “when” a computation happens in our
model, our method cannot be used to analyze real-time computation cost, nor can it be used
to analyze other types of resource that are not monotone, e.g., memory usage. In comparison,
Liouip HASKELL can be used on measuring the usage of “any kind of resource whose usage is
additive” [Handley et al. 2020]. Iris® has been used on verifying the implicit queue that has real-time
constant computation cost.

On the testing side, Foner et al. [2018] introduce a low level Haskell testing library StrictCheck
using a similar idea of demand-driven analysis. They focus on testing for strictness bugs in lazy
programs, utilizing persistent and non-persistent queues introduced by Okasaki as examples to
verify their implementation, much as we have.

Demand-driven program analysis and symbolic execution. Demand-driven analysis is also a
useful technique that has been used in data-flow analysis, control-flow analysis, and symbolic
execution [Dubé and Feeley 2002; Facchinetti et al. 2019; Germane et al. 2019; Horwitz et al.
1995; Palmer et al. 2020]. The key idea is by starting from the target to be analyzed, unneeded
analysis/evaluation can be avoided. Our demand semantics is based on similar idea, as it avoids
nondeterminism present in clairvoyant semantics by having output demand as parts of demand
function’s input. However, our demand semantics focuses on reasoning about computation cost
for lazy functional programs and lazy, amortized, and persistent data structures. Facchinetti et al.
[2019]; Germane et al. [2019]; Palmer et al. [2020] also support program analysis and symbolic
execution for higher-order functions, which our demand semantics does not currently support.

Demand analysis in compilers. Compilers like the Glasgow Haskell Compiler (GHC) employs
demand analysis to perform compiler optimizations [Sergey et al. 2014, 2017]. However, demand
analyses in compilers typically focus on finding one-shot lambdas, single-entry thunks, etc. to apply
optimizations such as deforestation. Our demand semantics focuses on compositional mechanized
reasoning for proving properties about computation cost.

Cost analysis or amortized analysis for non-lazy semantics. Cost analysis or amortized cost analysis
in the context of strict semantics has been the subject of much research as well [Cutler et al. 2020;
Danner et al. 2013; Hoffmann et al. 2012; McCarthy et al. 2018; Rajani et al. 2021]. Cutler et al.
[2020] provide a formalized framework for reasoning about amortized analysis in an imperative
setting. Rajani et al. [2021] introduce a type system which can embed call-by-value and call-by-
name evaluation as well as accounting for cost savings via amortization. Hoffmann et al. [2012]
improve this type of analysis by introducing arbitrary multivariate polynomial functions to their
cost representations, including comparisons of theoretical bounds to real-world examples. All of
these models allow for space-usage analysis, but none of them support reasoning about laziness.
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Calf is a cost-aware logical framework for reasoning about resource usage in full-spectrum
dependently-typed functional programs [Niu et al. 2022]. The language also supports effects via
the call-by-push-value evaluation [Levy 2001; Pédrot and Tabareau 2020]. The framework has been
utilized to reason about amortized cost via coinduction [Grodin and Harper 2023].

Compiler optimization for lazy functional languages. Compilers for lazy functional languages
employ techniques such as strictness analysis to avoid creating unnecessary thunks [Jones and
Partain 1993; Wadler and Hughes 1987]. Ennals and Jones [2003] experimented with a more
aggressive optimization called “optimistic evaluation” that speculatively evaluates thunks but
aborts if the compiler decides that it’s a bad choice. Their results show significant improvement
over GHC, but it was ultimately not incorporated in GHC due to its complexity.*

Improvement Theory. Improvement theory studies if one program improves another program in
terms of reduction steps under all program contexts [Sands 1996, 1997]. Moran and Sands [1999]
showed that the improvement theory can be applied in a lazy setting as well, based on prior work on
the call-by-need A-calculus [Ariola et al. 1995]. Gustavsson and Sands [2001] also studied the space
complexity under lazy evaluation using the improvement theory. Our work focuses on computation
cost and amortized cost analysis based on proof assistants, rather than improvement relations
between programs.

Machine-checked complexity theory. Forster and Smolka [2017] formalize a weak call-by-value
A-calculus in Coq called L. They have used L as a model of computation to formally prove the
Cook-Levin Theorem [Cook 1971; Gaher and Kunze 2021].

7 Conclusion and Future Work

In this paper, we present a demand semantics for lazy functional programs that, given any valid
output demand, returns the minimal input demand required. We base our demand semantics on
Bjerner and Holmstrom [1989], but we expand it to support higher-order functions such as foldr.
In addition, we formally prove that the demand semantics is equivalent to the natural semantics of
laziness, by showing that it is equivalent to the clairvoyant semantics.

We demonstrate the effectiveness of our approach by applying our method to formally prove
that Okasaki’s banker’s queue is amortized and persistent using the Coq theorem prover. In the
process, we propose a novel reverse physicist’s method that allows reasoning about amortization
and persistence based on the demand semantics in a modular way.

In future work, we would like to apply this approach to larger lazy functional data structures
such as finger trees [Claessen 2020; Hinze and Paterson 2006]. We would also like to develop a tool
that automatically generates a function’s demand function based on the demand semantics. By
integrating this translator with tools like hs-to-coq, we can apply our method to more functional
programs and data structures in mainstream languages such as Haskell.
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A Appendix: Rocq Prover Formalization of the Implicit Queue
A.1 Demand Functions

Inductive QueueA (A : Type) : Type :=
| NilA : QueueA A
| DeepA : T (FrontA A) -> T (QueueA (prodA A A)) -> T (RearA A) -> QueueA A.

Fixpoint pushD' (A B : Type) “{Exact A B} (q : Queue A) (x : A) (outD : QueueA B) :
Tick (prodA (QueueA B) B) :=
let+ gD :=
Tick.tick >>
match outD with
| DeepA fD mD rD =>
match g with
| Nil => Tick.ret (Thunk NilA)
| Deep f mr =>
match r with
| RZero => Tick.ret (Thunk (DeepA fD mD (Thunk RZeroA)))
| ROne y =>
let+ uD := thunkD (pushD' m (y, x)) mD in
let '(pairA mD pD) := uD in
let (yD, xD) :=
match pD with
| Thunk (pairA yD xD) => (yD, xD)
| _ => bottom
end in
Tick.ret (Thunk (DeepA fD mD (Thunk (ROneA yD))))
end
end
| _ => bottom
end in
Tick.ret (pairA gD (exact x)).

Definition pushD (A : Type) : Queue A -> A -> QueueA A -> Tick (prodA (QueueA A) A) :=
pushD'.

Fixpoint popD' (A B : Type) (g : Queue A) (outD : option (T (prodA B (QueueA B)))) :
Tick (T (QueueA B)) :=
Tick.tick >>
match g with
| Nil => Tick.ret (Thunk NilA)
| Deep f m r =>
let+ (fD, mD, rD) :=
let (xD, gD) :=
match outD with
| Some (Thunk (pairA xD gD)) => (xD, gD)
| _ => bottom
end in

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 237. Publication date: August 2024.



Story of Your Lazy Function’s Life 237:29

match f with
| FOne x =>
let p := pop m in
let (pD, rD) :=
match p with
| Some (yz, m') =>
match gD with
| Thunk (DeepA fD mD' rD) =>
let yzD :=
Thunk (match fD with
| Thunk (FTwoA yD zD) => pairA yD zD
| _ => bottom
end) in
(Thunk (Some (Thunk (pairA yzD mD'))), rD)
| _ => bottom
end
| None =>
let rD :=
match r with
| RZero => Thunk RZeroA
| ROne y =>
let yD :=
match gD with
| Thunk (DeepA (Thunk (FOneA yD)) _ _) => yD
| _ => bottom
end in
Thunk (ROneA yD)
end in
(Thunk None, rD)
end in
let+ mD := thunkD (popD' m) pD in
Tick.ret (Thunk (FOneA xD), mD, rD)
| FTwo x y =>
let '(yD, mD, rD) :=
match gD with
| Thunk (DeepA fD' mD rD)
let yD :=
match fD' with
| Thunk (FOneA yD) => yD
| _ => bottom
end in
(yD, mD, rD)
| _ => bottom
end in
Tick.ret (Thunk (FTwoA xD yD), mD, rD)
end in
Tick.ret (Thunk (DeepA fD mD rD))
end.

1
A\
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Definition popD (A : Type) (g : Queue A) (outD : option (T (prodA A (QueueA A)))) :
Tick (T (QueueA A)) :=
popD' q outD.

A.2 Potential Functions and Cost Theorems

Definition size_FrontA (A : Type) (fA : FrontA A) : nat :=
match fA with

| FOneA _ => 1
| FTwoA _ _ => 2
end.

Definition size_RearA (A : Type) (rA : RearA A) : nat :=
match rA with
| RZeroA => 0
| ROneA _ => 1
end.

Instance Potential_QueueA : forall (A : Type), Potential (QueueA A) :=
fix potential_QueueA (A : Type) (gA : QueueA A) :=
match gA with

| NilA => @
| DeepA fD mD rD =>
let ¢ := T_rect _ size_FrontA 2 fD - T_rect _ size_RearA @ rD

in ¢ + @Potential_T _ (potential_QueueA _) mD
end.

Lemma pushD'_cost : forall (A B : Type) ~{LessDefined B, Exact A B}
(g : Queue A) (x : A) (outD : QueueA B),
outD “is_approx”™ push q x ->
let inM := pushD' g x outD in
let cost := Tick.cost inM in
let (gD, _) := Tick.val inM in
potential gD + cost <= 2 + potential outD.

Corollary pushD_cost : forall (A : Type) ~{LessDefined A}
(g : Queue A) (x : A) (outD : QueueA A),
outD “is_approx” push g x ->
let inM := pushD g x outD in
let cost := Tick.cost inM in
let (gD, _) := Tick.val inM in
potential gD + cost <= 2 + potential outD.

Lemma pushD'_spec (A B : Type) :
forall “{LDB : LessDefined B, !Reflexive LDB, Exact A B}
(g : Queue A) (x : A) (outD : QueueA B),
outD “is_approx”™ push q x ->
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forall gD xD, pairA gD xD = Tick.val (pushD' g x outD) ->
let dcost := Tick.cost (pushD' g x outD) in
pushA gD xD [[ fun out cost =>
outD ~less_defined™ out /\ cost <= dcost 1].

Corollary pushD_spec (A : Type) :
forall “{LDA : LessDefined A, !Reflexive LDA}
(9 : Queue A) (x : A) (outD : QueueA A),
outD “is_approx”™ push q x ->
forall gD xD, pairA gD xD = Tick.val (pushD' g x outD) ->
let dcost := Tick.cost (pushD' g x outD) in
pushA gD xD [[ fun out cost =>
outD ~less_defined™ out /\ cost <= dcost 1].

Lemma popD'_cost : forall (A B : Type)
“{LessDefined B, Exact A B}
(g : Queue A) (outD : option (T (prodA B (QueueA B)))),
outD “is_approx™ pop q ->
let d := match outD with
| Some (Thunk (pairA _ gD)) => potential gD
| _=>0
end in
let inM := popD' q outD in
let cost := Tick.cost inM in
let inD := Tick.val inM in
potential inD + cost <= 3 + d.

Corollary popD_cost :
forall (A : Type) “{LessDefined A}
(g : Queue A) (outD : option (T (prodA A (QueueA A)))),
outD “is_approx™ pop q ->
let d := match outD with
| Some (Thunk (pairA _ gD)) => potential gD

| _=>20

end in
let inM := popD' g outD in
let cost := Tick.cost inM in

let inD := Tick.val inM in
potential inD + cost <= 3 + d.

Lemma popD'_spec :
forall (A B : Type) “{LDB : LessDefined B, !Reflexive LDB, Exact A B}
(g : Queue A) (outD : option (T (prodA B (QueueA B)))),
outD “is_approx™ pop q —>
forall gD, gD = Tick.val (popD' g outD) ->
let dcost := Tick.cost (popD' g outD) in
popA gD [[ fun out cost => outD ~less_defined™ out /\ cost <= dcost ]].
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Corollary popD_spec :
forall (A : Type) “{LDA : LessDefined A, !Reflexive LDA}
(9 : Queue A) (outD : option (T (prodA A (QueueA A)))),
outD “is_approx™ pop q —>
forall gD, gD = Tick.val (popD' q outD) ->
let dcost := Tick.cost (popD' g outD) in
popA gD [[ fun out cost => outD "~less_defined™ out /\ cost <= dcost 1].
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