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We establish the theoretical foundation of the Floquet graphene antidot lattice, whereby massless
Dirac fermions are driven periodically by a circularly polarized electromagnetic field, while having
their motion excluded from an array of nanoholes. The properties of interest are encoded in the
quasienergy spectra, which are computed non-perturbatively within the Floquet formalism. We find
that a rich Floquet phase diagram emerges as the amplitude of the drive field is varied. Notably, the
Dirac dispersion can be restored in real time relative to the gapped equilibrium state, which may
enable the creation of an optoelectronic switch or a dynamically tunable electronic waveguide. As the
amplitude is increased, the ability to shift the quasienergy gap between high-symmetry points can
change which crystal momenta dominate in the scattering processes relevant to electronic transport
and optical emission. Furthermore, the bands can be flattened near the Γ point, which is indicative
of selective dynamical localization. Lastly, quadratic and linear dispersions emerge in orthogonal
directions at the M point, signaling a Floquet semi-Dirac material. Importantly, all our predictions
are valid for experimentally accessible near-IR radiation, which corresponds to the above bandwidth
limit for the graphene antidot lattice. Cycling between engineered Floquet electronic phases may
play a key role in the development of next-generation on-chip devices for optoelectronic applications.

I. INTRODUCTION

Ever since graphene was fully isolated and character-
ized in 2004, it has remained the platform of choice for
investigating massless Dirac fermions in two space di-
mensions (2D) [1]. Graphene is a strong 2D material
that can be easily and stably shaped into, for example,
nanoribbons. The interplay between confinement and
quantum effects (in the following, quantum confinement
for short) opens an electronic band gap that increases
with decreasing width [2]. Other experimentally accessi-
ble graphene nanostructures, and the focus of this paper,
are the antidot lattices of Ref. 3. These structures are
fabricated by patterning a periodic array of nanoholes
into a graphene monolayer. Comparable to varying the
width of a nanoribbon, varying the size of the supercell
and/or the diameter of the holes of the graphene antidot
lattice amounts to controlling quantum confinement and
the electronic band gap. Subsequent work has showed
that the shape of the holes, edge termination, and edge
magnetism can have a profound effect on the way that
the energy gap scales with the geometric parameters of
the antidots [4–23]. These structures can be fabricated
by lithographic methods [24, 25].

In addition to geometric control, the electronic proper-
ties of a material can be modified by time-periodic driv-
ing via an electromagnetic field. As coherent-control ca-
pabilities have continued to advance in different experi-
mental platforms, the physics of periodically driven “Flo-
quet quantum matter” has attracted growing attention
across quantum science. While the subject has been re-
viewed extensively elsewhere [26–32], here we only high-
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light a few results for graphene. One can open and con-
trol gaps in the quasienergy spectrum by adjusting the
polarization, photon energy, and electric field amplitude
[33–41]. It is also possible to induce non-trivial topol-
ogy in “bulk” graphene with time-reversal symmetry-
breaking circularly polarized light. As a consequence,
chiral edge states appear for the corresponding system
with open boundaries [42–48], which are predicted to be
detectable spectroscopically [49–51]. The dynamical gen-
eration of non-trivial gapped topology explains the obser-
vation of the Floquet anomalous quantum Hall effect in
graphene [52, 53].

In this paper we investigate the interplay between the
spatial complexity of the graphene antidot lattice and a
periodic driving force, and show that it leads to Floquet
electronic phases beyond what is possible with standard
graphene. A main motivation for our analysis stems from
the fact that, for standard graphene, the above band-
width limit can only be reached with extreme UV radi-
ation, which is ionizing and not practical to produce at
high intensities. By contrast, for the graphene antidot
lattice we find that the same limit corresponds to experi-
mentally realizable infrared (IR) photon energies. More-
over, while nanoribbons and quantum dots are also viable
platforms for generating geometrically complex electronic
states, the antidot lattice is the only one that is spatially
extended in 2D.

We follow a well established approach for modeling
the electronic structure of the graphene antidot lattices.
Our starting point is the 2D massless Dirac Hamiltonian
(Sec. II) to which we add a circularly polarized electro-
magnetic field within the minimal coupling scheme. The
properties of the periodically driven system are char-
acterized by quasienergy spectra, computed from the
extended space formulation of the Floquet formalism
(Sec. III). By varying the electric field amplitude on a
fine grid for a fixed photon energy, we identify several
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parameter regimes where the quasienergy bands take on
interesting characteristics (Sec. IV). Building on these
characteristics, we identify three potential quantum en-
gineering applications: a low-wavelength-pass electronic
filter (Sec. IV), an optoelectronic switch, and a dynami-
cally tunable electronic waveguide (Sec. V). We conclude
in Sec. VI with a summary and outlook.

II. BACKGROUND: GRAPHENE ANTIDOT
LATTICES

A graphene antidot lattice is the system that results
from etching a periodic array of holes (“antidots”) into a
sheet of monolayer graphene. The holes should not be so
large or packed so close together that they compromise
the integrity of the free standing sheet. In this paper
we will rely on the effective model of the graphene anti-
dot lattices introduced and investigated in Refs. 3, 8, and
20. The starting line is the effective 2D massless Dirac
fermion Hamiltonian for graphene,

HDirac = vFp · σ. (1)

Here vF is the Fermi velocity, p is the momentum oper-
ator, and σ = [σx, σy] is the vector of x and y Pauli
spin matrices. The internal degree of freedom is due
to pseudo-spin, not the physical spin angular momen-
tum degree of freedom, which is not included in this de-
scription. The Fermi velocity is calculated to be vF =
3τd/(2~), where τ = 2.7 eV is the nearest-neighbor hop-
ping parameter and d = 0.142 nm is the carbon-carbon
bond length. We note that our starting point for the anal-
ysis, Eq. (1), only describes the K point of graphene. To
capture intervalley scattering, one should also simultane-
ously include the K ′ point [54], which is accomplished by
making the substitution σ → σ∗ in Eq. (1) [1]. This can
be considered as a next step in future work.

To model the confinement of massless Dirac fermions in
a nanostructure, a “mass term” ∆(r) is added to Eq. (1):

H0 = vFp · σ + ∆(r)σz, (2)

where the function ∆(r) is defined at each point r in
space and takes the value zero inside and ∆0 outside
of the material. The goal is to simulate a “hard wall”
barrier in the limit where ∆0 → ∞. In practice, setting
∆0 = 170 eV suffices [20].

A previous study [20] compared the simple, continuum
Dirac Hamiltonian approach outlined here to a more re-
fined description based on a tight-binding model which,
in particular, can account for the distinct edge termi-
nations (armchair, zigzag, etc.) of the graphene lattice.
The authors found that minimizing the lengths of the
zigzag edges around the holes reduces the presence of
localized edge states, improving quantitative agreement
between the two models. From a different perspective,
one expects that edge effects will play a minor role in the
overall properties of the system provided that dangling

bonds are hydrogen passivated and edge spins are scram-
bled at ambient temperature. These points justify using
a continuum Dirac Hamiltonian approach.

In this work, we focus on a representative triangular
antidot lattice with circular (Fig. 1a) or triangular holes
(Fig. 2a). The time-independent Schrödinger equation is

H0ϕnk(r) = Enkϕnk(r), (3)

where n is the band index and ~k is the crystal momen-
tum. Its solutions can be written in the Bloch form,

ϕnk(r) = eik·runk(r). (4)

Thanks to its periodicity in space, unk(r) can be written
as a Fourier series

unk(r) =
∑
G

u
(G)
nk e

iG·r, (5)

where G = aG1 + bG2, G1 and G2 are the supercell
reciprocal lattice vectors, and a and b are integers. The
equation to solve is then∑

G′

H(G,G′)
k u

(G′)
nk = Enku

(G)
nk , (6)

where

H(G,G′)
k =

[
∆G−G′ TkGδG,G′

T ∗kGδG,G′ −∆G−G′

]
, (7)

with

∆G−G′ ≡ 1

ASC

∫
d2r∆(r)e−i(G−G

′)·r, (8)

and

TkG ≡ ~vF [(kx +Gx)− i(ky +Gy)]. (9)

The integration in Eq. (8) is over the supercell of area
ASC. In principle, Eq. (6) is an infinite-dimensional ma-
trix equation for each fixed k and n. In practice, by form-
ing a block matrixHk using all combinations ofG andG′

such that a, b, a′, b′ ∈ [−Nrec, Nrec] in Eq. (7), Eq. (6) can
be rewritten as a finite matrix diagonalization problem:

Hkunk = Enkunk, (10)

where the components of unk contain all of the u
(G)
nk

in the allowed range. They are then used to construct
approximate unk(r) (Eq. (5)) and, finally, the ϕnk(r)
(Eq. (4)). For numerical evaluation in the model sys-
tem under study, truncation at Nrec = 16 spatial Fourier
modes converges the electronic band structures Enk.

III. FLOQUET GRAPHENE ANTIDOT
LATTICES

To investigate the effect of the applied control field,
we rely on the standard prescription for minimally cou-
pling the electromagnetic field to the Dirac Hamiltonian
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of Eq. (2). The result is the time-dependent Hamiltonian

H(t) = H0(p→ p+ |e|A(t)) = H0 + |e|vFA(t) ·σ, (11)

where the vector potential A corresponds to a homoge-
neous, in-plane electric field E = −∂tA with circular
polarization, that is,

A(t) =
E0

Ω
[cos(Ωt), sin(Ωt), 0]. (12)

Thus, the control parameters are the electric field ampli-
tude E0 and the angular frequency Ω. The vector poten-
tial of Eq. (12) misrepresents the magnetic flux density
(B = ∇×A = 0). Nonetheless, it is the typical starting
point for many other investigations of radiation driven
graphene and we will follow this practice [33–51, 55–61].
One can roughly assess the impact of ignoring the mag-
netic field by noting that the ratio of the magnitude of the
magnetic to the electric force is at worst vF /c ≈ 0.003.
In addition, the Ωt−K ·r that would normally appear as
the argument of the cosine and sine functions in Eq. (12)
reduces to Ωt since the relevant wave-vector can be cho-
sen to be K = [0, 0,Kz] and the graphene layer can be
placed in the z = 0 plane.

The next step is to move to the matrix representa-
tion of the time-dependent Hamiltonian H(t) (Eq. (11)),
in the basis obtained from solving the time-independent
problem, recall Eq. (3). The matrix elements are

Hnn′;k(t) = Enkδnn′ + |e|vFA(t) ·
∫
d2rϕ†nk(r)σϕn′k(r).

(13)
The driving renormalizes the individual bands and also
generates inter-band coupling. For simplicity we focus
on the two band model that emerges from keeping only
the first band below and first band above the Fermi en-
ergy (0 eV). From here forward, Hk(t) refers to the time-
dependent Hamiltonian in its matrix representation.

Since Hk(t) is periodic in time with period T = 2π/Ω,
the solution of the time-dependent Schrödinger equation,

i~∂tψnk(t) = Hk(t)ψnk(t), (14)

can be constructed using the extended space formu-
lation of the Floquet formalism. Then the above
time-dependent problem is formally mapped to a time-
independent problem of diagonalizing an associated Her-
mitian operator defined on an enlarged space (compared
to the original, physical Hilbert space) [62]. The solu-
tions take the form

ψnk(t) = e−iεnkt/~Φnk(t), Φnk(t+ T ) = Φnk(t). (15)

The periodicity of Hk(t) and Φnk(t) allows for the Fourier
decompositions in terms of time harmonics,

Hk(t) =
∑
m

H
(m)
k e−imΩt, (16)

Φnk(t) =
∑
m

φ
(m)
nk e

−imΩt, (17)

where m ∈ Z is the temporal Fourier index. Eq. (14) can
then be rewritten as∑

m′

H̃
(m,m′)
k φ

(m′)
nk = εnkφ

(m)
nk , (18)

in terms of

H̃
(m,m′)
k =

1

T

∫ T

0

dtHk(t)ei(m−m
′)Ωt − δmm′m~Ω1

= H
(m−m′)
k − δmm′m~Ω1.

(19)

Due to the simple form of the vector potential of Eq. (12),
only matrix blocks with |m −m′| ≤ 1 can be non-zero.

By forming a block matrix H
(Floquet)
k using all values

of m,m′ between −NFloquet and NFloquet in Eq. (19),
Eq. (18) can then be rewritten as a matrix diagonaliza-
tion problem

H
(Floquet)
k φnk = εnkφnk. (20)

For all cases to be considered below, truncation at
NFloquet = 5 ensures converged quasienergy spectra εnk.

IV. FLOQUET BAND ENGINEERING IN
GRAPHENE ANTIDOT LATTICES

IV.1. Static system

As a point of reference, we first calculate the electronic
band structures Enk (recall Eq. (3)), prior to irradiation,
of several graphene antidot lattices. We find that, re-
gardless of the shape of the hole, increasing the hole size
while keeping the size of the supercell fixed changes the
band structure from the characteristic gapless Dirac dis-
persion of the empty lattice (no holes) into flat bands
for holes that are close to touching. Specifically, we
choose the geometric parameters L and D, see Fig. 1a,
or L and s, see Fig. 2a, so that they are consistent with
the physical characteristics of graphene. The parameter
L should only be on the order of a few nanometers for
quantum confinement effects to play a role. In particu-
lar, we investigate circular holes of diameter D = 1.6 nm
and D = 3.7 nm, and equilateral triangular holes of side
lengths s = 1.4 nm and s = 3.2 nm. In all cases, L = 3.0
nm. The corresponding band structures are plotted in
Figs. 1b, 1c, 2b, and 2c. Quantum confinement opens a
large band gap and adds curvature to the bands at the Γ
point of the Brillouin zone. We note that the continuum
model remains valid on these length scales [20] and that
atomically precise graphene antidot lattices are within
the reach of current fabrication capabilities [63].
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D

(a) (b) (c)

FIG. 1. (Color online) Triangular graphene antidot lattices with circular holes. (a) Geometric schematic with the superlattice
vectors shown in red. The carbon lattice is not shown since we work within a continuum approach. Electronic band structure
for L = 3.0 nm with (b) D = 1.6 nm and (c) D = 3.7 nm. The Fermi energy is located at 0 eV.

L s

(a) (b) (c)

FIG. 2. (Color online) Triangular graphene antidot lattices with triangular holes. (a) Geometric schematic with the superlattice
vectors shown in red. The carbon lattice is not shown since we work within a continuum approach. Electronic band structure
for L = 3.0 nm with (b) s = 1.4 nm and (c) s = 3.2 nm. The Fermi energy is located at 0 eV.

IV.2. Floquet-driven system

With the geometric parameters specified and the time-
independent problem solved, we are now well positioned
to describe the periodically driven system. We choose
the value of the photon energy ~Ω based on two criteria:

(i) The two static energy bands should automatically
fall in the first Floquet Brillouin zone, that is, between
±~Ω/2. Under such a condition, there is a direct map-
ping between the zero electric field amplitude limit of the
quasienergy spectrum εnk and the electronic band struc-
ture Enk, as confirmed by our numerical simulations.

(ii) In order to justify the restriction to a two band
model, the photon energy should not be high enough to
trigger transitions from the first valence band to the sec-
ond conduction band (not shown in our figures). For
the structures described in Figs. 1 and 2, the appropriate
photon energy ranges are

• 0.72-0.81 eV (Fig. 1b),

• 1.13-1.15 eV (Fig. 1c),

• 0.71-0.77 eV (Fig. 2b),

• 0.78-0.85 eV (Fig. 2c).

To ensure that our results are stable against small vari-
ations of the parameters, we calculate the quasienergy
spectra for two values of ~Ω in these ranges of validity.
The specific values of the photon energy are

• 0.75, 0.80 eV (Fig. 1b),

• 1.13, 1.15 eV (Fig. 1c),

• 0.71, 0.77 eV (Fig. 2b),

• 0.78, 0.85 eV (Fig. 2c).

In addition to the frequency of the radiation, one
can also control the intensity. We scanned the electric
field amplitude E0 from 0 to 6 a.u. (1 a.u. = 1.291
(GeV/nm)/nC) in increments of 0.05 a.u., expanding and
interpolating further when necessary. The units of E0 are
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FIG. 3. (Color online) Continuous tuning of the Floquet
quasienergy gap (at Γ) with the electric field amplitude. Each
curve starts at the equilibrium state (0 a.u.) and ends at the
Floquet Dirac phase (horizontal axis intersection). Circle 1,
Circle 2, Triangle 1, and Triangle 2 correspond to the struc-
tures defined in Figs. 1b, 1c, 2b, and 2c.

taken from a previous paper on Floquet Dirac materials
[64]. The values of E0 that we investigate are all well
below the pulsed damage threshold for graphene, which
is 23 a.u. [65]. This said, we find that the qualitative
features of the quasienergy bands are the same for all
cases after a rescaling of the electric field amplitude. As
a quantitative illustration of this fact, we show in Fig. 3
the dependence of the quasienergy gap upon the electric
field amplitude for our four Floquet graphene antidot lat-
tices. Based on these results, for succinctness we only
explicitly show and discuss the results for circular holes
with D = 1.6 nm and ~Ω = 0.8 eV in what follows.

The insensitivity of the quasienergy spectra to the
shape of the holes was an unexpected outcome of our
simulations. A possible explanation is that the effective
Dirac Hamiltonian only captures quantum confinement
effects while softening or removing altogether the effect
of particular edge configurations. The antidot lattice im-
poses complicated boundary conditions on the wave func-
tions, see Eq. (3). This added layer of richness emerges
in the quasienergy spectra via the matrix elements in
Eq. (13). The particle-hole symmetry of the starting
Dirac Hamiltonian (Eq. (1)) is preserved in all cases.

The quasienergy bands depicted in Fig. 4 summarize
our main findings about the Floquet phases that the sys-
tem can access as the electric field amplitude is varied in
the parameter regime under exploration. Recall that,
in the absence of driving, the Dirac point of pristine
graphene is replaced by parabolic bands separated by a
gap at the Γ point for the graphene antidot lattice (see
Fig. 4a). Upon adding driving, a number of distinctive
physical features emerge:

1. The Dirac point can be restored dynamically for a
suitable value of the electric field amplitude that
we call E0c1 . The quasienergy gap closes at the Γ
point of the Brillouin zone.

2. For E0 > E0c1 , the quasienergy gap reopens and
moves to the M point of the Brillouin zone; the
bands flatten substantially close to the Γ point.

3. There is a second value of the intensity E0c2 > E0c1

for which the quasienergy gap closes again but now
at the M point. Moreover, the bands touch in a
most peculiar way: they feature linear dispersion
in one direction and quadratic in another.

4. The quasienergy gap reopens for E0 > E0c2 .

Thinking of the dynamical restoration of the Dirac
point in the Floquet graphene antidot lattice as a phase
transition, we shall call the phase with 0 ≤ E0 < E0c1

the Floquet quasi-equilibrium phase and the phase with
E0c1 < E0 < E0c2 , which ends with the closing of the
quasienergy gap at M , the first Floquet phase, or Flo-
quet Dirac phase. There is a second Floquet phase, or
Floquet semi-Dirac phase, for E0 > E0c2 . It is worth
it to further expand on these remarkable features and
speculate on how they physically come about.

1.: The ability to restore the Dirac point (Fig. 4c)
seems only possible because the “mass term” in the
Hamiltonian of Eq. (2) hides the Dirac dispersion of stan-
dard graphene, and is then dynamically canceled by the
radiation field. While pristine graphene already features
a Dirac point, having the non-driven gapped bands and
the Floquet Dirac point enables at least two novel ap-
plications, as we argue in Sec. V. Furthermore, varying
the geometric parameters of static graphene antidot lat-
tices only results in discrete tunability of the electronic
band gap. By contrast, the electric field amplitude can
be varied continuously, which leads to an adiabatic con-
nection between the static state and the Floquet Dirac
regime. In Fig. 3 we explicitly see how the quasienergy
gap, which remains at Γ, can be tuned continuously and
monotonically.

2.: Non-ballistic transport, the phonon-assisted decays
that relax excited carriers, and the lifetimes of the states
involved in optical transitions all depend on the nature
of the electron-phonon coupling. This, in turn, depends
on the high-symmetry point where the band extrema oc-
cur [66]. Therefore, the ability to shift the quasienergy
gap from the Γ point in the equilibrium phase to the
M point in the Floquet phase (Fig. 4d) can affect these
three fundamental processes significantly via the differ-
ence in electron-phonon coupling between high-symmetry
points. These phenomena could be investigated in quan-
titative detail with an adapted Floquet-Boltzmann ap-
proach [67].

A next notable feature is localization, which manifests
as band flattening. On the one hand, in the absence of
driving, the bands are flattened if the holes of an anti-
dot lattice are forced to nearly touch. This flattening is
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(a) (b) (c) (d)

(e) (f) (g) (h)
FIG. 4. Representative quasienergy spectra for the graphene antidot lattice defined in Fig. 1b, irradiated with circularly
polarized light at a photon energy of 0.8 eV. E0 is the electric field amplitude, where 1 a.u. = 1.291 (GeV/nm)/nC [64]. (a)
E0 = 0 a.u. Zero electric field amplitude limit for reference. (b) E0 = 1.7 a.u. (c) E0 = E0c1 = 2.15 a.u. The Dirac dispersion
of standard graphene is effectively restored. (d) E0 = 3.4 a.u. The quasienergy gap is shifted to the M point. (e) E0 = 4.2 a.u.
The quasienergy bands are selectively flattened in reciprocal space near the Γ point. (f) E0 = E0c2 = 4.62 a.u. In moving from
K to M the bands are quadratic, whereas in moving from Γ to M they are linear, indicative of a Floquet semi-Dirac material.
(g) E0 = 5 a.u. (h) E0 = 5.4 a.u.

non-selective, in the sense that it occurs over the entire
high-symmetry lines. On the other hand, our periodi-
cally driven system with E0 = 4.2 a.u. (Fig. 4e) features
bands which are selectively flattened near Γ in reciprocal
space. On the basis of the Hellmann-Feynman theorem,
the group velocity of the quasienergy bands is given by
vnk = ~−1∇kεnk [68]. Therefore, near the Γ point, the
charge carriers have zero group velocity, which is indica-
tive of selective dynamical localization. This behavior
persists as the electric field amplitude continues to in-
crease, at least in the range of values considered here.
Furthermore, since the band flattening occurs near Γ and
not another high-symmetry point, the system acts as a
low-wavelength-pass electronic filter. For comparison, let
us briefly mention here previous work [69], showing that
periodic kicking of standard graphene can result in com-
plete dynamical localization along one entire axis in re-
ciprocal space or over the whole Brillouin zone.

3.: In Fig. 4f, quadratic and linear dispersions emerge
from the M point in orthogonal directions, which cor-
respond to “non-relativistic-like” and “relativistic-like”
carriers, respectively. This behavior is the signature of a
Floquet semi-Dirac material, which has already been ob-
served for standard Floquet graphene [60, 61, 69]. Even
so, the physical mechanism of this striking anisotropy

is not the same for all cases. In previous work, it
was linearly polarized radiation [60, 61] or uniaxial peri-
odic kicking [69] which generated the inequivalence be-
tween different directions in reciprocal space. In our
setup, since we apply circularly polarized radiation, the
anisotropy is a truly emergent phenomenon. In fact, in
a different context, this is reminiscent of the anisotropic
quasiparticle gap closing that has been found to emerge
from competing interactions in both static and Floquet-
driven gapless s-wave superconductors on 2D square lat-
tices [70, 71].

As a platform for realizing a Floquet semi-Dirac mate-
rial, Floquet graphene antidot lattices offer some distinct
advantages over existing approaches. First, the semi-
Dirac property can be realized at much lower photon en-
ergies (~Ω = 0.72-0.81 eV), whereas previously values of
around at least 4 eV were required [60, 61]. Second, while
the work on periodic kicking is of fundamental physical
interest, the proposals to realize it experimentally are not
practical at the time of writing [69]. Third, in the case of
pristine graphene, the static Dirac and the Floquet semi-
Dirac points are both gapless. On the other hand, for
the graphene antidot lattice, the static system is gapped
and the Floquet semi-Dirac point is gapless. Having a
different quasienergy gap between the static and Floquet
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states may enable different applications.

4.: The first Floquet phase ends with the closing of the
quasienergy gap at the M point. The gap reopens imme-
diately for E0 > E0c2 , landing one in a second Floquet
phase. We show a couple of quasienergy band structures
for this phase in Figs. 4g and 4h. There are several other
Floquet phases beyond this second one and below the
damage threshold of E0 = 23 a.u. We leave them as a
topic for future research.

V. APPLICATIONS

As we showed in the previous section, the irradi-
ated graphene antidot lattice can cycle between gapped,
quadratic bands for vanishing intensity and a dynami-
cally induced Dirac point for a suitable value of the in-
tensity. We recognize at least two possible applications
of this behavior. In this paper we will give only a qual-
itative description of them, leaving a more quantitative
study for the future. At this level of analysis, we en-
vision that the operation timescale of any such Floquet
device should be much slower than the drive period, so
that the initial state does not change appreciably within
a period and a description in terms of the Floquet stro-
boscopic dynamics will suffice [62]. In addition, and this
point is specific to our setup, we do not know exactly
what to expect for the mobility of the charge carriers at
the dynamically induced Dirac point. We judge that a
more quantitative description of our devices will have to
be grounded in simulations within the Floquet Landauer-
Büttiker formalism [72, 73].

V.1. An optoelectronic switch

The first application we envision is an optoelectronic
switch, which could function as an optical computing ele-
ment. For this device, a steady voltage drop is held across
the graphene antidot lattice during operation. Hence,
without driving, the gapped system should support a
small current which corresponds to the “off” state of the
switch. By contrast, with suitable driving, the gapless
Floquet phase with the Dirac dispersion should allow for
a much larger current corresponding to the “on” state.
Notice that the operating principle of this optoelectronic
switch goes beyond the photoconductivity level (meaning
that photons promote additional carriers into the con-
duction band). Rather, the operation mechanism is the
renormalization of the band structure by the driving. Fu-
ture numerical simulations should characterize the device
more precisely through the on/off current ratio.

V.2. A dynamically tunable electronic waveguide

The second application we envision is a device that
could be described as a dynamically tunable electronic

waveguide. If the antidot lattice is only irradiated in
a particular region of space, then one expects that the
charge carriers will preferentially follow the path where
the Dirac dispersion is restored. This idea presupposes
that the properties we discovered still hold when trans-
lational symmetry is broken on the length scales of the
waveguide. Our waveguide proposal is inspired by previ-
ous work where a graphene antidot lattice waveguide was
formed by selectively leaving the graphene unpatterned,
thus locally restoring the Dirac dispersion of standard
graphene and creating a current channel [74]. However,
in that case the waveguide path was fixed, whereas in our
proposal we conjecture that spatially selective irradiation
should permit dynamical control of the current channels.

VI. CONCLUSIONS AND OUTLOOK

We introduce the Floquet graphene antidot lattice as a
platform for investigating the properties of quantum con-
fined and periodically driven massless Dirac fermions in
2D. The actual system is a sheet of graphene decorated by
a periodic array of holes (the “antidots”) and subjected
to steady irradiation. To focus on the physics of massless
Dirac fermions, we model the graphene antidot lattice in
terms of a Dirac Hamiltonian with a spatially varying
“mass term.” Time-periodic driving is introduced by in-
cluding an electromagnetic field at the minimal coupling
level. We use the extended space formulation of the Flo-
quet formalism to compute (numerically) the quasienergy
band structures.

A number of notable properties emerge for various elec-
tric field amplitudes. First, the Dirac point, which had
been removed by the antidot lattice, can be dynamically
restored by irradiation. Second, the quasienergy gap can
be shifted from one high-symmetry point of the Brillouin
zone, the Γ point, to another, the M point, and that shift
could affect dramatically the electron-phonon coupling in
the system. Third, after the gap has shifted, the bands
can be flattened near the Γ point, indicative of selective
dynamical localization. Finally, the quasienergy gap can
again close at the M point accompanied by exotic semi-
Dirac behavior, where orthogonal directions emanating
from the M point feature quadratic and linear disper-
sions. Every one of these features is of intrinsic physical
interest, but we have also pointed out potential device
applications: an optoelectronic switch, a dynamically
tunable electronic waveguide, and a low-wavelength-pass
electronic filter. In general, the ability to cycle between
different electronic phases with lasers may play an impor-
tant role in the development of optoelectronic devices.

Some qualitative features of our quasienergy spectra
can also be observed for systems different from ours, but
we have made a careful case that the Floquet graphene
antidot lattice may offer distinct practical advantages.
From an experimental perspective, all of our predictions
are valid for accessible near-IR radiation, in contrast to
standard graphene, where the same non-resonant above
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bandwidth limit corresponds to ionizing extreme UV
photon energies. Moreover, while we focused on graphene
antidot lattices, everything was based on effective Dirac
Hamiltonians, where a rescaling of parameters can be
used to translate our results to other 2D Dirac materials.

We conclude with some ideas for future research.
One immediate question that we have not answered is
whether the Floquet graphene antidot lattice features
non-trivial topology [75–77]. More precisely, this system
combines two gapping mechanisms, the time-reversal-
symmetry-breaking circularly polarized light and the
chiral-symmetry-breaking antidot lattice, both of which
retain the particle-hole (charge-conjugation) symme-
try. We have not determined whether the resulting
quasienergy gap is topologically non-trivial, or if such
properties vary based on the defined phase regimes
(quasi-equilibrium, Floquet Dirac, Floquet semi-Dirac).

Another interesting question is how irregularities in the
placement and shapes of the holes (disorder) affect the
emergent properties [78–81]. And finally, there is the
critical question that we have asked before: What is the
mobility of charge carriers at the emergent Dirac point?
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[60] P. Delplace, Á. Gómez-León, and G. Platero, Merging of
Dirac points and Floquet topological transitions in AC-
driven graphene, Phys. Rev. B 88, 245422 (2013).

[61] H. Liu, J.-T. Sun, and S. Meng, Engineering Dirac states
in graphene: Coexisting type-I and type-II Floquet-Dirac
fermions, Phys. Rev. B 99, 075121 (2019).

[62] M. S. Rudner and N. H. Lindner, The Floquet engineer’s
handbook, arXiv:2003.08252v2 (2020).



10

[63] C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue,
M. V. Costache, M. Paradinas, M. Panighel, G. Ceballos,
S. O. Valenzuela, D. Peña, et al., Bottom-up synthesis of
multifunctional nanoporous graphene, Science 360, 199
(2018).
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