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ABSTRACT
There has been a long-standing challenge in developing locally stationary Gaussian process models con-
cerning how to obtain flexible partitions and make predictions near boundaries. In this work, we develop
a new class of locally stationary stochastic processes, where local partitions are modeled by a soft partition
process via predictive random spanning trees that leads to highly flexible spatially contiguous subregion
shapes. This valid nonstationary process model knits together local models such that both parameter
estimation and prediction can be performed under a unified and coherent framework, and it captures both
discontinuities/abrupt changes and local smoothness in a spatial random field. We propose a theoretical
framework to study the Bayesian posterior concentration concerning the behavior of this Bayesian nonsta-
tionary process model. The performance of the proposed model is illustrated with simulation studies and
real data analysis of precipitation rates over the contiguous United States. Supplementary materials for this
article are available online.
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1. Introduction

Gaussian processes (GPs) have been a widely used modeling
tool in spatial statistics, machine learning, and computer model
uncertainty quantification. In the past decades, nonstationary
GPs have attracted much attention due to their flexibility in
modeling varying spatial dependence structures over the spatial
domain. Despite significant progress on nonstationary spatial
process models in the literature, developing flexible, computa-
tionally efficient, and theoretically justified nonstationary mod-
els remains an important but challenging open problem. Locally
stationary processes for nonstationary spatial data have gained
great popularity in the literature, due to their advantages in
adapting to local and nonstationary data features and naturally
allowing for reduced computations using local model results.
Such models are also useful for detecting discontinuities in spa-
tial fields that are commonly encountered in subsurface geology,
public health, real estate, and social-demographic and economic
studies, to name a few. However, there are several vital questions
surrounding such methods: (i) How many subregions to use?
(ii) How to identify locally stationary partitions (subregions)?
(iii) How to achieve consensus predictions from local models,
especially at boundaries?

Some existing work on locally stationary GPs relies on pre-
determined subregions. Park, Huang, and Ding (2011) used
uniform grids for roughly evenly distributed data points. For
unevenly distributed data points, k-d tree partitions with rectan-
gular shapes (Shen,Ng, and Seeger 2006) and spatial hierarchical
clustering algorithms (Heaton, Christensen, and Terres 2017)
were used in the literature. Gerber and Nychka (2021) consid-
ered an overlapping domain partitioning method and used a
parallel cross-validation algorithm to estimate local covariance
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parameters and perform spatial predictions. Model-based par-
titioning methods provide an alternative to these approaches.
Risser et al. (2019) and Zhang and Williamson (2019) con-
sidered GP models based on Gaussian mixture clustering of
spatial locations, where the number of clusters is pre-specified
instead of being learned from data. Bolin, Wallin, and Lindgren
(2019) developed a mixture of GP models for data on a uniform
grid, where the clusters are modeled by a Markov random field
and hence may not be spatially contiguous. The binary-treed
GP models proposed in Gramacy and Lee (2008) partition the
input space into nonoverlapping regions bymaking binary splits
recursively, hence only producing rectangular-shaped clusters
with boundaries always parallel to the input-space axes. Kim,
Mallick, and Holmes (2005) assumed the partition is defined by
a number of centering locations such that points within a cluster
are closer to its center than any other cluster centers, which
leads to convex-polygon-shaped clusters (a.k.a. Voronoi cells).
The Voronoi tessellation-based method was extended in Pope
et al. (2021) by allowing a subregion to be formed by multiple
convex polygons but without guarantee of spatial contiguity of
subregions, and in Gosoniu and Vounatsou (2011) by assuming
a mixture of cell-specified models with distance-based weights.
Despite the benefits of locally stationary models, a common
criticism is that they lack a coherent global process for inference
and prediction. Moreover, the constraints imposed on the shape
of clusters in the current literature considerably limit the appli-
cations and interpretability of local stationary models in real
problems, where it is of interest for practitioners to detect and
locate spatial nonstationarities that may have highly irregular
structures.Most recently, the spanning-treed partitioningmodel
has been demonstrated as an efficient modeling tool for highly
flexible spatially contiguous cluster shapes (Li and Sang 2019;
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Teixeira, Assunção, and Loschi 2019; Luo, Sang, and Mallick
2021b). Nonetheless, these works have been restricted to the
partition of a finite set of observed locations in regression set-
tings. Besides the aforementioned locally stationary GP models,
a variety of nonstationary covariance functions of GPs have
been proposed tomodel the heterogeneity of spatial dependence
based on the ideas of kernel convolution, dimension expansion,
spatial deformation, basis representations, and stochastic partial
differential equations, to name a few.We refer interested readers
toRisser (2016) andFouedjio (2017) for a comprehensive review.

In light of these challenges and limitations, our contribution
is to develop a new class of nonstationary GP models with
flexible and easily interpretable dependence structures. The pro-
posed nonstationary model is constructed from locally station-
ary stochastic processes on a partitioned domain. We propose
a general framework to extend a spatially contiguous partition
model on a finite set of reference knots to the whole spatial
domain, by introducing a soft space partition process that uses
neighborhood information. To address the key and challenging
issue of learning space partitions with flexible shapes and sizes,
we assign a spanning-treed partition prior on the finite reference
set. Built upon the latent space partition, a valid global spatial
process model called the soft partitioned GP (SPGP), is further
defined to knit together local models, such that the predictive
distributions admit Gaussian mixture forms that can lead to
better performance in prediction and uncertainty quantification
near partition boundaries. The idea of building spatial processes
from finite-dimensional models has shown great promise in
recent literature (see, e.g., Lindgren, Rue, and Lindström 2011;
Datta et al. 2016). Our formulation adds to this line of work,
but the motivation and model specifications are vastly different
from the existing literature. The framework of constructing
SPGP is general and can adopt any other space partition priors
such as binary trees, Voronoi tessellations, and product partition
models.

We also make a theoretical contribution to studying the
Bayesian posterior concentration concerning the infill asymp-
totic behavior of this Bayesian nonstationary process model.
To the best of our knowledge, Bayesian theoretical properties
of locally partitioned GP models have not been investigated in
the literature. We design an efficient Bayesian estimation and
prediction algorithm that automatically learns local partitions
and other model parameters from data to detect discontinu-
ities (abrupt changes), understand spatial dependence struc-
tures, and perform spatial prediction by the Bayesian model
averaging. Moreover, the modeling framework allows flexible
choices of reference knots, which, if selected to be smaller sets,
naturally deliver a speed-up computation algorithm. We offer
several other computational strategies to take advantage of tree
structures, linear algebra tricks, and recently developed fast
algorithms for GP models with massive spatial data.

The rest of this article is organized as follows. Section 2
describes a general framework to construct the SPGP model
and develops its theoretical properties. In Section 3, we discuss
some computational strategies. We then demonstrate the model
performance with synthetic data in Section 4 and with real
precipitation data in Section 5. Finally, Section 6 concludes
the article with some discussions. Technical proofs, details of
posterior inference, and supplementary results on the synthetic

and real data are provided in supplementarymaterials. Our code
is publicly available at https://github.com/ztluostat/SPGP.

2. Soft Partitioned Gaussian Process Models

In many environmental applications, spatial data often exhibit
a dependence structure that is not homogeneous in space.
Oftentimes data within a subregion are relatively homogeneous
while there could be substantial differences across subregions.
To introduce a valid global process model for spatial estimation
and prediction while characterizing spatially heterogeneous
dependence, we begin by introducing a soft partition process
that probabilistically models the cluster membership of any
given location in Section 2.2. The soft partition process over
the whole study domain D ⊆ R

d is extended from a so-called
predictive spanning tree partition prior model over a fixed
finite set of locations in D. Conditional on this soft partition
process, we then define a valid soft partitioned Gaussian process
in Section 2.3.

2.1. Notations

Let S = {s1, . . . , sn} ⊆ D denote a set of observed locations,
S∗ = {s∗1, . . . , s∗m} ⊆ D denote a set of pre-specified distinct
reference knots that may or may not coincide with S , and V
denote any arbitrary finite set in D. In this article, we assume
both S and S∗ are fixed sets. We use πk(V) = {V1, . . . ,Vk}
to denote a partition of V into k disjoint subsets (also called
clusters). Given πk(V), let z(V) = {z(s)}s∈V be the vector of
cluster memberships of locations in V such that z(s) = j ∈
{1, . . . , k} with probability one if s ∈ Vj. Finally, let G = (V , E)

denote an arbitrary undirected spatial graph with vertices V
and edges E , where two nearby locations (with respect to the
Euclidean distance metric d) are connected by an edge.

In spatial settings, it is desired to impose spatial contiguity
constraints on partitions such that each cluster can be inter-
preted as a spatially connected subregion. We say πk(V) is a
spatially contiguous partition (or contiguous partition for short)
with respect to G if each induced subgraph of G on the vertex
subset Vj is connected.

2.2. A Spatial Soft Partition Process

The backbone of our soft partition process (SPP) is a finite
partition model πk(S) on the observed locations. While it
is natural to restrict πk(S) to be spatially contiguous with
respect to a spatial graph on S , it is computationally challenging
to build a probabilistic contiguous partition model directly
on S when the number of observations is large, due to the
large number of vertices and edges in the spatial graph for
observations. Instead, we construct a contiguous partition
model on the reduced reference knot set S∗, and then define
πk(S) on the observed locations via a predictive soft assignment
equation.

In a nutshell, we will construct the SPP model in three steps
to be described in the following three sections. In the first
step, we will introduce a random spanning tree (RST) partition
prior for πk(S∗) on the reference knots. In the second step, we

https://github.com/ztluostat/SPGP
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Figure 1. (a) A Delaunay triangulation graph on S∗ and the true space partition. (b) π3(S∗) obtained by removing the two dashed edges from a spanning tree graph on
S∗ , and a realization of 1-SPP withS = S∗ given π3(S∗). (c) A realization of 1-SPP withS �= S∗ given the same π3(S∗) as in (b). Locations inS are marked by gray color.
(d) A realization of 3-SPP given the same S �= S∗ and π3(S∗) as in (c).

define a predictive soft assignment equation to model πk(S)

given πk(S∗). Finally, we extend the finite partition model on
(S∗,S) to a partition process on D again through a predictive
soft assignment equation given πk(S∗) and πk(S). Despite we
focus on an RST prior for πk(S∗) in this article, the proposed
framework for constructing SPPs is generic in the sense that
SPPs can be built upon any prior model for πk(S∗).

2.2.1. Random Spanning Tree Prior for πk(S∗)
Wefirst describe the priormodel for spatially contiguousπk(S∗)
(or equivalently, z(S∗)). Motivated by the success of spanning
tree models for capturing contiguous partitions in linear regres-
sion settings (see, e.g., Luo, Sang, and Mallick 2021b), we assign
an RST partition prior for πk(S∗). This prior simplifies a graph
partition problem into a compact representation based on span-
ning tree cuts, without sacrificing the richness of its support (see
also Proposition 1).

Let G = (S∗, E) be a spatial graph with vertex set S∗ and
edge set E . Guided by our theoretical results (see Assumption
SD in Section 2.5), G can be specified as a radius-based nearest
neighbor (R-NN) graph that connects a node with its neighbor-
ing nodes within a certain distance, or a Delaunay triangulation
graph (Chew 1987) with edges longer than a large threshold
removed to avoid those artifact edges connecting two remote
points near domain boundaries. Figure 1(a) shows an example
of Delaunay triangulation graphs.

A spanning tree of G is defined as a subgraph T =
(S∗, ET ), ET ⊆ E that connects all vertices without any cycle.
Let ωi,i′ be the weight of the edge (s∗i , s∗i′) in G and ω = {ωi,i′ :
(s∗i , s∗i′) ∈ E}. A minimum spanning tree (MST) is a spanning
tree that has the minimal sum of edge weights

∑
(s∗i ,s∗i′ )∈ET ωi,i′ .

Awell-knownproperty of spanning trees is that after a set of k−1
edges is removed from T , we obtain a graph with k connected
components. By treating the jth connected component as cluster
S∗
j , we obtain a contiguous partition πk(S∗). We say πk(S∗)

is induced by T in this case. See Figure 1(b) for an example
of π3(S∗) induced from a spanning tree. The estimation of
πk(S∗) amounts to learning the spanning tree (which may not
be unique) and its removed edges that induce the true partition.
A prior on πk(S∗) can therefore be assigned hierarchically, by
first placing priors on the number of clusters k and the spanning
trees in G, and then the positions of the k − 1 removed edges.

Formally, conditional on T and k we assume a uniform
prior on all possible partitions induced by T (or equivalently,

a uniform prior on which k − 1 edges in T are removed):

p
{
πk(S∗) | k, T }
∝ 1

{
πk(S∗) is induced by T and has k clusters

}
, (1)

where 1(·) is an indicator function. Regarding the prior on
T , a seemingly natural choice is to assume a discrete uniform
distribution on all possible spanning trees of G. However, it is
challenging to sample from this uniform distribution. We opt
to place an iid uniform prior on edge weights ω instead, which
induces a prior model on the spanning tree space via

T = MST(ω), ωi,i′
iid∼ Unif(0, 1), (2)

where MST(ω) means an MST of the graph G based on edge
weights ω. This MST space constructed from random edge
weights consists of all possible spanning trees of G. We will
show in Section 3 that this prior also leads to an exact and fast
spanning tree sampler, taking advantage of Prim’s algorithm for
MST constructions.

Finally, we assume a truncated geometric distribution on k
such that

P(k = j) ∝ (1 − c)j, for j = 1, . . . , k̄m, 0 ≤ c < 1, (3)

where k̄m is the pre-specified maximum number of clusters and
c is a hyperparameter controlling the decaying rate of the prior
probability so that models with a large number of clusters can
be penalized. This allows the number of clusters to be learned
from the data. When S = S∗, guided by our theoretical results
in Section 2.5, we recommend specifying k̄n such that it scales
with

√
n log n (see Assumption P1).

The next proposition states that the support of the RST
partition prior contains any spatially contiguous partitions on
S∗ (and hence S when S = S∗) with no more than k̄m clusters.

Proposition 1. Let πk(S∗) = {S∗
1 , . . . ,S∗

k } be an arbitrary spa-
tially contiguous partition. Then πk(S∗) is within the support of
the prior defined by (1), (2), and (3) if k ≤ k̄m.

2.2.2. A Soft PartitionModel for πk(S)

We now introduce the so-called predictive RST partition prior
for πk(S), which is constructed from the RST partition prior,
denoted as RST(G), on a reduced reference knots set S∗ as
described in Section 2.2.1. More precisely, conditional on the
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cluster memberships z(S∗) associated with πk(S∗), we model
each cluster membership z(s), s ∈ S independently as follows:

z
(
s|z(S∗)

) = �(s,S∗)z(S∗), s ∈ S (4a)
�(s,S∗) ∼ Multinomial(1,α(s,S∗)) (4b)

z(S∗) ∼ RST(G) (4c)

where α(s,S∗) = (
α(s, s∗1), . . . ,α(s, s∗m)

) ∈ R
1×m is a row

vector of membership assignment probabilities that sum to 1,
and �(s,S∗) = (

ψ(s, s∗1), . . . ,ψ(s, s∗m)
) ∈ R

1×m is a random
binary row vector with only one entry being 1 that follows a
multinomial distribution with event probabilities α(s,S∗). The
model in (4) defines a predictive soft assignment scheme at
the observed locations which assumes s shares the same cluster
membership as s∗� with probabilityα(s, s∗�). For spatial problems,
it is reasonable to assume a location is more likely to share
the same cluster membership as one of its nearby neighbors.
We thus, assume that when s �∈ S∗, α(s,S∗) has nonzero
probabilities only at the L nearest reference knots, and for each
of these L neighbors α(s, s∗�) = 1/L (uniform weighting) or
α(s, s∗�) ∝ 1/d(s, s∗�) (inverse distanceweighting).When s ∈ S∗,
d(s, s∗�) = 0 for some �, and α(s,S∗) only has one nonzero entry
with value 1 at the �th column. Alternatively, one may use other
probability weighting functions such as the hat basis function
commonly adopted in the finite element type of methods such
as INLA (Lindgren, Rue, and Lindström 2011).

2.2.3. Predictive Soft Partition Process
Conditional on the finite partition prior model for S and S∗ in
(4), we now turn attention to the construction of the SPP model
for any arbitrary finite set in D. Let U be any finite subset of D
such that U ∩ (S ∪ S∗) = ∅. We follow a similar predictive soft
assignment scheme as in (4) and assume that

z
(
u|z(S), z(S∗)

) = �(u,S)z(S), u ∈ U (5a)
�(u,S) ∼ Multinomial(1,α(u,S)) (5b)

where �(u,S) and α(u,S) are defined similarly as in (4) to
reflect the partitioning uncertainty at new locations. When
ψ(u, si) = 1 for some i, a new location u ∈ U is assigned to
the same cluster as the ith observation.

It is easy to see that the constructions in (4) and (5) define
a stochastic process {z(v) : v ∈ D} given πk(S∗) and πk(S)

that takes value in {1, . . . , k}, such that the joint distribution for
any finite set V ⊆ D satisfies p

(
z(V)

) = ∏
v∈V p

(
z(v)

)
, where

p
(
z(v)

)
is a degenerated distribution on j if v ∈ S∗

j ∪ Sj, or a
categorical distribution with event probabilities depending on
α(v,S) and πk(S) if v �∈ S∗ ∪ S . We refer to this process as
an L nearest neighbor soft partition process (L-SPP) conditional
on πk(S) and πk(S∗). We treat L as a hyperparameter, and its
selection will be discussed in Section 3.1.

Figure 1 shows three examples of realized πk(D) from the L-
SPP model, when (i) S = S∗ and L = 1, (ii) S∗ �= S with
m < n and L = 1, and (iii) S∗ �= S and L = 3. Let VS∗(s∗) =
{v ∈ D : d(v, s∗) < d(v, s∗,′) for any s∗,′ ∈ S∗ and s∗,′ �= s∗}
be the Voronoi cell with nucleus s∗ in the Voronoi tessellation
of D based on S∗. When L = 1 and S∗ = S , L-SPP reduces
to a hard space partition model for πk(D), whose jth subregion
Dj becomes the unioned Voronoi cells, ∪s∗∈S∗

j
VS∗(s∗). When

S �= S∗,πk(D) is jointly determined by bothπk(S∗) andπk(S).
Note that when L = 3, the partition boundary in πk(D) is soft,
reflecting the uncertainty near the boundary. When denser S∗
and S are used, the determined πk(D) better approximates the
true partition.

2.3. A Soft Partitioned Gaussian Process

Given a realization of πk(S) (conditional on πk(S∗)), we allow
eachw(Sj) = {w(s) : s ∈ Sj} to be a realization of different zero-
meanGaussian processes characterized by a covariance function
C(·, ·|θ j), that is,

w(Sj)|πk(S),πk(S∗) ∼ Nnj
{
0, C(Sj,Sj|θ j)

}
(6)

independently for all j = 1, . . . , k, where nj = |Sj| is the number
of observed locations in cluster Sj. The joint distribution of
w(S) = {w(S1), . . . ,w(Sk)} conditional on πk(S) is therefore
Gaussian with a block-diagonal covariance matrix whose jth
block is C(Sj,Sj|θ j).

To extend (6) to a legitimate spatial process on D, we first
define the distribution of w(U) given w(S) for any finite set U
that is disjoint from S . Given a realization of the L-SPP z(U) =(
z(u1), . . . , z(ur)

)
conditional on πk(S) and πk(S∗), U can be

partitioned into clusters Uj = {u ∈ U : z(u) = j}. The
conditional distribution of w(U) given w(Sj), z(Uj), πk(S), and
πk(S∗) is assumed to be

w(Uj)|w(Sj), z(Uj),πk(S),πk(S∗)
∼ Nrj

{
μ(Uj|Sj, θ j), S(Uj|Sj, θ j)

}
, (7)

independently for j = 1, . . . , k, where rj = |Uj|, and
μ(Uj|Sj, θ j) = C(Uj,Sj|θ j)C−1(Sj,Sj|θ j)w(Sj), (8)
S(Uj|Sj, θ j) = C(Uj,Uj|θ j)

− C(Uj,Sj|θ j)C−1(Sj,Sj|θ j)C(Sj,Uj|θ j). (9)

Combining (6) and (7), for any finite subset V of D with the
associated cluster memberships z(V), the density of w(V) given
z(V), πk(S) and πk(S∗) is given by

p
(
w(V)|z(V)

) =
∫

p
(
w(U)|w(S), z(U)

)
p(w(S))∏

{s∈S\V}
d(w(s)) where U = V \ S . (10)

The dependence on πk(S), πk(S∗) and parameters � =
(θ1, . . . , θk) is made implicit in (10) for conciseness. Note that
if V ⊆ S then p(w(U)|w(S), z(U)) = 1 and if S \ V = ∅ then
the integration in (10) is not needed. A mean-zero GP on D is
therefore defined by (10) conditional on an L-SPP on D, with a
covariance function

C‡(v, v′|z(v), z(v′),�)

=
{
C
(
v, v′|θ j

)
, if v, v′ ∈ Dj for some j ∈ {1, . . . , k},

0, otherwise,

where Dj = {s ∈ D : z(s) = j} is the collection of all locations
inD that are assigned to the jth cluster.
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Marginalizing out the L-SPP realization on V \ (S ∪ S∗)
conditional onπk(S) andπk(S∗), the density of p(w(V)) for any
finite subset V ⊆ D is therefore given by a Gaussian mixture

p
(
w(V)|πk(S),πk(S∗)

)
=

∑
z(V\(S∪S∗))

p
(
w(V)|z(V)

)
p
(
z(V)|πk(S),πk(S∗)

)
, (11)

where the summation is over all possible combinations of cluster
memberships z(V \ (S ∪ S∗)). As shown in Supplementary
Section S1, the density (11) satisfies Kolmogorov’s consistency
criteria and thus implies a valid spatial process onD conditional
on πk(S) and πk(S∗), which we call an L nearest neighbor soft
partitionedGaussian process (L-SPGP) conditional onπk(S) and
πk(S∗). The covariance function of this process is given by

C‡(v, v′|πk(S),πk(S∗),�) =
k∑

j=1
κ
v,v′
j C(v, v′|θ j), (12)

where the weights κ
v,v′
j = κv

j κ
v′
j and κv

j is the conditional prob-
ability that v belongs to the jth cluster given πk(S) and πk(S∗).
Note that for any location v ∈ D, κv

j = ∑L
�=1 αj1(Nv,� ∈ Sj)

if v �∈ S ∪ S∗, and κv
j = 1 if v ∈ Sj ∪ S∗

j , where Nv,�
is the � nearest neighbor of v in S . Therefore, the conditional
covariance function is completely determined by the neighbor-
hood structure and the base covariance functionC. In particular,
C‡(v, v′|πk(S),πk(S∗),�) reduces to C(v, v′|θ j) if v, v′ ∈ Ij,
where Ij is the interior space of the jth cluster defined as Ij :=
S∗
j ∪Sj∪{u ∈ D\(S∪S∗) : Nu,� ∈ Sj for all � = 1, . . . , L}. IfC is

taken to be a stationary andmean square continuous covariance
function, then L-SPGP is locally stationary and mean square
continuous within Ij for any choice of L ≥ 1. When L > 1
and the inverse distance weighting is used for α, the covariance
function of SPGP is continuous everywhere following (12), and
hence SPGP is also mean square continuous (Adler and Taylor
2007) everywhere given πk(S∗).

Note that this process can also be viewed as a finite mix-
ture of GPs defined on D, where each mixture component is
GP(0,C(·, ·|θ j)) and the spatially varying mixture weights are
determined by the soft partition process model.

For further illustration of L-SPGP, let us consider two exam-
ples.

Example 1. Let S be the locations where the realization of the
process {w(v)} is observed and u �∈ S be a location on which we
want to do prediction. The conditional (also called predictive or
kriging) distribution is given by a Gaussian mixture

w(u)|w(S),πk(S),πk(S∗)

∼
L∑

�=1
α� N1

(
μ(u|Sj(�), θ j(�)),S(u|Sj(�), θ j(�))

)
, (13)

where j(�) = z(Nu,�). The uncertainty of clustermemberships of
u for prediction is captured by the Gaussian mixture structure.
We refer to the mean and variance of the Gaussian mixture in
(13) as the kriging mean and kriging variance at u, respectively.
Note that each mixture component in (13) may not be distinct;
the �th and �′th components are identical whenever j(�) = j(�′).

When j(1) = · · · = j(L) = J (i.e., when u ∈ IJ), (13) reduces
to the same predictive distribution given by (7) using only the
observations in Sj and the local covariance function with θ j.

In general, the number of neighbors L controls the smooth-
ness of the kriging mean at u near the boundary setD \ ∪k

j=1Ij.
As L increases, we have a larger boundary set, allowing for cap-
turing partitioning uncertainty in a larger area, and the smooth-
ing effects are stronger within the boundary set. See Figure S2
in Supplementary Section S3.1 for an illustration of the kriging
means and standard deviations (SDs) across D = [0, 1]2 with
various values of L and inverse distance weighted soft assign-
ment probabilities.

Example 2. When L = 1, SPGP becomes a piecewise GP
in the sense that it takes the form GP(0,C(·, ·|θ j)) in Dj =
∪s∗∈S∗

j
VS∗(s∗), the unioned Voronoi cells corresponding to S∗

j .
Our method allows Voronoi cells to be merged together to form
space partitions with highly flexible shapes. In contrast, the
piecewise GP model in Kim, Mallick, and Holmes (2005) treats
each Voronoi cell as a cluster that can only have convex polygon
shapes.

2.4. Bayesian Soft Partitioned Gaussian Process
Regressions

Weembed the proposedL-SPGP into a spatial regression setting.
Consider a point-referenced response variable y(s) ∈ R at a
generic location s ∈ D along with a vector of covariates x(s) ∈
R
p. We denote the collection of responses and the design matrix

corresponding to a generic finite subset V of D by y(V) and
X(V), respectively.

We consider a spatial regression model specified as

y(s) = βTx(s) + w(s), s ∈ D,

where the residual process w(s) is modeled as a zero-mean L-
SPGP conditional on πk(S) and πk(S∗) as discussed in Sec-
tion 2.3. Finally, we assign a random spanning tree prior to
πk(S∗) following Section 2.2.1, and the soft partition prior
model to πk(S) following (4). The hierarchical model for obser-
vations can be written as

y(Sj)|β ,�,πk(S),πk(S∗) ind.∼ Nnj
{
X(Sj)β , C(Sj,Sj|θ j)

}
,

(14a)
β|λ ∼ Np

(
μβ , λIp

)
, λ ∼ IG(aλ, bλ), (14b)

z
(
s|πk(S∗)

) = �(s,S∗)z(S∗), �(s,S∗)
ind.∼ Multinomial(1,α(s,S∗)), for s ∈ S , (14c)(

πk(S∗), k, T
) ∼ p

(
πk(S∗)|k, T )

p(k)p(T ), (14d)

where p(πk|k, T ), p(T ), and p(k) are specified in (1), (2), and
(3), respectively. Note that we assume all clusters share the
same coefficients. One may instead assume cluster-specified
coefficients; however, we argue that this may cause identifia-
bility issues between spatially varying regression means and
spatial random effects and hence a poor parameter estimation
performance, though we may still obtain reasonable prediction
accuracy of the responses.

We complete the hierarchical model by specifying the local
covariance function. One popular choice is the stationary
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Matérn family (Banerjee et al. 2004) including both isotropic
models C(s, s′|θ) = σ 2ρ(s, s′|φ, ν) + τ 21(s = s′), where σ 2, φ,
ν and τ 2 are the variance, range, smoothness and nugget effect
variance parameters, respectively, and geometric anisotropic
models. Priors for local covariance parameters are assigned
following standard GP models.

Finally, consider a new location u �∈ S where we intend to
predict the response y(u) given x(u) and y(S). Following (13),
the posterior predictive distribution of y(u) is

y(u)|y(S),β ,�,πk(S),πk(S∗)

∼
L∑

�=1
α� N1

(
μ̃(u|Sj(�), θ j(�)),S(u|Sj(�), θ j(�))

)
, (15)

with μ̃(u|Sj, θ j) = x(u)Tβ + C(u,Sj|θ j)C−1(Sj,Sj|θ j){y(Sj) −
X(Sj)β}, and S(u|Sj(�), θ j(�)) taking the same form as in (9).

2.5. Theoretical Properties

In this section, we establish posterior concentration results
for the SPGP regression model under the assumption that
D = [0, 1]2 and the true spatial field is a piecewise smooth
function. Our theoretical results can be easily extended to a
more general domain that is homeomorphic to the unit square
with the Euclidean metric and a bi-Lipschitz homeomorphism.
Throughout this section, we focus on the case where S∗ = S .
Assuming y(s) has zero mean for simplicity, our model can be
written as

y(s) = w̃(s) + ε(s), ε(s) ∼ N1
{
0, τ 2(s)

}
(16)

where w̃(s) is assigned an L-SPGP prior with local isotropic
Matérn parameters {σ 2

j ,φj} and a common smoothness param-
eter ν, and ε(s) is the nugget effect with a piecewise constant
variance {τ 2j }.

We adopt the following notations. Given two positive
sequences {an} and {bn}, an = o(bn)means limn→∞ (an/bn) = 0
and an � bn means 0 < lim infn→∞ (an/bn) ≤ lim supn→∞
(an/bn) < ∞. The posterior given data (y(S),S) is denoted by
�n(·|y(S),S).

We first state the assumptions on the true data generating
process. We assume the responses are generated according to
(16) with a piecewise smooth true mean function w̃∗(s) and a
piecewise constant true nugget variance τ ∗2(s). More precisely,
we let π∗

k∗(D) = {D∗
1 , . . . ,D∗

k∗} be the true contiguous partition
of [0, 1]2 with some fixed k∗ and a fixed boundary set B∗ ⊂
[0, 1]2 (see Supplementary Section S1.2 for the definition). We
assume the following smoothness conditions on the true spatial
field in eachD∗

j .

Assumption T. We assume w̃∗(s) and τ ∗2(s) satisfy

w̃∗(s) =
k∗∑
j=1

w̃∗
j (s)1(s ∈ D∗

j ), τ ∗(s) =
k∗∑
j=1

τ ∗
j 1(s ∈ D∗

j ),

for some functions w̃∗
j ∈ Cβ [0, 1]2 ∩ Hβ [0, 1]2 and constants

τ ∗
j > 0 that are fixed as n grows, where Cβ [0, 1]2 and Hβ [0, 1]2
are the Hölder space and the Sobolev space of regularity

β , respectively. Further, we assume that w̃∗
j (·) is within the

support of a GP prior with an isotropic Matérn covariance
σ 2∗
j ρ(·, ·|φ∗

j , ν) for some constants σ ∗2
j , φ∗

j , and a known ν ≥ β .

We adopt a random design framework where the number of
sampling locationswithin a fixed domain diverges to infinity.We
assume the following on the spatial design and spatial graph of
n points s1, . . . , sn inD.

Assumption SD. Given n ∈ N, we assume S is a sequence of
n independent points where each point is distributed on [0, 1]2
with a probability density function ps such that 0 < pmin

s ≤
ps(s) ≤ pmax

s < ∞. We assume the spatial graph on S is
constructed by (i) the R-NN graph with a radius γ1 � √

log n/n
and γ1 > γ0, where γ0 is the maximum edge length of the MST
on S ; or (ii) the Delaunay triangulation graph where the edges
are removed if they are longer than γ2, where γ2 � √

log n/n
and γ2 > γ0.

Given the true space partition and a spatial graphG = (S , E),
we say an edge (si, si′) ∈ E is across the true boundary B∗
if si ∈ D∗

j and si′ ∈ D∗
j′ for some j �= j′. If the set of all

edges within a spanning tree T that are across B∗ is removed,
one obtains a partition of S , denoted by π∗

k∗
T

(S), that is nested
in the true partition π∗

k∗(S) = (S ∩ D∗
1 , . . . ,S ∩ D∗

k∗) of S ,
and with the number of clusters k∗

T ≥ k∗. Assumption SD
guarantees that the maximum number of edges across B∗ in
any spanning tree scales with

√
n log n with probability tend-

ing to 1 (Luo, Sang, and Mallick 2021b). This implies k∗
T ≤

c1
√
n log n for some constant c1 > 0 and any T , which plays

a crucial role in establishing the prior concentration around the
true model.

We further assume the prior satisfies the following condition,
which guarantees the partition π∗

k∗
T

(S) is within the support of
the prior given an arbitrary spanning tree T . It also regularizes
the partition model so that the number of obtained clusters is
not too large.

Assumption P1. We assume k̄n satisfies c1
√
n log n ≤ k̄n ≤

c′1
√
n log n for some positive constants c′1 > c1.

We are now ready to state our first posterior concentra-
tion result. We denote by p(y|s) the conditional density of the
response given the sampled location, whereas the true one is
denoted by p∗(y|s). Note that p(y|s) depends on the partition
and covariance parameters. The following theorem shows that
p(y|s) concentrates in aweakneighborhoodof p∗(y|s) asymptot-
ically under a random spatial design for S . Its proof is deferred
to Supplementary Section S1.

Theorem 1 (Weak consistency). Let g be any bounded continu-
ous function. Define the weak ε-neighborhood of true density
p∗(y|s) for any ε > 0 as

Wg,ε =
{
p :

∣∣∣∣∫ g(y|s)p(y|s)ps(s)dyds

−
∫

g(y|s)p∗(y|s)ps(s)dyds
∣∣∣∣ < ε

}
, for any g.
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Under Assumptions T, SD, and P1, the posterior distribution
satisfies �n

(
Wc

g,ε | y(S),S
)

→ 0 almost surely under
p∗(y|s)ps(s) for any g.

To establish posterior contraction rate results, we need addi-
tional assumptions on the priors and the spatial graph. Let εn be
a sequence going to zero such that εn � (log n/n)δ with some
constant 0 < δ < min{β/(8ν + 8− 4β), 1/4− 1/(2α)}, where
α = �ν�.
Assumption P2. Let�φ ,�σ , and�τ denote the priors for φ, σ 2,
and τ , respectively.

(P2-1) Assume that ν ≥ max(3,β).
(P2-2) There exist sequences φ̃n, σ̃n and Mn satisfying that, as

n → ∞,

− log�φ(φ < φ̃−1
n )/(nε2n) → +∞,

− log�σ (σ 2 > σ̃−2
n )/(nε2n) → +∞,

k̄n(Mn/εn)
2/α = o(nε2n),

M2
nσ̃

2
n φ̃−2α

n /(nε2n) → +∞.

(P2-3) �τ is supported on [a, b] ⊂ R with 0 < a ≤ τ ∗2
j ≤ b <

+∞ for all j = 1, . . . , k∗.

Assumption SG. Let ξn(k) be the number of unique spatially
contiguous partitions with k clusters of the graph G on S . We
assume G is constructed such that log

(
max1≤k≤k̄n ξn(k)

)
=

O(nε2n).

Assumptions (P2-1) and (P2-2) on the priors of covariance
functions allow us to construct a sieve on w̃ that has a desired
tail probability and metric entropy; similar assumptions can
be found in Ghosal and Roy (2006) and Payne et al. (2020).
Assumption (P2-3) is a standard assumption in the literature for
nonparametric regressionswithGPpriors (see van derVaart and
van Zanten 2008; Bhattacharya, Pati, and Dunson 2014, among
others), which is used to construct a sieve on τ 2. Assumption SG
excludes some graphs that are too dense and constrains the
complexity of the space of all possible partitions so that the test
functions with a desired probability of Type-I errors exist.

The next theorem suggests that the posterior contracts with
rate εn at p∗(y|s) with respect to the expected total variation
distance. Note that this rate is slower than the minimax rate
for customary GP regressions with Matérn kernels (van der
Vaart and van Zanten 2011) as we pay a price for estimating
the unknown partition structure using the flexible RST prior.
Detailed proof is provided in Supplementary Section S1.

Theorem 2 (Posterior contraction). Under the same assumptions
in Theorem 1 as well as Assumptions P2 and SG, the posterior
distribution satisfies

�n

(∫ ∣∣p(y|s) − p∗(y|s)∣∣ ps(s)dyds ≥ Mεn | y(S),S
)

−→ 0

almost surely under p∗(y|s)ps(s) for some constantM > 0.

3. Computational Strategies

3.1. Estimation

The unknown parameters of the proposed SPGP regression
model involve the soft RST partition parameters

(
�(S ,S∗),

πk(S∗), k, T
)
with �(S ,S∗) = {�(s,S∗)}s∈S , the cluster-

specified covariance parameters � = {
τ 2j , σ

2
j , θ̃ j

}
j=1:k with

local correlation parameters θ̃ j, and the global parameters (β, λ).
Conditional on

(
�(S ,S∗),πk(S∗), k, T

)
and �, the global

parameters can be updated via standard Bayesian inference
methods. Specifically, we sample β and λ from their posterior
conditional distributions, which follow a multivariate normal
and an inverse gamma distribution, respectively. The detailed
forms are included in Supplementary Section S2.1.

Below, we focus on the adaptive estimation of the soft parti-
tion parameters and the local covariance parameters conditional
on (β , λ). As the number of clusters is assumed unknown, this
trans-dimensional inference is done via a tailored reversible
jump Markov chain Monte Carlo (RJ-MCMC) sampler (Green
1995; Luo, Sang, and Mallick 2021b). Taking advantage of the
tree structure, each trans-dimensional move can be achieved by
simply adding and/or deleting an edge in the tree. The accep-
tance ratio of the proposed RJ-MCMC move involves the cal-
culation of likelihood ratios, a major computation bottleneck
in Bayesian GP models. We will show that each move under
SPGP only changes the cluster memberships of a smaller subset
of observations, and hence only the likelihood ratios involving
this subset of data need to be calculated.An additional advantage
of the locally stationarymodel is that it allows estimating cluster-
specific parameters � using only the data in each subregion. By
doing so, SPGP naturally leads to a reduced computation from
fitting a global GPmodel to a number of local GPmodels. In this
article, when a cluster contains a large number of observations,
we employ the nearest neighbor GP (NNGP) methods (Datta
et al. 2016) to speed up the local likelihood calculation.

Specifically, we reparameterize the covariance function by
setting σ 2

j = τ 2j σ̄ 2
j and place a conjugate inverse gamma prior

for τ 2 = {τ 2j }j=1:k that allows us to integrate τ 2j out analytically
when we update the partitions and other cluster-specific param-
eters, which improves mixing and convergence of our sampler.

To collect samples from
({σ̄ 2

j , θ̃ j}j=1:k,�(S ,S∗),πk(S∗),
k, T

)|(β , λ), one of the four moves—birth, death, change, and
hyper—is performed with probabilities rb(k), rd(k), rc(k), and
rh(k), respectively. The first three moves modify the partition
πk(S∗) given T and�(S ,S∗). The use ofS∗ withm � n allows
us towork on a smaller graph and therefore amuch smaller space
of πk(S∗), which speeds up convergence and encourages better
mixing.

In a birth move, one of the k clusters in πk(S∗) is randomly
chosen with equal probabilities, and then the chosen cluster is
split into two by randomly removing an edge in T that connects
vertices in the cluster. Suppose that S∗

j0 is chosen to be split into
S∗
j1 and S∗

j2 . In the case where S∗ �= S , Sj0 is also split into two
clusters Sj1 and Sj2 according to (4a) given�(S ,S∗). One of Sj1
and Sj2 is uniformly chosen to inherit the parameters (σ̄ 2, θ̃)

from the original cluster. As there is no conjugate prior for σ̄ 2

or θ̃ , standard Metropolis-Hastings (M-H) updates can lead to
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low efficiency. To address this, following Payne et al. (2020), the
(σ̄ 2, θ̃) for the other new cluster, say Sj2 , are chosen tomaximize
p
{
y(Sj2)|σ̄ 2, θ̃ ,−}

p(σ̄ 2)p(̃θ), where p(σ̄ 2) and p(̃θ) are the
prior densities for σ̄ 2 and θ̃ , respectively, and p

{
y(Sj)|σ̄ 2

j , θ̃ j,−
}

is the likelihood function of y(Sj)with τ 2 integrated out. TheM-
H ratio is therefore

(1−c)× rd(k + 1)
rb(k)

×
p
{
y(Sj1)|σ̄ 2

j1 , θ̃ j1 ,−
}
p
{
y(Sj2)|σ̄ 2

j2 , θ̃ j2 ,−
}

p
{
y(Sj0)|σ̄ 2

j0 , θ̃ j0 ,−
} ,

(17)
which only involves likelihood functions on subsets of S . Oppo-
site to the birthmove, a deathmove randomly merges two adja-
cent clusters in πk(S∗). Specifically, an edge in T that connects
two distinct clusters in πk(S∗) is uniformly selected and then
the two clusters are merged. The corresponding two clusters
in πk(S) are also merged accordingly. The parameters (σ̄ 2, θ̃)

of the merged clusters are chosen using a similar maximum
a posteriori (MAP) approach as in the birth move. The M-H
ratio is analogous to (17). In a change move, a death move is
performed followed by a birth move, so that the number of
clusters is unchanged. Thismove is designed to encourage better
mixing of the Markov chain.

A hyper move updates T and �(S ,S∗) given other param-
eters. Specifically, T is updated using the exact sampler similar
as in Luo, Sang, and Mallick (2021b), which adaptively learns a
desired spanning tree spatial order to better recover the true par-
tition.We sample the edge weightωi,i′ of G from iid Unif(1/2, 1)
if the vertices s∗i and s∗i′ are in different clusters under πk(S∗),
and otherwise from iid Unif(0, 1/2). A new spanning tree is
the MST generated by Prim’s algorithm using the new edge
weights. Given πk(S∗), we use a Gibbs sampler to iteratively
sample �(s,S∗) from its full conditional distribution, which
admits a closed formMultinomial(1, α̃(s,S∗)) distribution. The
�th element (� = 1, . . . ,m) of α̃(s,S∗) is given by α̃(s, s∗�) ∝
p{y(S)|z(s) = z(s∗�),−}α(s, s∗�) if s∗� is among the L near-
est reference knots of s, and α̃(s, s∗�) = 0 otherwise, where
p{y(S)|z(s) = z(s∗�),−} is the likelihood when s is assigned to
the same cluster as s∗� with other cluster memberships z(S \ {s})
fixed. Note that for any s ∈ S whose L nearest neighbors in S∗
all belong to the same cluster, α̃(s, s∗�) = α(s, s∗�), suggesting
we can simply update �(s,S∗) from its prior. Thanks to the
L-SPP and local GP formulation, in practice, we can employ
several computation tricks to further reduce the computation of
the likelihood, including rank-one Cholesky update/downdate
(Golub and Van Loan 2013, Section 6.5.4). Details can be found
in Supplementary Section S2.1.

Finally, we update the parameters {τ 2j }j=1:k by sampling from
their inverse gamma full conditionals, whose closed forms are
given in Supplementary Section S2.1. Given posterior samples
of all the parameters, one can choose L by standardmodel selec-
tion techniques such as deviance information criterion (DIC;
Spiegelhalter et al. 2002).

3.2. Prediction

Posterior predictive inference in the SPGP model can be
achieved via (15). Let U = {u1, . . . ,ur} be a collection of

locations where the responses are unobserved. Conditional
on a posterior draw of the parameters, we can sample z(U)

according to (5) and then y(u) from (15). The detailed
algorithm is provided in Supplementary Section S2. Note that
the prediction algorithm is parallelizable, as predictions at each
Uj are independent and only depend on data inSj at a time given
a sample of cluster memberships of U and S .

Thanks to the Gaussian mixture structure in the predictive
distributions, the prediction uncertainty at points near bound-
aries will be reflected by their oftentimesmulti-modal predictive
distributions. As discussed in Section 2.3, the kriging mean
predictive surface around the estimated boundary becomes
smoother as L grows. The surface can be further smoothed by
using Bayesianmodel averaging to account formodel estimation
uncertainties (Gramacy and Lee 2008).We remark that the usual
kriging mean and SD estimates may not be the ideal choice
to summarize the possibly multi-modal prediction results of
the SPGP model near boundaries. Instead, we recommend
using the highest posterior density (HPD) region to capture
multimodality by potentially disjoint HPD intervals.

4. Simulation Studies

In this section,we assess the performance of the SPGP regression
model by some simulated data. We consider a squared spatial
domain D = [0, 1]2 that is partitioned into two subregions D∗

1
andD∗

2 with the true partition boundary B∗ given by a circle of
radius 0.3 centered at (0.5, 0.5). We generate n = 2000 uniform
locations S for training and r = 400 hold-out locations U for
prediction. 75% of U are sampled near B∗, allowing us to assess
the prediction performance primarily near B∗ where the abrupt
changes happen. See Figure 2(a) for the sampled locations.
The responses are generated from (16) using isotropic Matérn
covariance functions, where the true parameters of the processes
in D∗

1 and D∗
2 have well-separated microergodic parameters

ϑ = σ 2/φ2ν , and ν is treated as known. It is shown in Zhang
(2004) thatϑ mattersmore in prediction and can be consistently
estimated under the infill asymptotic framework, while σ 2 or
φ cannot. We choose m = 616 reference knots S∗ using a
data-driven approach detailed in Supplementary Section S3.2
such that more knots are placed near the initially estimated
boundary. We utilize NNGP approximation with 15 neighbors
to speed up computation and select the optimal value of L
from {1, . . . , 5} by DIC. The detailed data generation process,
prior specifications, and other model choices can be found in
Supplementary Section S3.2.

We compare the SPGP model with axis-parallel binary deci-
sion treed GP (TGP) models (Gramacy and Lee 2008), nonsta-
tionaryGP (NSGP)models developed in Paciorek and Schervish
(2006) and Risser and Turek (2020), and stationary GP (SGP)
spatial regressions with isotropic Matérn covariance functions
(see, e.g., Banerjee, Carlin, and Gelfand 2014).

We first examine the partition recovery performance of the
SPGP model with L = 3 chosen by DIC and compare it with
that of TGP. Figure 2 shows the MAP estimates of the partition
and the cluster-specified log microergodic parameter estimates.
The partition estimated by SPGP is fairly consistent with the
truth considering that the estimation results are based on just
one realization of the random field. On the other hand, due



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Figure 2. (a) True logmicroergodic parameters at training locations. Hold-out locations aremarked by gray triangles. (b), (c) MAP estimates of logmicroergodic parameters
given by SPGP and TGP. The true boundary is marked by the red circle.

Table 1. Performance metrics of SPGP and its competing methods.

SPGP TGP NSGP SGP

In-sample ARI 0.429 0.153 — —
Hold-out ARI 0.422 0.119 — —
MSEϑ 13.316 16.974 — 16.610
MSPEy 0.041 0.041 0.046 0.041
Mean CRPSy 0.083 0.086 0.106 0.098
Mean LogSy −0.655 −0.562 −0.227 −0.113

Bold values highlight the result of the best performing model.

to the use of axis-parallel treed partitions, TGP approximates
the true partition with a much larger number of rectangular
clusters. The superior partition recovery performance of SPGP
is also evidenced by the higher in-sample and hold-out MAP
adjusted Rand indices (ARIs; Hubert and Arabie 1985) in the
first two rows of Table 1. In particular, the higher ARI for hold-
out locations suggests that the membership prediction from
SPGP agrees more with the ground truth. We then consider the
estimation accuracy of covariance parameters measured by the
mean square error of theMAP estimates of the logmicroergodic
parameters log(ϑ(s)), denoted by MSEϑ . For SGP, ϑ̂(s) reduces
to a constant σ̂ 2/φ̂2ν . The resulting MSEϑ ’s in the third row
of Table 1 indicates SPGP has the smallest estimation error,
suggesting that it can estimate the spatial covariance parameters
most accurately among the three methods. In particular, as
shown in Figure 2, SPGP provides more accurate microergodic
parameter estimation in the upper part of the outer true cluster.
This is possibly because TGP has to approximate this region by
many small rectangles and learn ϑ within each of them using
fewer data points, while the estimated partition from SPGP
has more data points in each cluster for covariance parameter
estimation.

Next, we analyze the performance of out-of-sample predic-
tion. As shown in the fourth row of Table 1, the SPGP and
TGP models have the lowest mean squared prediction error
(MSPE). We argue that, nonetheless, MSPE is not the most ideal
metric to evaluate the performance of probabilistic prediction
as it may not fully take into account the potential multimodality
in the posterior predictive distributions. As a result, it is more
sensible to compare scoring rules (Gneiting and Raftery 2007)
such as average continuous ranked probability score (CRPS) and
logarithmic score (LogS), which are presented in the last two
rows in Table 1. The SPGP model has the best scores overall

among all models. The superior performance of SPGP over TGP
is partly due to its ability to produce a more accurate predictive
distribution, which reflects partition uncertainties around the
true boundary. This makes SPGP more robust to misclassifica-
tion of cluster memberships, thanks to its soft partition process
model with L = 3.

Finally, Figure 3 displays the posterior mean predictive sur-
faces and posterior prediction SDs from SPGP, TGP, and NSGP.
We also include the kriging results from the model where the
true partition and other parameters are known as a benchmark.
As expected, both SPGP and TGP generate similar, accurate
predictions in the interior of the true clusters, while one can
observe some differences around the true boundary. Due to the
Gaussian mixture predictive distributions and Bayesian model
averaging, we obtain a relatively smooth kriging mean surface
from SPGP near the true boundary rather than a sharp jump,
but overall it still well captures the jump in the true surface. As
desired, the prediction SDs are higher around the true boundary,
capturing the uncertainty from the unknown partition. Note
that the prediction uncertainty, characterized by lower posterior
prediction SD values, is smaller near regionswith a smaller jump
in the true field. On the surface from TGP, some discontinuities
can be observed near the estimated boundaries, and the shape
of the estimated boundaries is less flexible, with some noticeable
artifact axis-parallel patterns. In addition, some high predic-
tion uncertainty regions from TGP do not align with the true
boundary. Despite capturing the pattern of the true field, the
predictive surface of NSGP is less smooth compared with the
truth and the SD plot from NSGP is less informative on where
the true boundary is. This is possibly because the nonstationarity
modeling components in NSGP are misspecified and/or NSGP
is better suited for the case where the change of covariance is
relatively smooth. In contrast, the advantage of our method is
more prominentwhen the true covariance function has irregular
abrupt changes or clustering patterns.

Since it is insufficient to visualize a possibly multimodal
posterior predictive distribution via its mean and SD, we further
examine the plots of predictive densities for selected locations
(see Figure S4 in Supplementary Section S3.2. Our results con-
firm that SPGP can quantify prediction uncertainty in a desir-
able way, where the higher mode appears near the true value
and the corresponding 95% HPD interval also covers the true
value. In contrast, the posterior predictive densities from TGP
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Figure 3. Posterior mean predictive surfaces (a)–(d) and SD surfaces (e)–(h) form the true data generating model, SPGP, TGP, and NSGP. The black circle represents the true
boundary and the grey points represent observed locations.

and NSGP fail to capture the multimodality when prediction
locations are near the true boundaries.

We have also investigated the scenarios where the data are
generated from a piecewise anisotropic process or a globally
nonstationary process in Paciorek and Schervish (2006). Our
results again confirm the competitive performance of SPGP. See
Supplementary Sections S3.3 and S3.4 for details.

5. Real Data Analysis

We apply the SPGP regression model to analyze the precipi-
tation data over the contiguous United States (CONUS). The
dataset consists of daily average precipitation over the 2018
water year (October 1, 2017 to September 30, 2018) obtained
from theGlobalHistorical ClimatologyNetwork-Daily database
(GHCN-D), and was analyzed in Risser and Turek (2020). As
noted in Risser and Turek (2020), the precipitation data in the
western half of the CONUS is highly nonstationary due to the
heterogeneous topography and the diverse physical phenomena
related to precipitation. As a result, we focus on the precipitation
data measured at GHCN-D stations located to the west of 90◦W
and use n = 1689 uniformly selected locations out of 1939
stations for model training and hold out the rest for testing.
We perform a logarithmic transform of the precipitation rates
following Risser and Turek (2020) so that the GP assumption
is more applicable. The observed locations and the associated
log precipitation rates are shown in Figure 4(a). The goal of this
analysis is to demonstrate how well the SPGP model recovers
the local stationarity structure in the precipitation data and
predicts the precipitation at unobserved locations, especially
around partition boundaries.

To model the log precipitation rates, we consider the SPGP
regression with S∗ = S , a spatially constant intercept, and
geometric anisotropic Matérn local covariance functions. We
compare the SPGP model with TGP and NSGP. The detailed
specifications of all models can be found in Supplementary
Section S4. We also perform predictive analysis of the log pre-
cipitation rates at hold-out locations in the same manner as in
Section 4.

Figure 4(b)–(c) shows theMAP estimates for partitions from
SPGP and TGP. The partition given by SPGP can be largely
explained by the topography in the CONUS: Cluster 1 cov-
ers the Interior Plains and the Interior Highlands to the east
of the Rocky Mountains, while Cluster 3 corresponds to the
mountainous regions including the RockyMountain System, the
Intermontane Plateaus, andmost parts of the PacificMountains.
The small Cluster 2 mainly consists of the desert region in
southern California with low precipitation rates. This suggests
that SPGP can capture the geographic heterogeneity in the pre-
cipitation data. The TGP model identifies more clusters, some
of which partly overlap with the clusters from SPGP but others
are quite different. For example, in the partition from SPGP, the
northern Montana region shares the same cluster membership
with the regions to its east, while this is not the case in TGP.
One possible reason is that the binary trees used in TGP may
partition an irregularly shaped region into several subregions
with horizontal or vertical boundaries. Another possible reason
is that the TGP model uses less flexible separable exponential
covariance functions compared with the geometric anisotropic
ones in SPGP.

As in the simulation studies, we use MSPE, average CRPS,
and average LogS to quantify the performance of predicting out-
of-sample log precipitation rates. Table 2 summarizes the results
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Figure 4. (a) Log precipitation rate at n = 1689 stations and the Delaunay triangulation graph used for model fitting. r = 75 hold-out locations near the Rocky Mountains
are marked as red triangles. (b)–(c) MAP partition estimates of the training locations given by SPGP and TGP.

Table 2. Prediction performance for the precipitation data on r1 = 75 hold-out
locations.

SPGP (L = 1) SPGP (L = 3) SPGP (L = 5) TGP NSGP

MSPE 0.073 0.073 0.075 0.093 0.081
Mean CRPS 0.145 0.143 0.143 0.159 0.152
Mean LogS −0.001 −0.017 −0.019 0.076 0.083

Bold values highlight the result of the best performing model.

based on r1 = 75 hold-out locations between 100◦Wand115◦W
near the Rocky Mountains that contain many boundary points
identified by SPGP and TGP. The SPGP models achieve the
best predictive performance in all three metrics. We have also
investigated the prediction results based on r2 = 175 hold-out
locations that are not near the Rocky Mountains area, which
suggest the comparable performance of all models under this
prediction scenario. The details are provided in supplementary
Section S4. In summary, our results indicate that the gain in the
prediction performancewhen using SPGPover othermethods is
more prominent for boundary locations.We have also examined
the predictive surfaces and SDs at equally spaced points. The
results from all three models look similar and are provided in
supplementary Section S4.

6. Conclusions and Discussion

In this article, we have developed a novel soft partitioned Gaus-
sian process to capture locally stationary spatial structures. Our
process is constructed conditional on a predictive random span-
ning tree soft partition process in the spatial domain.We embed
it into a Bayesian hierarchical spatial modeling framework, lead-
ing to a soft partitioned GP regression model. The prediction
of SPGP uses a mixture of L Gaussian distributions, where L is
the number of nearest neighbors used for determining cluster
memberships.

The proposed SPGP model can be extended in several
directions. SPGP can be applied in a spatial GLM framework
for the analysis of non-Gaussian spatial responses. Another
future research direction is to extend the univariate process
into multivariate cases, possibly with multiple spanning-treed
partitions and tree-based graphical models (Gao, Datta, and
Banerjee 2021). Extension to soft partitioned versions of other
types of stochastic processes is also possible if their conditional
distributions are available. It is known that nearest neighbor
graphs and Delaunay triangular meshes are capable of capturing
more complex geometries. Therefore, a promising direction of

future research is to extend our graph-based SPGP to build
locally stationary processes on complex domains (Luo, Sang, and
Mallick 2021a). To model smoother functions, it is possible to
extend SPGP by considering an additive form of multiple SPGP
models with different partitions (Luo, Sang, and Mallick 2022;
Maia, Murphy, and Parnell 2022). On the computational side,
we have demonstrated that scalability can be straightforwardly
achieved by specifying a small-sized set of reference knots and
using likelihood approximation methods such as NNGP (Datta
et al. 2016). It is possible to treat the choice of reference knots as
unknown parameters so that the optimal choice of knots can be
learned from data. Moreover, we will investigate the use of other
block-based scalable GP approximations (see, e.g., Konomi,
Sang, and Mallick 2014; Zhang, Sang, and Huang 2019; Peruzzi,
Banerjee, and Finley 2020) for local likelihood computations.

Our theoretical results on the SPGP models suggest that the
posterior distribution of the conditional density concentrates
in a weak or total variation neighborhood, and we establish a
contraction rate for the latter case.We remark that the rate can be
potentially improved if the complexity of theRSTpartition space
can be better bounded. For linear prediction (or kriging) prob-
lems, posterior asymptotic efficiency can possibly be established
following a similar spirit of Li (2022). Besides the precipitation
data in Section 5, SPGP has many other potential applications
beyond spatial statistics such as the photometric redshift data in
cosmology (Fadikar,Wild, andChaves-Montero 2021).We leave
these as future works.

Supplementary Materials

Supplementary File: The supplementary consists of (a) The proofs of Kol-
mogorov Consistency of SPGP, Propositions 1, and Theorems 1 and 2;
(b) Detailed algorithms of Bayesian posterior inference and prediction;
(c) Additional simulation studies to investigate the performance of
SPGP; (d) Additional real data analysis results.
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