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Abstract

Premise: Quantitative plant traits play a crucial role in biological research. However,
traditional methods for measuring plant morphology are time consuming and have
limited scalability. We present LeafMachine2, a suite of modular machine learning
and computer vision tools that can automatically extract a base set of leaf traits from
digital plant data sets.

Methods: LeafMachine2 was trained on 494,766 manually prepared annotations
from 5648 herbarium images obtained from 288 institutions and representing
2663 species; it employs a set of plant component detection and segmentation
algorithms to isolate individual leaves, petioles, fruits, flowers, wood samples,
buds, and roots. Our landmarking network automatically identifies and measures
nine pseudo-landmarks that occur on most broadleaf taxa. Text labels and
barcodes are automatically identified by an archival component detector and
are prepared for optical character recognition methods or natural language
processing algorithms.

Results: LeafMachine2 can extract trait data from at least 245 angiosperm
families and calculate pixel-to-metric conversion factors for 26 commonly used
ruler types.

Discussion: LeafMachine2 is a highly efficient tool for generating large quantities of
plant trait data, even from occluded or overlapping leaves, field images, and non-
archival data sets. Our project, along with similar initiatives, has made significant
progress in removing the bottleneck in plant trait data acquisition from herbarium
specimens and shifted the focus toward the crucial task of data revision and quality
control.

KEYWORDS

digital extended specimen, digital specimen voucher, herbarium, machine learning, morphometrics, neural
networks, phenology, traits

Two decades ago, molecular sequencing experienced the
beginning of what would be several revolutions in the
generation of molecular data that ushered in a paradigm
shift in biology. Unfortunately, quantitative and morpho-
logical data have not experienced an equivalent develop-
ment. Although the global network of herbaria and
natural history collections have been diligently digitizing

collections over this time, rapid means of extracting
morphological information from those images have yet to
be developed. Specimens that often sat dormant in
cabinets became easily accessible through data portals
like the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org) and iDigBio (https://www.idigbio.
org). However, using specimen images from this veritable
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forest of nearly 400 million preserved plant specimens to
address a specific research question poses many chal-
lenges, including the extraction of quantitative traits and
phenology data (Heberling, 2022). While it is possible
to use existing manual or semi-automated methods to
extract quantitative traits from specimen images, the
process tends to be labor intensive and does not
scale beyond a few dozen or a few hundred images. The
adoption of robust computer vision and machine learning
workflows promises to augment and expedite researchers'
ability to parse, measure, and review digital specimens at
any project scale.

We previously published LeafMachine as a first step
toward large-scale analysis of herbarium specimens
(Weaver et al., 2020). LeafMachine used pixel-wise
semantic segmentation (binning each pixel into a
predetermined class) to split the image into five classes
for further processing. This process was effective, but it
was also error-prone and could not handle complex
specimens. We were able to locate objects of interest like
leaves, stems, text, fruit, and flowers, but leaves that
overlapped or were obstructed by mounting tape could
not be measured. When a leaf candidate was identified,
we used a support vector machine to analyze its shape
traits, which greatly limited the number of supported taxa
given the relatively low degree of diversity captured by
our small training data set. The original training data set
had only 425 images, thus generalizability was also poor.
LeafMachine struggled to process images containing
lobed leaves, poor lighting, and cluttered backgrounds.
We also lacked autonomous methods to determine
specimen-specific pixel-to-metric conversion factors
(CF; please see Table 1 for a full list of definitions), so
the process was not fully autonomous. At the time, our
lack of sufficient high-quality training data and under-
estimation of the degree of heterogeneity in preserved
plant data sets prevented us from achieving our goal of
extracting trait and phenology data from all publicly
available images.

Since the publication of the original LeafMachine
software, the barrier to entry into machine-assisted biologi-
cal research has been significantly lowered as a result of the
prolific use of machine learning in nearly all aspects of
modern life (Martens, 2018; Safadi and Watson, 2023).
Thanks to the monumental efforts of open-source collabo-
rations and the equally monumental funding funneled into
the field by corporate backers, there are now highly accurate
plug-and-play machine learning architectures for object
detection, instance segmentation, panoptic segmentation,
scene detection, facial recognition, and pose estimation (He
et al, 2017; Wu et al,, 2019; Kirillov et al., 2020; Jocher
et al., 2022). In combination with transfer learning, these
prebuilt network architectures allow researchers to focus
their efforts on generating high-quality training data sets
(Yang et al., 2020).

In this paper, we introduce LeafMachine2, a modular
suite of computer vision and machine learning algorithms

that enables efficient identification, location, and measure-
ment of vegetative, reproductive, and archival components
from digital plant data sets (Figure 1). For LeafMachine2,
we took full advantage of this new paradigm by heavily
utilizing Meta AI's (New York, New York, USA) PyTorch
implementation of Detectron2 (Mask R-CNN) and the
Ultralytics (Los Angeles, California, USA) implementation
of YOLOVS5, one of many YOLO variants (He et al., 2017;
Wu et al, 2019; Jocher et al., 2022). These frameworks
are extremely flexible, well-supported, and surprisingly
approachable. As a result, many recent projects have also
coalesced around these two frameworks with great success,
including efforts to segment leaves (Younis et al., 2020; Triki
et al., 2020, 2021; Guo et al., 2021; Hussein et al., 2021b; Gu
et al., 2022; Ott and Lautenschlager, 2022), segment plant
tissue (Love et al., 2021; Goéau et al, 2022; Milleville
et al., 2023), isolate plant organs (Davis et al., 2020; Pearson
et al., 2020; Triki et al., 2020; Ott and Lautenschlager, 2022),
extract specimen label data (Milleville et al., 2023), isolate
diseased or damaged leaf tissue (Kaur et al., 2022; Mu
et al, 2022; Kavitha Lakshmi and Savarimuthu, 2023),
measure bird skeletons (Weeks et al, 2023), isolate
preserved snakes (Curlis et al., 2022), segment fossils
(Panigrahi et al, 2022), or remotely monitor phenology
(Mann et al., 2022). However, rather than relying on a single
machine learning architecture to extract trait and archival
data from specimens, we developed a modular framework of
seven different machine learning algorithms that work in
tandem to comprehensively process each image (Table 2,
Figure 1). We designed LeafMachine2 to emulate the way a
human might extract data from a plant specimen—by
breaking down a complex problem into multiple discrete
steps.

LeafMachine2 is one of several recently developed
tools that are aimed at extracting quantitative trait data
from herbarium images (for a summary of the current
state of machine learning in a herbarium setting see
Hussein et al.,, 2022). Most methods have been semi-
autonomous, requiring some form of human intervention
to measure traits. For example, TraitEx requires users to
draw a border around leaves of interest to aid with
segmentation, like some Image] workflows, and can take
approximately 10 minutes to measure each leaf (Maloof
et al., 2013; Kommineni et al., 2021). These workflows
rely on computer vision algorithms, typically superpixel
or graph cut segmentation, to extract leaf masks (Zhang
et al., 2018; Alajas et al.,, 2021). Manual intervention is
required because these methods are “static” and cannot
self-adjust to handle variable input (changes in location,
size, or color of leaves). As a result, static computer vision
methods limit utility in non-ideal scenarios and cannot
segment an individual leaf from among a group of
overlapping leaves or produce usable results if the leaf is
bisected with mounting tape without additional post-
processing (Kommineni et al., 2021).

To overcome these limitations, many groups turned
to machine learning algorithms, typically some kind of
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TABLE 1 Definitions of specialized and abbreviated terms.

Term

Definition

Archival component
detector (ACD)

COCO format

Conversion factor (CF)

Convolutional neural
network (CNN)

Detectron2

Graphics processing unit (GPU)

Instance segmentation, leaf
segmentation

JavaScript Object Notation (JSON)

Large language model (LLM)

Machine-assisted labeling (MAL)

Mask R-CNN

Mean average precision (mAP)

Plant component detector (PCD)

PointRend

Pseudo-landmark

Pseudo-landmarks detector (PLD)

Ruler conversion

A YOLOV5x6 object detection network trained to place bounding boxes around text, labels, barcodes, rulers,
color correction cards, attached items, envelopes, maps, photos, and paper weights. LeafMachine2 uses
these predicted bounding boxes to crop components from the full specimen image for component-specific
analyses.

A standardized JSON format for object instance segmentation annotations widely used in the computer
vision community, introduced by the COCO (Common Objects in Context) data set.

The image-specific ratio of pixels per metric unit. For LeafMachine2, all conversion factors refer to the
number of pixels in an image that correspond to 1 cm.

A type of deep learning model primarily used for image recognition and segmentation that uses convolutional
layers to filter inputs for useful information. Convolutional layers in a neural network are like a set of
digital filters that scan across an image to detect and learn patterns, like how human eyes perceive
different shapes and textures.

A popular open-source software system developed by Fundamental AI Research (FAIR) that implements
state-of-the-art object detection algorithms, including Mask R-CNN.

A specialized type of processor designed for handling the computations required for 3D graphics rendering
and machine learning tasks.

A machine learning task that involves identifying and delineating each distinct object of interest appearing in
an image down to the pixel level. Each class can contain numerous instances.

A lightweight data format (a dictionary) that is easy for humans to read and write and easy for machines to
parse and generate. The JSON file for a simple spreadsheet may look like:
{“Header 1”: “Value 17, “Header 2”: “Value 27}

A class of machine learning models that are trained on a large corpus of text data, which can generate human-
like text based on the input they receive. ChatGPT is arguably the best-known implementation, but there
are many variants. This field of machine learning is developing rapidly.

The process of using automated or semi-automated systems to apply labels to data to expedite the creation of
training data sets.

A convolutional neural network-based model designed for object instance segmentation, which both detects
objects in an image and generates a segmentation mask for each instance.

A common metric for measuring the accuracy of object detectors like Mask R-CNN and YOLO. mAP
averages the precision scores at different recall levels, providing a single summary measure of a model's
performance across all threshold levels. mAP is an overall score of how well a system can identify and
correctly label objects in an image.

A YOLOV5x6 object detection network trained to place bounding boxes around ideal leaves, partial leaves,
leaflets, individual fruits and seeds, groups of fruits and seeds, individual flowers, groups of flowers, buds,
roots, wood samples, and all plant material. LeafMachine2 uses these predicted bounding boxes to crop
components from the full specimen image for component-specific analyses. Ideal leaves are sent to the
PLD and leaf segmentation networks.

A module that can be added to existing segmentation models to enhance the edge detection of CNNss,
generating more precise and detailed segmentation masks. LeafMachine2 uses PointRend to refine the
edges of masks produced by the Detectron2 Mask R-CNN instance segmentation network to retain fine
details in a leaf outline, like leaf teeth.

Landmarks refer to biologically homologous points that consistently represent specific aspects of an
organism's morphology (Chitwood and Sinha, 2016; Klein and Svoboda, 2017). We designed
LeafMachine2 to look for visually similar prominent points, like tracing points along the midvein, for a
wide range of taxa. Therefore, we use the term pseudo-landmarks because the homology of our detected
traits is unknown and varies by taxa, although we sometimes use the term “landmark” interchangeably in
the text.

A YOLOV5x6 object detection network trained to place fixed dimension bounding boxes at points that
correspond to pseudo-landmark locations including apex and base angles, midvein length, lamina length
and width, lobe locations, and petiole length.

The process of determining the number of pixels between unit markers on a scale bar or ruler, producing a
conversion factor that can be applied to pixel-based measurements to yield a metric result.

(Continues)
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TABLE 1 (Continued)

Term Definition

Semantic segmentation A machine learning task that involves classifying each pixel in an image into a specific category or class.

YOLOV5, YOLOv5x6 The “You Only Look Once” (YOLO) real-time object detection network. The YOLOv5x6 variant offers a

larger model size for increased performance for a larger computational cost.

1. Input batch of images

3. Crop plant components

Fruits, flowers, buds

Ideal leaves

Partial leaves

5. Pseudo-landmarks
All landmarks located

4.Segment leaves

Partial leaves Ideal leaves

Mask

9. Final overlay image
6.ACD

7. Crop archival components
Cropped

N

8. Pixel to metric conversion
Locate unit markers

i

FIGURE 1 LeafMachine2 workflow. A batch of images is processed by the plant component detector (PCD) (2) and archival component detector
(ACD) (6) networks. (2) Bounding boxes identifying predicted plant components. Each bounding box identifies a unique component, directing it to the
appropriate processing pipeline. (3) The PCD produces cropped images of each plant component. (4) Individual cropped leaves undergo instance
segmentation by the Detectron2 network, producing leaf outline masks for ideal leaves (green) and optionally partial leaves (blue). The first set of images
shows individual leaves, while the second set shows the compilation of the individual leaves back onto the full specimen image. (5) Cropped ideal leaves are
processed by the pseudo-landmarks detector (PLD) and individual landmarks are measured. Please see Figure 2 for a description of each landmark
annotation. (6) Bounding boxes identifying predicted archival components. (7) Cropped archival components from the ACD are processed and cleaned into
binary images for downstream applications, like optical character recognition (OCR) or interpretation by large language models (LLMs). (8) The cropped
ruler image is processed by our scanline or template matching algorithms to identify unit markers. Located tick marks are shown as colored dots. Green and
cyan lines indicate the converted 1- and 5-cm distances for quality control purposes. For more information about pixel-to-metric conversion, please see
Appendices S2 and S3. (9) The final overlay image shows all machine-derived masks, measurements, and identified components. All the visuals in this figure

are sourced directly from the output files produced by LeafMachine2.

convolutional neural network (CNN), which can categorize
individual pixels as members of discrete classes (Ott
et al., 2020; Weaver et al., 2020; Younis et al., 2020; Triki
et al,, 2020, 2021; Goéau et al., 2020, 2022; Guo et al., 2021;
Love et al., 2021; Hussein et al., 2021b; Gu et al., 2022; Ott
and Lautenschlager, 2022; Milleville et al.,, 2023). For the
task of isolating and measuring individual leaves, semantic
segmentation algorithms still lack the power to resolve
complex situations (e.g., overlapping leaves) because they
produce one mask that contains all leaf pixels and require
postprocessing to obtain usable results (Weaver et al., 2020;
Hussein et al., 2021b, 2022). Instance segmentation algo-
rithms improve on this as they can directly isolate a single
leaf from nearby leaves (Guo et al., 2021; Triki et al., 2021).

While full-image instance segmentation is promising, it
requires substantial effort to create a suitable training data
set because every leaf in a training image must be manually
segmented. Some groups have implemented human-in-the-
loop workflows to manage this task, iteratively winnowing
away partial leaves until only training masks for ideal leaves
remain (Mora-Fallas et al., 2019).

LeafMachine?2 offers an alternative approach by separat-
ing the task of identifying ideal and partial leaves from
the task of segmenting leaves. We use two YOLOV5
networks to first isolate (place bounding boxes around)
plant and archival components and then use an array
of component-specific processing tools, including Mask
R-CNN instance segmentation, to generate measurements
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TABLE 2 Machine learning components. Data sets in parentheses indicate the parent data set, “L” data sets are cropped from full specimen images. For
a more detailed description of each machine learning component, see Appendix S1.
ML No. of No. of
Component Training data sets architecture ML type specimens annotations
Plant component D-5GENUS, D-TARGET YOLOvV5x6 Object detection 3001 321,406
detector
Archival All D sets YOLOV5x6 Object detection 5573 101,374
component
detector
Ruler classifier R-CLASS ResNet18 Object classifier 5573 12,242
Ruler R-DOC DocEnTr small Semantic 778 2852
segmentation 8x8 patch segmentation
Ruler binary R-BINARY ResNet18 Object classifier 778 8622
classifier
Leaf segmentation L-SEG (D-5GENUS, Detectron2 + Instance 1183 15,606
D-TARGET) PointRend segmentation
Landmarks L-LAND (D-TARGET) YOLOV5x6 Object detection 1381 32,664
identifier Object
detection
Label R-DOC DocEnTr small Semantic 778 2852
segmentation 8x8 patch segmentation
TOTAL 5573 494,766

(He et al,, 2017; Wu et al,, 2019; Jocher et al., 2022). Our
modular approach brings several primary benefits that
elevate the utility of LeafMachine2, sidestepping several
hurdles faced by previous attempts at automated plant trait
extraction. First, each network is specialized for a specific
task, so fine-tuning performance for edge cases or expand-
ing support to more taxa or specimen preparation styles is
more manageable because new training data can remain
focused on a discrete task. Second, leaf segmentation and
landmark detection algorithms only run on individual ideal
leaf candidates, significantly lowering computational
requirements while producing exceptional leaf masks.
Third, manually generating ground truth segmentation
training data is streamlined because humans labeling the
images only need to focus on one leaf at a time. This
approach also promotes diversity in leaf sampling, as we can
subset leaves from each specimen for manual annotation,
thus expanding the number and variety of taxa and
specimens we can label given the constraints associated
with time and funds dedicated to manual annotation.
LeafMachine2 is a broadly useful tool that can
enhance a range of research areas, from botany to ecology
to agriculture. With LeafMachine2, we support at least
six different use cases. (1) LeafMachine2 can measure
quantitative leaf traits by identifying and isolating
(cropping) ideal and partial leaf candidates. Cropped leaf
images are sent to our leaf segmentation algorithm to
generate leaf masks, which are used to measure shape
properties, including elliptic Fourier descriptors, for
every leaf (Neto et al., 2006). Leaf candidates are also
processed with our landmark detection algorithm to

identify and validate pseudo-landmarks including apex
and base angles, midvein length, lamina length and width,
lobe locations, and petiole length. (2) LeafMachine2 can
detect the presence or absence of plant organs by isolating
individual fruits, groups of fruits, individual flowers,
groups of flowers, roots, wood samples, and buds, scoring
the presence or absence of these traits for most flowering
taxa. (3) We currently support the identification of 37
ruler types and can determine specimen-specific CFs for
26 ruler types, with more support in future iterations. (4)
LeafMachine2 uses machine learning algorithms to isolate
and binarize (clean) text contained within the specimen
image, increasing the efficiency and effectiveness of
optical character recognition (OCR) and large language
model interpretation techniques. (5) By processing a
batch of images, LeafMachine2 can screen for the
presence of several archival components including
attached items and envelopes that may contain tissue or
seeds, maps printed alongside specimen labels, photo-
graphs attached to specimen sheets, or even paper-
weights. Fruits and seeds can be identified even if
contained by plastic bags. (6) We have also found that
LeafMachine2 can be used to generate training data for
new machine learning networks because it can be
configured to save and record vast amounts of interme-
diate metadata. We find metadata extremely useful for
training other machine learning networks to perform
novel tasks or for diagnosing unexpected results.
For example, all leaf masks can be exported in the
Common Objects in Context (COCO; Lin et al., 2014)
format for training instance segmentation algorithms
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(Figure 1, section 4). LeafMachine2 is a multifaceted tool
with the ability to transform botanical research by
streamlining data extraction, organ detection, image
processing, and even aiding in the development of new
machine learning algorithms.

METHODS

In the following sections, we outline the LeafMachine2
workflow and our training data sets, followed by a
description of each of the seven machine learning compo-
nents. Finally, we test LeafMachine2's performance across
angiosperms and end with a discussion of outstanding
challenges.

LeafMachine2 overview

LeafMachine2 v.2.1 was developed with Python 3.8.4 and
requires PyTorch 1.11 (Paszke et al., 2019) and CUDA 11.3
(Nvidia, Santa Clara, California, USA). We have tested and
validated performance on both Windows 10 (Microsoft,
Redmond, California, USA) and Ubuntu 20.04 (https://
ubuntu.com/) workstations with at least one GPU. We
have not tested and do not recommend running LeafMa-
chine2 without a discrete Nvidia GPU. Full installation
instructions and source code can be found at https://
github.com/Gene-Weaver/LeafMachine2 (see Data Availa-
bility Statement). Currently, LeafMachine2 is run from the
command line, but users can adjust approximately 100
different configurable parameters with a configuration file.
LeafMachine2 is designed to process locally stored images
and supports downloading images using Darwin Core
Archive (DWC) occurrence and image files. Users can
query an online data portal like GBIF, download the
corresponding DWC files, and point LeafMachine2 to
these files. LeafMachine2 will begin downloading images
(parallelized for increased speed) and immediately begin
processing the images. With default settings (Appendix S1;
see Supporting Information with this article), LeafMa-
chine2 can process 150-200 images per hour, on average,
using a consumer-grade GPU with 8 GB of VRAM and at
least 8 CPU processing cores, depending on the number of
leaves in each image and the input image resolution. The
plant component detector (PCD) and archival component
detector (ACD) process all images in the project, and the
project is then split into batches based on how much
system RAM is available. Batches can be parallelized across
up to 8 CPU cores for improved performance. For quality
control purposes, a summary image showing all identified
components and measured traits is produced for every
specimen and saved as a page in a PDF (Figure 1, section
9). For each run, LeafMachine2 saves a copy of the
configuration file and logs for reference or debugging
along with a multitude of configurable output files. Data

are exported as a CSV file and can be merged with the
parent DWC files.

Specimen training data sets

Training data set development was a major focus of this
project. To ensure generalizability, we prioritized taxonomic
diversity, institutional diversity, and diverse specimen
quality (Table 3). We queried GBIF and downloaded the
DWC records for the 7,204,118 preserved Magnoliopsida
specimens that had both images and geospatial coordinates
(Appendix 1). We sampled these records to create four
specimen image data sets (Table 3). To bolster institutional
diversity, we also obtained DWC files for 195 herbaria
(some were duplicated in GBIF) and included up to 10
randomly sampled images from each herbarium in the data
set D-HERB. We chose 51 species, based on their apparent
morphological diversity and frequent representation in
GBIF, to represent our D-TARGET data set, which includes
herbaceous and woody taxa. We randomly sampled 50
images per species to account for intraspecific diversity. For
Lecythidaceae, we split the 50 images between two species.
The D-5GENUS data set contains up to five randomly
chosen species per genus of North American woody
perennials (165 genera), one image per species, which adds
morphological breadth to our training data set. Overall, our
specimen data sets include 5648 specimens representing
2663 species from 288 institutions.

Data set annotation

Manually annotating training data is an arduous and time-
consuming endeavor. Our team of seven labelers has logged
more than 2000 hours to generate the 494,766 annotations
used to train LeafMachine2. To our knowledge, this is the
most comprehensive manually annotated training data set
for herbarium specimen analysis to date (Hussein
et al., 2022). We labeled images using an academic license
for the Labelbox platform (https://labelbox.com), which
enabled our labeling team to annotate images remotely,
programmatically manage large data sets with the Labelbox
API, employ machine-assisted labeling (MAL), and review
labels. For efliciency, we employed MAL whenever possible.
This involved manually labeling enough images to train a
rudimentary version of a given machine learning network
and then processing another batch of images using the
machine learning network to generate annotations that were
uploaded into Labelbox for revision. For plant components,
this roughly tripled productivity; 15 minutes per specimen
was reduced to five minutes. For archival components,
however, we saw a seven-fold increase in productivity
because the archival labels required substantially less
editing. We implemented a comparable method for both
segmentation and landmark labels. We utilized the built-in
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TABLE 3 Training data sets.
Resolution®
No. of No. of No. of Train/
Data set name™® images species herbaria validation/test ~ Minimum Average Maximum
D-HERB 1755 1287 277 80/10/10 573 x 800 (0.5) 3159 x 4637 (14.6) 5000 x 7500 (37.5)
D-3FAM 831 831 65 80/10/10 2927 x 5000 (14.6) 3924 x 5669 (22.2) 5000 x 7500 (37.5)
D-5GENUS 562 562 47 80/10/10 2960 x 5000 (14.8) 4024 x 5803 (23.4) 5000 x 7500 (37.5)
D-TARGET 2500 51 75 80/10/10 2610 x 3781 (9.9) 3786 x 5644 (21.4) 5232 x 7500 (39.2)
Total unique 5648 2663 288
R-CLASS 12,242 12,242 277 80/20/0 19 x 127 (0.002) 170 x 1337 (0.23) 924 x 7360 (6.8)
R-BINARY 8622 8622 277 80/20/0 19 x 127 (0.002) 170 x 1337 (0.23) 924 x 7360 (6.8)
R-DOC 2852 133,801 277 80/10/10 19 x 127 (0.002) 170 x 1337 (0.23) 924 x 7360 (6.8)
L-SEG 5105 298 71 80/10/10 13 x 27 (0.001) 499 x 768 (0.38) 3980 x 4848 (19.3)
L-LAND* 5761 (2132) 202 (15) 42 80/20/0 16 x 31 (0.001) 525 x 808 (0.42) 3553 x 4749 (16.9)

ac

herbarium specimen images.

D” data sets are full herbarium specimen images. “R” data sets are rulers cropped from full herbarium specimen images. “L” data sets are ideal leaves cropped from full

"D-HERB = data sets containing institutional diversity; D-3FAM = up to three random species from 341 families, one image each; D-5GENUS = one random image per species, up
to five random species per genus, for 165 genera of North American woody perennials; D-TARGET = select group of 51 species of herbaceous and woody angiosperm species, 50
images each; R-CLASS = cropped ruler images from data set D-HERB; R-DOC = binary image subset of data set R-CLASS, up to 50 images per ruler class; R-BINARY = same
images as data set R-DOC but prepared for two-class prediction (i.e., pass or fail); L-SEG = data set of segmented leaf, petiole, and leaf hole masks; L-LAND = subset of cropped

ideal leaves from data set D-TARGET for landmark detection.

‘Image resolutions are reported in pixel dimensions with parentheses around the approximate megapixels.

YNumbers in parentheses for data set L-LAND report counts excluding the 188 Icacinaceae species that are part of the landmarking data set.

segmentation tools of Labelbox to create segmentation
masks, which we further refined to produce high-quality
training masks. With this labeling workflow, it is relatively
simple to add support for new classes and export the
annotations to retrain a custom version of our component
detectors.

Labeling procedure

Our staft labelers were trained to identify nine archival
components and 11 plant organs (Table 4). Archival
components were mostly uncontroversial, due to the
relative homogeneity of class instances when compared to
plant components. We bounded rulers tightly, minimizing
white space and focusing on unit markers. For the label
class, we annotated all text found within the image, except
for text within a barcode bounding box and ruler unit labels.
If we encountered long text blocks, we split the text section
between multiple bounding boxes based on the principle of
minimizing white space. We differentiated between envel-
opes and attached items based on their visual appearance,
even though both classes serve the same utility (ie.,
containing loose tissue). Extraneous objects were either
labeled as weights or ignored. The diverse range of plant
organs, combined with the broad taxonomic scope of our
training data set, posed significant challenges. Several plant
organ instances defied straightforward classification, pre-
senting us with difficult decisions. For example, some

specimens are collected primarily for their floral or fruit
characteristics and often display mixed stages of reproduc-
tive development. This necessitated subjective decisions
regarding the classification of intermediate developmental
stages, which is likely the root cause for much of the
uncertainty in the final PCD.

Component detection
Archival component detector

Specimen vouchers typically contain additional archival
components in addition to plant material including
barcodes, labels, text, and rulers. Data contained within
barcodes and labels may already be present in the
specimen's DWC record, but the global backlog of millions
of non-databased specimens leaves room for computational
assistance (Davis, 2022; Hardisty et al., 2022; Heberling,
2022). One approach is to isolate archival components from
the full image. Working with smaller images improves
the performance of downstream processes and improves the
efficiency of label transcription by humans, or soon by large
language models (LLM). Isolating rulers also enables image-
specific CF determination. We use the ACD for this task,
which is a YOLOv5x6 object detector that is modified to
support nine classes and our bounding box dimensions
(Jocher et al., 2022). To maintain broad generalizability, our
training data set was drawn from 288 herbaria and included
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8 of 23 LEAFMACHINE2
TABLE 4 Annotation counts. Total number of ground truth TABLE 4 (Continued)
annotations per class sorted by machine learning component.
Type Annotation Count
Type Annotation Count
R-DOC 2852
Plant components Ideal leaf 41,748
Total 23,716
Partial leaf 90,607
Total annotations 494,766
Leaflet 70,665
Seed/fruit one 24,573
Seed/fruit many 1356 some non-standard specimen images like book pages,
cleared leaves, and field images (Table 3). We trained the
Flower one 56,601 ; )
ACD in three stages, following MAL procedures, for a total
Flower many 6388 training duration of 600 epochs (~300h) on an Ubuntu
Bud 22,233 system with 128 GB of system memory and two Nvidia
) Quadro P6000s with a total of 48 GB of VRAM. All
Specimen 6299 . . . .
LeafMachine2 networks were trained on this machine. We
Roots 895 achieved a final mean average precision (mAP) of 94.7%
Wood 41 and recall of 90.3%. For more detailed training information,
see Appendix S1.
Total 321,406
Archival components Label 59,880
Ruler 14,045 Plant component detector
Barcode 13,399 To locate plant components, we employ another net-
Color card 8628 work using the same architecture as the ACD but trained
to isolate 11 common plant organs (Table 4). The PCD
Envelope 3430 R K X .
was trained to bin reproductive structures into four
Attached item 943 categories: “fruit” (e.g., acorn, hickory nut), “fruits”
Photo 70 (e.g., a fruiting cluster of grapes), “flower” (a single
. flower), and “flowers” (an inflorescence). Where possi-
Weights 680 ble, we annotated individual flowers or fruits within a
Map 299 larger fruiting cluster or inflorescence. In LeafMachine2
Total 101,374 v.2.1, we treat leaflets as simple leaves. Our PCD was
trained to identify and isolate compound leaves (pin-
Landmarks Lamina tip 3247 nate, bipinnate, and palmate) and individual leaflets, but
Lamina base 3325 we found that the PCD would frequently classify simple
o leaves as leaflets. In future iterations, it may be possible
Petiole tip 2924 R X K
to include several PCD networks, each trained to classify
Lobe tip 7507 one leaf type.
Width 3323 The PCD was trained in two stages, first with half of the
e images from data set D-TARGET, then with data sets
Midvein trace 322 D.TARGET plus D-5GENUS. After training the PCD for
Petiole trace 2771 450 epochs, we achieved a mAP of 45.2% and a recall of
A 1 40%. While these metrics are substantially lower than the
pex angle 3089 R
ACD, the data set is significantly more heterogeneous and
Base angle 3156 both mAP and recall will improve as we add more
Total 32,664 specimens to our training data sets. Tracking performance
) metrics is helpful for selecting the best-trained network,
Segment Lamina 9709 i i ) .
but we are most interested in generalizability and how
Petiole 1710 consistently the PCD performs as part of the LeafMachine2
Hole 4187 framework for taxa not represented in the training data sets.
' The ACD and PCD networks are responsible for feeding
Tota 15,606 cropped images to downstream processes. If the PCD fails
Ruler R-CLASS 12,242 to identify a leaf, then that leaf will not be segmented or
R-BINARY 8622 processed for pseudo-landmarks.
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Processing rulers and labels

Obtaining an accurate CF is crucial for utilizing trait
measurements obtained from digital images. The three most
common methods for obtaining CFs are (1) using a tool like
Image] or TraitEx to manually place two points in an
image to capture a known distance (Maloof et al., 2013;
Kommineni et al., 2021), (2) including a high-contrast
object of known dimensions into images and then
extracting its pixel dimensions in post-processing (Easlon
and Bloom, 2014), or (3) correlating a known metric
distance with image resolution given rigid imaging proce-
dures (Weeks et al.,, 2023). These methods are either labor
intensive or require a uniform imaging environment,
which is a serious impediment when processing herbarium
specimens at scale. Few dynamic methods that rely on
machine learning and computer vision techniques have
been developed to automate CF determination. One study
used an object detection algorithm to locate the number “2”
and the number “3” on rulers to compute CFs, but was
limited to only two ruler types; the authors advocated for
an approach that located tick marks directly (Karnani
et al., 2022). With LeafMachine2, we required a more
generalizable procedure for obtaining image-specific CFs.
While developing this project, we observed significant
discrepancies in ruler quality between herbaria. Some
herbaria place high-quality, high-contrast, machine-
readable rulers in their images, while others used “rulers
of convenience,” or even toys (Appendix S2: “Interesting
rulers and failed conversions”). Moreover, we also observed
faded, bent, damaged, occluded, and poorly imaged rulers
that make it difficult, if not impossible, to autonomously
obtain CFs. We encourage herbarium curators to scrutinize
our CF methods and results and hope that future dig-
itization efforts make use of high-contrast machine-readable
rulers (Appendix S2).

To meet this need, we developed a system of three
machine-learning networks to preprocess rulers, increasing
the performance and precision of calculated CFs. The
previously described ACD first places a bounding box
around a ruler's unit markers, minimizing unwanted text or
noise; rulers are then sent to an image classifier to predict
the ruler type so that unit markers can be interpreted
appropriately. To obtain a CF, we first convert the ruler into
a binary image where unit markers are white and everything
else is black. We binarize each ruler in three different
ways: threshold sweep, segmentation (DocEnTr; Souibgui
et al, 2022), and skeletonization. Finally, we use another
machine learning network, an image classifier, to determine
whether the binarization was successful. The stack of three
binary images is processed by our scanline or template
matching algorithms to identify and cross-validate distances
between unit markers. We compute the mean CF from all
identified unit markers (typically hundreds of points) and
overlay 1-cm, 5-cm, and l-inch reference lines in a
summary image for quality control. For a more detailed
description of this procedure, please refer to Appendix S3.

Leaf segmentation

We designed LeafMachine2 such that ideal leaves and,
optionally, partial leaves (Figure 1, blue masked leaves)
cropped from the full image by the PCD undergo instance
segmentation individually. This works similarly to the way
that one can blur the background in a Zoom call, but in this
case, our goal is to separate the foreground (leaf) from
everything else. To obtain training images, we processed
data sets D-5GENUS and D-TARGET with the PCD and
randomly sampled 5105 ideal leaves from among more than
15,000 leaves identified by the PCD. Our labelers used the
Labelbox auto-segment tool as a starting point and then
manually refined the ground truth masks, including
segmenting each leaf's petiole and any internal holes.
Critically, if an extraneous object intruded inside the leaf
outline, we included the obstruction in the mask with the
goal of teaching the network how to properly segment tricky
leaves. We used the Labelbox API to export the annotations
and converted them to the COCO format in preparation for
training (https://cocodataset.org). After training a modified
Detectron2 implementation of Mask R-CNN, enhanced
with PointRend for greater mask precision, for 100,000
iterations, the network achieved a Mask R-CNN training
accuracy of 99.1% and a PointRend training accuracy of
95.7% (He et al., 2017; Wu et al., 2019; Kirillov et al., 2020).
For more training information, see Appendix SI.

Pseudo-landmark detection

Segmentation masks are useful for measuring traits that are
derived from a leaf's outline but lack the information
necessary to measure many other distinguishing structural
traits like venation, angles, or interior distances; they are
also susceptible to errors when measuring lamina length
and width (Ellis et al., 2009). In Figure 2, Leaves E, G, and R
demonstrate that some trilobed and deltoid leaves confound
minimal bounding box algorithms, resulting in incorrect
laminar dimensions for length and width. Similar problems
occur with curved leaves. In Figure 2, Leaf T shows that
tracing the midvein (black line) provides a more refined
measurement of lamina length. To bridge this performance
gap, we developed a pseudo-landmarks detector (PLD)
using the same YOLOv5x6 machine learning architecture as
described for both the ACD and PCD. As a starting point,
we identified a set of pseudo-landmarks shared by most
broadleaf plants that include the lamina tip and base, lamina
width, apex and base angles, midvein length, petiole length,
and lobe locations. Our labeling team annotated this
landmark set on 2132 cropped leaf images representing 15
species selected from data set D-TARGET, along with 3629
images representing 188 Icacinaceae species, totaling 5761
images and 202 species. We converted these points to fixed
dimension bounding boxes, ranging in size from 9-27 pixels
depending on image resolution, and trained the PLD for 200
epochs using the same settings as with our PCD.
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FIGURE 2 (See caption on next page).
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RESULTS
Testing ruler conversion performance

Using default LeafMachine2 settings, we processed all
10,619 cropped ruler images in the R-CLASS data set that
were used to train the ruler classifier and visually
assessed the ruler summary images (Figure 1, section 8)
to determine the proportion of correct CFs by ruler class.
Correct CFs were determined for at least 80% of ruler
occurrences for seven ruler classes and were correct for
at least 50% of ruler occurrences for 16 ruler classes
(Figure 3A, colored boxes). Overall, the best-performing
rulers were high-contrast metric rulers.

Ruler conversion validation

For a more detailed test, we processed data set D-3FAM,
which contained 20 ruler types (represented by colored dots
in Figure 3B), using default LeafMachine2 settings to test
the performance of our CF determination algorithms with a
simulated real-world data set. These rulers were part of the
ruler classifier training data set but were “unseen” to our
template matching and scanline algorithms. To serve as a
baseline, our image labeling team manually placed points on
every unit marker for each unit type present in each of the
1274 rulers in data set D-3FAM. This is more rigorous than
typical manual methods where only two points are placed at
the beginning and end of a known distance (Weaver
et al, 2020; Kommineni et al., 2021). For each manually
annotated ruler, we calculated the standard deviation of the
points used to determine the 1-cm CF, and the resulting
average residual standard deviation (avgRSD) of 0.8%
served as the baseline for acceptable performance.
Figure 3B shows the results of a t-test between the manually
labeled and autonomously generated CFs. We removed
known unsupported rulers prior to the ¢-test. If an
autonomous CF had a pooled standard deviation greater
than 10%, then the ruler class was deemed to be
unsupported, leaving 708 of the original 1275 rulers. The
t-statistic was 2.784 and the P value was 0.006, clearly
demonstrating that there is room for improvement, as our
autonomous methods generated significantly different CFs
compared to the manual method. However, there are a few
notable takeaways. First, 58.8% of the autonomous CFs fell
within the bounds of the avgRSD, with most belonging to

Rulers 2 and 7. Ruler 2 is used by the New York Botanical
Garden (NYBG), and Ruler 7 was developed for the Global
Plants Initiative and is widely used by many herbaria.
Second, of the best-performing rulers (Figure 3B, indices
0-500), most of the outlier values correspond to poor-
quality images and display either low resolution, bad
lighting, or damaged rulers. Poor image quality translates
to inconsistency. Of the best-performing autonomously
determined CFs (Figure 3B, indices 0-400), the pooled
standard deviation for each ruler is lower than the
corresponding manually determined CF. With algorithmic
refinement, this consistency can likely be extended to more
ruler types. Third, identifying unit markers directly (e.g.,
using a modified version of our landmark detection
algorithm) would likely improve consistency, particularly
for poor-quality images, as this would bypass the need to
create binary ruler images, which were a common failure
point.

Qualitative performance of leaf segmentation

In Figure 2, leaves A-Q, we demonstrate LeafMachine2's
segmentation ability in difficult circumstances; all leaves in
Figure 2 are from data set D-3FAM and were not part of the
training data set. These leaves were selected as exemplars,
but more than 8000 ideal leaf segmentations extracted from
the D-3FAM test data sets can be viewed at https://zenodo.
org/record/7764379 (see Data Availability Statement). Ex-
ceptional masks are produced for a wide variety of leaf
shapes, even for lobed and toothed taxa. LeafMachine2
successfully ignores mounting tape and returns complete
leaf masks, bypassing the need for shape matching or
connected component analyses as is required by other
methods (Hussein et al., 2021a). Accurate segmentation of
individual leaves is possible from a group of leaves, even
when obstructions are present (Figure 2, leaves E, K-Q).
Green leaf masks indicate an ideal leaf candidate, as
predicted by the PCD, while blue masks indicate partial
leaves. As seen in Figure 2, partial leaves can also produce
usable leaf masks, which is another benefit of our modular
approach of decoupling leaf identification from leaf
segmentation. Users can take advantage of this depending
on the project requirements. If the data set is large and it is
preferable to minimize the data curation workload, then
users can restrict LeafMachine2's PCD by using a high
confidence threshold (90%) and opting to only segment

FIGURE 2 Segmentation and pseudo-landmark examples. All leaves are from the D-3FAM data set and were not part of the segmentation of
landmarking data sets. Ideal leaves, as predicted by the PCD, are green masks while partial leaves are blue masks. (Leaves A-Q) A sample of leaves
demonstrating segmentation performance when leaves have complex outlines; these are obstructed by mounting tape, overlapping leaves, or a combination
of obstructions, notably leaves L, P, and Q. (Leaves R-V) A sample of leaves showing pseudo-landmark performance. For landmark overlay images, the red
line is lamina width, the cyan line traces the petiole, the solid black line traces the midvein, the dotted white line is the line of best fit for the points that
comprise the midvein, the solid white line is the base to tip length, blue bullseye points are lobe tips, pink angles are less than 180 degrees, orange angles are
reflex angles greater than 180 degrees, the green dot is the lamina tip, and the solitary red dot is the lamina base. Green bounding boxes are the minimal
rotated bounding box. Petioles are either pink or orange masks, and holes are purple. Leaf V shows bounding boxes around fruit and buds.
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FIGURE 3 Ruler conversion performance. (A) The 37 ruler types that our ruler classifier was trained to recognize, arranged from best performing to
worst (left to right). Rulers 30-37 are block-based rulers that can be identified but not converted; however, they are well-suited for our template-matching
procedures and will be supported in future iterations. The colored boxes below each ruler correspond to the conversion factor (CF) determination success
rate within the data set R-CLASS. The numerator is the proportion visually assessed to be a correct conversion based on the quality control output (see
Appendix S2, images 1-38), and the denominator is the total number of rulers of that class present in the data set R-CLASS. Rulers with a zero can be

identified by the ruler classifier but were not present in R-CLASS. Colored shape identifiers are placed above each ruler image for the ruler classes that are
present in both data sets R-CLASS and D-3FAM. (B) Results of a t-test between manually obtained CFs and autonomously generated CFs for 708 rulers in
the test data set D-3FAM. The y-value of each point is the percent difference from the manually converted CF (left y-axis). Points are sorted by autonomous
CF pooled standard deviation, with lower values to the left and higher values to the right (right y-axis). Inconsistently converted rulers have higher index
values, while consistent rulers have lower index values. Accurate autonomous conversions fall between the average residual standard deviation (avgRSD)
dotted lines. The two recommended ruler types (rulers 2 and 7) are denoted by green star-shaped markers.

ideal leaves. This will yield comparatively fewer leaves, but
these will be of high quality and high confidence; therefore,
this option is best suited for large-scale projects. If the
priority is maximizing leaf extractions, then both ideal and
partial leaves can be segmented and measured at a lower
PCD confidence threshold (10%); this option is also useful
for data sets that contain damaged or incomplete leaves
that would otherwise be overlooked. Figure 4 illustrates
changing the PCD confidence threshold; higher confidence
values return few leaves, but the quality of mask segmenta-
tion remains unchanged in the leaves that are identified at

all confidence levels, which is a benefit over traditional
Mask R-CNN implementation where the confidence of a
leaf identification is linked to the quality of the generated
mask. This is true not only for herbarium specimens, but
also for field images processed with FieldPrism (Weaver and
Smith, 2023), the Leafsnap data set (Kumar et al., 2012), and
even iNaturalist-style photographs (Figure 4). Given these
promising results, we will continue to explore use-cases
beyond standard herbarium vouchers.

For each segmented leaf, we automatically calculate
standard shape metrics including area, perimeter, convex hull,
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FIGURE 4 (See caption on next page).
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length and width (by fitting a rotated bounding box based on
the diameter of a minimum bounding circle), centroid,
convexity, concavity, circularity, and aspect ratio. Users can
optionally set LeafMachine2 to calculate elliptic Fourier
descriptors for each leaf outline, which are plotted as a dark
purple line in all summary images (Figure 1, sections 5 and 9).
LeafMachine2 can also calculate measurements for segmented
petioles and can attempt to locate holes in the lamina,
although the latter has shown inconsistent results. Meineke
et al. (2020) demonstrate a more nuanced approach for
identifying leaf holes and damage that could be incorporated
into LeafMachine2 in future iterations.

Qualitative performance of pseudo-landmark
detection

After training for 200 epochs, our PLD achieved a final
mAP of 20.9% and a recall of 29.6%. These values are
underwhelming but were expected. Our labelers may have
only placed 20 points along a midvein, and the PLD is
meant to replicate those exact 20 points. However, the pixel
information that describes the midvein between each
ground truth point appears nearly indistinguishable from
the pixel information of actual ground truth points. If the
PLD predicts the location of a midvein point 10 pixels to the
left of the ground truth point, it still lies on the midvein.
Therefore, while the PLD may suggest reduced certainty, we
found the results to be quite usable (Figure 5A, middle
column). Unfortunately, with some landmarks (e.g., lamina
width), we observed such low confidence due to this
behavior that the PLD was overly conservative and often
refrained from making a prediction (Figure 1, section 5,
bottom image).

Testing LeafMachine2 across angiosperms

To stress test LeafMachine2, we assembled a test data set
(D-3FAM) consisting of one image for up to three species
per angiosperm family. Both the species and images were
randomly chosen. We did not reject any images as we
wanted to see how well LeafMachine2 performed on a set of
uncurated images. D-3FAM contained 831 images from 65
herbaria representing 831 species from 341 purported
angiosperm families; 51 of the D-3FAM families were also
present in the training data set, although none of the images
were shared between data sets. We did not clean or curate
taxonomy. With this test data set, we wanted to gain deeper

insight into LeafMachine2's performance on unseen taxa
(not in the training data set), assess its real-world utility,
and uncover common pitfalls as we continue to develop
algorithms and expand training data sets. We used default
settings to process D-3FAM; notably, only ideal leaves with
a 50% PCD confidence threshold were segmented and
landmarked (Figure 4). Below, we describe our qualitative
assessment of LeafMachine2's ability to segment leaves,
identify pseudo-landmarks, and identify the presence or
absence of organs. Summary images for this run can be
viewed at the previously mentioned Zenodo repository (see
Data Availability Statement).

Scoring phenology

Reproductive structures among flowering plants are highly
heterogeneous, and our training data set does not
adequately capture their immense diversity. Even so, we
found that LeafMachine2 performed beyond our expecta-
tions and managed to accurately score the presence or
absence (although not necessarily every instance) of all plant
organs present in the image for 245 of the 341 families in
D-3FAM (Figure 5A, green boxes). Lowering the PCD
confidence to 10% detects still more occurrences of non-
laminar organs at the cost of class accuracy. The PCD can
also successfully isolate small structures like vegetative and
reproductive buds, which has been challenging for other
methods (Triki et al., 2020).

Identifying and segmenting leaves

We further scrutinized a random sample of 100 images
from D-3FAM by counting instances of failure and success.
Within this sample, we counted 953 true-positive leaf
masks, of which 118 (12.4%) were incomplete or spilled
beyond the actual leaf edge. It is important to note that true-
positive leaf masks first depend on the PCD to isolate the
leaf and then the segmentation algorithm to accurately
extract the leaf outline. We also observed 54 instances
(5.6%) where LeafMachine2 segmented an object that was
not a leaf, typically a flower or miscellaneous vegetative
material. This is in line with our training metrics, which
showed a 6% error rate for confusing leaves with non-leaf
objects (Appendix S1). LeafMachine2's PCD failed to
identify 43 leaves that met our definition of an ideal leaf
and failed to fully capture the entire outline of six leaves
(0.6%), leading to an incomplete segmentation. Of the 953

FIGURE 4 Leaf detection with archival and non-archival data sets, with varying PCD confidence. The left column is the original image. Ordered by
decreasing levels of PCD confidence from left to right are full image masks of ideal leaves (or leaflets). (A) Herbarium voucher of Quercus coccinea
(Fagaceae). (B) Herbarium voucher of Pilostyles blanchetii (Apodanthaceae). (C) Herbarium voucher of Brookea tomentosa (Plantaginaceae). (D)
FieldPrism-processed field image of Quercus havardii (Fagaceae) (courtesy of the Morton Arboretum). (E) Leafscan image of Koelreuteria paniculata
(Sapindaceae). (F) iNaturalist-style photograph of Nyssa sylvatica (Nyssaceae) (photo credit William Weaver).
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FIGURE 5 Qualitative performance of LeafMachine2, by family and task, across 341 plant families, as identified by the home herbaria. We visually
inspected LeafMachine2's quality control summary images for the 831 species/images in the D-3FAM test data set produced with default settings and a PCD
confidence of 50%. (A) We followed a power ranking scheme to assign qualitative ratings to families with more than one image, conservatively rounding
down in the case of split ratings between the images. For leaf segmentation, a “good” rating indicates that most leaf masks are high-quality, a “marginal”
rating indicates that usable masks are present but require manual filtering, and a “poor” rating indicates that no usable masks are present. For landmarks, a
“good” rating indicates that at least one usable and accurate landmark skeleton was present, a “marginal” rating indicates that only partial landmark
skeletons were present, and a “poor” rating means that no landmarks could be identified. For component identification, a “good” rating means that
LeafMachine2 scored the presence of all non-laminar organs, but not necessarily all instances of each organ. A “marginal” rating indicates that some non-
laminar organs were not identified, while “poor” means that LeafMachine2 misidentified or failed to identify most non-laminar organs. Bolded families were
included in the LeafMachine2 training data set. (B) An image of Umbellularia californica (Lauraceae) as an example of “good” ratings in all categories.
(C) An image of Morella cerifera (Myricaceae) as an example of “marginal” ratings in all categories. (D) An image of Sarcobatus vermiculatus
(Sarcobataceae) as an example of “poor” ratings in all categories.
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true-positive leaf masks, LeafMachine2 located at least four
pseudo-landmarks for 200 leaves (21%), corresponding to
the “good” category in Figure 5. We attribute this low
success rate to the minimal taxonomic diversity in the
L-LAND data set and to the drawbacks of our PLD, as
previously discussed. With future iterations, the inclusion of
more ground truth points or increased bounding box
dimensions for high-resolution images could result in a
higher success rate. Modified pose estimation or facial
recognition algorithms are also promising for this task.

DISCUSSION

LeafMachine2 offers unique capabilities that allow for the
extraction of quantitative trait measurements from a broad
range of taxa. Our PCD focuses on identifying and isolating
leaves with complete outlines (i.e., ideal leaves), including
those bisected by tape or stems but excluding those partially
concealed by other leaves or objects. Each ideal leaf
undergoes processing by our leaf segmentation algorithm,
generating an outline mask. This allows for the measure-
ment of multiple traits (e.g., area, convex hull, perimeter,
length, width, centroid, convexity, concavity, circularity,
aspect ratio, lobedness, toothedness), as well as the
calculation of Fourier descriptors. Moreover, our PLD also
processes each ideal leaf, enabling the measurement of
pseudo-landmarks that are challenging or impossible to
determine from an outline mask, including tracing petiole
and midvein lengths, counting lobes, and measuring apex
and base angles. LeafMachine2's workflow modularity
allows for specific task optimization while offering the tools
necessary to measure a fundamental set of traits for a wide
range of angiosperm species (refer to Figure 5). Below, we
outline future adaptations and suggested improvements to
further increase the reliability and scope of LeafMachine2's
capabilities.

Extending LeafMachine2 methods

Our PLD methods are quite flexible and could be readily
adapted to more specialized and focused applications. For
example, we experimented with detecting other features
including sinus angles for oak leaves and measuring prickle
and spine dimensions for Acacia specimens. For these tasks,
we manually labeled a relatively small number of images,
about 200 for each set, to serve as new training data. In both
cases, we leveraged transfer learning by replacing the final
classification layer with the new classes while retaining the
original weights of the PLD algorithm to aid with general-
izability. This principle could be extended to other scenarios
to yield more consistent results, such as identifying genus-
specific landmarks by drawing training images from a single
genus. Future iterations of LeafMachine2 will include PLD
versions trained on more taxa and specialized versions for
the detection of taxa-specific traits.

Expanding the training data set

While the versatility of LeafMachine2 is demonstrated in
Figure 5, we also see that LeafMachine2 would be improved
by a focused expansion of training data for poor-performing
taxa (families with mostly red or blue boxes). Future
sampling strategies should target more herbaceous and non-
woody taxa to bolster the quality of measurements for taxa
that display morphologies that are underrepresented in the
current training data set. When inspecting the 8000 leaves
generated for our validation test, we observed a bias toward
small leaves. While we sampled taxa uniformly, the number
of leaves present on specimen sheets varies. Taxa with small
leaves are disproportionately represented in our PCD
training data set and are therefore more likely to be
correctly identified by the PCD when processing new
images (Appendix S1, Figure H); future sampling strategies
should include more specimen images for large-leaf taxa to
compensate. At times, leaves that could potentially be
segmented successfully are not forwarded to the segmenta-
tion algorithm (Appendix S1, Figures J and K). Additional
information relating to sampling and training biases can be
found in Appendix Sl.

Recommendations for future digitization
efforts

While developing automated algorithms for LeafMachine2,
we observed several specimen preparation and imaging
practices that negatively affect the quality of quantitative
trait measurements. First, the rulers used by herbaria for
archival digitization are not broadly standardized, which
presents challenges for projects that aim to extract
quantitative trait data. While parsing our results, two rulers
stand out for their reliable machine readability (i.e., the
consistency with which pixel distance is converted into
metric distance): the ruler used by NYBG (Figure 3A, ruler
2) and the JSTOR Plants ruler (Figure 3A, ruler 7). These
rulers are high contrast, simple, and provide unit markers
for unit cross-validation. Other ruler types may have these
features but can be overly complex or detailed (Figure 3A,
rulers 21 and 22; Appendix S2). Curators should consider
the machine readability of rulers and how automated
systems might interpret them. For future digitization efforts,
we recommend that curators adopt either the NYBG or
JSTOR ruler types and permanently affix rulers to the copy
stand so that the ruler is rectilinear with the camera,
contains no reflections, and is not on top of the specimen
sheet. The inclusion of multiple rulers or rulers with both
metric and imperial units should be avoided. Please see
Appendix S2 for additional ruler recommendations and a
discussion of challenges associated with different ruler
types.

Second, specimen sheets for taxa with compound leaves
were often too cluttered to be usable for anything other than
leaflet measurements. We found that few specimen sheets
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present solitary compound leaves, but instead present
interlaced and overlapping compound leaves, making the
identification of the whole leaf too challenging for existing
algorithms. This task is better suited for a more discrete
analysis where the data set is curated or created to include
only solitary leaves, which would then require only minimal
adjustment of the existing LeafMachine2 algorithms. For
future collection efforts of taxa with compound leaves, we
recommend that accessions include examples of solitary
compound leaves or are arranged in a way that presents at
least one solitary leaf, where possible.

Looking ahead

We demonstrate that LeafMachine2, and similar projects,
are beginning to reduce the phenological trait acquisition
bottleneck in biological research but are also introducing a
new challenge—the curation of machine-derived trait
measurements. Machine learning tools and their generated
data are increasingly commonplace in many research fields.
Within the scope of natural history collections, we see two
pressing issues that must be addressed by the larger
scientific community: (1) how to maintain, review, and
revise the torrent of machine observations, measurements,
and annotations that will soon exist and (2) how research
groups should effectively compare or compile data given
that unique specimens will be processed repeatedly using
different methods.

Regarding the first issue, LeafMachine2 alone can ge-
nerate thousands of data points per specimen. There is
currently no infrastructure capable of supporting these
data as part of a digital extended specimen, much less one
that can integrate the measurements with those produced
by other projects. We need new, scalable, and flexible data
management standards and infrastructure. One possible
approach for validating machine-derived data is to take a
similar approach as iNaturalist (https://www.inaturalist.
org/) with taxa identification: crowd-sourced voting. While
this would bolster confidence, it too would struggle to
keep pace with trait extraction. We have already tested
LeafMachine2 on tens of thousands of specimens. On
average, LeafMachine2 locates 10 leaves per image and
calculates 20 measurements per leaf; thus, a data set of
10,000 images (a small fraction of the images available
through GBIF and other institutions) will yield two million
data points. The only data curation solution at this scale is
more computational filtration, validation, and comparison,
likely powered by machine learning. To ensure that human
resources are allocated most efficiently, it is imperative that
we develop robust validation procedures before we start to
process specimens en masse.

To the second issue of how we can effectively compare
or compile data given that specimens will be processed
repeatedly by different methods, we chose to use only GBIF
images because of duplicated specimens between data
portals. This phenomenon means that the total number of

unique specimen images present across multiple portals is
lower than the number of images claimed by portal queries
(Kommineni et al., 2021). As an example, iDigBio also
houses herbarium vouchers, but numerous institutions
deposit images into both portals, resulting in the same
image being assigned two distinct identifiers. We support
calls for a global federated specimen identification system
as a part of a larger movement toward a flexible and
comprehensive digital extended specimen concept to enable
the effective mobilization of machine-derived data at scale
(Lendemer et al., 2020; Hardisty et al., 2022).

LeafMachine2 will continue to evolve as we add
support for more traits and taxa, contributing data to
answer endless biological research questions. Even so, we
look ahead to when every digitized herbarium specimen
has a comprehensive set of measured traits and ask, Will
it be enough? We suspect that this fantastic corpus of
botanical descriptions will be revolutionary but will also
amplify known contemporary sampling and taxonomic
biases (Loiselle et al., 2008; Willis et al.,, 2017; Daru
et al,, 2018; Kozlov et al., 2021; Meineke and Daru, 2021;
Davis, 2022; Heberling, 2022) and shift focus toward
traits that cannot be captured by two-dimensional
images of preserved tissue (Borges et al., 2020). There-
fore, let this resurgence in attention paid to herbaria also
serve as a catalyst for preserving not only physical
specimens, but also digital-only collections. These
collections may include snapshot vouchers (i.e., non-
destructive, photogrammetrically validated field images
of living plant tissue; Weaver and Smith, 2023) or three-
dimensional scans of living tissue (James et al., 2023).
Herbaria are indeed a bastion of global biodiversity
memory, but modern questions also require integrative
data sets, and maintaining the status quo will not be
enough.
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Additional supporting information can be found online in
the Supporting Information section at the end of this article.
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10.15468/rhbyxz
10.15468/puyrj8
10.15468/jvrxeh
10.15468/t8ar55
10.15468/6tbhmd
10.15468/03pvnh
10.15468/29thdy
10.15468/olfpjv
10.15472/ppzpea
10.15468/dlwwhz
10.15468/ekpyfw
10.15468/hiiw6b
10.15468/dg4cb4
10.15468/83cb4a
10.15468/31iaih
10.15468/soyil7

10.15468/sncpxn

Herbarium of Numto Nature Park
Herbarium of the University of Granada
Herbarium of Yugra State University
Herbarium Senckenbergianum

Herbarium Willing at Herbarium Berolinense,
Berlin

Herbier du Québec

Herbier Louis-Marie

Herbiers Universitaires de Clermont-Ferrand
Humboldt State University

HVASF herbarium

IAN herbarium

IICT Herbario

Institut Botanic de Barcelona

Institut Scientifique Mohamed V University

Institute of Biological Problems of the North, Far
East Branch RAS

Instituto do Meio Ambiente do Estado de Alagoas
Intermountain Herbarium

Jardins botaniques and Conservatoire Botanique of
Nancy

JOI Herbarium

Kathryn Kalmbach Herbarium

Kenai National Wildlife Refuge (Arctos)
Komarov Botanical Institute

Komi Republic

KULPOL Herbarium

KUZ Herbarium

Lajitietokeskus FinBIF

Lord Fairfax Community College Herbarium
MAG Herbarium

Marie-Victorin Herbarium

Masaryk University

McGill University Herbarium

Meise Botanic Garden Herbarium

MEL AVH

Melu AVH

MHA Herbarium

Ministerio del Medio Ambiente de Chile

Missouri Botanical Garden

10.15468/g4gcrg

10.15470/k97bjm
10.15468/z8mpt5
10.15468/ucmdjy

10.15468/abcz8i

10.5886/jd11sg3p
10.5886/3p8ltbg7
10.15468/9axq0b
10.15468/qguk7r
10.15468/kz6y62
10.15468/cv2dmt
10.15468/iinlgm
10.15468/pffot6
10.15468/48pwft

10.15468/ms9q2t

10.15468/mu8w57
10.15468/t43wjj

10.15468/glzohr

10.15468/pf6pv2
10.15468/axrelr
10.15468/ycpd7y
10.15468/udzn9d
10.15468/336sdv
10.15468/h9qfje
10.15468/4ru3f6
10.15468/4g56tp
10.15468/c2gj2t
10.15468/ahgbdc
10.5886/rzav8bu2
10.15468/soarvd
10.5886/srzbj7
10.15468/wrthhx
10.15468/rhzrxw
10.15468/2yyu7i
10.15468/8271k2
10.15468/ezyu58
10.15468/mmbcpb

(Continues)
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Herbarium data set

Data set DOI

Herbarium data set

Data set DOI

Moscow University Herbarium

MUFAL herbarium

Muséum National d'Histoire Naturelle, Paris

Muséum National d'Histoire Naturelle
Museu Botanico Municipal Curitiba
Museu de Biologia Mello Leitao

Museu Paraense Emalio Goeldi

Museum d'Histoire Naturelle of Aix-en-Provence

National Academy of Sciences of Republic of

Armenia

National Museum of Natural History Luxembourg

Natural History Museum

Natural History Museum Rotterdam
Natural History Museum, Vienna
Naturalis Biodiversity Center
Naturhistorisches Museum Mainz
Naturhistoriska Riksmuseet

NCSM Herbarium Collection

NEON Biorepository

NEON Biorepository

NEON Biorepository

Newhaven Sanctuary Observations
NHMD Vascular Plants Collection
Nitraria komarovii

NMNH

North Carolina State University
Northern Arizona University
Norwegian Species Observation Service
Nova Scotia Museum of Natural History
NSW AVH data

NSW South Coast

Plant Resources Center

Qarshi Botanical Garden
Quaid-i-Azam University Herbarium
Queensland Museum

R. L. McGregor Herbarium

Real Jardin Botanico

Rhoen and Vogelsberg

Rio de Janeiro Botanical Garden
Herbarium

10.15468/cpnhcc
10.15468/viuvéev
10.15468/kw8pex
10.15468/ncérxy
10.15468/v52pmc
10.15468/dmkg7b
10.15468/rdq4nx
10.15468/fqykeb

10.15468/xn64eb

10.15468/s2iu7d
10.5519/0002965
10.15468/kwqaay
10.15468/5s17sh
10.15468/ib5ypt
10.15468/10wmu8
10.15468/jbesfu
10.36102/dwc.12
10.15468/ggrfcb
10.15468/bmmg36
10.15468/bmmdp5
10.15468/mwgsdh
10.15468/4zygkn
10.15468/jp2qco
10.15468/hnhrg3
10.15468/9ufthy
10.15468/b7tfpa
10.15468/zjbzel
10.15468/t13cde
10.15468/jf3yae
10.15468/px2xfi
10.15468/g85t8z
10.15468/pjxa84
10.15468/bp6jy3
10.15468/lotsye
10.15468/htptzr
10.15468/mug7kr
10.15468/hbhfi3

10.15468/7ep9i2

Rio de Janeiro Botanical Garden Herbarium

Collection

Royal Botanic Garden Edinburgh Herbarium

Royal Botanic Gardens, Kew

Royal Botanic Gardens, Kew

Royal Ontario Museum Green Plant Herbarium

Rutgers University

Rutgers University

Sagehen Herbarium

SAMES herbarium

San Diego Natural History Museum
San Diego State University Herbarium
San Francisco State University

San Jose State University

SANT Herbarium

Santa Barbara Botanic Garden

Sociata des Sciences Naturelles et Mathamatiques

de Cherbourg
South Australian Museum Australia

South-Siberian Botanical Garden

Species recordings from the Danish National portal

Arter.dk

Staten Island Museum

Steiermarkisches Landesmuseum Joanneum

SVER Herbarium
SVER Herbarium
Tallinn Botanic Garden
Terre d'huiles

Texas Tech University

The Exsiccatal Series

The James C. Parks Herbarium at Millersville

University

The New York Botanical Garden

The New York Botanical Garden Herbarium

The Vascular Plant Collection at the Botanische

Staatssammlung Manchen
TKM Herbarium
Towson University
TRH, NTNU University Museum
Tropicos Specimen Data

TUL Herbarium

10.15468/bbsqoa

10.15468/ypoair
10.15468/1y60bx
10.15468/rvrsru
10.5886/g7j6gctl
10.15468/1n787c
10.15468/hhnd4h
10.15468/fl8uov
10.15468/10hdtn
10.15468/Ineqwn
10.15468/8sx2ag
10.15468/6zdzvc
10.15468/t3a60p
10.15468/dgbpla
10.15468/adb2bb

10.15468/Imznjw

10.15468/wz4rrh
10.15468/y6xmme

10.15468/q3yy4u

10.15468/ctqpb5
10.15468/dmdcké
10.15468/xwzszg
10.15468/5npjcc
10.15468/hfs8d4
10.15468/wrlvhd
10.15468/uyakmh
10.15468/qxmief

10.15468/qdatdf

10.15468/5y84ye
10.15468/6¢8nje

10.15468/vgrakl

10.15468/stxvrv
10.15468/podgza
10.15468/zrlqok
10.15468/hja69f

10.15468/ca08cm
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Herbarium data set

Data set DOI

Herbarium data set

Data set DOI

TULGU Herbarium

Turku University

UAM Herbarium (Arctos)

UC Davis Herbarium

UiT Tromsa Museum

Universidad del Valle de Guatemala
Universidade de Sao Paulo

Universidade Estadual de Feira de Santana
Universidade Estadual do Norte Fluminense
Universidade Estadual do Oeste do Parana
Universidade Federal da Bahia

Universidade Federal de Goias

Universidade Federal de Parana

Universidade Federal de Rondania
Universidade Federal de Sergipe
Universidade Federal de Uberlandia
Universidade Federal do Ceara

Universidade Federal do Espirito Santo
Universidade Federal do Oeste do Para
Universidade Federal do Rio Grande do Norte
Universidade Federal do Rio Grande Do Sul
Universidade Federal Rural do Rio de Janeiro
Universidade Regional de Blumenau
Universidade Tecnoldgica Federal do Parana
Universita de Montpellier

Universita Lyon

University of Balochistan Herbarium
University of British Columbia Herbarium
University of California Santa Barbara Herbarium
University of California Santa Cruz
University of California, Los Angeles Herbarium

University of California, Riverside

10.15468/5nret6
10.15468/nsytdy
10.15468/iawody
10.15468/on4axg
10.15468/14epds
10.15468/u339qt
10.15468/nt6dng
10.15468/gsy3jn
10.15468/qsaagd
10.15468/eqpldr
10.15468/tbtrr3
10.15468/fw6hdt
10.15468/fpf5j6
10.15468/5¢jyj6
10.15468/9xujh5
10.15468/cshs8n
10.15468/s8xuen
10.15468/kasze8
10.15468/ztzkde
10.15468/gtxawd
10.15468/suhgjx
10.15468/0svt7m
10.15468/vse53
10.15468/4b74v2
10.15468/gyvkrn
10.15468/7m584w
10.15468/qrau0v
10.5886/rtt57cc9
10.15468/qpxmw0
10.15468/uavt0t
10.15468/33k42a

10.15468/ailkou

University of Cincinnati

University of Cincinnati

University of Colorado Museum of Natural History
University of Florida Herbarium

University of Gothenburg

University of Graz Institute of Plant Sciences
University of Hargeisa Herbarium
University of Jena, Herbarium Haussknecht
University of Kentucky

University of Lethbridge Herbarium
University of Manitoba Herbarium
University of Michigan Herbarium
University of New Mexico Herbarium
University of North Carolina at Chapel Hill
University of Sargodha Herbarium
University of South Carolina

University of South Florida Herbarium
University of Tartu Natural History Museum

University of Tartu Natural History Museum and
Botanical Garden

University of Tennessee

University of Tennessee Fungal Herbarium
University of Tennessee Vascular Herbarium
University of Vermont

University of Vermont

University of Vienna, Institute for Botany
UTEP Plants (Arctos)

Vascular Plant Herbarium, Oslo

Vascular Plant Herbarium, UiB

Western Carolina University Herbarium
Yale Peabody Museum

Yale Peabody Museum

10.15468/bhgpmq
10.15468/xkca3p
10.15468/wyofjv
10.15468/v5wjn7
10.15468/asgd85
10.15468/axtkuz
10.15468/qvbvdp
10.15468/8arhjc
10.15468/fidvfu
10.5886/wrt547hq
10.5886/2fva5p4r
10.15468/nl8bvi
10.15468/dlvoyt
10.15468/63vxjd
10.15468/n4k5s9
10.15468/fmj4at
10.15468/mdnmzb
10.15468/5hqb2z

10.15468/d59dmk

10.15468/64w2bl
10.15468/da30il
10.15468/0k8qvz
10.15468/crnsua
10.15468/zsgiog
10.15468/tnj8wm
10.15468/yhbeky
10.15468/wtlymk
10.15468/0fn0lf
10.15468/sk26v2
10.15468/hrztgn

10.15468/0lkr3w
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