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ABSTRACT: Negative ion photoelectron spectra at 20 K along
with ab initio [CCSD(T)] and M06-2X density functional theory
calculations are reported for a series of six basic and nucleophilic
pyridine derivatives with an anionic substituent [i.e., 3- and 4-
PyrBX3

−, where X = F, 4-t-BuC6H4, 4-MeOC6H4, and 3,5-
(MeO)2C6H3]. Vertical detachment energies (VDEs) of these
charge-activated reagents span from 4.50−5.85 eV and are well
reproduced by M06-2X/aug-cc-pVTZ and CCSD(T)/maug-cc-
pVTZ computations. Surprisingly, the VDEs are found to correlate
with the SN2 reactivity of the PPh4+ salts of the substituted pyridine
anions with 1-iodooctane in dichloromethane. This provides an
experimental measure of the nucleophilicity of these charge-
activated anions, which represent a new class of chemical reagent.

■ INTRODUCTION
Electric fields can impact bond energies and a wide range of
chemical transformations.1−5 One general application that has
been explored over the past decade is the incorporation of a
positively charged substituent into a neutral Brønsted acid so
as to enhance its acidity and catalytic abilities.6−23 Conversely,
one would expect that a negatively charged substituent can be
used to increase the basicity and nucleophilicity of a
noncharged Brønsted base since a positive charge builds up
at the basic or nucleophilic site. Given the tremendous
importance of bases and nucleophiles in biological and
industrial processes including the synthesis of pharmaceutical
and agrochemicals,24−31 we decided to investigate these
species.
A series of tetraphenylphosphonium salts including 3- and 4-

pyridyltrifluoroborates (1 and 2, respectively) and their triaryl
analogues 3−6 (Scheme 1) were prepared and studied.32 The
SN2 reaction of the tetraphenylphosphonium salt of 3-
pyridyltri(4-t-butylphenyl)borate (3) with 1-iodooctane (eq

1) was found to proceed 10 times faster than the activated
noncharged pyridine derivative known as DMAP (i.e., 4-

dimethylaminopyridine). It also reacts 6 times faster than
DMAP in their base-catalyzed urethane forming reaction with
1-butanol and 4-methylphenylisocyanate (eq 2).32,33 These
compounds represent a new class of reagents, and to increase
the reactivity of such species, the interaction of the oppositely
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Scheme 1. Charge-Activated Borate Salts Studied in This
Work
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charged ions presumably needs to be weakened. Therefore, we
decided to probe where the excess electron density resides in
the free and unencumbered borate anions derived from salts
1−6 by carrying out DFT and CCSD(T) computations in
conjunction with negative ion photoelectron spectroscopy
(NIPES) studies.

■ METHODS
Experiments. NIPES was carried out using an instrument

that previously has been described.34 It consists of a magnetic
bottle time-of-flight photoelectron spectrometer with an
electrospray ionization source and a cryogenic ion trap. In
this work, ∼ 0.1 mM solutions of 1−6 dissolved in 1:3 H2O/
CH3CN or CH3CN were used to generate the borate anions of
interest. Accumulation of these ions for 20−100 ms in the
cryogenic 3D ion trap enabled them to be cooled to 20 K by
collisions with a helium buffer gas. The anions were
subsequently pulsed into the time-of-flight mass spectrometer
at a repetition rate of 10 Hz, where they were mass-selected
and decelerated for photodetachment with a 157.6 nm (7.866

eV) Lambda Physik CompexPro 100 F2 laser operated at 20
Hz. In this way, photoelectron spectra were recorded with the
ion beam on and off on alternating laser shots to obtain shot-
to-shot background corrected spectra. The resulting photo-
electrons were collected at nearly 100% efficiency and analyzed
with a 5.2 m long flight tube. Their measured flight times were
then converted into calibrated kinetic energies using the
known spectrum of I−/Au(CN)2−.35,36 Vertical detachment
energies (VDEs) were subsequently obtained from the peak
maxima of the first observed band in the photoelectron
spectrum and have an estimated energy resolution (ΔE/E) of
about 2% or ∼20 meV at 1 eV.

Computations. Geometry optimizations were carried out
using the M06-2X37−39 hybrid functional along with the aug-
cc-pVDZ basis set starting with previously reported struc-
tures,32 and subsequently were reoptimized with the larger aug-
cc-pVTZ basis set.40 Vibrational frequencies were computed
for all of the aug-cc-pVDZ and some of the aug-cc-pVTZ
structures to obtain zero-point energies and to confirm that
they correspond to stationary points on the potential energy

Figure 1. NIPE spectra of 1−−6− recorded at 157.6 nm and 20 K.

Table 1. Experimental and Calculated VDEs of Borate Anions 1−−6− and Their Computed Fragmentation Energies

VDE (eV)a ΔHDiss° (0 K)c ΔHDiss° (0 K)c

cmpd sp opt CCSD(T) expt (eV)b anion radical

1 5.79 5.72 5.60 5.50 or 5.64 75.9 (75.8) [74.1] 4.6 (4.2) [2.7]
2 5.92 5.84 5.77 5.85 75.1 (75.1) [73.4] 4.5 (4.1) [2.5]
3 4.74 4.77 4.65 77.7 (75.3) [75.2]d 15.4 (12.3) [12.2]d

4 4.77 4.76 4.66 77.5 (75.0) [74.4]e 14.1 (10.9) [10.8]e

5 4.52 4.51 4.50
6 4.85 4.84 4.90

asp = M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ, opt = M06-2X/aug-cc-pVTZ, and CCSD(T) = CCSD(T)/maug-cc-pVTZ//M06-2X/aug-
cc-pVTZ. bEstimated uncertainties are ±0.10 eV. cΔHDiss° = M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ, (M06-2X/aug-cc-pVTZ), and
[CCSD(T)/maug-cc-pVTZ] values in kcal mol−1. dThese values are for 3-PyrBPh3− and its corresponding radical. eThese values are for 4-PyrBPh3−

and its corresponding radical.
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surface. Refined M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-
pVDZ and CCSD(T)/maug-cc-pVTZ//M06-2X/aug-cc-
pVTZ41−43 single-point energies were also computed and
used to obtain VDEs, which correspond to the energy
differences between the anions and their corresponding
radicals with the geometry of the anion. To save computational
resources, the truncated maug-cc-pVTZ basis set developed by
Papajak and Truhlar was used instead of the larger aug-cc-
pVTZ basis set for the CCSD(T) calculations.41 Reference
compounds including trifluoroborane, triphenylborane, 3- and
4-pyridyl anions, and their corresponding radicals were also
computed to obtain 0 K enthalpies for the fragmentation of
BF3 from 1−, 2−, and their corresponding radicals. Cleavage of
BPh3 from 3- and 4-pyridyltriphenylborate anion and neutral
was determined as well. The Gaussian 1644 suite of programs
was used to carry out all of these computations at the
Minnesota Supercomputer Institute for Advanced Computa-
tional Research and Gaussview 645 was used to visualize radical
spin densities and frontier molecular orbitals.

■ RESULTS AND DISCUSSION
Negative ion photoelectron spectra of the borate anions
derived from 1−6 were obtained at 20 K (Figure 1). All six
spectra are broad and show multiple features with VDEs
ranging from 4.50 ± 0.1−5.85 ± 0.1 eV. The lower values are
for the triarylborate derivatives, and the higher binding
energies are for the trifluoroborates (Table 1). For 3-
pyridyltrifluoroborate (1−, Figure 1), there are two features
in the first (low energy) band at 5.50 and 5.64 eV with
essentially the same intensities. In this case, either value could
correspond to the VDE.
Structures for 1−−6− were previously examined and

provided the starting geometries for the optimizations and
single-point energy calculations carried out in this work.32

Interestingly, M06-2X/aug-cc-pVTZ geometries of the neutral
structures derived from 1− and 2− have elongated C−B
distances of 2.739 and 2.742 Å compared to 1.635 and 1.636 Å
bond lengths in their respective anions (Figure 2). The BF3
substituent also flattens out in the radical and becomes almost
planar with FBFF dihedral angles of 118.6 and 175.3° in 1−

and 1•, respectively, and 119.4 and 175.4° for 2− and 2•. This
suggests that the interaction of BF3 with the aromatic rings is
much stronger in the anions than in the corresponding radicals
and that in the latter case the association is a weak one.
Consistent with these inferences based upon the geometry
changes, CCSD(T)/maug-cc-pVTZ//M06-2X/aug-cc-pVTZ
[referred to as CCSD(T) hereafter] 0 K dissociation enthalpies
of 74.1 (1−) and 73.4 (2−) kcal mol−1 were obtained as
opposed to 2.7 and 2.5 kcal mol−1 for the respective radicals.
CCSD(T) VDEs for 1− and 2− are 5.60 and 5.77 eV,

respectively. These values and the respective M06-2X/aug-cc-
pVTZ VDEs of 5.72 and 5.84 eV are in excellent agreement
with the corresponding experimental assignments of 5.64 and
5.85 eV; in the former case, there is also a band at 5.50 eV with
essentially the same intensity that could be assigned as the
VDE, but the larger value is in better accord with both the
CCSD(T) and M06-2X results. Adiabatic detachment energies
(ADEs) correspond to the energy difference between the
ground state of an anion and the ground state of its
corresponding radical, and when there is a large geometry
difference between the two, an extended progression with weak
Franck−Condon factors may be observed. This leads to onset
energies that correspond only to upper bounds for the ADEs.

Our assigned values of ≤4.9 eV for both 1− and 2− are ∼0.4 eV
greater than the calculated CCSD(T) ADEs of 4.48 (1−) and
4.49 (2−) eV which is in keeping with the large computed
geometry changes occurring upon electron loss from both
anions.
3- and 4-Pyridyltriarylborate anions 3−−6− have similar

M06-2X/aug-cc-pVTZ geometries to the trifluoroborate
derivatives (Figure S1), but the corresponding radicals which
were initially modeled without the phenyl ring substituents
(i.e., 3-PyrBPh3• and 4-PyrBPh3•) are quite different (Figure
3). That is, the BPh3 group does not elongate or flatten out but

instead it contracts from 1.643 (3-PyrBPh3−) and 1.639 Å (4-
PyrBPh3−) to 1.602 (3-PyrBPh3•) and 1.604 (4-PyrBPh3•) Å;
subsequent computations on radicals with the phenyl ring
substituents included lead to similar results (Figures S2). This
suggests that cleavage of BAr3 versus BF3 from the anions is
energetically similar, whereas for the neutral species the former
process takes more energy than the latter one. In accord with
this conclusion, the 0 K CCSD(T)/maug-cc-pVTZ dissocia-
tion enthalpies are 75.2 and 74.4 kcal mol−1 for 3-PyrBPh3−

Figure 2. Optimized M06-2X/aug-cc-pVTZ structures of 3-PyrBF3−

(1−), 3-PyrBF3• (1•), 4-PyrBF3− (2−), and 4-PyrBF3• (2•) with
distances in Å.

Figure 3. M06-2X/aug-cc-pVTZ optimized structures of 3-PyrBPh3•

and 4-PyrBPh3• where bond lengths are given in Å.
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and 4-PyrBPh3−, and 12.2 and 10.8 kcal mol−1 for the
corresponding radicals; interestingly, cleavage of phenyl radical
from the two neutral structures (10.8 and 11.8 kcal mol−1,
respectively) is energetically similar despite the presence of
a ∼ 0.5 Å longer Cphenyl−B bond.
M06-2X/aug-cc-pVTZ computed VDEs for anions 3−−6−

span a 0.33 eV range from 4.51 eV (5−) to 4.84 eV (6−)
(Table 1). These calculated values are in excellent accord with
the observed results [i.e., 4.77 (calc) vs 4.65 (expt) eV (3−),
4.76 (calc) vs 4.66 (expt) eV (4−), 4.51 (calc) vs 4.50 (expt)
eV (5−), and 4.84 (calc) vs 4.90 (expt) eV (6−)]. They also
reveal that 4-PyrB(4-MeOC6H4)3− is the most electron rich
anion (i.e., the one with the lowest VDE), two methoxy groups
at the 3,5-positions of the benzene ring are electron
withdrawing, and all four pyridyltriarylborate anions are ∼1.0
eV easier to oxidize than 3- and 4-pyridyltrifluoroborate. Their
ADEs [4.06 (3−), 4.10 (4−), 3.91 (5−), and 4.52 (6−) eV] are
∼0.5 eV smaller than the VDEs which is consistent with large
geometry changes upon photodetachment and our assigned
ADEs of ≤4.1 (3−), ≤4.2 (4−), ≤4.1 (5−), and ≤4.3 (6−) eV.
The VDEs of 1−−6− provide an indication of their valence

electron density and may also reflect the nucleophilicity of
these ions. Their experimental values were consequently
compared to the rate constants for the SN2 reactions of 1−4
and 6 with 1-iodooctane in dichloromethane; 5 is omitted
because its rate constant was not reported.32 A linear
correlation is observed between the logarithm of the SN2
rate constants and the VDEs (Figure 4) and a least-squares

analysis of the data affords ln k (min−1) = −1.35 × VDE (eV)
+ 1.85, r2 = 0.934. Similar plots of ln k vs the highest occupied
molecular orbital (HOMO) and the highest-one occupied
molecular orbital (HOMO-1) energies of the anions are also
linear; ln k (min−1) = 2.87 × HOMO (eV) + 7.85, r2 = 0.910
and ln k (min−1) = 2.78 × HOMO-1 (eV) + 7.68, r2 = 0.931
(Figures S3 and S4).46

These results might be considered surprising since the
reactivity of 1−6 are counterion-dependent and were
determined in a nonpolar solvent,32 whereas the VDEs were
measured in the gas phase for the free anions in the absence of
a solvent or counterion. This is not the first time, however, that
gas phase measurements and computations on free anions have
been found to correlate with the behavior of organic salts in
nonpolar solvents.6,32,47

Spin densities for 1•−6• were visualized (Figure S5) and
correspond to σ (1• and 2•) and π (3•−6•) radicals, with the
unpaired electron primarily residing in the substituted phenyl
rings in the latter species. This is similar to the HOMO and
HOMO−1 of 1−−6−, and it suggests that both cation−π and
nitrogen lone-pair−cation interactions are important in the
salts of these anions.

■ CONCLUSIONS
A series of 6 arylborate anions 1−−6− were examined by
NIPES at 20 K and the VDEs for the aryltrifluoroborates [3-
PyrBF3− (5.64 eV) and 4-PyrBF3− (5.85 eV)] are ∼1.0 eV
higher than the 3-PyrB(4-t-BuC6H4)3− and 4-PyrBAr3− [Ar =
4-t-BuC6H4, 4-MeOC6H4, 3,5-(MeO)2C6H3] derivatives,
which span from 4.50−4.90 eV. This indicates that the
pyridyltriarylborate anions are electron-rich relative to their
BF3 analogues which is in accord with the greater reactivity of
their tetraphenylphosphonium ion salts, and a linear
correlation between the measured VDEs and ln k for their
SN2 reaction with 1-iodooctane in CH2Cl2.
Computations reproduce the experimental VDEs and

provide structures for both borate anions and their
corresponding neutral structures. The resulting spin densities
of the radicals and HOMO and HOMO-1 of 1−−6− reveal that
photodetachment of an electron from the nitrogen lone pair or
the π system of an aryl group takes place. This suggests that
these are the locations where a cation interacts with these
anions and provides a basis for modifying the latter structures
to weaken the attractive interactions between the oppositely
charged species.
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