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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:A principal goal in ecology is to identify the determinants of species abundances in nature.

Body size has emerged as a fundamental and repeatable predictor of abundance, with

smaller organisms occurring in greater numbers than larger ones. A biogeographic compo-

nent, known as Bergmann’s rule, describes the preponderance, across taxonomic groups,

of larger-bodied organisms in colder areas. Although undeniably important, the extent to

which body size is the key trait underlying these patterns is unclear. We explored these

questions in diatoms, unicellular algae of global importance for their roles in carbon fixation

and energy flow through marine food webs. Using a phylogenomic dataset from a single

lineage with worldwide distribution, we found that body size (cell volume) was strongly corre-

lated with genome size, which varied by 50-fold across species and was driven by differ-

ences in the amount of repetitive DNA. However, directional models identified temperature

and genome size, not cell size, as having the greatest influence on maximum population

growth rate. A global metabarcoding dataset further identified genome size as a strong pre-

dictor of species abundance in the ocean, but only in colder regions at high and low latitudes

where diatoms with large genomes dominated, a pattern consistent with Bergmann’s rule.

Although species abundances are shaped by myriad interacting abiotic and biotic factors,

genome size alone was a remarkably strong predictor of abundance. Taken together, these

results highlight the cascading cellular and ecological consequences of macroevolutionary

changes in an emergent trait, genome size, one of the most fundamental and irreducible

properties of an organism.

Introduction

The abundance of species in nature is a central feature of all life. Because of this centrality, a

principal goal of ecology is to understand what determines organismal abundance [1–3]. The-

oretical studies have developed an extensive body of work to understand how demographic

parameters (e.g., birth and death rates) affect species abundances [4–6], while observational

and experimental studies have identified key abiotic (e.g., nutrient supply) and biotic factors

(e.g., species interactions such as competition and predation) that shape the abundances of

organisms from local to global scales [7–11]. Another equally large body of literature has

sought to identify the key intrinsic features of organisms that shape their abundance [12–14].
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Among these efforts, the size of an organism has emerged as a fundamental and repeatable

predictor of abundance—smaller organisms occur in greater numbers than larger ones [15].

This relationship occurs across unicellular and multicellular lineages, and in terrestrial and

aquatic ecosystems [15–17]. A biogeographic component, known as Bergmann’s rule,

describes an association between body size and temperature, wherein larger-bodied organisms

are found in colder environments and smaller organisms in warmer ones [18,19]. Thus, body

size and temperature are frequently woven together as key explanations for organismal abun-

dance. The repeatability of these associations, which link a fundamental organismal trait to its

abundance and thermal environment, are heralded as a widespread feature of life on Earth

[20,21]. But key questions remain, such as what determines size and whether size alone is the

most basic intrinsic, ecologically determinant feature of an organism. For multicellular species,

size is a complex trait confounded by tissue differentiation, life history, and development [22–

24]. For unicellular organisms, which constitute the bulk of life on Earth, their size may be fun-

damentally shaped by a single intrinsic feature, the size of their genome [23,25]. Across eukary-

otes, genome size varies by many orders of magnitude and is correlated with numerous traits

of ecological importance, including body size, metabolism, and life history [16,26,27]. As a

result, genome size may have important cascading effects on organismal abundance and, ulti-

mately, ecosystem function [28–30].

To test this hypothesis, we asked whether genome size can predict patterns of diatom abun-

dance across the world’s oceans. Diatoms are single-celled primary producers that account for

20% of global primary production and are keystone species in marine food webs [31]. We

traced the history of genome evolution in one of the most diverse and abundant lineages of

marine planktonic diatoms, Thalassiosirales [32,33], to characterize the determinants of

genome size on evolutionary timescales. Although a simple association between genome size

and body size (cell volume) seems intuitive, a longstanding question is whether genome size

drives cell volume, or whether cell volume—an ecologically important and putatively adaptive

trait—drives changes in genome size [22,24,34]. We used phylogenetic path analysis to test

competing directional hypotheses about the relationship between these 2 traits, which have the

potential to shape key population demographic parameters that should, in turn, shape species

abundances in accord with basic population ecology theory [4–6]. We then used a large meta-

barcoding database to determine whether genome size predicts geographic patterns of diatom

abundance and temperature associations in the global ocean. Our results identified genome

size as a strong predictor of global patterns of phytoplankton species abundance. Thus, in the

absence of any additional information, this single, emergent property of an organism can help

us understand species abundance in the wild.

Results

Repetitive DNA underlies broad variation in genome size

We characterized the genomes of 67 newly (n = 46) and previously sequenced (n = 21) diatom

strains, representing 51 species of Thalassiosirales (S1 Table). Haploid genome size varied by

nearly 50-fold, from 33 Mb in Cyclotella nana to 1.5 Gb in Thalassiosira tumida (Fig 1) and

showed strong phylogenetic signal (Pagel’s λ = 0.998, P < 0.001). Estimates of haploid genome

size based on k-mer counting and sequencing coverage were similar and strongly correlated

(Spearman’s ρ = 0.984, P < 0.001) (S1 Fig). Our estimates of genome size were similar for the 3

strains in our dataset with genome size estimates from flow cytometry (S1 Table). For example,

our estimate for Cyclotella nana CCMP1335 was 33 Mb, while flow cytometry estimated it at

36 Mb (S1 Table). The k-mer-based method was unable to estimate genome sizes for 5 taxa, so

our results are based on the coverage-based dataset unless stated otherwise. Thalassiosirales
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Fig 1. Cell volume and genome size vary widely across diatoms. (A) A time-calibrated phylogeny of the diatom order

Thalassiosirales, modified from [35] and with branches colored by minimum cell volume. Light micrographs of live cells illustrate

the broad variation in cell volume across the lineage. (B) Bar plots show the estimated genome size and proportions of non-

repetitive and repetitive DNA in each genome. Panels C–E show PGLSs models predicting genome size with (C) percentage of

repetitive DNA, (D) minimum cell volume, and (E) measured cell doubling time. Black lines show the estimated regression

coefficients. The data and code needed to generate this figure can be found in https://doi.org/10.5281/zenodo.12608914.

https://doi.org/10.1371/journal.pbio.3002733.g001
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includes marine and freshwater species [35], but there was no significant difference in genome

size between diatoms from the 2 environments (Wilcoxon rank sum test, P = 0.125) (S2 Fig).

Genome size was strongly correlated with repetitive DNA content (phylogenetic general-

ized least squares [PGLS] r2 = 0.51, P < 0.001) (Figs 1 and S3). The percentage of the genome

composed of repetitive DNA ranged from 6% in Thalassiosira profunda (genome size: 41 Mb)

to 85% in Thalassiosira tumida (genome size: 1.5 Gb) (S1 Table). Among the different classes

of repetitive DNA, unclassified repetitive elements constituted the largest fraction of most

genomes (S4 Fig). These are repetitive sequences that could not be classified into known repeat

classes, likely due to the paucity of large diatom genomes that have been sequenced to date.

The different classes of repetitive elements increased more-or-less proportionally in larger

genomes, such that no single class of repetitive DNA disproportionately drove increases in

genome size (S4 Fig). There was no association between haploid genome size and the average

length of genes, exons, or introns (S3 Fig), nor the presence of polyploidy (S1 Table). Previous

studies have linked GC content to genome size variation in both multicellular and unicellular

organisms [36], but genome size was weakly negatively correlated with average genome-wide

GC content in these diatoms (PGLS r2 = 0.08, P = 0.013) (S3 Fig).

Genome size affects cell size and growth rate

Genome size is strongly correlated with body size, measured as cell volume, in microbial

eukaryotes [23]. Although the extent to which increases in genome size require commensurate

increases in nuclear and cell volumes is unclear [22], genome size should exert its greatest

influence on the minimum volume of a cell. To test whether genome size predicts cell volume

in diatoms, we compiled minimum and maximum volumes for the 51 species in our dataset.

Maximum cell volume varied by 5 orders of magnitude across species and minimum cell vol-

ume varied by 4 (Figs 1 and S5 and S2 Table). Increased genome size was associated with

increases in both minimum (PGLS r2 = 0.28, P < 0.001) and maximum cell volume (PGLS r2 =

0.53, P < 0.001) (Figs 1 and S5). We measured maximum growth rates for the species in our

study (S1 Table) to test whether genome size is a predictor of cell division rate and found that

species with larger genomes did indeed have longer doubling times (i.e., slower growth rates)

(PGLS r2 = 0.42, P < 0.001) (S6 Fig). Temperature has profound effects on cellular metabolism

and growth rate in both multicellular and unicellular organisms [37], and the addition of tem-

perature to genome size as a predictor of growth rate led to substantial improvement in model

fit (PGLS r2 = 0.73, P < 0.01) (S6 Fig). Here, lower temperatures and larger genomes were

both associated with decreased growth rate (S6 Fig).

Across the tree of life, genome size and body size are strongly correlated with growth rate,

nutrient usage, and other life history traits, but causal relationships and trade-offs among these

and other correlated traits are not always clear [22,34,38,39]. Although causality cannot be

inferred directly from comparative analyses of observational data, we can test the relative sup-

port for alternative models. To that end, we used phylogenetic path analysis—a type of struc-

tural equation modeling that allows for the evaluation of causal hypotheses from empirical

data—to test competing hypotheses about the effects of 4 variables on growth rate: genome

size, body size (minimum cell volume), temperature, and genomic GC content. We generated

14 alternative hypotheses (i.e., sets of directional relationships) to test whether genome size has

no effect (null models), direct effects (direct models), or indirect effects (indirect models) on

growth rate (cell doubling time) (S7 Fig). Using coverage-based genome size estimates, 3 mod-

els (direct1, direct2, and direct4 in S3 Table) were equally supported, with ΔCICc values <2

and P values >0.2, indicating good fit to the data (S3 Table). In the best-fit model, direct4,

genome size directly affects cell volume and doubling time, and temperature directly affects
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genome size and doubling time (S8 Fig). The direct1 and direct2 models remove the effect of

GC content on genome size (S7 Fig). The main difference between the top 2 models (direct4

and direct2) is whether genome size impacts cell volume (direct4) or vice versa (direct2). Aver-

aging the top 3 models resulted in a larger path coefficient for genome size affecting cell vol-

ume (0.54 versus 0.17) (Fig 2). Finally, testing the same 14 models with the k-mer instead of

coverage-based genome size estimates gave 6 models (including direct4) with equally strong

support (S3 Table). Importantly, all 6 models support genome size directly impacting cell vol-

ume, adding further support for the hypothesis that genome size influences cell volume, not

the reverse (S7 and S8 Figs). The best-fit (indirect2) and average models using k-mer-based

genome sizes both suggested that genome size affects doubling times but only indirectly via

effects on cell volume, rather than the direct effect of genome size on doubling time supported

by coverage-based genome size estimates (S8 Fig).

Genome size, biogeography, and temperature impact diatom abundance in

the ocean

Taking advantage of the global metabarcoding database from the Tara Oceans expedition [40],

we built Bayesian models to test whether genome size influences relative species abundance in

the ocean (Fig 3). Using 2 taxonomic assignment methods for operational taxonomic unit

(OTU) sequences, we identified 28 species from our study that were also present in �10 sam-

ples of the Tara Oceans database. This allowed us to test whether latitude, ocean region, and/

or ocean temperature interact with genome size to affect species abundance. Latitude had a sig-

nificant nonlinear interaction with genome size on species abundance (Fig 3C)—species with

larger genomes were more abundant at high latitudes, and species with smaller genomes were

more abundant at lower latitudes (Fig 3C). The 2 coldest ocean regions, the Arctic and South-

ern Oceans, were the only ones with a significant positive regression coefficient relating

genome size to abundance, whereas all other regions had either no effect or a negative effect

Fig 2. Genome size affects cell volume and doubling time in diatoms. (A) Average model from phylogenetic path analysis using coverage-based genome size

estimates. Arrow color and width represent the direction and magnitude of regression coefficients, indicated by numeric labels (positive: blue; negative: red;

nonsignificant: gray). Full lines show coefficients that differ significantly from 0, whereas dotted lines overlap with 0. (B) Standardized regression coefficients

and their standard errors (SE) for paths in the model. The data and code needed to generate this figure can be found in https://doi.org/10.5281/zenodo.

12608914.

https://doi.org/10.1371/journal.pbio.3002733.g002

PLOS BIOLOGY Diatom genome size and abundance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002733 August 8, 2024 5 / 22

https://doi.org/10.5281/zenodo.12608914
https://doi.org/10.5281/zenodo.12608914
https://doi.org/10.1371/journal.pbio.3002733.g002
https://doi.org/10.1371/journal.pbio.3002733


(South Pacific Ocean) of genome size on species abundance (Fig 3D). We tested the effects of

temperature directly and found a significant interaction with genome size to predict abun-

dance, in which species with larger genomes were more abundant in colder temperatures (Fig

3E). These results were replicated with a smaller dataset (22 species) of OTUs classified using

an alternate method of taxonomic assignment (S9 Fig).

Discussion

One of the most basic and defining ecological properties of a species is its abundance in the

environment, which is shaped by numerous interacting abiotic and biotic factors [2,6,9]. As a

result, considerable attention has been paid to identifying key ecological processes that define

a simple, sufficient, and generalizable ecological model explaining species abundance [11].

Rather than focusing on ecological processes, we sought instead to determine whether a funda-

mental intrinsic property of an organism—the size of its genome—can explain abundance and

an associated vital rate, population growth [15,41].

Fig 3. Latitude, ocean region, and temperature interact to shape genome size—abundance relationships. (A, B) Maps showing the locations of the

210 sampling stations from the Tara Oceans expedition, with points colored to highlight locations within the (A) Arctic, Southern, and South Pacific

Oceans or (B) the temperature of each location at the time of collection. The base layer for the maps is from https://cran.r-project.org/web/packages/

maps/index.html. Panels C–E show Bayesian multilevel regression models predicting relative species abundance by the interaction of genome size with

(C) latitude, (D) ocean region, or (E) temperature. Nonlinear effects of latitude were modeled in (C) using a generalized additive model. Significant

estimates for the Arctic, Southern, and South Pacific Oceans are shown with solid lines in (D). Nonsignificant estimates for the other ocean regions are

shown with dotted lines in (D). Although all predictors are treated as continuous in (E), we used the model to predict the interactive effect of 4

temperatures (0, 10, 20, and 30˚C) with genome size on species abundance. The data and code to generate this figure can be found in https://doi.org/10.

5281/zenodo.12608914.

https://doi.org/10.1371/journal.pbio.3002733.g003
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Trait-based models of phytoplankton ecology use the functional traits of individual species

or entire communities to understand the biogeography, seasonal dynamics, and future

responses of phytoplankton to environmental change [42,43]. Across taxonomic groups,

major ocean regions, and marine and freshwaters, nearly all traits of ecological importance

scale allometrically with cell size [38,44,45]. Despite its broad predictive power, however, theo-

retical and empirical studies have revealed complex interactions between cell size and environ-

mental gradients such as temperature and nutrient supply, two of the principal abiotic factors

structuring phytoplankton communities [16,46]. In general, large cells tend to dominate in the

cold, nutrient-rich waters of high latitudes, and smaller cells are more abundant in lower lati-

tudes, where temperatures are warmer and nutrient supplies are lower [16,47]. Other factors,

such as grazing pressure, can interact with temperature and nutrients to modify size–abun-

dance relationships [46]. Amidst a sea of trait correlations, the extent and complexity of these

interactions make it difficult to infer causal relationships and develop a simple ecological

model of abundance [39,41,42].

Across the tree of life, cell size is also correlated with the size of both the genome and the

cell nucleus [24,34,48]. This relationship is commonly assumed to reflect simple packaging

constraints, suggesting that over evolutionary timescales nucleus and cell sizes ebb and flow

nonadaptively in response to changes in genome size [22,24,34]. Although intuitive, the mech-

anisms by which these 3 size components of the cell exert their influence on one another is

unclear [22]. Alternatively, the strong associations between cell size and fitness-related traits,

such as nutrient acquisition and growth rate, suggest cell size is an adaptive trait [23,24,34]. If

larger cells require larger nuclei to balance space requirements for RNA synthesis in the

nucleus and protein synthesis in the cytoplasm, then changes in the amount of bulk DNA are a

means of modulating the size of the nucleus to maintain an optimal nuclear:cytoplasmic ratio

(the “karyotopic ratio”) [23]. Our novel approach to these questions—combining phyloge-

nomics, empirical growth rates, and a global DNA metabarcoding database—highlighted a

central role for genome size in the cellular and ecological properties of marine diatoms.

Although previous flow cytometry studies found correlations between genome size and cell

size in diatoms [49,50], the genome sequences analyzed here identified repetitive DNA as the

principal driver of genome size evolution. Nucleotypic effects describe the phenotypic changes

that occur in response to changes in genome size [51]. In the diatoms studied here, repeat-

driven changes in genome size over the past 100 million years had strong nucleotypic effects

on 2 fitness-related traits—cell size and maximum growth rate (Figs 1 and 2). The same

nucleotypic effects operate on microevolutionary timescales in diatoms as well. A comparison

of 2 populations of the marine planktonic diatom, Ditylum brightwellii, with 2-fold difference

in genome size and 4-fold difference in maximum cell volume, showed that the population

with a smaller genome and cell size had a higher growth rate, and that genome size had a sig-

nificantly greater (negative) impact on growth than cell size [52]. Larger genomes take longer

to replicate, lengthening mitosis and cell doubling time [22,51]. Larger genomes also require

additional investments of N and P to replicate and maintain, so in species with large genomes,

these 2 essential nutrients cannot be allocated to RNA, ribosomes, and proteins, reducing

growth rates and, over longer timescales, selecting for smaller genomes under conditions of

nutrient limitation [41].

Although cell size is often considered a “master” phytoplankton trait, our results highlight

the ecological importance of genome size as well. Genome size was not driven by increases in

the amount of functional DNA, either through gene or genome duplications, but instead

through changes in the amount of nonfunctional sequences, highlighting bulk DNA content

as a phenotype with far-reaching consequences for phytoplankton physiology and ecology.

Although genome size could be interpreted as an adaptive trait in this context [24], this must
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be weighed against the deleterious effects of excess DNA, including mobile elements that can

disrupt functional genes [53] and the metabolic burden of noncoding DNA [41]. Although evi-

dence for this hypothesis is mixed, [54–56], the inclusion of population genetic parameters in

our models might have shown whether diatoms with smaller effective population sizes are

potentially more susceptible to nonadaptive genome expansions due to genetic drift [53].

Whatever the cause, our results provide support for a simple model in which many ecologically

important traits, though perhaps more proximally related to cell size, are perhaps ultimately

attributable to the size of the genome.

Ecologists have identified numerous biotic and abiotic factors that explain organismal

abundance and geographic distributions [7–11]. Indeed, diatom abundance is shaped by abi-

otic factors such as temperature, along with both bottom-up effects such as nutrient supply,

and top-down effects such as grazing pressure [57–59]. The data presented here showed that

diatoms with larger genomes and, by extension, larger cell volumes are more abundant in

regions and latitudes that experience colder temperatures, supporting Bergmann’s rule and

reinforcing a broader biogeographic trend of larger phytoplankton in colder seas [42]. This

pattern has been attributed to temperature and numerous covarying factors [18]. For example,

larger genomes and cells require more nutrients, which are generally in greater supply at

higher latitudes [16,47]. In addition, grazing marine copepods have larger body sizes in colder

temperatures [60], which might select for increased genome and cell size in colder parts of the

ocean. Although including these and other factors in our models undoubtedly would have

explained more of the variation in abundances, genome size predicted abundance remarkably

well. Like most studies, the strong effect of latitude on the association between genome size

and abundance reflects the context-specific nature of this association, which is typical of many

ecological patterns [61]. Finally, a field study of freshwater benthic diatoms from geothermally

heated streams found no evidence for Bergmann’s rule [62], suggesting possible differences in

diatom size–abundance relationships across ecosystem types or phylogenetic lineages.

Documenting abundance associations at a global scale is not without challenges. For exam-

ple, in many cases the Tara Oceans samples represented a single snapshot in time of abun-

dance at a location, precluding estimates of sampling error and potentially missing rapid

seasonal changes in species abundance. Although these types of temporal limitations are com-

mon in spatial datasets that are global in scale, they have nevertheless proven to be extremely

powerful in revealing broad ecological trends [40,63]. The diatom lineage studied here, Thalas-

siosirales, was well represented throughout the Tara Oceans samples and allowed us to

uncover strong evidence linking genome size, temperature, maximum population growth rate,

and species abundance [32,33]. Our results are consistent with size–abundance relationships

found in large-scale phytoplankton studies [16,46], which might also be driven ultimately by

genome size.

Similar associations have been found in multicellular organisms as well, suggesting genome

size may shape patterns of species abundance broadly across the tree of life. Genome size has

been linked to the distribution of flowering plants along a temperature gradient in the British

Isles [64] and was positively correlated with regional abundance in 436 herbaceous plant spe-

cies across Europe [28]. Although not related to a temperature gradient, salamanders are

among the most abundant animal groups in many terrestrial ecosystems [65], and they have

among the largest known genomes in the vertebrate lineage [66]. Like diatoms, much of the

variation in genome size in these and other groups is attributable to noncoding sequences.

Notably, despite the inherent difficulty in estimating abundance at a global scale, the amount

of variation in abundance explained by genome size in our study was substantially greater than

the typical range of variation accounted for in many ecological studies [67], highlighting the

seemingly outsized role of genome size in the ecology of unicellular organisms.
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In addition to the ecological consequences, our results highlight the unique cellular trade-

offs imposed by changes in genome size in diatoms. Diatoms reproduce asexually throughout

most of their life history and are unusual in that one of the 2 daughter cells following a mitotic

event is smaller than the parent, leading to a reduction in the average diameter of a cell lineage

over time, eventually triggering sexual reproduction and restoring the maximum cell size [68].

Although not measured here, nucleus size is positively correlated with genome size across the

tree of life [24,69,70], and the same correlation likely exists for diatoms. With a fixed genome

size that constrains the size of the nucleus, diatoms must optimize their surface area:volume

ratio as cell size decreases across generations. Diatoms have vacuoles that function in buoyancy

control, nutrient storage, and optimization of the surface area:volume ratio. Vacuoles occupy

as much as 90% of the cell volume [57], and vacuole size can be modulated in response to envi-

ronmental conditions [71]. The strong correlation between vacuole size and cell volume has

led to the hypothesis that the vacuole has played a key adaptive role in diatom evolution by

facilitating increases in cell size as a way to escape grazing pressure [57,58]. This hypothesis

does not account for the parallel influence of genome size on cell size confirmed here.

Just as the discovery here of a directional effect of genome size on cell size highlights its lack

of consideration from previous models, it likewise highlights the absence of several traits from

our study. Although suggested by our models, increases in genome size may not be the proxi-

mal cause of increased cell volume. Genome size might affect cell volume indirectly, via

upward pressure on nuclear volume or another latent character. In addition, although the

functions of the vacuole as they relate to cell size are clear [58], vacuole size is a more labile

trait, and it is unclear whether the vacuole exerts a causal influence on cell size or vice versa.

The genome, nucleus, and vacuole have different functional roles in relation to cell volume,

and all incur costs to maintain [57,72], so with a fixed genome size that presumably constrains

the minimum size of both the nucleus and the cell, diatoms probably rely primarily on adjust-

ments to the size and contents the vacuole as the ecological setting (e.g., rates of nutrient

uptake, sinking rate, susceptibility to grazers) changes in response to decreases in the volume

of a cell lineage over time.

Overall, the results presented here advance our understanding of species abundance by

showing that a single emergent trait fundamental to all life, the size of the genome, can predict

population abundance at a global scale. Moreover, the geographic variation in this pattern is

entirely consistent with longstanding ideas regarding size–abundance associations in relation

to the thermal environment. The addition of ecological information and other trait data to

genome size estimates would likely generate a more informative model of species abundance,

and this remains an important next step. Integrative approaches such as the one developed

here, combining the seemingly disparate subdisciplines of phylogenomics and population

ecology, may prove useful in forecasting widespread changes in the abundance of diatoms in

response to ongoing climate change, especially in polar regions.

Materials and methods

Strain collection and culturing

Strains were collected from a variety of locales in the United States and isolated into monoclo-

nal cultures. Additional strains were acquired from the National Center for Marine Algae and

Microbiota (NCMA) in the United States or the Roscoff Culture Collection (RCC) in France.

Marine strains were grown in L1 medium [73] and freshwater strains were grown in WC

medium [74]. Cells were grown in batch culture at varying temperatures from 5 to 21˚ C on a

12–12 hour light–dark cycle. Cultures newly isolated in the Alverson Lab have been submitted
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to the public culture collections at NCMA and The University of Texas Culture Collection of

Algae (UTEX) (S1 Table).

Draft genome sequencing, assembly, and gene prediction

See Supplementary File S1 of [35] for a detailed description of DNA extraction, sequencing,

draft genome assembly, and gene model prediction. We additionally downloaded short read

files for additional Thalassiosirales and Lithodesmiales (outgroups) strains that were available

from the NCBI Sequence Read Archive (S1 Table) [75–78]. For these reads, we used a similar

workflow as outlined in [35]. Briefly, we trimmed the reads using Trimmomatic v.0.36 [79],

corrected the trimmed reads with BayesHammer [80], assembled the corrected reads with

SPAdes v.3.12.0 [81], and removed contaminant contigs using Blobtools v.1.1.1 [82]. We

removed contigs that had taxonomic assignment to bacteria, archaea, or viruses, or were

shorter than 1 kb.

We also downloaded the reference genomes for Chaetoceros tenuissimus v.1 [83], Cyclotella
cryptica v.2 [84], Cyclotella nana v.4 [85] (DOI: 10.5683/SP2/ZDZQFE), Skeletonema marinoi
RCC75 v.1 [86], Skeletonema marinoi RO5AC v.1.1.2 [87] (DOI: 10.5281/zenodo.7786015),

and Thalassiosira oceanica v.2 [88] (DOI: 10.5281/zenodo.4589594). When available, we also

downloaded the predicted gene models and associated short reads from NCBI that were used

in the genome assembly (S1 Table). For every genome with predicted gene models, we also cal-

culated the average lengths of the genes, exons, and introns (S1 Table).

Phylogenetic tree estimation

We used BUSCO v.5.1.3 [89,90] to estimate the completeness of each draft assembly using the

stramenopiles_odb10 orthologs (n = 100) (S1 Table). We used the detected single-copy ortho-

logs to estimate a phylogenetic tree for all strains included in this study. First, we aligned the

amino acid sequences of each ortholog using MAFFT v.7.505 [91] and the L-INS-i algorithm

(“—localpair—maxiterate 1000”). Next, we trimmed the resulting alignments using ClipKIT
v.1.3.0 [92] with the default smart-gap mode (“-m smart-gap”). We then concatenated all

trimmed alignments into a supermatrix using the pxcat command in Phyx [93]. Finally, we

estimated a phylogenetic tree from the supermatrix using IQ-Tree v.2.2.0.3 [94], partitioning

the alignment by gene, using the LG+G substitution model, constraining the backbone topol-

ogy to match the reference tree from [35], and calculating branch support with 10,000 ultrafast

bootstrap replicates [95].

To generate an ultrametric, time-calibrated phylogeny, we estimated divergence times

using MCMCtree in PAML v.4.9e [96]. We used nucleotide data from 4 loci: the nuclear 18S
and 28S, and the plastid rbcL and psbC. We used the approximate likelihood approach [97],

the GTR+G5 substitution model, and the independent rates clock model. Priors in the analysis

were kept at their defaults. To ensure convergence in age estimates, we ran 2 independent

MCMC chains of 2.5e6 generations, sampling every 200, with the first 5e5 discarded as burn-

in. We checked that the effective sample size (ESS) of each parameter estimate was above 200

using Tracer v.1.7.2 [98].

We applied 8 calibrations to the reference tree in MCMCtree based on previous age esti-

mates or fossil evidence. First, we placed upper and lower bounded constraints on the root

(lower: 136 Ma; upper: 156 Ma) and the crown of Thalassiosirales–Lithodesmiales (lower: 115

Ma; upper: 141 Ma) based on estimates in [99]. We then placed a skewNormal prior distribu-

tion on the crown age of Thalassiosirales with a minimum age of 75 Ma based on the Thalas-
siosiropsis fossil [100,101]. Based on first fossil appearances in the Neptune marine

micropaleontology database [102], we also placed lower bounds for the stem ages of
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Lithodesmium undulatum (29.96 Ma), Porosira glacialis (9 Ma), and Bacterosira constricta
(8.35 Ma). For Cyclostephanos, we placed a lower bound of 5 Ma on the crown age based on

the fossil species Cyclostephanos undatus [101,103]. Lastly, we placed a lower bound of 6.15

Ma on the crown age of Shionodiscus based on the fossil species Shionodiscus praeoestrupii
[101,104].

Genome size estimation

We estimated haploid genome sizes using contaminant-free paired-end Illumina reads that

aligned to the filtered draft genome assemblies. Briefly, we aligned the reads to the cleaned

assembly using minimap2 v.2.10 [105] using the presets for short reads and outputting the

alignments in BAM format (“-ax sr”). We then extracted and kept only the aligned and cor-

rectly paired reads using the tool bam2fastq (https://github.com/jts/bam2fastq) with options

“—aligned—no-unaligned—no-filtered.” We estimated the genome size of each strain using 2

bioinformatic approaches based on k-mer [106] and read coverage histograms [107] (S4

Table).

For the k-mer-based genome size estimates, we used the script kmercountexact.sh from

BBtools (https://sourceforge.net/projects/bbmap/). This script counts the number of unique k-
mers in each pair of read files, estimates the genome size, and outputs a k-mer frequency histo-

gram. We specified a range of k-mer lengths (17, 19, 21, 23, 25, 27, 29, and 31) because genome

size estimates are highly dependent upon the chosen k-mer. For example, longer k-mers will

collapse fewer short repeats and genome size estimates will be larger. We averaged the BBtools

estimates for each k-mer length to produce a final genome size estimate for each strain.

Because kmercountexact.sh can sometimes incorrectly identify the locations of the heterozy-

gous and homozygous peaks in the histogram, we verified the accuracy manually in R [108].

We plotted the k-mer histograms in R to identify the peaks and calculate the estimated haploid

genome size (GS) using the formula: GS = N / (C * p), where N is the total number of genomic

k-mers, C is the k-mer coverage, and p is the ploidy [106].

For read coverage-based estimates, we aligned the filtered read files to the draft assembly

using minimap2 and exported the alignments in BAM format. We then used the script pileup.

sh from BBtools to calculate the total number of mapped base pairs and export a table of per-

contig average coverage estimates. Next, we plotted the distribution of per-contig coverages in

R and identified the mode of the distribution using the asselin function from the R package

modeest [109]. To estimate the genome size, we used the Lander–Waterman formula [110]:

GS = LN / C, where L is the read length, N is the total number of mapped reads, and C is the

mode of the coverage distribution.

For Lauderia annulata, Roundia cardiophora, and Thalassiosira punctigera, the draft

genome assemblies were too fragmented and incomplete to use for genome size estimates

using the above approaches. Instead, we used the transcriptomes from these strains to estimate

genome size in an approach adapted from [111]. Our approach to transcriptome assembly and

contig filtering is detailed in Supplementary File S1 of [35]. In this approach, the filtered read

files were aligned against the transcriptome assembly using minimap2, the resulting BAM file

was parsed using pileup.sh, and the mode of the coverage distribution was estimated in R. The

same formula for the read coverage-based approach is then used to estimate genome size.

Ploidy estimation

We used Smudgeplot v.0.2.5 [112] to estimate the ploidy of each strain (S1 Table). This method

uses short reads to disentangle genome structure and estimate ploidy. For this method, we

used the sets of aligned and contaminant-filtered reads that were used in genome size
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estimation. We used jellyfish v.2.3.0 [113] to count k-mers of length 21 from both forward and

reverse reads. Smudgeplot then extracted the heterozygous k-mer pairs and calculated their

coverages in order to estimate the ploidy of the sample.

Repeat content estimation

We estimated the percentage of each genome that is composed of repetitive elements using the

pipeline DNApipeTE v.1.3 [114] (S1 Table). This method allows for the fast assembly, quantifi-

cation, and annotation of repeat sequences from a low-coverage sampling of reads. For each

strain, we provided DNApipeTE with a single file of combined forward and reverse reads, the

estimated genome size (in bp), and a custom repeat library for repeat annotation. The read

files consist of the aligned and contaminant-filtered reads extracted previously for genome size

estimation. We generated the custom repeat libraries for the genome assemblies using Repeat-
Modeler2 v.2.0.1 [115]. DNApipeTE performs sampling of the reads to produce low-coverage

datasets to use during analyses. After initial testing of the pipeline using different coverages

(0.01×, 0.05×, 0.1×, 0.25×), we determined that a coverage of 0.25× would be used. For some

lower quality genomes with fewer available reads, a lower coverage (0.1×) was used. We esti-

mated the repeat content for each strain using both the k-mer- and read coverage-based

genome size estimations.

Growth measurements

We calculated the maximum growth rates of strains using the relative chlorophyll a fluores-

cence (RF) measured on a Trilogy Fluorometer (Turner Designs, California, United States of

America). In triplicate, we grew each strain at their maintenance temperature (5˚, 15˚, or 21˚

C) and measured their RF daily or every other day. We input the RF values into the R package

growthrates [116] to calculate the maximum growth rate (μ) during exponential growth using

the linear method [117]. We calculated the doubling time (in hours) of each strain by divid-

ing μ by the natural logarithm of 2. We averaged the triplicate doubling times to get a strain

average (S5 Table).

Cell volume measurements

We collected information about minimum and maximum observed cell diameters and heights

from biovolume databases and primary literature (S2 Table). For many marine species, we

compiled cell volume data from the Helsinki Commission Phytoplankton Expert Group (HEL-

COM PEG) dataset (https://helcom.fi/helcom-at-work/projects/peg/) or [118]. For the

remaining species, cell volume was calculated using size ranges reported in the primary litera-

ture. The height of cells is rarely reported, making it difficult to calculate cell volume using real

measurements. We therefore used an approach to calculate cell heights using a ratio,

height = diameter * 0.5 [118]. For Skeletonema, we made a simplifying assumption that cell

height equals cell diameter [119,120]. We then calculated the minimum and maximum cell

volumes using appropriate equations for the approximate geometric shape of each species

(S2 Table).

Taxonomic assignment of OTUs

We downloaded the assembled and clustered V9-18S rDNA OTU sequences and read count

abundances from the Tara Oceans expedition from Zenodo (DOI: 10.5281/zenodo.3768510)

[121,122]. We initially filtered the OTUs to only those that had previous taxonomic assign-

ments to the Thalassiosirales and Lithodesmiales. We aligned these filtered OTU sequences to
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a set of reference 18S rDNA sequences using ssu-align (http://eddylab.org/software/ssu-align/

). We estimated the 18S reference tree using IQ-Tree with the TIM2+F+I+G4 model. We then

used the evolutionary placement algorithm (EPA) [123] in RAxML v.8.2.11 [124] to place the

OTU sequences onto the reference phylogenetic tree of our 18S sequences.

After OTU placement, we used Gappa v.0.8.0 [125] to parse the resulting EPA jplace file

and assign a taxonomy to each OTU using the computed likelihood weights. We used 2

approaches to assign taxonomy. First, we used “gappa examine assign” to compute a majority

taxonomy for each internal node based on a consensus of its descendants. For example, if the

consensus threshold is set to 0.5 and 4 descendants are labeled “A;B;C” and 3 are labeled “A;B;

D,” the inner label will get labeled “A;B;C.” We chose a consensus threshold of 0.7 for this first

approach. This first approach resulted in OTUs for 22 species that overlapped with our

genome size dataset. Second, we used “gappa edit accumulate” which adds together the likeli-

hood weight ratio of each placement downward toward the root until the accumulated mass at

the basal branch reaches the defined threshold. This approach is useful to assess placements

distributed across nearby branches of the reference tree when the reference contains multiple

representatives of the same species. We chose a threshold of 0.5 for this second approach. The

second approach resulted in OTUs for 28 species that overlapped with our genome size

dataset.

OTU abundances and associated metadata

Following the taxonomic assignments of the OTUs, we filtered the original OTU abundance

count table down to only those assigned to the species in our dataset. To account for differ-

ences in read depth between the Tara Oceans samples, we transformed the OTU counts to

proportions prior to statistical analyses [126]. We used the R package dplyr [127] to aggregate

the abundances for each species and calculate the sum of each species at each Tara sampling

location. This generated a table with a single relative abundance measurement per species at

each sampling locale. We then downloaded 2 tables containing the associated environmental

metadata of each sample taken in the Tara Oceans expeditions from PANGAEA (DOI: 10.

1594/PANGAEA.858201, DOI: 10.1594/PANGAEA.875576) [128]. We combined the 2 meta-

data tables and merged the combined data with the abundances. This produced a final table

containing abundances of each species and the metadata for each sampling locale.

Statistics

The following variables were log10-transformed before statistical analyses: genome size, aver-

age exon length, average intron length, doubling times, and cell volumes. We applied arcsin

transformation to the percent repeat content. No transformation was applied to average gene

length, GC percent, temperature, and latitude.

We calculated the phylogenetic signal of genome size with Pagel’s lambda [129] with the

phylosig function in the R package phytools [130]. Ancestral state reconstruction of minimum

cell volume was estimated using maximum likelihood under an Ornstein–Uhlenbeck model

with the anc.ML function in the R package phytools. We calculated Spearman’s rho between

the k-mer- and read coverage-based genome size estimates using the R stats function cor.test.
To test for the correlation between variables, we performed linear regression using the R stats

function lm and PGLS using the functions comparative.data and pgls from the R package caper
[131]. The phylogenetic tree used in PGLS was the ultrametric tree estimated above.

We performed phylogenetic path analysis [132] using the function phylo path in the R

package phylopath [133]. Fourteen models were designed and tested to determine if genome

size had no effect (null models), direct effects (direct models), or indirect effects (indirect
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models) on doubling time (S7 Fig). We used the default evolutionary model of “lambda” and

calculated averaged models using the “full” approach [132].

We tested 3 hypotheses that species abundances are predicted by the interaction of genome

size and ocean region, temperature, or latitude. Prior to model fitting, we centered all continu-

ous variables in these models, except latitude and relative abundance. We fit these models

using Bayesian phylogenetic multilevel models, estimating the posterior distributions of each

model using rstan [134] via the brms package [135]. Species abundances (the response vari-

able) were modeled using a gamma distribution with a log link function. Prior sensitivity was

assessed by running models with uninformative or weakly informative priors. To account for

phylogenetic non-independence between species in our models, we calculated a covariance

matrix from the ultrametric phylogenetic tree using the function vcv.phylo in the R package

ape [136]. We calculated the mean and 95% credible intervals for each model parameter and

each derived quantity, from the joint posterior distribution of the models. Model effects were

considered significant if the means and 95% credible intervals did not overlap zero [137]. Pre-

dictions for the interactive effect of latitude, temperatures, or ocean region with genome size

on abundances were made from the models using the predictions function in the R package

marginaleffects [138]. For latitude effects, we fit generalized additive models to account for

nonlinear effects of latitude on species abundance. Each model in brms was run using 2 Mar-

kov chains for 10,000 iterations. We assessed chain convergence using potential scale reduc-

tion factors [139] and model fit using Bayesian r2 [140]. In addition, we assessed model fits

using posterior predictive checking.

We plotted figures, phylogenetic trees, and maps using the R packages ggplot2 [141], aplot
[142], ggtree [143], maps [144], and ggmap [145]. Figure edits were made using Adobe

Illustrator.

Supporting information

S1 Fig. Strong correlation between haploid genome size estimates. Scatterplot showing the

correlation between estimated haploid genome sizes via k-mer- and coverage-based

approaches. The black line indicates the regression coefficient. Spearman’s rho and associated

P value are shown above the plot. The data and code to generate this figure can be found in

https://doi.org/10.5281/zenodo.12608914.

(TIF)

S2 Fig. No difference in genome size between marine and freshwater diatoms. Violin plots

showing the distribution of coverage-based haploid genome size estimates for marine (black)

and freshwater (blue) species. The test statistic and P value from a Wilcoxon rank sum test are

shown above the plot. The data and code to generate this figure can be found in https://doi.

org/10.5281/zenodo.12608914.

(TIF)

S3 Fig. Genome size is predicted by repetitive elements, gene lengths, and GC content. Phy-

logenetic generalized least squares (PGLS) models predicting genome size by (A) the estimated

percentage of repetitive elements in the genome, (B) the average gene length, (C) the average

exon length, (D) the average intron length, and (E) the genome average GC content. Black

lines show the estimated regression coefficient. The PGLS r2 and associated P value are shown

above each plot. The data and code to generate this figure can be found in https://doi.org/10.

5281/zenodo.12608914.

(TIF)
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S4 Fig. Percentages of different repetitive element classes in each genome. (A) A time-cali-

brated phylogeny of the diatom order Thalassiosirales, modified from [35]. Strain numbers fol-

low the species names. (B) Stacked bar plot showing the percentage of each genome belonging

to different repetitive element classes as estimated using dnaPipeTE. Colors denote the differ-

ent repeat classes and gray represents the percentage of the genome that is non-repetitive.

Abbreviations: DNA, DNA transposons; LINE, long interspersed nuclear elements; LTR, long

terminal retroelements; RC, rolling circles or Helitrons. The data and code to generate this fig-

ure can be found in https://doi.org/10.5281/zenodo.12608914.

(TIF)

S5 Fig. Genome size is predicted by minimum and maximum cell volumes. Phylogenetic

generalized least squares (PGLS) models predicting genome size by the (A) minimum and (B)

maximum calculated cell volume. Black lines show the estimated regression coefficient. The

PGLS r2 and associated P value are shown above each plot. The range of cell volume sizes

(minimum to maximum) are shown for each species on (C) linear and (D) log10-transformed

scales. The data and code to generate this figure can be found in https://doi.org/10.5281/

zenodo.12608914.

(TIF)

S6 Fig. Doubling time is predicted by genome size and temperature. Phylogenetic general-

ized least squares (PGLS) model predicting doubling time by the additive effects of genome

size and temperature. The black line shows the estimated regression coefficient. The points are

colored according to the growth temperature of the strain. The PGLS r2 and associated P value

are shown above each plot. The data and code to generate this figure can be found in https://

doi.org/10.5281/zenodo.12608914.

(TIF)

S7 Fig. Models tested in the phylogenetic path analyses. Directed acyclic graphs showing the

14 models tested in the phylogenetic path analysis. Models were defined to test if genome size

had no effect (null models), direct effects (direct models), or indirect effects (indirect models)

on doubling time. Temperature, GC percentage, and minimum cell volume are also included

as variables in the models. Arrow direction indicates the causal relationship being tested

between 2 variables. The data and code to generate this figure can be found in https://doi.org/

10.5281/zenodo.12608914.

(TIF)

S8 Fig. The best and average models from the phylogenetic path analyses. Results of the

phylogenetic path analysis. (A, B) Best models and (C, D) averaged models using coverage-

(A, C) or k-mer-based (B, D) genome size estimates. Arrow color and width represent the

direction and magnitude of regression coefficients, indicated by numeric labels (positive: blue;

negative: red; nonsignificant: gray). Full lines show coefficients that differ significantly from 0,

whereas negative lines overlap with 0 and are nonsignificant. The data and code to generate

this figure can be found in https://doi.org/10.5281/zenodo.12608914.

(TIF)

S9 Fig. Latitude, ocean region, and temperature interact with genome size—abundance

relationships. Results from alternative taxonomic assignment of barcodes for 22 diatom spe-

cies across 210 sampling stations from the Tara Oceans expedition. Panels show Bayesian mul-

tilevel regression models predicting relative abundance by the interaction of genome size with

(A) latitude, (B) ocean region, or (C) temperature. Nonlinear effects of latitude were modeled

in (A) using a generalized additive model. Significant estimates for the Arctic, Southern, South
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Pacific, and North Pacific Oceans are shown with solid lines in (B). Nonsignificant estimates

for the other ocean regions are shown with dotted lines in (B). Although all predictors are

treated as continuous in (C), we used the model to predict the interactive effect of 4 discrete

temperatures (0, 10, 20, and 30˚C) with genome size on relative species abundance. The Bayes-

ian r2 for each model is indicated above each panel. The data and code to generate this figure

can be found in https://doi.org/10.5281/zenodo.12608914.

(TIF)

S1 Table. Summary of strain collection, accession numbers, and genome characterization.

(XLSX)

S2 Table. Summary of the calculated minimum and maximum cell volumes.

(XLSX)

S3 Table. Results of the phylogenetic path analyses.

(XLSX)

S4 Table. Results of genome size estimation.
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S5 Table. Results of growth experiments and doubling time calculation.
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