DeepIDPS: An Adaptive DRL-based Intrusion
Detection and Prevention System for SDN

Nadia Niknami and Jie Wu
Center for Networked Computing, Temple University, USA
Emails: {nadia.niknami, jiewu} @temple.edu

Abstract—Most intrusion detection systems (IDS) are vul-
nerable to novel attacks and struggle to maintain a balance
between high accuracy and a low false positive rate. Furthermore,
the relevant features of Distributed Denial of Service (DDoS)
attacks in conventional networks may not necessarily apply to
the Software-defined network (SDN) environment. Additionally,
weak feature selection algorithms can omit critical parameters
and result in significant data loss. Although earlier works on
network flow analysis using Long Short-Term Memory (LSTM)
show excellent ability, they fall short in obtaining deep features
from network flow, resulting in lower accuracy. The emergence
of Attention Mechanism(AM) and deep reinforcement learning
(DRL) present a promising solution for intrusion detection
and enhancing security in SDN. AM has the capability to
assign varying weights to different network traffic features,
enabling IDS to extract and emphasize more crucial information.
This paper introduces DeepIDPS, a novel DRL-based network
intrusion detection system utilizing a CNN-LSTM approach
and Attention Mechanism specifically designed for SDN envi-
ronments. DeepIDPS demonstrates an exceptional ability for
continuous auto-learning within the network context, effectively
identifying diverse forms of network intrusions while significantly
augmenting both prevention and detection capabilities.

Index Terms—Attention Mechanism (AM), Deep reinforcement
learning (DRL), Distributed Denial of Service (DDoS), Intrusion
Detection System (IDS), Long Short Term Memory (LSTM),
Software Defined Network (SDN).

I. INTRODUCTION

Software-defined networking (SDN) represents a modern
network architecture and design paradigm that uses software to
facilitate communication between the control and data planes.
By decoupling these planes, SDN streamlines network device
complexity and provides adaptable network management ca-
pabilities. However, SDN networks face a substantial threat
in the form of Distributed Denial of Service (DDoS) attacks.
These attacks can target all layers of the SDN framework,
including the data, control, and application planes, as well
as the communication channels that connect the devices of
the data plane and the control plane [1]. To mitigate this
risk, SDN controllers often deploy Machine Learning-based
Intrusion Detection Systems (IDSs) to identify and response
to network attacks. The IDS functions by analyzing network
traffic from SDN switches via the control layer. It scrutinizes
incoming and outgoing traffic to detect patterns indicative
of suspicious behavior. When such activity is identified, the
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Fig. 1: RL-based SDN.

IDS triggers an alarm to alert the SDN controller about the
ongoing attack. This proactive approach empowers the SDN
controller to take immediate action to mitigate the attack
and ensure network security. Optimizing feature selection in
Machine Learning models can significantly enhance classifier
accuracy and detection rates while reducing execution time.
The effectiveness of an IDS heavily relies on the quality of
the feature construction and selection algorithms employed.
However, despite the existence of various feature selection
methods coupled with machine learning models for DDoS
attack detection [2], these mechanisms have often proven inef-
fective in SDNs. A comprehensive feature extraction approach
should consider both Temporal and Global [3]-[5] features to
provide a robust defense against DDoS attacks.

In response to these challenges, Deep Learning (DL) meth-
ods, including Artificial Neural Networks, have emerged as
a promising solution. Convolutional Neural Networks(CNNs)
are a common DL architecture used for various applica-
tions [6]. Its strength lies in learning intricate patterns and
extracting essential features, which suits them for detecting
anomalies in network traffic. While CNNs have been employed
for anomaly detection, they may fall short when detecting
subtle differences between normal and malicious traffic, as
these differences are often minimal.

To strengthen CNN anomaly detection capabilities, we
propose combining them with Long Short-Term Mem-
ory (LSTM) [7]. LSTMs networks are exceptionally adept at
modeling sequential data and mitigating the vanishing gradient
problem. This fusion enables the extraction of both spatial
and temporal features from input data, and our approach



leverages an Attention Mechanism to assign varying weights
to input data, enhancing the model’s capacity to extract critical
information without significantly increasing computational and
storage overhead. Thus, our paper introduces an Attention-
CNN-LSTM method applied to intrusion detection, which has
demonstrated favorable results.

Deep reinforcement learning (DRL) has shown great
promise in tackling complex real-world challenges. In DRL,
an agent is trained to acquire an optimal policy by actively
interacting with the environment and mapping input states to
corresponding actions. For this task, the agent must effectively
perceive the current input state and make informed decisions.
However, the proliferation of social networking platforms has
raised significant concerns about privacy and data storage,
making the transfer of substantial data volumes to the cloud
a challenging endeavor. One potential solution to address
this issue involves integrating DRL with deep neural net-
works (DNNs), enhancing the capabilities of DRL algorithms,
and ultimately improving efficiency and effectiveness.

This paper presents a novel approach called DeepIDPS,
which is an adaptive Intrusion Detection and Prevention
System (IDPS) designed specifically for SDNs. DeepIDPS
leverages the power of DRL to enhance its capabilities.
To capture complex observation features in RL, a DNN is
employed. In real-time, an RL-based agent explores the SDN
environment, dynamically analyzes its changing properties,
and formulates appropriate security policies. These policies
are then implemented by the SDN controller, which, in turn,
applies them to the switches. This iterative process continues
to adapt to the evolving network conditions.

Fig. 1 depicts the architecture of SDN integrated with RL,
showcasing the addition of an intelligent decision-making
layer based on deep learning to the SDN controller. By utiliz-
ing network measurement techniques and gaining a holistic
view of the entire network, the intelligent decision-making
layer can generate efficient policies for intelligent network
control. These policies are capable of addressing global, real-
time, and personalized network control requirements. The
main contributions of this paper can be summarized as follows.

o We introduce DeepIDPS, a DRL-based IDS by deploying
a hybrid deep neural network to a RL component. It
includes CNN and LSTM that are deployed in an intel-
ligent decision-making layer. The RL agent has different
actions based on the current situation of the network. Our
proposed approach can detect and prevent attacks.

o With the help of combining CNN and LSTM, we extract
important global and temporal features. Selected promis-
ing features can reduce the complexity of the model and
improve the performance of the intrusion model.

o« We have integrated the Attention Mechanism into the
CNN-LSTM model to direct the model’s attention to-
wards high-impact features.

o We assess the effectiveness of our proposed model based
on different measurements in the detection of different
types of attacks and for diverse datasets.

The rest of this paper is organized as follows: Section II
gives an overview of the existing machine learning (ML)
and deep learning (DL) techniques that are currently used
to monitor and detect threats in SDNs. The proposed model
including the evaluation dataset and the experimental setup
are provided in Section III. The obtained experimental results
are discussed in Section IV. Finally, Section V discusses and
concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. Intrusion in SDN

SDN technology has become increasingly popular for devel-
oping network management and cybersecurity applications in
networked systems. IDSs are commonly used to defend against
attacks by monitoring network traffic and generating alerts
upon detecting malicious activity. However, the processing
capacity of the basic IDS is limited, making it impractical
to inspect vast amounts of network traffic. When traffic flows
exceed the IDS’s processing capacity, packets are discarded
without inspection. In recent years, numerous defense and
mitigation techniques have been proposed to address the issue
of attack detection in SDNs [8]-[10]. Wei et al. [11] presented
a hybrid deep learning autoencoder multilayer perceptron
network with automatic feature extraction capabilities. The
autoencoder is used to extract critical features by compressing
and reducing the feature space.

B. Deep learning-based IDS

Convolution Neural Networks (CNNs) are particularly adept
at learning complex patterns and extracting relevant features
from input data, which makes them well-suited for detect-
ing anomalies in network traffic. Long-Short Term Memory
(LSTM) networks are exceptionally adept at modeling se-
quential data and mitigating the vanishing gradient problem
prevalent in traditional RNNs. By incorporating memory cells
and gated mechanisms, LSTMs effectively capture temporal
dependencies and long-term patterns, making them a powerful
choice for tasks such as network anomaly detection, where
sequential data analysis is paramount. Sahu et al. [12] pro-
posed a hybrid LSTM and fully connected network with hyper-
parameter tuning to classify benign and malicious network
traffic activities. This approach considered the imbalanced
intrusion data distributions for the majority and minority
classes. Additionally, six cybersecurity datasets were utilized
to evaluate binary and multiclass intrusion detection scenarios.
The authors of [13] proposed an effective feature selection
method using XGBoost in combination with a hybrid CNN-
LSTM for DDoS attack classification. The proposed model
comprises three main components: data preprocessing, feature
selection, and attack classification. The model demonstrated
efficient classification of network traffic with a reduced subset
of reliable dataset features and successfully identified various
types of attacks including DNS, UDP, and SYN attacks.
Authors in [14] proposed an attention-based CNN intrusion
detection model. They showed that their approach is a good



performer both from the point of view of classification ac-
curacy and from the point of view of execution speed when
compared to other models.

In [15], a hybrid IDS combining CNN and LSTM was
developed. The proposed model can capture both spatial
and temporal features of network traffic, improving intru-
sion detection performance for zero-day attacks. The authors
in [16] proposed a novel method for network intrusion detec-
tion. Their approach combines Q-learning-based reinforcement
learning with a deep feed-forward neural network. The Deep
Q-Learning model introduced in their study offers continu-
ous learning and detection of various network intrusions. It
improves its detection capabilities through an automated trial-
and-error process, adapting to evolving network environments.

C. RL-based IDS

Reinforcement Learning (RL) involves agents that sense
their environment, execute actions, and receive feedback in
the form of rewards. By updating their policies based on this
feedback, RL agents aim to optimize their decision-making
for maximum defense performance in terms of detection,
threat analysis, and response. RL enables adaptive sequential
decision-making in security systems, leading to fast, efficient,
and automated defense capabilities. Saeed et al. [17] reviewed
multiagent IDS architectures, including several approaches
that utilized RL algorithms. The adaptation capability of RL
methods can help IDS to respond effectively to changes in
the environment, however, obtaining the optimal solution is
challenging due to the convergence of multiagent systems.
Additionally, the authors of [18] proposed a novel DRL-
based network intrusion detection system that incorporates
feature selection methods. They investigated optimal hyper-
parameter values for training DRL agents and demonstrated
the effectiveness of the proposed method on various routing
systems and countermeasures, integrating with different net-
work performances. The authors in [19] presented two main
security services: (1) a DRL-based mechanism for network
traffic inspection to achieve scalable and intensive network
traffic visibility for rapid threat detection; and (2) an address
shuffling-based moving target defense technique to proactively
defend against threats.

III. ADAPTIVE DRL-BASED IDS-IPS (DEEPIDPS)

The incorporation of LSTM is especially pertinent to net-
work traffic analysis. This is due to the temporal characteristics
of the data, which give rise to sequential traffic patterns that
LSTM-based models excel in comprehending and processing.
LSTM’s ability to retain prior data is instrumental in assessing
the current network traffic. In contrast, CNN, a deep learning
model, is engineered to extract information from data through
a series of hidden layers. The four pivotal layers in a CNN
comprise: 1)Convolution Layer: This layer employs multiple
filters to execute convolution operations, 2)ReLLU Layer: It
scans the original data with multiple convolutions and ReLU
layers to identify distinctive features, 3)Pooling Layer: This

layer conducts downsampling operations to reduce the dimen-
sionality of the feature map. It employs filters to pinpoint
specific features or segments within the input, and 4)Fully
Connected Layer: Here, all resulting 2-Dimensional arrays
from the pooled feature maps are transformed into a single,
continuous, linear vector.

The fusion of a CNN with an LSTM has the potential to sig-
nificantly boost the accuracy of an intrusion detection system
by adeptly extracting both spatial and temporal characteristics
from raw data. In CNN, multiple convolution layers come
into play, with the initial layer focusing on extracting basic
features and the subsequent layers delving into more intricate
features. The pooling layer plays a role in trimming feature
dimensions to enhance computational efficiency, and the final
fully connected layer takes charge of classification tasks.

To enhance the learning capabilities of the proposed model,
we employ reinforcement learning, which empowers agents to
grasp environmental behavior to optimize reward acquisition.
Additionally, we harness deep reinforcement learning, merging
the perceptual strengths of deep learning with the decision-
making prowess of reinforcement learning. Intrusion detection
systems are pivotal in fortifying defenses against potential
attacks. In our pursuit of crafting an agile and effective
algorithm to counter such threats, we introduce a hybrid model
that melds feature reduction techniques with deep neural
networks. Our model amalgamates the merits of CNNs and
LSTM networks to capture both spatial and temporal aspects
within network traffic. The architectural approach embraces
a hybrid CNN-LSTM framework, with CNN layers focusing
on spatial feature extraction from input data, and subsequent
LSTM layers capturing temporal dependencies among these
features over time.

Solely employing CNN-LSTM for intrusion detection may
fall short of identifying the importance of various features.
Because not all features hold equal significance in representing
traffic data. The Attention mechanism (AM) can employ
weighted operations on target data to accentuate the most in-
fluential characteristics, yielding effective model optimization.
Intrusion detection benefits from AM primarily by eliminat-
ing redundant information and reducing computational load.
Following the CNN-LSTM stage, an Attention Mechanism is
employed to assess the significant features of packet vectors,
emphasizing the salient features for detecting malicious traffic.
These features, generated by the attention mechanism, are
subsequently integrated into a fully connected layer for feature
fusion, culminating in the extraction of key features that
aptly characterize network traffic behavior. Finally, the fused
features are entered into a classifier to derive the ultimate
recognition outcomes.

In the presented framework, an RL-based agent perpetually
navigates the evolving environment, actively shaping real-
time security policies. These policies are implemented by
the SDN controller and are executed on switches, facilitating
adaptation to shifting security threats. The RL process revolves
around two entities: the agent and the environment. The
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environment supplies the agent with current-state information
and the agent, informed by these data, formulates decisions.
Subsequently, the environment assesses the agent’s actions,
and provides rewards or penalties accordingly. This iterative
cycle fosters learning within the agent, refining its decision-
making capabilities over time.

A. Model Review

The proposed architecture is composed of three distinct
phases: Feature extraction, Anomaly detection, and Anomaly
prevention. The feature extraction phase aims to select the
most relevant and effective subsets of features from the
original dataset based on specific criteria. This phase serves
to eliminate redundant features, improve the classification
performance of the algorithm, and reduce computational cost
and time. To extract spatial features, a CNN is utilized, as it
is particularly adept at this task. However, CNNs are not well
suited for handling long-term time-series data.

To address this limitation, the high-dimensional features
obtained from the CNN stage are then fed into the second
stage, which consists of three layers: LSTM, fully connected,
and output layers. The LSTM layer is employed to handle the
temporal dependencies in the data, automatically constructing
the state from the observations. This eliminates the need for
human input and aligns with the goal of deep learning to
minimize reliance on human interpretations of the problem.
The fully connected layer and the output layer, employing
a softmax activation function, contribute to the classification
of input flow probabilities. When CNN for spatial feature
extraction and LSTM for temporal feature analysis are com-
bined, the proposed architecture leverages the strengths of
both approaches, improving the overall performance of the
anomaly detection system. There are three primary methods
for combining a CNN and an LSTM:

1) Parallel Architecture: In this approach, CNN and LSTM
operate independently on the input data. Then, their
outputs are concatenated and passed to the fully con-
nected layer for further processing. The feature fusion
component combines the global and periodic features
extracted by CNN and LSTM, as depicted in Fig. 2.

2) CNN to LSTM: the CNN output is used as the input to
the LSTM. This enables the LSTM to learn additional
features from the input data that have already been
extracted by the CNN, as depicted in Fig. 3.

3) LSTM to CNN: This method involves using the output
of the LSTM as the input to the CNN. By doing so, the
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CNN can learn features from the output of the LSTM,
capturing higher-level representations.

B. RL Model

In RL model, at each state s, the agent chooses an action a,
observes the reward r and the next state s’. The Q-value

Q(s,a) is then updated using the equation:

Q(s,a) « (1 —a)Q(s,a)+ (r + ymaxg Q(s', a’)) , (D

where « is the learning rate and ~ is the discount factor.
This equation combines the current reward with the estimated
maximum future reward to update the Q-value. To achieve
convergence to the optimal policy, traditional Q-learning re-
quires the agent to visit all states infinitely. DRL has emerged,
integrating reinforcement learning with deep neural networks.
DRL offers a solution by leveraging the power of deep learning
to handle complex and high-dimensional state spaces, enabling
more efficient and scalable learning in reinforcement learning
settings. DRL holds great promise in addressing automated
defense decision problems in dynamic environments with
uncertain future information.

Our RL model consists of two modes: 1)Learning Model:
the RL agent analyzes the current state of the network and
determines the best action to take based on its learned policy.
It uses reinforcement learning techniques to make informed
decisions that maximize the expected rewards. 2)Detection
Model: the RL agent updates the intrusion detection model
based on the rewards received and the observed states of
the network. It leverages the feedback from the environment
to improve the accuracy and effectiveness of the intrusion
detection system The first step in an RL problem is to define
the state, actions, and reward. These definitions are crucial for
the RL agent to learn an optimal policy. DRL agent captures its
state from the network’s overall state, denoted as S = (D, M).
Here, D represents the detection state of the existing traffic
in the network, and M represents the level of harm caused
by malicious traffic. This combined state allows the agent
to assess the network’s current condition and make informed
decisions to maintain network security. The actions considered
in this approach are:

e a;: BlockIP-30secs: Drop all incoming packets with the
attacker’s IP address for 30 seconds,

e ay: LimitRate-25%:Reduce the rate of incoming packets
from attacker’s IP address by 25%,

e a3: ReRoute: Redirect the attack traffic flows,

e a4: DoNothing: No action.
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TABLE I: Performance with different number of features

TABLE II: CNN-LSTM vs Parallel CNN-LSTM.

Given the state of the system (s;) and the actions in A =
{a1,as,as, a4}, reward function r is defined as:

R(s,a) = axD+pxU+v+(1/T)+wx(1—F)+(xM, (2)

where D is the detection accuracy, ranging from 0 to 1,
where 1 represents perfect accuracy. U is the resource uti-
lization, ranging from O to 1, where 1 represents optimal
utilization. 7" is the response time, measured in seconds. F' is
the false positive rate, ranging from 0 to 1, where 0 does not
represent false positives. M is the attack mitigation, ranging
from 0 to 1, where 1 represents complete mitigation. «, 3, 7,
w, and ¢ are the weights assigned to each component of the
reward function, and they can be adjusted based on the specific
requirements of the network anomaly detection system. Fig. 4
shows the timeline for message exchange between the various
components of our framework in the detection period (black
color) and response period (blue color).

IV. EXPERIMENTAL EVALUATION

We implemented the model in a real SDN system and
evaluated its performance using various metrics such as the
total number of control messages, the capture-failure rate, ac-
curacy, and false positive rate. We conducted tests on different
datasets with varying sets of features and evaluated the model’s
performance against various types of attacks, including DDoS,
Port Scanning, and Zero-day. To assess the effectiveness of
our approach, we compared its results with those obtained
using LSTM, CNN-LSTM, and RL-based approaches. The test
dataset included real cyber-attacks targeted at an SDN envi-
ronment. We utilized two different datasets: NSL-KDD [20]
and KDD99. For the testing phase, we employed a real test
bed to generate traffic and evaluate the performance of our
model [8]. To generate malicious traffic, we utilized Kali Linux
version 2.0, which is known for its security testing capabilities.
On the other hand, we generated legitimate traffic using the

Performance Number of Features Accuracy(%) Train Duration(s)
Matrix =10 [ f=15 | =20 | f=25 | f=30 Models NSL-KDD | KDD | NSL-KDD | KDD
Accuracy (%) 97.70 | 98.24 | 98.60 | 98.64 | 97.81 Feature Fusion 95.4 92.2 30.4 29.74
Precision (%) 97.61 | 97.93 | 98.47 | 98.80 | 97.74 Feature Selection 97.42 95.26 35.26 32.2
Recall (%) 97.56 | 97.86 | 98.41 | 98.77 | 98.71
F1-Score (%) 97.61 | 98.34 | 98.65 | 98.73 | 98.71
Loss 0.02 0.017 | 0.014 | 0.013 | 0.014
Time(ms) 10.3 12.3 18 23.9 26.5 Ostinato traffic generator. Ostinato provides the flexibility to

generate both normal and burst-mode traffic. The initial feature
set for our study consisted of the following essential features:
Source IP address/port, Destination IP address/port, Duration,
Source bytes/packets, Destination bytes/packets, Source TTL,
Destination TTL, Source load, and Destination load.The action
set that we considered in RL-model includes BlockIP-30secs,
BlockIP-1min, BlockIP-3min, BlockIP-5min, LimitRate-25%,
LimitRate-50%, LimitRate-75%, ReRoute, and DoNothing.
The reward function is explained in Eq. (2).

Table I provides a comprehensive overview of the perfor-
mance measurements obtained for DDoS detection using dif-
ferent numbers of selected features, ranging from 10 to 30. The
table demonstrates the impact of the total number of features
on DDoS detection performance. The “Loss” represents the
loss value over the training data after each epoch, which
serves as a measure of how well the optimization process
minimizes the training error. Lower loss values indicate better
optimization and model performance. Table II compares the
accuracy of different structures (Figs. 2 and 3) on different
datasets. Results show that for both datasets, CNN-LSTM has
better accuracy compared with parallel CNN-LSTM. Also, in
the case of training during time, parallel CNN-LSTM needs
more time to train data.

In Fig. 5, we depict the influence of incoming traffic scale
on the Total Number of Control Messages/overhead for the
controller. Through efficient feature selection for detection
components and the effectiveness of reinforcement learning
in action selection, the DeepIDPS consistently demonstrated
superior performance across various attack types. Fig. 5(a)
underscores the DeepIDPS’s effectiveness in countering DDoS
attacks, while Fig. 5(b) showcases its successful response to
port scanning attacks. Furthermore, Fig. 5(c) highlights the
DeepIDPS’s remarkable performance in dealing with zero-
day attacks. In summary, this study underscores the crucial
role of powerful tools like the DeepIDPS in the detection
and mitigation of cyberattacks, emphasizing the importance
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of employing effective solutions for cybersecurity.

In Figs. 6, we evaluate the proposed method’s performance
by examining the Capture-failure rate in the context of
different attack rates and attack types. The Capture-failure
rate is a crucial metric that quantifies the probability of not
capturing a packet from a malicious flow, calculated as the
ratio of non-captured malicious packets to the total packets
in the malicious flow. The results in the figures illustrate the
effectiveness of the proposed approach in countering various
attack types. Fig. 6(a) demonstrates its performance against
DDoS attacks, while Fig. 6(b) showcases its effectiveness in
dealing with port scanning attacks. Lastly, Fig. 6(c) displays
its performance against zero-day attacks, exhibiting superior
results compared to other attack types. The inclusion of
the Capture-failure rate as a metric enables a more efficient
and effective approach to detecting and mitigating a variety
of cyberattacks, underscoring its significance in developing
robust cybersecurity tools and strategies.

In Fig. 7, we assess our approach using different feature
sets: Group 1 containing all 41 features, Group 2 with an
initial set plus 20 selective features (33 features), and Group 3
containing the initial 13 features. Our results demonstrate that
the performance of our method is optimal with Group 2,

which comprises a specific feature set highly effective in
countering cyberattacks. Following Group 2, Group 1 outper-
forms Group 3. The results indicate the significant impact
of selecting the right feature sets on cybersecurity tools.
Identifying the most suitable feature sets for distinct attack
types enhances attack detection and response in a timely and
efficient manner.

Table III compares the precision, recall, and Fl-score of
basic ML, CNN, LSTM, and CNN-LSTM models. The fu-
sion of CNN and LSTM networks in the proposed model
results in enhanced performance compared to other existing
methods. The hybrid CNN-LSTM model attains a remarkable
accuracy for intrusion detection, confirming its effectiveness
and underscoring the superiority of deep learning models over
conventional machine learning algorithms. Furthermore, the
CNN-LSTM model surpasses alternative models in terms of
Fl-score for both classes, showcasing its robust predictive
capabilities.

V. CONCLUSION

The combination of CNNs and LSTMs can be a powerful
approach to anomaly detection in sequential data, allowing
the detection of spatial and temporal anomalies. Applying



TABLE III:

Precision, Recall, and F1-score of the different methods.

Precision (%) Recall(%) F1-score(%)
Models Normal | Attack [| Normal [ Attack [| Normal | Attack
ML 81.19 97.86 95.17 85.21 85.74 94.23
CNN 83.43 97.55 93.62 91.85 91.17 94.56
LSTM 85.43 97.31 93.12 93.85 89.18 95.15
CNN-LSTM 94.28 98.14 93.11 96.25 94.43 97.52

CNN to intrusion detection is an old concept that gives good
accuracy, but we tried to combine LSTM with CNN to get
more accuracy and make IDS more effective. Incorporating
an attention mechanism into the CNN-LSTM model improves
its capability to emphasize specific elements within the input
sequence. This is especially valuable for tasks where certain
elements of the sequence have varying levels of importance
in achieving accurate predictions. The experimental findings
indicate that this model will increase the precision of detection.
The hybrid CNN-LSTM model has been observed to perform
well compared to the rest of the DL and ML models.
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