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Abstract

Quantitative structure-activity relationship (QSAR) modeling is a powerful tool
for drug discovery, yet the lack of interpretability of commonly used QSAR
models hinders their application in molecular design. We propose a similarity-
based regression framework, topological regression (TR), that offers a statistically
grounded, computationally fast, and interpretable technique to predict drug
responses. We compare the predictive performance of TR on 530 ChEMBL human
target activity datasets against the predictive performance of deep-learning-based
QSAR models. Our results suggest that our sparse TR model can achieve equal, if
not better, performance than the deep learning-based QSAR models and provide
better intuitive interpretation by extracting an approximate isometry between
the chemical space of the drugs and their activity space.

Keywords: Machine learning, Drug discovery, QSAR, Topological regression
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1 Introduction

Quantitative structure-activity relationship (QSAR) models have become an essen-
tial tool in pharmaceutical discovery, especially in the virtual screening for hits and
lead optimization stages [1]. Experimental characterization of candidate molecules is
expensive and time-consuming. As a relatively easy-to-implement alternative, QSAR
models could be a valuable tool for assisting chemists by providing design ideas to
prioritize their experiments. QSARs are usually supervised machine learning models
that describe the connections between chemical structures and their biological activi-
ties, such as their potency, physicochemical properties, pharmacokinetic properties, or
environmental effects [2]. QSAR models enable in silico structural design by providing
property predictions from machine-readable representations of the chemical structure,
thereby helping generate and prioritize design ideas. This technique has been widely
applied in virtual screening and lead optimization with a fair amount of success [1, 3].

In QSAR methods, chemical substances must first be transformed into machine-
comprehensible mathematical representations. Three commonly used representations
are: (a) vectors such as classical molecular descriptors or molecular fingerprints (FPs),
(b) graphs, and (c) strings such as Simplified Molecular Input Line Entry System
(SMILES). Classical molecular descriptors[4] encode a specific computed or measured
attribute of the molecule into a single number, for instance, the count of bonds, atoms,
functional groups, or physicochemical characteristics, and are often used in combi-
nation to form feature vectors. PaDEL [5], Mordred [6], and RDKit are examples
of popular descriptor-calculation software packages for numerically representing the
chemical structure and molecular characteristics. Extended-connectivity fingerprints
(ECFPs)[7] are an example of a topological fingerprint computed using a variant of
the Morgan Algorithm that encodes chemical substructures by atom neighborhoods
using a high-dimensional sparse bit-string representation. The graph representation,
on the other hand, characterizes 2D chemical structures as graphs, with atoms as ver-
tices and bonds as edges. SMILES specify a notation for representing the chemical
graphs of molecules as strings of characters.

Once the chemical structures are represented using a suitable protocol, a predictive
method is chosen to connect the structural information with the functional properties.
For instance, if the chemical structures are represented as strings or graphs, deep-
learning methods are often used for prediction due to their ability to perform embedded
feature extraction. Chemprop [8], in particular, has turned out to be a popular method
that uses directed message-passing neural networks to learn molecular representations
directly from the graphs to predict the properties of molecules. This method has been
shown to excel at antibiotic discovery [9, 10] and lipophilicity prediction [11] indicating
its potential as a QSAR model. With the rise in popularity of large language models
and the attention mechanism, the use of SMILES strings has been increasingly inves-
tigated for their potential embedded feature extraction, predictive performance, and
interpretability. For example, [12] pre-trained a transformer-based network through
masked SMILES recovery, and offered the pre-trained model for transfer learning
onto specific tasks. Similarly, Transformer-Convolutional Neural Network (CNN) [13]
applied the transformer architecture to canonicalize SMILES string inputs and enables
transfer learning of the model onto specific activity prediction tasks.
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QSAR models are often developed for their predictive performance. However, the
effectiveness of QSAR models, as a computational tool assisting molecular discovery
and design, could be greatly improved by enhancing their domain-specific inter-
pretability. Model interpretability, usually defined as the ability to explain predictions
in a human-understandable way[14], typically consists of computing feature impor-
tance scores[15–18], influence functions to identify training instances most responsible
for the prediction[19], developing locally interpretable models to approximate global
black-box algorithms[20–22], and generating counterfactuals[23, 24]. For example,
standard shallow learners, like Random Forests (RF) and Support Vector Machines
(SVM) are often used in QSAR modeling to offer feature importance scores[25].
However, molecular interpretability is largely based on the interpretability of the
underlying molecular representation. For instance, ALogP can be used as an important
classical descriptor that plays a key role in determining the solubility of a molecule.
However, a target value of ALogP cannot be mapped back to a precise chemical struc-
ture. When using interpretable fingerprints, the foregoing feature importance scores
could potentially map prediction contributions onto the molecule to visualize which
substructures positively or negatively impacted the prediction [25–27]. Although fea-
ture importance measures increase the explanatory power of machine learning models,
caution must be taken when these scores are invoked on molecules outside the appli-
cability domain of the model, as prediction importance does not always translate to
biological relevance[28]. Locally interpretable models can be fitted to explicate predic-
tions of black-box models. For instance, SHapley Additive exPlanations (SHAP) offers
a model-agnostic method for calculating prediction-wise feature importance[21, 22].
Since this technique usually informs which features contributed to the specific test
instance’s model prediction the most, it may not always lead to actionable design
ideas. Thus, [24] proposed Molecular Model Agnostic Counterfactual Explanations
(MMACE) to generate counterfactual explanations which would help answer the ques-
tion: what changes will result in an alternate outcome, regardless of the underlying
model used. These methods are based on the model’s knowledge and, therefore, may
be influenced by chance correlation, rough response surfaces, and overfitted models,
leading to disappointing results [29]. Recent advances in the attention mechanism of
deep learners offer some explanatory power [30]. For instance, [31] uses Layer-wise
Relevance Propagation to provide structural interpretation of nodes and edges (atoms
and bonds), Transformer-CNN incorporates Layer-wise Relevance Propagation to cal-
culate individual atom contributions influencing the predictions, and [32] uses salient
maps to highlight the substructures closely related to the model output. These maps
are analogous to the foregoing feature importance concept and have similar drawbacks
in terms of deriving actionable insights for the design of new molecules.

Similarity-based methods [33] (k-nearest neighbor (KNN), kernel regression[34, 35],
and pairwise kernel method[36]), provide natural intuitive interpretation at the
instance-level by directly providing the training instances that influenced the model’s
prediction the most. For example, read-across is a popular alternative property
prediction technique that finds the most similar chemicals to the query chemical.
Numerous publicly available tools use some variants of read-across techniques to aid
chemists with design ideas[37]. These tools allow chemists to assess the potential of
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the selected analogous neighbors to infer properties of the query chemical. Addition-
ally, similarity-based methods allow informative visualizations through network graphs
derived from the similarities. Network-like Similarity Graphs (NSG) [38] were devel-
oped to guide lead optimization in drug discovery and have often been used to display
the complex activity landscapes and the relationships between chemicals within a
target set in 2D. Expanding this to drug-target interactions, methods like Similarity
Ensemble Approach (SEA) [39] and Chemical Similarity Network Analysis Pulldown
(CSNAP) [40] enable visualization of drug-target interaction networks and the pre-
diction of off-target drug interactions, which have led to deeper investigations into
drug polypharmacology and the discovery of off-target drug interactions[41, 42]. As we
show later, these chemical similarity networks allow the clustering of similar molecules,
which enables practitioners to mine regions of desired activity for innovative design
ideas and potential leads. In addition to providing prediction-wise training instance
importance, these graph structures are directly compatible with Laplacian Scores[43]
for global feature importance, which have been used in QSAR modeling for feature
selection[44, 45]. Since SHAP and MMACE are model agnostic, they can also be paired
with similarity-based QSAR models to allow prediction-wise feature importance and
the generation of unseen counterfactuals. Thus, similarity-based methods can provide
multiple layers of interpretability on top of the commonly applied chemical similarity
interpretation and visualization methods listed above.

However, a problem in similarity-based QSAR is that most QSAR methods assume
that similar structures lead to similar activities, which is often violated in chemi-
cal structure modeling due to the prevalence of activity cliffs (ACs)[46], which are
pairs of compounds with similar molecular structures, but with a large difference in
potency against their target[47]. The existence of ACs often cause QSAR models to
fail, especially in the lead optimization stage [48], and limit the prediction perfor-
mance across the drug landscape, leading to the use of network-based methods to
interpret and analyze their behavior[38, 49]. One way to use similarity-based meth-
ods in the presence of ACs is to learn the similarity metric from the data itself,
instead of choosing a similarity metric a-priori. Large margin nearest neighbor [50] is
a very popular algorithm for supervised metric learning when the response variable
is categorical. For continuous response variables, Metric Learning Kernel Regres-
sion (MLKR) [51] is perhaps the most popular algorithm to estimate the similarity
metric. Metric learning techniques offer good explanatory power because once the
metric is learned, the chemical space of molecules is approximately isometric to the
activity space, resulting in smoother structure-activity landscapes as shown in [52].
Consequently, under the learned metric, high-activity molecules are clustered rela-
tively tightly in the chemical space and therefore, that space could be mined for
new molecules. Figure 1 depicts this phenomenon using various projection meth-
ods Generative Topographic Mapping (GTM) [53], Multidimensional Scaling (MDS),
t-distributed Stochastic Neighbor Embedding (t-SNE), and UniformManifold Approx-
imation and Projection (UMAP), to show the interpolated activity landscapes of the
protein target Coagulation factor XIII, or CHEMBL4530, in 2 dimensions and com-
pare them with an MLKR-based representation. Observe that, except MLKR, none
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Fig. 1: The transformed chemical space and interpolated activity surface
of target CHEMBL4530 using various projection methods. Transformed and
interpolated chemical space using a) Multidimensional scaling (MDS) with Tanimoto
distance b) MDS with Euclidian distance c) t-Distributed Stochastic Neighbor Embed-
ding (TSNE) using Euclidian distance d) Generative Topographic Mapping (GTM)
e) Uniform Manifold Approximation and Projection (UMAP) using Euclidian dis-
tance and f) Metric Learning for Kernel Regression (MLKR). Notice how activity
cliffs are present regardless of the projection method. Additionally, notice that MLKR
creates the smoothest activity space and best separation of the two similar (Tani-
moto Similarity between ECFP4 fingerprints = 0.70) molecules, CHEMBL2086505
(pChEMBL=7.41) and CHEMBL2086502 (pChEMBL=4.8).

of the other methods were able to separate two chemically-similar-but-funcationally-
different molecules, CHEMBL208650 and CHEMBL2086502, which have a Tanimoto
similarity between ECFP4 fingerprints of 0.70 but target difference of 2.61. This is
to be expected because, in their original form, GTM, MDS, t-SNE, UMAP are all
unsupervised techniques and do not incorporate the activity information in their pro-
jections. MLKR on the other hand is a supervised metric learning method, which
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allows it to incorporate the target activity information resulting in smoother activity
landscapes.

In this paper, we develop an MLKR-inspired regression-based technique, topologi-
cal regression (TR), that models the distance in the response space using the distances
in the chemical space. TR essentially builds a parametric model to determine how
pairwise distances in the chemical space impact the weights of nearest neighbors in the
response space. Observe, unlike metric learning techniques, TR does not attempt to
learn a metric in the response space, nor does it attempt to provide a lower dimensional
projection like MDS or GTM. Rather, TR simply estimates the weights of nearest
neighbors. In comparison to traditional modeling methods, like RFs and SVMs, which
are dependent on a predefined fingerprint, TR can accommodate non-metric systems
and does not crucially require coordinates for each instance. As we will show in the
subsequent sections, TR can work on the similarities between training molecules, such
as those computed from molecular kernels[54, 55], thereby circumventing the problem
of featurization of molecules. Since, our primary use-case scenario is QSAR in the lead
identification/optimization process, where the contiguity of high-activity molecules
plays a significant role, we perform a large-scale comparison on 530 ChEMBL bio
targets. We use RF, ChemProp, and Transformer-CNN as baseline models and show
that TR matches the performance of Transformer-CNN at a significantly less com-
putational cost. We also observe, empirically, that TR produces numerically superior
predictive performance as compared to the other competing methods. Additionally,
both MLKR and TR produce reasonably contiguous areas of high activity, thereby
identifying a relatively compact high-activity chemical space.

2 Results

2.1 Model performance comparison on ChEMBL datasets

We apply our TR method with Gaussian kernel neighbor weighting on 530 ChEMBL
datasets under both random split and scaffold split. As explained earlier, we use the
ECFP4 TC distance as input to TR to predict the activity values. We use 80% of
all the instances in each dataset for training and the remainder for testing. For the
construction in section 4.2, when I∗ ∩ I = ϕ, we use 20% of the training instances as
anchor points and the remaining 80% of the training set for neighborhood training.
We denote this method as TR* in the results. For the approach described in section
4.3 without disjointedness requirement, we use 50% of training instances, with a max-
imum of 2000 instances to improve computation time, as anchor points, and those
results are denoted as TR. Finally, to reduce the sensitivity of results to anchor point
selection, and to improve generalization error, different random sets of anchor points
were sampled to create an ensemble of TR models(see section 4.4). We denote this
method as Ensemble TR and used t = 15, µk = 0.6, and σ2

k = 0.2 for the subsequent
results.

The average Spearman correlation and NRMSE for each method (RF, MLKR with
KNN, ChemProp, TCNN, TCNN with augmentation, TR*, TR, and Ensemble TR)
on both splitting scenarios are shown in Table 1. Figure 2 compares each method
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(a) CV Split Spearman’s ρ

(b) CV Split NRMSE

(c) Scaffold Split Spearman’s ρ

(d) Scaffold Split NRMSE

Fig. 2: Comparative analysis of model performances on the 530 ChEMBL
bioactivity datasets. a) average 5-fold Cross-Validation (CV) Spearman’s corre-
lation coefficient (ρ), b) average 5-fold CV Normalized Root Mean Square Error
(NRMSE) c) Scaffold split Spearman’s ρ, and d) Scaffold split NRMSE. The experi-
ment was performed on n = 530 ChEMBL bioactivity datasets with Random Forest
(RF), Metric Learning for Kernel Regression (MLKR), ChemProp, Transformer-
Convolutional Neural Network (TCNN), TCNN with augmentation (TCNN Aug),
Topological Regression with disjoint anchor and training set (TR*), Topological
Regression (TR), and Ensemble TR on both random cross-validation and scaffold
split. The box plots show the median (central line), the interquartile range (upper and
lower limits of the box), and the 5% and 95% limits (whiskers), as well as the outliers.
Source data are provided in the Source Data file.

using boxplots showing the distribution of the performances for both random and scaf-
fold splitting. As expected, TR* is unable to achieve performance comparable to the
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Table 1: Comparative measurements obtained on
each of the competing methods Normalized Root
Mean Square Error (NRMSE) and Spearman’s correla-
tion coefficient of Random Forest (RF), Metric Learning
for Kernel Regression (MLKR), ChemProp, Transformer-
Convolutional Neural Network (TCNN), TCNN with
augmentation (TCNN Aug), Topological Regression with
disjoint anchor and training set (TR*), Topological
Regression (TR), and Ensemble TR on both random
cross-validation and scaffold split. Notice how both
TCNN and Ensemble TR (bold) achieve numerically
superior performance compared to all other competing
methods.

CV Split Scaffold
Spearman NRMSE Spearman NRMSE

RF 0.7629 0.6242 0.6493 0.7395
MLKR 0.7486 0.6421 0.6367 0.7593

ChemProp 0.7160 0.6776 0.5986 0.8002
TCNN 0.7437 0.6595 0.6321 0.7692

TCNN Aug 0.7858 0.5961 0.6742 0.7176
TR* 0.6935 0.7023 0.5793 0.8174
TR 0.7625 0.6255 0.6531 0.7358

Ensemble TR 0.7847 0.5989 0.6791 0.7101

competing methods as the model is being constrained by the disjointedness require-
ment. When we relax this requirement, we observe that TR’s predictive performance
improves considerably and is only numerically inferior to TCNN with augmentation.
Finally, when we incorporate an ensemble of TR models, the predictive performance of
Ensemble TR is essentially as good as that of TCNN with augmentation. If we invoke
the law of parsimony, our conceptually straightforward, and mathematically less com-
plex, topological regression approach appears to be more appealing as compared to
competing deep learning techniques.

2.2 Computational comparison on ChEMBL datasets

To illustrate the computational efficiency of TR and Ensemble TR, we report each
competing method’s average training time, testing time, and peak RAM consumption
across all 530 datasets. These results are shown in Table 2. For fair comparison and
to provide the best optimized hardware for each model, we trained the deep learning
models on systems with GPUs as the training of deep learning-based models are better
optimized in GPU based systems. Since the pre-trained TCNN model was released
and used for fine-tuning, the reported TCNN time does not include pre-training time.
From the results, we observe that TR and Ensemble TR result in the fastest training
times and significantly less peak RAM consumption. For testing, TR takes more time
than MLKR since RBF kernels are employed compared to MLKR which simply uses
5-NN predictions after transformation, however TR still results in faster test times
than TCNN. These results demonstrate the computational efficiency of TR.
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Table 2: Computational complexity comparison of competing methods
showing training time, testing time, and peak RAM consumption on
the scaffold split. The compared methods listed on the table are Metric Learn-
ing for Kernel Regression (MLKR), Topological Regression (TR), Ensemble TR,
ChemProp, Transformer-Convolutional Neural Network (TCNN), and TCNN with
Augmentation (TCNN Aug).

CPU System (AMD EPYC 7702,
2.0 GHz, 64 Physical Cores, 128
Logical Cores, 512 GB RAM)

GPU System (Intel Xeon Gold 6242,
2.8 GHz, 16 Physical Cores, 32 Logi-
cal Cores, 384 GB RAM, NVIDIA Tesla
V100)

Method MLKR TR Ensemble TR ChemProp TCNN TCNN Aug
Train Time (s) 181.648 1.602 13.768 56.586 30.586 109.759
Test Time (s) 0.354 1.008 12.301 0.510 6.915 20.003
Peak RAM (GB) 1.777 0.253 0.314 2.044 2.864 3.231

2.3 Interpreting TR

Inspection of the regression coefficients in B demonstrates how TR offers more flex-
ibility as compared to standard KNN. Recall, WK,m, K ∈ I∗,m ∈ I quantifies the
impact of YK on Ym. Now, in an ordinary KNN inverse distance weighting scheme, as
distance between the Kth instance and mth instance increases in the chemical space,
WK,m decreases, i.e., δ

δd2
K,m;X

WK,m < 0. However, for TR δ
δd2

K,m;X
WK,m = WK,mbKK .

Now WK,m > 0 by construction, therefore sign
(

δ
δd2

K,m;X
WK,m

)
depends upon the

sign(bKK). Hence, TR can push molecules closer in chemical space far apart in the
response space. What this implies is, the prediction generation process for TR can be
interpreted in the same vein as that used by KNN, except, unlike KNN, TR searches
for nearest set of anchor points in the response space.

We use the chemical space of the drugs targeting Phospholipase D2 (ChEMBL
ID: CHEMBL2734) to demonstrate this phenomenon. In Fig. 3 we seek to pre-
dict the response corresponding to the molecule CHEMBL492559 (denoted by a
red star, pChEMBL= 6.73) in the test set. Based on similarity in the chemical
space, standard KNN finds three molecules, CHEMBL492558, CHEMBL492704, and
CHEMBL492588, as nearest neighbors, under a 5-fold cross-validation protocol, and
makes predictions based on the average of the activities of these three molecules.
However, the target molecule is almost at the edge of a high-activity region. There-
fore, naive KNN identifies two neighbors, CHEMBL492704 and CHEMBL492588
from the nearby low activity region (across the cliff) and only one neighbor
CHEMBL492558 from the ideal high activity region. This happens because the high-
activity region in the neighborhood of the target molecule is sparsely populated. In
contrast, since TR directly incorporates Y in the learning, it identifies three cross-
cliff molecules, CHEMBL494008, CHEMBL4581260, and CHEMBL1254736, that
have greater weights in predicting the response associated with the target molecule
as compared to CHEMBL492704 and CHEMBL492588. Observe that all three
molecules identified by TR as nearest neighbors (CHEMBL494008, CHEMBL4581260,
CHEMBL1254736) are in relatively high-activity regions. By presenting structures
from diverse scaffolds that exhibit similar activities, TR not only enhances prediction
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Fig. 3: Comparative analysis of the neighbors found by a KNN procedure
and a TR procedure. Nearest neighbors found by K-Nearest Neighbors (KNN)
and Topological Regression (TR) in a single fold of the 5-fold cross-validation setup
for the CHEMBL2734 dataset. KNN finds the nearest training samples and can lead
to misleading results when the target (pChEMBL=6.73) is close to an activity cliff
(KNN prediction=5.69), while TR attempts to find nearest neighbors in the response
space, leading to more informed and meaningful predictions (TR prediction=6.80).
The presented chemical space was done by performing a Multidimensional Scaling
(MDS) on the dataset. The presented molecules have a colored frame, where magenta
is the target presented by the same color in the MDS plot, blue are the 3 nearest
neighbors also presented in the MDS by the same color, and yellow is the framing the
molecules found by TR, presented in the MDS by the same color.

reliability but also aids in the identification of key spatial structural characteristics
influencing the activities. The presented structures can be further validated with
structural chemical methods such as structural alignment or docking simulations.

To further illustrate this point across the entire dataset, rather than for one
particular test molecule, we generated KNN-graphs depicting the predictions of the
various similarity-based methods with the color indicating the activity elicited by the
molecules. To do so, each training and test sample was represented as a node, and
the predicted neighbors were considered as the connecting edges. These graphs are
synonymous with NSGs, in fact, just like NSGs, the edges were only included if the
similarity was greater than a fixed cutoff TC and if the molecules were predicted as
one of the nearest neighbors. Therefore, the number of neighbors and the cutoff TC
control the connectedness of the network graphs, more connections would be estab-
lished with a larger number of nearest neighbors and lower cutoff similarities until the
graph is complete. We used 5 nearest neighbors and the mean similarity of the entire
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Fig. 4: k-Nearest Neighbor Graphs visualizing the 5 nearest neighbor
predictions of K-Nearest Neighbors (KNN), Metric Learning for Kernel
Regression (MLKR), and Topological Regression (TR). For this experi-
ment, we used the foregoing target activity Phospholipase D2 (CHEMBL2734), and
computed the 5-nearest neighbors for the three different methods, using the mean
similarity of the dataset as the neighbor similarity cutoff. We can clearly see that the
intercluster standard deviation is minimized by using the TR procedure.

target dataset as the cutoff TC for each competing method for all subsequent network
graphs, meaning at most 5 connections would be established if their similarities were
greater than the fixed cutoff TC. An example of these KNN-graphs, depicting the
test nearest neighbors of a single CV fold of the dataset CHEMBL2734, is included in
figure 4. Additional figures depicting the training predictions, testing predictions, and
molecules within the most active cluster are included in the supplementary document.
Notice that the predicted TR neighbors are similar in response value, leading to more
homogeneous activity throughout the clusters, whereas KNN and MLKR both result
in clusters containing diverse activity values. To quantify this variability, we included
the average within-cluster standard deviations for each method in the figure where a
low within-cluster standard deviation denotes a more homogeneous cluster.

To systematically show this behavior across all 530 datasets, we calculated the
average within-cluster standard deviation from the foregoing test prediction KNN-
graphs for the competing methods. Figure 5 depicts these results in the form of a line
graph across all 530 datasets. Clearly, TR systematically produces lower within-cluster
standard deviation compared to KNN and MLKR, resulting in higher levels of homo-
geneous activity within the clusters. If we envision activity cliffs to be a phenomenon
that induces a strong outlier within an otherwise homogeneous cluster, then it stands
to reason that by measuring within-cluster homogeneity we can infer about the pres-
ence of cliffs in that cluster. Higher levels of within-cluster homogeneity essentially
smooths out activity cliffs resulting in more relevant similarity-based predictions and
providing practitioners with instance-wise similar molecules for lead optimization.

Since TR results in more homogeneous clusters, the clusters themselves can be
more meaningfully mined by chemists for innovative design ideas, potential target
leads, and lead optimization pathways. For example, clustering can be performed on
the training data, and the most active cluster may contain molecules with specific

11



507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

0 100 200 300 400 500
Dataset

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ 
of

 p
Ch

EM
BL

Average Within-cluster Standard Deviation Across Datasets KNN
MLKR
TR

Fig. 5: Intercluster standard deviation computed accross the 530 ChEMBL
datasets. For this experiment, we show a quantitative comparison across all 530
datasets showing the average within-cluster standard deviation (σ) of pChEMBL val-
ues obtained from the test prediction KNN-graphs for K-Nearest Neighbors (KNN),
Metric Learning for Kernel Regression (MLKR), and Topological Regression (TR). It
can be seen that the average standard deviation is consistently lower for TR compared
to the baseline methods. Source data are provided in the Source Data file.

Fig. 6: Optimization pathway visualization in the most active training clus-
ter of target protein complex Integrin alpha-4/beta-7 (CHEMBL278).

a) depicts the training neighborhood graph obtained from Topological Regression
(TR) predictions, b) depicts the minimum spanning tree of the most active cluster
with a minimum path connecting the most active and least active molecules in red,

and c) depicts 5 example molecules showing the lead optimization pathway.

features that practitioners can use to guide designs and future experiments. The same
can be done with the least active cluster to see which molecular features to avoid and
provide further insights. Furthermore, the most active training cluster can be mined
for lead molecules that have other desired characteristics, such as low toxicity or ease
of production. Analogous to NSGs, the training clusters can also be used to visualize
lead optimization pathways. Figure 6 depicts a lead optimization pathway in the most
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active cluster of target protein complex Integrin alpha-4/beta-7 (CHEMBL278) with
a) the TR KNN-graph obtained from the training data of a single CV fold, b) the
most active cluster depicted as a minimum spanning tree with the minimum spanning
path between the most active and least active molecules depicted in red, and c) 5
example molecules from the lead optimization pathway connecting the most active and
least active molecules in the cluster. These pathways can be traversed by chemists to
envision what changes resulted in specific behaviors, allowing them to easily analyze
the current state of a target dataset and discover potential design ideas (additional
figures representing optimization pathways for various target datasets are provided in
the Supplementary document). If we envision an untested molecule as an additional
node in Figure 6(a), the TR method could directly produce the set of edges radiating
from that node (via the model for W ) that would enable one to assess how the untested
molecule relates with the previously tested molecules. This could enable greater trust
in the predictions as the chemist could easily visualize how the new sample relates
to known molecules. Additionally, these graphs fit directly with Laplacian Scores for
feature selection, allowing global feature importance to be calculated in a routine
fashion. Lastly, when paired with SHAP or MMACE, which are model agnostic, TR
would be able to efficiently generate instance-wise feature importance and unseen
counterfactuals, adding additional layers to TR’s interpretability.

3 Discussion

In this paper, we have developed a statistical methodology, topological regression
(TR), to perform similarity-based regression and demonstrated how it can be used for
QSAR modeling. We tested TR on regression tasks with 530 ChEMBL human targets
and compared it with a traditional RF, Nearest Neighbors, a metric learning algo-
rithm (MLKR), and two deep learning methods, ChemProp and Transformer-CNN.
Empirically, we observed that TR or ensemble TR compared favorably against all
competing methods in terms of predictive accuracy on the scaffold split and achieved
comparable performance with TCNN on the random splitting at a much lower com-
putational cost. Most importantly, TR provides explainability, visual interpretability,
and theoretical justifiability in the form of testable adequacy and optimal model size.

The performances of RF, TCNN, ChemProp, and MLKR are mostly interpreted in
a comparative sense. The usual measures employed to assess the performance of these
models - NRMSE, MAE - have unbounded support and hence do not offer informa-
tion about the goodness-of-fit. TR on the other hand completely relies on multivariate
general linear models - geographically weighted regression when extracting Wi,j from
the drug response, and standard regression theory when modeling Wi,j . For both
of these techniques, rigorous tests for goodness-of-fit exist [56, 57]. Since the stan-
dard coefficient of determination offers an immediate goodness-of-fit statistic for linear
models (or transformed linear models), we compute the training R-sq values (using
(7)) for all 530 ChEMBL datasets considered in this paper. The average R-sq turns
out to be 0.8396. Evidently, our conceptually straightforward parametric linear model
has sufficient power to explain variation in Wi,j . Turning to predictive adequacy, we
compute the prediction interval for the W ’s (using extracted W ’s as targets) in the
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cross-validation set. Once again, the linear model specification allows us to compute
the prediction interval analytically. We then compute the coverage of these prediction
intervals across all folds. Ideally, we would like to see the coverage of the prediction
interval achieve a nominal level. In all the 530 datasets across all the folds, the cover-
age of 95% prediction interval is 94.3%. Clearly, the model specified in (7) is adequate
for prediction purposes as well. These results provide empirical justification for the
adequacy of the TR model.

Given the small to moderate sample size in ChEMBL datasets, model complexity
has a significant impact on prediction performance. For ChemProp or TCNN-type
deep learners, regularization of network weights, drop-out layers, and ablations are
standard procedures to control model complexity. However, these measures are adhoc
and their theoretical properties are not well established. For standard KNN (or even
in MLKR), the number of neighbors determines the model size. However, we need
to fix the number of nearest neighbors a-priori and tune that quantity via cross-
validation. TR, on the other hand, offers a theoretically appropriate way to choose
neighborhood size and hence model complexity. In TR, the anchor points play the role
of neighbors and |I∗| determines the size of the coefficient matrix B. Consequently,
changing |I∗| yields sequences of nested models, and hence standard model selection
techniques, for instance, AIC or BIC, could be used to identify the appropriate size of
I∗ without resorting to cross-validation. Since AIC/BIC automatically penalizes model
complexity for a given sample size, we can arrive at an optimal model complexity for
TR.

Furthermore, TR provides an intuitive explanation of its predictive mechanism
based on nearest neighbors in the response space as shown through KNN graphs in
Section 2.3. This explanation could be gleaned from MLKR as well. However, the com-
putational complexity associated with semi-definite programming, required in MLKR,
is considerable if the dimension of the input space is high. TR, on the other hand,
directly learns the weights associated with neighboring responses, and, by a suitable
transformation, estimates the parameters in an unconstrained fashion. This leads to
a significant reduction in computational expense as reported in Table 2.

Finally, the visual representation of TR’s predictive mechanism could provide
design ideas and allow fast knowledge-based model validation. We anticipate that our
framework will have practical value in drug discovery or other QSAR tasks and assist
in designing new molecules more effectively.

4 Methods

4.1 Data description and problem motivation

We begin with a description of the datasets that we use to illustrate the compara-
tive performances of the competing models. We offer a brief description of ChemProp,
Transformer-CNN and MLKR methods and then outline the motivation behind
developing the TR framework.

Dataset: Since our focus is on QSAR modeling in the lead optimization phase
of drug discovery, we choose to assess the performance of competing models on well-
curated datasets with single target bioactivity. For this purpose, we downloaded data
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from the ChEMBL database[58] following the extraction protocol of [59]. This included
only selecting ’SINGLE PROTEIN’ or ’PROTEIN COMPLEX’ human targets with
confidence scores of 9 and 7, respectively. Additionally, only pCHEMBL values, which
are comparable bioactivity measures of half-maximal response (IC50, XC50, EC50,
etc.) on a negative logarithmic scale, were selected. We refer the readers to [59] for
further data extraction details.

In the cleaning phase, we first removed the datasets that were too small to train
ChemProp and Transformer-CNN. Within each dataset, we further removed instances
with duplicated SMILES and instances with chemically invalid SMILES strings which
could not be converted to RDKit molecules. Finally, we had 530 datasets on various
human target bio-activities. Sample size ranged from 100 to 7890 with the median
sample size being 677. The various target activities, referred to as pChEMBL values,
were used as the univariate response variable.

Although several representative descriptors and fingerprints (for example: RDKit
descriptors, Mordred [6], ECFP4 [7]) are available, we mainly focus on ECFP4 rep-
resentation for similarity-based predictive models because, empirically, this represen-
tation offered the best predictive performance. We relegate the results demonstrating
the superior predictive performance of the ECFP4 representation to the Supplemen-
tary Material. We calculate folded ECFP4 fingerprints using RDKit’s implementation
of the Morgan algorithm with a radius of 2 atoms and bit-size of 1024. Since the out-
put of this representation system is binary, we use the Tanimoto coefficient (TC) as a
measure of similarity and 1−TC as a measure of distance for TR. No standardization
steps were required as RDKit was used to extract ECFP4 fingerprints. The ECFP4
fingerprints were used to train the RF model, whereas Chemprop used the SMILES
string inputs to internally extract the graph representations and Transformer-CNN
directly used the SMILES strings.

ChemProp: We used ChemProp as a baseline model because of its demonstrated
utility in drug discovery. ChemProp is a full-fledged Graph Convolutional Neural Net-
work model that takes 2D representations of molecules as predictors. We employed
ChemProp’s Bayesian hyperparameter optimization, which optimizes the hidden size,
depth, dropout, and the number of feed-forward layers, and trained the model for 100
epochs for all datasets.

Transformer-CNN:We also used Transformer-CNN (TCNN) as a baseline model
as it is self-proclaimed to be a Swiss-army knife for QSAR modeling. TCNN is a
pre-trained model on over 17 million pairs of strings for the task of SMILES canonical-
ization. The output of the transformer encoder is then used to generate model-acquired
FPs, which are used for downstream prediction through task-trained Text-CNN and
convolutional highway layers. In addition, the architecture enables data augmenta-
tion by ensembling the results from multiple non-canonical smiles for each sample.
Lastly, the architecture contains practically no hyperparameters and enables learning
rate scheduling and early stopping, limiting the need for hyperparameter optimiza-
tion. This mixture of large pre-training, sample augmentation, and string-size agnostic
architecture results in a powerful prediction model. We followed the TCNN instruc-
tions and trained the model on the SMILES strings, with and without augmentation,
for at most 35 epochs as learning rate scheduling and early stopping were employed.
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Metric Learning Kernel Regression: The purpose of metric learning is to
find a distance metric for a specific task through supervised learning. The metric
found by metric learning could subsequently be used in KNN regression or kernel
regression for generating predictions and visualizations. For regression tasks, MLKR
[51] finds the Mahalanobis metric that minimizes the cumulative leave-one-out CV
error L =

∑
i(Yi − Ŷi)

2, where Yi is the numeric response variable of the i-th training

sample and Ŷ =
Σj ̸=iYjWij

Σj ̸=iWij
with W.,. being the weights associated with Gaussian

kernels. In particular, the transformation matrix L used to obtain the learned metric
can be written as a decomposition of Mahalanobis matrix M = LTL. After L is
learned from the data, the original coordinate system of the predictor space X is
transformed to the new coordinate system given by LX. Thus, MLKR learns a global
space transformation, which can be used to calculate the distance in the response
space. Then KNN-regression or similarity-based kernel regression can be performed to
provide predictions and interpretation.

However, in order to compute distances, we first need to characterize the molecules
in a fashion such that distances can be computed. As mentioned, we focus on ECFP4
fingerprints, which is thus the initial coordinate system supplied to MLKR to learn the
transformation and produce a new coordinate system such that the predictor space is
approximately isometric to the response space. Fig. 7 illustrates this phenomenon. In
the left panel, we computed the pairwise Tanimoto distances among all the molecules
targeting Mitogen-Activated Protein Kinase 12 (ChEMBL ID: CHEMBLE1908389)
using ECFP4 features and projected them in 2D MDS space. The intensity of the
pixels indicate the response each molecule elicited. In the right panel, we used the
distance metric learned from MLKR to generate the 2D coordinates. Observe how
the two molecules, CHEMBL3727733 and CHEMBL3729567, which appeared to be
neighbors in the chemical space, were pushed apart after the MLKR transformation.
Additionally, we observe a smoother spatial trend in the image produced after the
MLKR transformation which allows us to use KNN or kernel regression - with purely
distance-dependent kernel elements - for prediction purposes.

Comparison procedure: To compare model performances we design two types
of data splits: (a) random split and (b) scaffold split. Random split is done with 5-
fold cross-validation with 80% training and 20% testing in each fold. The scores of
the five folds are averaged as the final score. In drug discovery, new structures are
often proposed by editing on the scaffold of a known good candidate. Predictions
are more likely to fail across scaffolds due to greater chemical dissimilarities. Scaffold
split makes sure the training and test samples belong to different Murcko scaffolds
- mimicking scenarios when predictions for a new structure of a different scaffold is
sought. Since full-blown cross-validation is not feasible with scaffold splits, we use a
single hold-out set comprising of approximately 20% data points for each ChEMBL
dataset. We use Spearman ρ and Normalized Root Mean Square Error (NRMSE) to
compare the candidate models’ capabilities to generate predictions. In Section 2, we
compare these two metrics obtained from ChemProp with those obtained from MLKR-
KNN under both splitting scenarios for all 530 ChEMBL datasets and observe that
MLKR-KNN offers numerically superior performance as compared to ChemProp, even
though MLKR is not directly a regression technique.
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Fig. 7: The 2-D Multidimensional Scaling (MDS) of the original chem-
ical space and Metric Learning for Kernel Regression (MLKR) trans-
formed space of ChEMBL target Mitogen-Activated Protein Kinase 12
(CHEMBL1908389). The transformed and interpolated chemical space with a)
MDS using Tanimoto distance and b) MLKR. Notice how MLKR smooths the activity
space and separates the two similar molecules CHEMBL3727733 (pChEMBL=5.79)
and CHEMBL3729567 (pChEMBL=8.15) compared to the original MDS transformed
space.

This empirical observation motivates us to develop TR based on a distance formu-
lation and thereby make the MLKR-type strategy amenable to statistical inference.
We observe that in the MLKR procedure, a lot of effort is undertaken to ensure that
the transformed space is indeed a metric space. However, for prediction, a weighted
averaging of the responses from nearest neighbors is performed. Notice that symme-
try and non-negativity are the only two conditions required for those weights (Wij).
Therefore, we contend that we can directly work with Wijs instead. We then proceed to
show that, under suitable distributional specification, an explicit estimator of E(Wij)
could be obtained. Since the estimand is an expectation operator, standard statisti-
cal theory (delta method, residual bootstrap) could be brought to bear to assess the
statistical properties of this estimator. To the best of our knowledge, such statistical
assessment of the estimates produced by vanilla MLKR is not available.

4.2 Multivariate Construction of Topological Regression

Topological regression (TR) is a similarity-based regression framework that connects
the distances in the chemical space with non-negative weights appearing in nearest
neighbor regression defined on the response space. The model is illustrated in Fig. 8.
More specifically, we specify a multivariate regression model for the weights Wijs and
derive a closed-form expression for the estimator of E(Wij) under an inverse distance-
weighting scheme. Subsequently, we also offer a discussion on an approximate estimator
of the foregoing quantity when the weighting is done using a Gaussian kernel.

Let D represent the set of all training points. First, we partition D into a set of K
anchor points and N = |D|−K neighborhood-training points. Let I∗ = {i∗1, i∗2, ..., i∗K}
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be the set of indices associated with the anchor points and I = {i1, i2, ..., iN} be
the indices associated with the neighborhood-training points, with I∗ ∩ I = ϕ and
|I∗| < |I|. Let Yij , ij ∈ I be the response associated with the ijth instance in the set
I. Our goal is to express Yij as a linear combination of responses Yi∗j

belonging to the
set I∗, i.e.

Yij =
∑
i∗l ∈I∗

Wi∗l ij
Yi∗l

, ∀ij ∈ I (1)

where Wi∗l ij
is a non-negative weight that determines the contribution of the

response associated with the lth point in I∗ towards the response associated with
the jth point in I. Such non-negative weights are fairly common in distance-weighted
regression, for instance, in geographically weighted spatial regression models, often
the weights are specified in terms of Gaussian kernels, i.e., Wi∗l ij

= exp(−βd2i∗l ,ij
) with

d2(.) being a squared Euclidean distance and β > 0 controlling the smoothness of the
random field.

Neighborhood training model: Customarily, the weights are expressed as a
deterministic function of the distances in the predictor space. In standard KNN regres-
sion, we assume that distance in the predictor space is proportional to the distance
in the response space. In metric learning, a transformation of the predictor space is
learned such that there is an approximate isometry between the transformed predic-
tor space and the response space. In TR, we instead write a formal statistical model
to connect Wi∗j ij

with the squared Euclidean distances in the predictor space in the
following fashion:

We define the weights
Wi∗j ij

= 0 if i∗j = ij

> 0 if i∗j ̸= ij
(2)

and since we have I∗ and I to be disjoint and the responses could be assumed to be
absolutely continuous, we can define

W̃N×K =


log(Wi∗1 ,i1

) log(Wi∗2 ,i1
) · · · log(Wi∗K ,i1)

log(Wi∗1 ,i2
) log(Wi∗2 ,i2

) · · · log(Wi∗K ,i2)
· · · · · · · · · · · ·

log(Wi∗1 ,iN
) log(Wi∗2 ,iN

) · · · log(Wi∗K ,iN )

 (3)

with the entries in W̃ , i.e., (W̃ )i∗j ij being real quantities. Define the squared
Euclidean distance matrix in the predictor space as

DN×K
X =


d2i∗1 ,i1;X d2i∗2 ,i1;X · · · d2i∗K ,i1;X

d2i∗1 ,i2;X d2i∗2 ,i2;X · · · d2i∗K ,i2;X

· · · · · · · · · · · ·
d2i∗1 ,iN ;X d2i∗2 ,iN ;X · · · d2i∗K ,iN ;X

 (4)

We define a simple multivariate linear regression model connecting W̃ with DX .
Consider the mth row of W̃ . Observe that, this row consists of the weights used
to express the mth response in I using all the responses in I∗. We envision this
row to be a set of repeated measurements taken on the mth point in I from the
vantage points in I∗. Thus, denoting the K elements in the mth row of W̃ by W̃.,m =
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(W̃1,m, W̃2,m, · · · , W̃K,m), the corresponding row of predictors in DX by D.,m;X =
(d21,m;X , d22,m;X , · · · , d2K,m;X), and the matrix of regression coefficients by

BK+1×K+1 =


b01 b02 · · · b0K
b11 b12 · · · b1K
· · · · · · · · · · · ·
bK1 bK2 · · · bKK

 (5)

we arrive at the following regression model

W̃1,m = b01 + b11d
2
1,m;X + b21d

2
2,m;X + · · ·+ bK1d

2
K,m;X + ϵ1

W̃2,m = b02 + b12d
2
1,m;X + b22d

2
2,m;X + · · ·+ bK2d

2
K,m;X + ϵ2r

· · ·
W̃K,m = b0K + b1Kd21,m;X + b2Kd22,m;X + · · ·+ bKKd2K,m;X + ϵK

(6)

with ϵ = (ϵ1, ϵ2, · · · , ϵK) ∼ NK(0,Σ). Now assuming mutual independence across
the N rows of W̃ and since N > K (by construction), we can obtain the MLEs of
B and Σ. Let B̂ and Σ̂ denote their respective estimates. Then, for a new query
point, we can compute (d21,query;X , d22,query;X , · · · , d2K,query;X) and, using B̂, obtain

the predictions (W̃1,query, W̃2,query, · · · , W̃K,query). However, observe that (1) requires
(W1,query,W2,query, · · · ,WK,query) to generate a prediction for the query point, and

simply exponentiating the output, ˆ̃W , of (6) will yield a biased estimate of W because

E(W ) = E(eW̃ ) ̸= eE(W̃ ) due to Jensen’s inequality. Therefore, we use the proper-
ties of the multivariate log-normal distribution to improve the estimate of W in the
following way:

Clearly W.,m = eW̃.,m where the exponent is taken coordinate-wise with W̃.,m ∼
NK(µ.,m,Σ) and µj,m = b0j + b1jd

2
1,m + b2jd

2
2,m + · · · + bKjd

2
K,m. Then the usual

relationship between the expectation of a log-normal variate with the moment-
generating function of its normal counterpart can be used to show that E(Wj,m) =

E(eW̃j,m) = exp(µj,m + Σjj/2). Additionally, it is fairly straightforward to show
that the covariance matrix of W.,m is given by V ar(W.,m) = diag(E(W.,m))(eΣ −
11T )diag(E(W.,m)). Consequently, an estimator of Wj,query is given by Ŵj,m∗ =

Ê(Wj,query) = exp(µ̂j,query+Σ̂jj/2) and the corresponding estimator of the covariance

matrix is ˆV ar(W.,query) = diag(Ŵ.,query)(e
Σ̂ − 11T )diag(Ŵ.,query). The estimated

covariance matrix is positive definite as long as Σ̂ is positive definite. Furthermore,
since B̂ is asymptotically normally distributed, we can obtain a conservative estimate
of the pointwise prediction interval of W.,m∗ using the parametric bootstrap technique
outlined in[60].

Extraction of W : In the above discussion, we have used log(W ) as the target of
the multivariate regression in (6). However, W are not observed, but are parameters
that appear in the distance-weighted regression in the response space (1). Hence, we
first need to extract these weights. A naive option is to set the weights Wi∗j ,ij

as the
inverse of squared Euclidean distance in the response space between points in I and
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I∗, i.e. Wi∗j ,ij
= 1/d2i∗j ,ij ;Y

, i∗j ∈ I∗, ij ∈ I. In this configuration, we can simply supply

1/d2i∗j ,ij ;Y
in the LHS of (6). We will still recover a closed form expression for Ê(W )

because the log-normal distribution is closed under an inverse transformation.

Fig. 8: Overview of the proposed topological regression framework. a)
Distances in the input space are used to predict distances in the response space, which
can subsequently be paired with similarity-based prediction methods such as nearest
neighbor or kernel regression. b) Targets of the unseen predictions will be calculated
using the anchor points, and these results can be compared easily with other similarity-
based methods, like the K-Nearest Neighbors (KNN). c) The whole procedure is shown
in an example, where we can see the predicted space by the model (M) after training.

4.3 Univariate Construction of Topological Regression

The requirement I∗ ∩ I = ϕ in the previous section induces a delicate trade-off. If
we increase the number of anchor points, the neighborhood training model becomes
overparametrized. If, on the other hand, we decrease the number of anchor points
there may not be enough anchor points to reliably estimate the response, especially
in isolated regions of high activity.

One possible solution is to bring the distances among anchor points themselves
in the neighborhood training model. But, that conflicts with the above theoretical
development because each point in I∗ can be observed from the remaining K−1 points
in I∗ and hence we do not have a K ×K covariance matrix. Additionally, because of
the symmetry constraint (Wi,j = Wj,i), we can only work with the triangular matrix of
weights associated with points within I∗. Thus, if we forego the above multivariate log-
linear regression construction (6) and view TR purely as a least-square optimization
problem we can use K(N − K)+K(K − 1)/2 equations to obtain the least-square
estimates of the coefficient matrix B. In this scenario, the first K(N −K) equations
are obtained by varying m from 1, 2, ...N in (6). The remaining K(K−1)/2 equations
connect the W̃i∗j ,i

∗
j′

with the instances in I∗. More specifically, dropping the subscript
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i and simply denote the K elements in I∗ as {1∗, 2∗, 3∗, · · · ,K∗}, then we have the
following system of equations:

W̃2∗,1∗ = b02 + b12d
2
1∗,1∗;X + b22d

2
2∗,1∗;X + · · ·+ bK2d

2
K∗,1∗;X + ϵ2∗1∗

W̃3∗,1∗ = b03 + b13d
2
1∗,1∗;X + b23d

2
2∗,1∗;X + · · ·+ bK3d

2
K∗,1∗;X + ϵ3∗1∗

· · ·
W̃3∗,2∗ = b03 + b13d

2
1∗,2∗;X + b23d

2
2∗,2∗;X + b33d

2
3∗,2∗;X + bK3d

2
K∗,2∗;X

· · ·+ ϵ3∗2∗

· · ·
W̃K∗,(K−1)∗ = b0K + b1Kd21∗,(K−1)∗;X + b2Kd22∗,(K−1)∗;X + b3Kd23∗,(K−1)∗;X+

· · ·+ bKKd2K∗,(K−1)∗;X + ϵK∗(K−1)∗

(7)

B̂ could be obtained by minimizing the error sum of squares. Additionally, if we
assume the error terms are iid N (0, σ2), we can easily obtain σ̂2 from the residuals.
Now, when a query instance comes in with known chemical features, we can com-
pute d2

.,query = [d21∗,query, d
2
2∗,query, · · · , d2K∗,query] in the chemical space and obtain

ˆ̃W.,query = d2
.,queryB̂. Then an estimator of the neighborhood weights for the query

point is given by Ŵ.,query = exp( ˆ̃W.,query + σ̂2/2).
Additionally, since the W ’s in this case are univariate, we have the flexibility to

write Wi∗j ,¬i∗j
= exp(−βd2i∗j ,¬i∗j ;Y

) with β > 0 and replace the W ’s in the LHS of (7) by

log(d2i∗j ,¬i∗j ;Y
). Now, each d2 has a univariate lognormal distribution. Now, to obtain

an estimator of E(Wi∗j ,¬i∗j
), we first observe that

E(Wi∗j ,¬i∗j
) =

∫ ∞

0

exp(−βd2i∗j ,¬i∗j ;Y
)f(d2i∗j ,¬i∗j ;Y

)dd2i∗,¬i∗;Y (8)

is the Laplace transform of lognormal distribution. Although, there is no closed form
solution of (8), but [61] derives a sharp approximator of (8) for β > 0 using Lambert’s
W function. Therefore we propose the following Monte Carlo procedure to estimate
E(Wi∗j ,¬i∗j

) as follows:

a. Fit a standard geographically weighted regression with Gaussian Kernel in the
response space and extract β̂ [62].

b. Fit the model (6) with log(d2i∗j ,¬i∗j ;Y
) in the LHS and obtain µ̂i∗j ,¬i∗j

and σ̂2.

c. Draw R iid replicates of d2i∗j ,¬i∗j ;Y
from lognormal(0, σ̂2).

d. For each realization compute exp
(
−β̂d

2(r)
i∗j ,¬i∗j ;Y

e
µ̂i∗

j
,¬i∗

j

)
.

e. Then the Monte Carlo estimator of the LHS of (8) is given by Ê(Wi∗j ,¬i∗j
) =

1
R

∑R
r=1 exp(−β̂d

2(r)
i∗j ,¬i∗j ;Y

e
µ̂i∗

j
,¬i∗

j )
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While this Monte Carlo approximation works well when β and σ are small, it fails to
explore the tail region as β → ∞. Hence, if β̂ is large, an efficient importance sampler,
derived in [61], should be used.

4.4 Ensemble Topological Regression

The above construction in (7) allows relaxing the disjointedness requirement I∗∩I = ϕ
to include the anchor points as neighborhood training points and allows modeling
the W̃ ′s through least squares optimization. However, by construction, |I∗| < |I|,
meaning not all training points can be included as anchor points because the least
squares model becomes overparameterized and overfits the training data leading to
poor generalization performance. Since a subset of the available training set must be
selected as anchor points, the results may be sensitive to the selected anchor points.
To average out the effect of anchor points, one can simply randomly sample multiple
different sets of anchor points and ensemble the results of each set. In order to achieve
this, we introduce Ensemble TR, which samples t sets of anchor points independently
and generates average predictions from the resulting t TR-models. The percentage of
training instances to include as anchor instances can be viewed as a hyperparameter,
so t percentages can be sampled from a Gaussian distribution N (µk, σ

2
k), with µk

being the mean percentage of training instances to include as anchor instances and σ2
k

being the requested variance of the t percentages. To verify percentage values are valid
and to prevent over or under-fitting, the sampled percentages are clipped between the
range [30%, 90%]. This leaves the user with three parameters: the number of models
(t), the mean percentage of training samples to include as anchor instances (µk),
and the variance of the percentages (σ2

k). Ensemble TR maintains its computational
efficiency considering DN×N

X can be initially calculated, and t DN×K
X ’s can be easily

sampled from DN×N
X . This means that once distances are calculated, only t multi-task

linear regression models must be solved and RBF kernels applied to their outputs to
generate predictions, leading to fast run times.

Data availability

The ChEMBL datasets used in this study are available in the ChEMBL database
(https://www.ebi.ac.uk/chembl/) [58]. The code to extract the 530 ChEMBL datasets
is provided in the code repository. Source data are provided with this paper.

Code availability

Sample data files and Python code to regenerate the TR figures and results are openly
provided at https://github.com/Ribosome25/TopoReg QSAR.
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