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First-fit (FF) is a well-known and widely deployed algorithm for spectrum assignment (SA), but until our recent
study [J. Opt. Commun. Netw. 14, 165 (2022)], investigations of the algorithm had been experimental in nature
and no formal properties of the algorithm with respect to SA were known. In this work, we make two contribu-
tions. First, we show that FF is a universal algorithm for the SA problem in the sense that, for any variant, 1) it
can be used to construct solutions equivalent to, or better than, any solution obtained by any other algorithm,
and 2) it can construct an optimal solution. This universality property applies to both the min-max and min-frag
objectives and to variants of the SA problem with or without guard band constraints. Consequently, the spectrum
symmetry-free model of our recent study [J. Opt. Commun. Netw. 14, 165 (2022)] extends to all known SA vari-
ants, which therefore reduce to permutation problems. Second, we extend the spectrum symmetry-free model
to the routing and spectrum assignment (RSA) problem in general topologies. This model allows for the design
of more efficient algorithms as it eliminates from consideration an exponential number of equivalent symmet-
ric solutions. By sidestepping symmetry, the RSA solution space is naturally and optimally decomposed into a
routing space and a connection permutation space. Building upon this property, we introduce a two-parameter,
symmetry-free universal algorithm that can be used to tackle any RSA variant in a uniform manner. The algo-
rithm is amenable to multi-threaded execution to speed up the search process, and the value of the parameters can
be adjusted to strike a balance between running time and solution quality. Our evaluation provides insight into
the relative benefits of path diversity (which determines the size of the routing space) and connection diversity
(which determines the size of the permutation space). © 2024 Optica Publishing Group

https://doi.org/10.1364/JOCN.521978

1. INTRODUCTION

Routing and spectrum assignment (RSA) and its variants are
fundamental problems in the design and control of elastic
optical networks [1–6] and underlie a range of optimiza-
tion problems including virtual topology design [7,8], traffic
grooming [9–11], and network survivability [12,13]. The RSA
problem is NP-hard [4], even in simple network topologies
[14], and a wide range of integer linear programming (ILP)
formulations have been developed to tackle it [5,15–17].

Conventional ILP formulations for RSA face a significant
challenge due to spectrum symmetry, i.e., the fact that spec-
trum slots are interchangeable [18]. As explained in [19] with
reference to the RWA problem, “as the wavelengths are inter-
changeable, given an optimal solution of the RWA problem
or of one of its continuous relaxation, one can derive a large
number of equivalent solutions using any permutation of
the wavelengths.” In other words, ILP solvers must evaluate
an exponential number of distinct but equivalent optimal
solutions and hence their running time can be unnecessarily
long [19].

The spectrum allocation (SA) subproblem of RSA under-
lies much of optical network design [1] and has been studied
extensively. The SA problem is intractable even when consid-
ered in isolation, i.e., separately from other aspects of network
design [14]. Consequently, a number of heuristic algorithms,
including first-fit, best-fit, most-used, and least loaded [20],
have been developed and studied experimentally.

The first-fit (FF) algorithm is a simple heuristic for the SA
problem that operates without global knowledge and has been
shown to be effective across a wide range of network topologies
and traffic demands [20–22]. Accordingly, it is commonly
employed in practice. Even before its application to spectrum
assignment, the FF algorithm had been investigated theo-
retically since the early days of computing in the context of
bin packing [23] and memory allocation [24], among other
fields. For instance, FF has been shown to be an approximation
algorithm for the bin packing problem and a series of studies
over four decades gradually improved the approximation ratio
[23,25,26]. To the best of our knowledge, however, before our
study in [18], investigations of the FF algorithm within the
context of spectrum assignment, on its own or as part of optical
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network optimization problems, were purely experimental and
no formal properties of the algorithm were known.

With this work we make two contributions. First, we carry
out a theoretical investigation of FF and show that it is a uni-
versal algorithm for all known variants of the SA problem. In
this paper, we use the term universal to indicate that, for any
instance of any SA problem variant, the pure FF algorithm or
an appropriately modified version is capable of 1) constructing
a solution that is equivalent to, or better than, any solution
obtained by any other algorithm and 2) constructing an opti-
mal solution. This universality property implies that, to find
an optimal solution to any SA problem variant, it is sufficient
to consider only the connection permutations and apply the
FF algorithm. This insight forms the basis for a symmetry-free
model for spectrum assignment in networks of general topol-
ogy. This model eliminates from consideration symmetric
solutions, i.e., equivalent solutions derived from spectrum slot
permutations, and opens up new algorithmic directions for
the SA problem specifically and optical network design more
generally.

As our second contribution, we extend the spectrum
symmetry-free model to the RSA problem. We show that,
by eliminating symmetric solutions, the solution space nat-
urally and optimally decomposes into a routing space and a
connection permutation space. We also introduce a universal
two-parameter RSA algorithm that explores exhaustively a
subset of the solution space that encompasses the complete
solution space for a subset of the connections. The values of the
two parameters may be used to adjust the size of the solution
space to strike a balance between running time and solution
quality. Finally, our study provides insight into the relative
benefits of path diversity (which determines the size of the
routing space) and connection diversity (which determines the
size of the permutation space).

The remainder of the paper is organized as follows. In
Section 2 we show that FF is a universal algorithm for known
SA variants and forms the basis for symmetry-free algorithmic
solutions. In Section 3, we extend the spectrum symmetry-
free model to the RSA problem. Building on that insight, we
develop and evaluate a universal two-parameter algorithm for
RSA. We conclude the paper in Section 4.

2. FIRST-FIT: A UNIVERSAL ALGORITHM FOR
SYMMETRY-FREE SPECTRUM ASSIGNMENT

In this section we prove that FF is a universal algorithm for all
known variants of the SA problem (i.e., when routing is fixed and
not part of the optimization). We first review our recent results
[18] regarding the min-max SA problem, the variant that has
been most extensively studied in the literature. Specifically,
we discuss the optimality property of FF with respect to min-
max SA that allowed us to develop the first symmetry-free
model for networks of general topology. In the following three
subsections, we extend these results to several SA variants,
and specifically, min-max DSA (Section 2.B), min-frag SA
(Section 2.C), and min-frag DSA (Section 2.D).

A. Min-Max SA as a Permutation Problem

Let G = (V , A) represent the topology graph of an optical net-
work with a set V of nodes and a set A of directed fiber links,
where N = |V | and L = |A| denote the number of nodes and
links, respectively. The traffic offered to the network consists
of C connections Ti , i = 1, . . . , C , where each connection is a
tuple Ti = (s i , di , pi , ti ) such that s i and di are the endpoints
of the connection, pi is the path between nodes s i and di that
the connection must follow, and ti is the number of spectrum
slots required to carry the traffic of the connection along
path pi . (In this and the next three subsections, we focus on
the SA problem and assume that the path pi for each connec-
tion Ti has been determined. We will remove this assumption
in Section 3 where we discuss the RSA problem.)

We assume that the spectrum slots on each link are indexed
1, 2, 3, . . ., and we define the min-max SA problem as follows:

Definition 2.1 (min-max SA):
Input: graph G and C connections {Ti = (s i , di , pi , ti )}.
Output: an assignment of ti spectrum slots to each connec-

tion Ti along its path pi .
Objective: minimize the index of the highest spectrum slot

used on any link in the network.
Constraints:

1) Contiguity: Each connection Ti is assigned a block of ti
contiguous spectrum slots starting at index fi , i.e., block
[ fi , fi + 1, . . . , fi + ti − 1].

2) Continuity: Each connection is assigned the same block of
slots on each link ` ∈ pi along its path pi .

3) Non-overlap: Connections whose paths share a link are
assigned non-overlapping blocks of spectrum slots.

The FF algorithm [20] considers connections in a fixed
order and assigns to each one a contiguous block of spectrum
slots that starts at the lowest-indexed slot available along the
links of the connection’s path. Let P denote a permutation
of the C connections, and let FF(P ) denote the solution con-
structed by applying the FF algorithm to the connections in the
order implied by P . In recent work [18] we have shown that
there exists a permutation P ? of the C connections such that
FF(P ?) is an optimal solution to the min-max SA problem.
This result has several implications.

1) Min-max SA as a permutation problem: To find an
optimal spectrum assignment, it is sufficient to examine
the connection permutations, and hence min-max SA is
transformed into a permutation problem; accordingly,
we have developed an optimal, recursive, branch-and-
bound algorithm, recursive first-fit (RFF), to search the
permutation space efficiently [18,27].

2) Symmetry-free spectrum assignment: In selecting
among the various connection permutations there is no
need to consider a spectrum assignment other than the
one produced by the FF algorithm; hence, symmetric
solutions are automatically eliminated from consideration
and the size of the solution space is reduced by orders of
magnitude [18].

3) Inherent parallelism: The connection permutation space
is naturally represented as a tree that may be decomposed
into non-overlapping subtrees [18,27]; accordingly, multi-
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threaded implementations of RFF may explore the
subtrees in parallel.

4) FF is a universal algorithm: The results of [18] imply
that FF subsumes any other min-max SA algorithm; in
other words, for any solution S constructed by any other
SA algorithm (e.g., best-fit, most-used, etc. [20]), there
exists a connection permutation P such that FF(P ) has an
objective value equal to or better than that of S.

In the following, we extend these results to other SA
problem variants.

B. Min-Max DSA Problem

The min-max distance SA (min-max DSA) problem is a vari-
ant introduced in [28] that includes the min-max SA problem
of the previous section as a special case. Specifically, min-
max DSA arises when it is required to allow for a guard band
between blocks of spectrum slots assigned to different con-
nections on the same link, e.g., to prevent crosstalk or reduce
security threats at the optical layer. Min-max DSA constitutes
a fairly general model in that the size of the guard band is not
fixed but depends on each connection pair, e.g., on the number
of spectrum slots, path, or other attribute of the two adjacent
connections [28].

Formally, the min-max DSA problem can be defined as
follows:

Definition 2.2 (min-max DSA):
The min-max SA problem of Definition 2.1 with:
Additional Input: guard band size g ij ≥ 0 for each connec-

tion pair (Ti , Tj ), i 6= j .
Additional Constraint:

4) Guard band: If connections Ti and Tj are assigned adja-
cent slots on a link ` shared by their paths, their spectrum
blocks must be separated by a block of unallocated
(empty) slots of size at least g ij.

Clearly, if g ij = 0∀i, j , min-max DSA reduces to min-
max SA.

1. DSA-FF Algorithm and Its Universality Property

Consider a permutation P of the C connections. Without loss
of generality, assume that the connections are relabeled so that
P = 〈T1, T2, . . . , TC 〉. Let DSA-FF be a modified version of
the FF algorithm for the min-max DSA problem. Similar to
FF, DSA-FF takes as input some permutation P and assigns
spectrum to each connection at a time in the order implied
by P , i.e., T1, T2, . . . , TC . After considering connections
T1, . . . , Ti−1, DSA-FF assigns to connection Ti a contiguous
spectrum block of ti slots starting at slot fi such that fi is the
slot with the lowest index satisfying two conditions:

1) slots [ fi , fi + 1, . . . , fi + ti − 1] are free along all links of
the connection’s path pi , and

2) for each link ` ∈ pi , if some connection Tj , j < i, has
been assigned a block of slots immediately below slot fi on
link `, then there is a guard band of size at least g ij between
the two blocks, i.e., fi ≥ ( f j + t j − 1)+ g ij.

We now prove the following DSA-FF universality property,
which implies that, for any feasible solution to the min-max
DSA problem produced by any algorithm, the DSA-FF algo-
rithm may construct an equivalent or better solution, i.e., one
with an equal or lower objective value.

Lemma 2.1 (universality property for min-max DSA): Let S
be any feasible solution to the min-max DSA problem. There
exists a permutation P of the C connections such that applying
the DSA-FF algorithm in the order implied by P yields S or
another feasible solution S ′ with an equal or lower objective
value.

Proof. By construction.
Consider a feasible solution S to the min-max DSA problem

with an objective value equal to SOL, and label the slots on
each link as 1, 2, . . . , SOL. By definition, feasible solution S
satisfies all four constraints of the min-max DSA problem.
Let fi denote the slot with the lowest index within the block
of ti slots allocated to each request Ti , i = 1, . . . , C , under
solution S.

Let PS be the complete permutation in which the requests Ti

are listed in increasing order of fi in solution S, with ties bro-
ken arbitrarily. Consider the block of t j contiguous spectrum
slots, starting at slot f j , allocated to some connection Tj . Let
us remove this block of t j slots from solution S. In the remain-
ing partial solution, it is possible that there exists a block of t j

slots starting at a lower indexed slot f ′j < f j such that 1) they
are available on all links of path p j , and 2) there are free slots
above and below this block such that allocating this block to
Tj will not violate the guard band constraints. If so, we can
allocate the lower-indexed t j slots starting with slot f ′j to con-
nection Tj without 1) affecting the feasibility of the solution or
2) increasing the objective value beyond SOL.

Based on this observation, we modify solution S by con-
sidering the connections one by one, in increasing order of
fi as listed in permutation PS . For each connection Ti , we
remove its block of spectrum slots that starts at slot fi from the
solution, and we allocate to it an equal block of slots starting
at the lowest possible slot index f ′i in the partial solution such
that none of the problem constraints is violated, keeping in
mind that f ′i may be equal to fi . This modified solution S ′

does not use more than SOL slots on any link since any mod-
ifications involve the allocation of lower-indexed spectrum
slots to connections. At the same time, since modifications
are applied to the starting solution S only if no constraints are
violated, the modified solution S ′ is also feasible. Hence, the
modified solution S ′ is either 1) identical to S, if it was not
possible to move any spectrum blocks, or 2) a different feasible
solution with an objective function equal to or lower than SOL,
if the spectrum slots allocated to some connection(s) in S were
moved to a lower-indexed block. Importantly, by construction
the modified solution S ′ is such that no connection may be
allocated to a spectrum block that starts at a lower-indexed slot.

Let P be the permutation in which the connections are
reordered so that they are listed in increasing order of f ′i in
the modified solution S ′, and let us apply the DSA-FF algo-
rithm to this permutation. The algorithm allocates to each
connection Ti a block of ti contiguous slots starting at the
lowest-indexed slot for which all problem constraints are sat-
isfied. Therefore, the DSA-FF algorithm will construct the
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Fig. 1. (a) A feasible solution to a min-max DSA problem instance on a four-link chain with C = 5 connections A, B, C , D, and E . (b) The fea-
sible (and optimal) solution constructed by the proof of Lemma 2.1.

modified solution S ′ above that is feasible and has an objective
value no larger than SOL. �

Figure 1 illustrates the proof of Lemma 2.1 using a simple
example. Figure 1(a) shows a feasible solution to the min-max
DSA problem on a four-link chain network and C = 5 connec-
tions labeled A, B, C , D, and E . Each connection is represented
by a rectangle of a different color. The length of each rectangle
spans all the links in the corresponding connection’s path,
whereas the width represents the number of slots allocated to
the connection. For instance, the bottom-most connection A
in the figure spans all four links of the network and has been
allocated the contiguous block consisting of slots 1 and 2 along
these links. For the problem instance shown in the figure, we
have g AB = 3, g AC = g AD = 2, and g AE = g BE = 1. Therefore,
the solution in Fig. 1 is feasible as there is a guard band (i.e.,
block of empty slots) of appropriate size between the blocks of
adjacent connections.

Figure 1(b) is the modified solution constructed by the proof
of Lemma 2.1. In this solution, connection E has been moved
from slot 11 to slot 4, as the three free slots between the blocks
of connections A and B in Fig. 1 are sufficient to allocate
one slot to connection E and form two guard bands of size 1
between A and E and between E and B . Similarly, connec-
tion D has been assigned slots 5 and 6, instead of slots 6 and 7
in the original solution. The new solution is also feasible and
has an objective value of 9, lower than the objective value 11
of the original solution. The reader may also verify that 1) the
solution of Fig. 1(b) is the one constructed by the DSA-FF
algorithm on permutation 〈A, B, C , D, E 〉, and 2) the solu-
tion of Fig. 1(a) would not have been produced by DSA-FF on
any permutation of the five connections. We also note that the
solution in Fig. 1(b) is optimal since the objective value is equal
to the number of slots required to accommodate the amount
of traffic and corresponding guard bands associated with the
connections whose path includes the bottleneck link 4.

2. Symmetry-Free Model for Min-Max DSA

Lemma 2.1 applies to all feasible solutions, including optimal
ones, yielding this corollary:

Corollary 2.1: There exists a permutation P ? of the C con-
nections such that DSA-FF(P ?) is an optimal solution to the
min-max DSA problem.

Consequently, the symmetry-free model we introduced
in [18] for the min-max SA problem extends to this general
min-max DSA variant. Specifically, min-max DSA reduces to
a permutation problem in that, to find an optimal solution,
one only needs to examine the solutions that the DSA-FF
algorithm produces on the various connection permutations.
As a result, symmetric solutions, i.e., solutions derived from
a DSA-FF solution by permuting blocks of spectrum slots,
are eliminated from consideration. Clearly, the min-max
DSA problem remains NP-hard [28]. However, as we explain
in [18], the number of symmetric solutions is exponential.
Therefore, the size of the symmetry-free solution (i.e., permu-
tation) space is orders of magnitude smaller compared to that
explored by conventional ILP formulations [19,29].

Furthermore, with the elimination of symmetric solutions,
the permutation space has a well-defined structure that is
amenable to recursive and multi-threaded exploration. In
particular, the recursive branch-and-bound RFF algorithm we
developed in [18,27] for min-max SA can be readily extended
to tackle the min-max DSA problem. This DSA-RFF algo-
rithm operates identically to RFF; the only difference is that it
applies DSA-FF, rather than the pure FF algorithm, as it recur-
sively and incrementally builds and evaluates the connection
permutations. Rather than repeating the details of RFF, we
refer the reader to [18] for the operation of the algorithm and
to [27] for two alternative multi-threaded implementations.
We also note that min-max DSA includes more constraints
than min-max SA; hence its solution space is smaller (since per-
mutations that might yield feasible solutions for min-max SA
may lead to infeasible solutions for min-max DSA). Therefore,
we expect DSA-RFF to be more time-efficient than pure RFF.
Nevertheless, an experimental evaluation of DSA-RFF is out-
side the scope of this paper and will be the subject of future
research.

C. Min-Frag SA Problem

A spectrum fragment on a link is a block of one or more
contiguous unused (free) slots located between two assigned
spectrum blocks. The min-max objective we have discussed
so far attempts to pack the assigned spectrum blocks tightly
within lower-index slots so as to minimize spectrum frag-
mentation and allow for growth in demand. A different way
for achieving the same goal would be to construct solutions
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that minimize the number of unused slots contained within
spectrum fragments. Therefore, we define the min-frag SA
problem as follows:

Definition 2.3 (min-frag SA):
The min-max SA problem of Definition 2.1 with this new

objective:
Objective: minimize the sum of spectrum fragment sizes

over all links of the network.
We now show that the optimal solutions to the min-max

SA and min-frag SA problems can be very different.
Lemma 2.2: an optimal solution to the min-max SA prob-

lem is not necessarily optimal for the min-frag SA problem, and
vice versa.

Proof. By counter-example.
Figure 2(a) shows an optimal solution to a min-max SA

problem instance on a four-link chain with C = 9 connections;
each connection is represented similarly to Fig. 1. The solution
is optimal since the index of the highest slot used is 13, which
is equal to the lower bound, i.e., the number of slots necessary
to carry the traffic on connections using link 3. This is also a
feasible solution to the min-frag SA problem with an objective
value of 2 representing the sum of the two one-slot spectrum
fragments on links 1 and 4.

Figure 2(b), on the other hand, shows an optimal solution to
the min-frag SA problem instance where there is a single spec-
trum fragment of one slot. This solution is also a feasible solu-
tion for the min-max objective, but the index of the highest slot
used is 14, higher than that of the optimal min-max solution in
Fig. 2(a).

Hence, the min-max optimal solution of Fig. 2(a) is sub-
optimal for the min-frag objective, whereas the min-frag
optimal solution of Fig. 2(b) is suboptimal under the min-max
objective. �

As we can see from Fig. 2, there is a tradeoff between the
min-max and min-frag objectives. Specifically, to minimize the
index of the highest slot used, it may be necessary to introduce
additional spectrum fragments as in Fig. 2(a), and conversely,
minimizing the spectrum fragments may require the use of
higher-indexed slots as in Fig. 2(b).

Nevertheless, the min-max SA and min-frag SA problems
have something in common, namely, that they are both solved

by the FF algorithm. We showed that FF solves the min-max
SA problem in [18]; to show that FF also solves the min-frag
SA problem we first prove the following more general result.

Lemma 2.3 (FF universality property for min-frag SA): Let S
be a feasible solution to the min-frag SA problem. There exists
a permutation P of the C connections such that applying the
FF algorithm in the order implied by P yields S or another
feasible solution S ′ with an equal or lower objective value.

Proof. By construction.
The construction is very similar to that of the proof of

Lemma 2.1 in that we consider the connections in solution S
one at a time and in the same order, remove their assigned spec-
trum block from the solution, and attempt to place the block at
a lower-indexed starting slot. The main difference is that there
are no guard bands to consider when placing a spectrum block.

Note also that, if a spectrum block is moved to a lower-
indexed starting slot, the objective function cannot increase
(but may decrease). To see this, consider a spectrum block
of size t that is moved to lower-indexed slots. There are two
cases to consider: (a) links in which another spectrum block is
assigned slots of higher index than this block, and (b) links for
which this spectrum block is the one with the highest-index
slots. In case (a), removing the block creates a spectrum frag-
ment of size t , but placing the block at a lower-indexed slot
removes a fragment of the same size; therefore, the net change
in the objective function is 0. Case (b) has two sub-cases that
correspond to the spectrum blocks of connections D and E in
Fig. 1(a), ignoring the guard bands implicit in that figure. In
both sub-cases, when the spectrum blocks of the two connec-
tions are moved to a lower-indexed starting slot, the objective
function (i.e., the sum of fragment sizes) decreases. �

Similar to Corollary 2.1, we have this result:
Corollary 2.2: There exists a permutation P ? of the C

connections such that FF(P ?) is an optimal solution to the
min-frag SA problem.

Therefore, the symmetry-free model, along with all the
implications we discussed earlier, also extends to the min-frag
SA problem. In particular, the RFF algorithm [18] may be
modified in a straightforward manner to explore the permuta-
tion space for an optimal solution under the min-frag, rather

Fig. 2. (a) An optimal solution to a min-max SA problem instance on a four-link chain with C = 9 connections; also a feasible (but suboptimal)
solution to the corresponding min-frag SA problem instance. (b) An optimal solution to the min-frag SA problem instance; also a feasible (but
suboptimal) solution to the corresponding min-max SA problem instance.
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the min-max, objective; multi-threaded implementations of
RFF [27] are also applicable in this case.

However, there is a crucial difference between the min-max
and min-frag objectives. Specifically, as the FF algorithm
operates on a certain permutation to build a solution under
the min-max objective, the objective value (i.e., the index of
the highest assigned slot) is monotonically non-decreasing
as a function of the number of connections considered. This
property allows RFF to determine if a permutation that has
been partially considered will not lead to a solution that is
better than a baseline one; if so, RFF eliminates the current
subtree of the permutation space and backtracks to explore a
different subtree. The min-frag objective, on the other hand,
does not have the same property: a connection further down in
a permutation may fit within an existing spectrum fragment,
thus reducing the objective value. Consequently, RFF will have
to operate on each and every connection of a permutation
without the possibility of backtracking; hence, it will take more
time to explore the same fraction of the permutation space than
for the min-max objective. As we mentioned in the previous
section, an experimental investigation of this modified version
of RFF is outside the scope of this paper, but we are considering
other options for speeding up the exploration of the min-frag
solution space.

D. Min-Frag DSA Problem

Recall that the min-frag objective attempts to minimize
the number of unused slots stranded in fragments between
assigned spectrum blocks. In the presence of guard band con-
straints, however, certain slots within a spectrum fragment may
represent a required guard band and cannot be considered as
“unused.” Consider, for instance, the three-slot fragment in
link 1 of Fig. 1(a). Since g AD = 2, two slots of that fragment
represent the required guard band between connections A and
D; hence only one slot is unused. Therefore, once connec-
tion D is moved to slots 5 and 6 in the modified solution of
Fig. 1(b), the two-fragment slot on link 1 represents the guard
band and does not include any unused slots.

With these observations, the min-frag DSA problem is
derived from min-max DSA with the new objective of mini-
mizing the size of the spectrum fragments that do not represent
guard bands. More formally, the following:

Definition 2.4 (min-frag DSA):
The min-max DSA problem of Definition 2.2 with this new

objective:
Objective: minimize, over all links of the network, the sum

of spectrum fragment sizes minus the sum of all guard bands.
Using a construction proof similar to the ones we presented

in the previous two sections, we can show that DSA-FF is also a
universal algorithm for the min-frag DSA problem; specifically,
we have the following lemma:

Lemma 2.4 (universality property for min-frag DSA): Let S
be any feasible solution to the min-frag DSA problem. There
exists a permutation P of the C connections such that applying
the DSA-FF algorithm in the order implied by P yields S or
another feasible solution S ′ with an equal or lower objective
value.

Similar to our earlier observations, the implication of
Lemma 2.4 is that the recursive DSA-RFF algorithm we
discussed in Section 2.B.2 may be used to search the symmetry-
free solution (permutation) space for a permutation on which
the DSA-FF algorithm produces an optimal solution to min-
frag DSA. As we discussed in the previous section, the min-frag
objective is such that the objective value is not monotonically
non-decreasing as a function of the number of connections
in the permutation to which the DSA-FF algorithm has
assigned spectrum. Therefore, DSA-RFF cannot operate in
a branch-and-bound mode and has to completely evaluate
each permutation, i.e., perform an exhaustive search of the
permutation space. A quantitative evaluation of DSA-RFF for
this problem is the subject of ongoing research in our group.

3. SPECTRUM SYMMETRY-FREE RSA

We now turn our attention to the RSA problem, a generali-
zation of the SA problem in which finding a path for each
connection is part of the optimization process. Each of the
C connections provided as input to the RSA problem con-
sists of a tuple Ti = (s i , di ,Pi ,Di ), i = 1, . . . , C , where
s i and di are defined as in Section 2.A, Pi is a set of k paths
{p (1)

i , . . . , p (k)
i } between nodes s i and di , and Di is a set of

k demands {t (1)
i , . . . , t (k)

i } such that t (l)
i is the number of

spectrum slots required to carry the traffic of the connec-
tion along path p (l)

i . Unlike earlier research that assumes a
small number C of connections, in this paper we consider
connections between all node pairs in the network and let
C = N(N − 1)/2.

We assume that k is a small integer and that the k paths of
a connection are pre-determined. The paths of a connection
may be calculated as the k shortest paths between the particular
source-destination pair or using any other desirable criteria.
Further, we assume that splitting the spectrum demand of a
connection over multiple paths is not allowed.

We consider the following general definition of the RSA
problem; consequently, for each of the SA problems we
discussed in the previous section, there is a corresponding
RSA problem variant. [In this definition we only consider
spectrum-specific constraints. We assume that any routing-
specific constraints (e.g., in terms of path length), are applied
in determining the paths passed as input to this RSA problem.]

Definition 3.1 (RSA): For each connection Ti , select one
of the physical paths p (1)

i , . . . , p (k)
i , say, path p (l)

i , and assign
t (l)
i spectrum slots along this path so as to 1) optimize spec-

trum assignment (e.g., under the min-max or min-frag criteria
of Section 2) and 2) satisfy the contiguity, continuity, non-
overlap, and other variant-specific constraints (e.g., guard-band
constraints as in Sections 2.C and 2.D).

It is well known that the RSA problem is intractable [5,20].
Moreover, conventional algorithms for the RSA problem must
unnecessarily tackle an exponential number of symmetric
and equivalent solutions. We now show how our results on
symmetry-free solutions to the SA problem may be extended
to the more general RSA problem. This discussion provides the
motivation for the new, universal algorithm we present next in
Section 3.A.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on September 03,2024 at 15:51:50 UTC from IEEE Xplore.  Restrictions apply. 



Research Article Vol. 16, No. 9 / September 2024 / Journal of Optical Communications and Networking E17

An RSA solution (optimal or not) determines one of the k
paths for each connection. Let us define a routing configuration
R j , as an assignment of one path to each connection, whereby
the path assigned to connection Ti is selected among the set Pi

of k paths input to the RSA problem. Then, an RSA solution
encompasses selecting one of the kC routing configurations.

Consider a specific routing configuration R j . When the
path of each connection is fixed to the one specified in R j

(i.e., routing is not subject to optimization), the RSA problem
reduces to the (SA problem. While simpler, the SA problem is
also intractable in general topologies [14].

The symmetry-free model for the SA problem we intro-
duced in Section 2 implies that to solve optimally any SA
problem variant, it is sufficient to examine only the solutions
obtained by applying the FF algorithm to each of the C ! per-
mutations of the C input connections. (As we explained in
Section 2, the FF algorithm must be appropriately modified
to account for any variant-specific constraints beyond the
contiguity, continuity, and non-overlap constraints, but such
modifications are straightforward.) In recent work [18,27] we
also developed RFF, an optimal, parallelizable branch-and-
bound algorithm that recursively searches the permutation
space and applies the (pure or modified) FF algorithm incre-
mentally as it builds the various permutations. While the size of
the solution space (i.e., the number of permutations) is expo-
nential, to the best of our knowledge, our approach is the first
that completely eliminates from consideration the exponential
number of additional symmetric solutions (i.e., solutions that
cannot be the result of the FF algorithm).

We now make the observation that the various routing
configurations of the RSA problem are pairwise independent.
Therefore, our work in [18,27] can be naturally extended to a
spectrum symmetry-free algorithm for the RSA problem:

Run the RFF algorithm on all routing configurations and return
the routing configuration and connection permutation that results
in the best solution.

In essence, the solution space of the RSA problem is optimally
decomposed into a routing space of kC routing configurations
and a permutation space of C ! permutations that must be
explored separately for each routing configuration. While the
above algorithm completely sidesteps all symmetric solutions,
it amounts to an exhaustive search of a combined solution
space of size kC

×C !. Assuming that there is a connection
between each node pair in the network, then C = O(N2) and
both the number of routing configurations and the number
of connection permutations are exponential in the size of the
network. Therefore, it is prohibitive to search exhaustively the
combined solution space for network topologies encountered
in practice.

In the following, we present a solution approach that per-
forms an exhaustive search only on a part of the combined
solution space whose size can be calibrated appropriately.
Importantly, the algorithm may be applied directly to all RSA
variants with only minor modifications to the underlying
FF algorithm, depending on the variant-specific spectrum
constraints.

A. Universal Symmetry-Free RSA Algorithm

Our goal is to bridge the gap between an exhaustive search
of the entire solution space, which is prohibitively expensive
computationally for deployed networks, and greedy heuristic
approaches by introducing a parameterized approach that
achieves a desirable tradeoff between running time and quality
of solution. Our universal algorithm for RSA problem variants
is characterized by two parameters:

1) the number c < C of high-priority connections, and
2) the number k of paths for each high-priority connection.

Network designers may apply any appropriate criteria to
decide which connections are included in the high-priority set.
For instance, connections may be characterized as high priority
based on 1) the size of their demands, 2) the distance between
their endpoints, 3) a measure of the importance of the traffic
they carry, 4) the revenue they produce, or 5) any combination
thereof. Each high-priority connection is provided with k > 1
alternate paths; each low-priority connection, on the other
hand, may use only a single (fixed) path. Any appropriate rout-
ing algorithm and link weights may be used to generate these
paths.

Consider an RSA problem with C connections and define
the high-priority subproblem as one that includes only the
c < C high-priority connections (i.e., the subproblem created
by eliminating the C − c low-priority connections from the
original problem). The solution space for this high-priority
subproblem is the combination of the routing configurations
(of size kc ) and permutations (of size c !) for the c high-priority
connections. Since c and k are small integers selected by the
network designer, the size of this solution space can be con-
sidered as fixed and can be carefully adjusted to match the
available computational resources.

Our approach to tackling the original RSA problem with
C connections is to explore exhaustively a subset of its solu-
tion space that encompasses the entire solution space of the
high-priority subproblem. This strategy collectively optimizes
the allocation of resources to the connections that the network
designer regards as important. For instance, let us assume that
priority is proportional to the demand size and/or distance
of a connection. Intuitively, connections with large demands
or that travel long distances require correspondingly large
resources. Hence, their path and spectrum must be optimized,
not only individually but in combination with other such
connections, to ensure that network resources are allocated
efficiently. Furthermore, a small fraction of all connections
may account for a considerable fraction of total demand (refer
to Section 3.B), so that exploring the entire solution space of
such connections may be computationally feasible.

Algorithm 1 provides a pseudo-code description of the
symmetry-free RSA algorithm with parameters (k, c ). The
preprocessing step of the algorithm constructs the solution
space to explore. Specifically, Steps 1–5 generate all c ! per-
mutations of high-priority connections and extend each (at
Step 4) by appending the C − c low-priority connections in
a fixed order to create c ! permutations of all C connections.
Similarly, Steps 6–10 generate all kc routing configurations
of high-priority connections and extend each (at Step 9) with
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Algorithm 1. Universal Spectrum Symmetry-Free RSA

Input:
G = (V , A): network topology
C : number of connections
c : number of high-priority connections
k: number of paths for each high-priority connection
T = {Ti = (s i , di ,Pi ,Di )}: set of connections

Output:
BestSOL: RSA solution

SymFree-RSA(k, c )
Preprocessing

1: q : List of C − c low-priority connections in decreasing priority;
2: Generate all c ! permutations ql of the c high-priority connections;
3: for l = 1; l ≤ c !; l ++ do
4: Ql ← Append q to ql (permutation of all C connections);
5: end for
6: r : routing configuration with single path for the C − c

low-priority connections;
7: Generate all kc routing configurations r j for the c high-priority

connections;
8: for j = 1; j ≤ kc

; j ++ do
9: R j ← Append r to r j (routing configuration for all C

connections);
10: end for

Main Algorithm
11: for j = 1; j ≤ kc

; j ++ do
12: for l = 1; l ≤ c !; l ++ do
13: SOL← solution obtained by FF on routing configuration

R j and permutation Ql

14: if SOL < BestSOL then
15: BestSOL= SOL;
16: end if
17: end for
18: end for
19: return BestSOL;

the single path of each low-priority connection to create a
routing configuration for all C connections. Finally, the main
algorithm in Steps 11–19 exhaustively searches this solution
space by applying the FF algorithm to each combination of
routing configuration/permutation. Since each such combina-
tion is independent of any other, the execution of Steps 11–15
may be easily parallelized by 1) partitioning the combinations
into pair-wise disjoint and collectively exhaustive subsets and
2) deploying multiple threads running concurrently, each
thread working on a different subset.

The preprocessing step takes time O(c ! + kc ), but since
c and k have small integer values determined by the network
designer, this step can be considered as taking a fixed amount of
time. Note that a network designer may have to solve multiple
instances for a given RSA problem defined by the network
topology G = (V , A) and number of connections C ; for
instance, this may be due to carrying out a “what-if” analysis
to explore the sensitivity of design decisions to forecast traffic
demands. In this case, the designer only needs to perform the
preprocessing step once, store the permutations and routing
configurations, and use them to solve all instances that are part
of the analysis. Therefore, the computational cost of this step
can be amortized over multiple problem instances.

The main part of the algorithm in Lines 11–15 simply runs
the FF algorithm on each of the M = kc

× c ! combinations
of permutations and routing configurations generated in the
preprocessing step. Each application of the FF algorithm takes
time O(CL), as each permutation consists of C connections
and each connection may involve any of the L links in the
network. Therefore, the total running time of this part of the
algorithm is O(CLM), where M is again considered as having a
fixed value.

Note that parameter k (respectively, c ) represents the degree
of path (respectively, connection) diversity. Each parameter
independently controls the size of the solution space of the
routing subproblem and spectrum allocation subproblem,
respectively; hence the family of algorithms represents a wide
spectrum of RSA solution strategies. Specifically, 1) when
c = 0, the algorithm reduces to FF as it considers a single path
for all connections and one permutation; 2) when c =C and
k = 1, it reduces to the RFF algorithm [18], and, given suffi-
cient time to run, it explores all connection permutations on
a single routing configuration; and 3) when c =C and k > 1,
it is an extension to RFF that, given sufficient time to run, is
optimal for the given set of routing paths. By carefully selecting
values for the two parameters k and c , a network designer may
strike a desirable balance between the running time and the
quality of the final solution.

Finally, we emphasize again that Algorithm 1 is applicable
to any variant of the RSA problem, not just the basic variant
of Definition 3.1. For instance, the k paths may be calculated
so as to take into account reach, various available modulation
formats [30], intra- or inter-core crosstalk [13], etc. Additional
constraints may eliminate some of the routing configurations,
reducing the effective size of the routing space well below kc

and, thus, allowing for larger values for parameters k and/or c .
Due to page limitations, however, the study in the next section
only focuses on the basic RSA problem with just the contiguity,
continuity, and non-overlap constraints.

B. Simulation Study of Min-Max RSA

Recall from Section 3.A that, when c =C and k > 1,
Algorithm 1 is optimal for the given set of paths as it exam-
ines all combinations of routing configurations and connection
permutations. In practice, however, it would not be possible to
search the entire solution space for anything but toy networks.
Importantly, we expect that, as the values of parameters c and
k increase, the incremental improvement in solution quality
will drop off due to the diminishing returns of considering
low-priority (e.g., small) demands and long, circuitous paths.
Therefore, our objective is to investigate the relative benefits
of increasing path diversity (i.e., value of k) and connection
diversity (i.e., value of c ) on solution quality.

In this simulation study we consider the min-max RSA vari-
ant derived from the min-max SA problem of Section 2.A. (A
simulation study of the other RSA variants is outside the scope
of this paper and will be the subject of future research.) We
create RSA problem instances characterized by two parameters:
the network topology and the distribution used to generate
random traffic demands. We use two network topologies, the
14-node, 21-link NSFNET and the larger 32-node, 54-link
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GEANT2 network, and for each topology we generate con-
nections between all node pairs in the network as follows.
We consider data rates of 10, 40, 100, 400, and 1000 Gbps.
For a given problem instance, we generate a random value for
the demand between a pair of nodes based on one of three
distributions:

• uniform: each rate is selected with equal probability;
• skewed low: the rates above are selected with probability

0.30, 0.25, 0.20, 0.15, and 0.10, respectively; or
• skewed high: the five rates are selected with probability

0.10, 0.15, 0.20, 0.25, and 0.30, respectively.

Then, we determine the number of spectrum slots that each
demand requires based on its data rate and path length by
assuming a slot width of 12.5 GHz and adopting the param-
eters of [3]. For each topology and traffic distribution we
generate 100 random problem instances, for a total of 600
instances for this study.

We run the experiments on the Henry2 Linux HPC clus-
ter at NC State University [31], which consists of more than
1000 compute nodes and over 10,000 cores. We deployed
R = 32 parallel threads, the maximum number available
to us on the Henry2 cluster, to run the main Steps 11–15
of Algorithm 1. In the experiments, we vary the number of
paths, k = 2, . . . , 7, and the number of high-priority connec-
tions, c = 1, 2, . . . , 7. We also impose a running time limit
of 1000 s for each problem instance; hence, as shown in the
figures below, any combination of (k, c ) values for which the
running time would exceed this time limit is not considered.
For Algorithm 1, we select the c high-priority connections
as those with the largest demands, and we use the depth first
search (DFS) algorithm to calculate the k shortest paths for the
high-priority connections.

The performance measure we consider is the maximum
number of spectrum slots on any network link. For a given
routing configuration R j , a lower bound for this metric for an
RSA problem instance can be calculated by ignoring the prob-
lem constraints and simply adding up the demands along each
link and taking the maximum value over all links. Let SPLB
denote this lower bound under shortest path routing, i.e., for
the routing configuration consisting of the shortest path for all
C connections. To make the results comparable across problem
instances and (k, c ) values, we normalize each solution SOL
returned by the algorithm by taking the ratio

h =
SOL− SPLB

SPLB
. (1)

The figures in this section plot this ratio, which represents the
normalized difference between SOL and SPLB. Each data point
in the figures is the average of h over the 100 problem instances
for the stated topology and traffic distribution. However, we
emphasize that SPLB does not represent a lower bound for RSA
algorithms that use two or more paths for some connections. As
we will see in a moment, with increasing path diversity the
algorithm finds solutions that are better (i.e., lower) than the
shortest path lower bound SPLB; in such cases, the value of h
is negative. Nevertheless, we use the SPLB value for normali-
zation because 1) it is a well-understood baseline quantity, and

2) it provides insight into the improvement that is possible
with increasing path diversity.

1. Results and Discussion

Figure 3 plots the values of h (as a percentage) for the NSFNET
topology and the skewed low distribution as a function of the
number c of high-priority connections. [Due to page con-
straints, we only include results for one (different) traffic
distribution for each of the two networks; however, the trends
for the other two distributions are very similar to the ones
in the figures we present here.] There are six curves in the
figure, each corresponding to a number k, k = 2, . . . , 7, of
alternate paths for the c high-priority connections (the C − c
low-priority connections are routed along their minimum-
hop path). We observe that the solution quality of all curves
improves significantly with c ; for instance, with k = 2 paths,
the solutions obtained by the algorithm improve, on average,
by 16% relative to SPLB, i.e., from a value about 6.5% above
SPLB to a value about 9.5% below SPLB. As expected, the
curves start to level off after a while, depending on k, but
it appears that there is room for further improvement as c
increases beyond 7 (recall that we did not run experiments with
c = 8 or higher as the running time would exceed our time
budget of 1000 s). We also observe that there is an increase in
quality across all values of c as we move from k = 2 to k = 3
paths, but further increases in the number of alternate paths
have little benefit.

Figure 4 presents the same results as Fig. 3 but plots them
instead as a function of k. This figure more clearly shows that
1) most benefits of path diversity are realized as soon as the
number k of paths is 3 or 4, and further increases have little
impact, and 2) the marginal gain in solution quality from
incrementing connection diversity (i.e., c ) is considerably
higher than that from incrementing path diversity (i.e., k);
even so, the effect of diminishing returns as c increases is also
clear.

Figures 5 and 6 are similar to Figs. 3 and 4, respectively, but
present results for the GEANT2 network and the skewed high
distribution. We observe similar trends as for the NSFNET
instances in terms of the relative benefits of path and connec-
tion diversity and their diminishing returns. One difference
between the two sets of results is that the percent improvement
in solution quality is smaller for the GEANT topology, which
we explain shortly. Nevertheless, even a small improvement for

Fig. 3. Solution quality as a function of c , NSFNET, skewed low
distribution.
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Fig. 4. Solution quality as a function of k, NSFNET, skewed low
distribution.

Fig. 5. Solution quality as a function of c , GEANT2, skewed high
distribution.

Fig. 6. Solution quality as a function of k, GEANT2, skewed high
distribution.

the larger GEANT2 network (which represents a much larger
total demand) translates into significant savings of network
resources, especially since these spectrum savings apply to a
larger number of links.

To put the results of Figs. 3–6 into perspective, Figs. 7 and
8 plot the percentage of total demand that the c high-priority
connections represent, for the two networks and three traf-
fic distributions we considered in this study. Recall that the
average demand size is smallest (respectively, largest) for the
skewed low (respectively, high) distribution, with the demand
size of the uniform distribution falling in between these

Fig. 7. Fraction of total demand for high-priority connections,
NSFNET.

Fig. 8. Fraction of total demand for high-priority connections,
GEANT2.

two. Therefore, for a given value of c , the percentage of total
demand represented by the c high-priority (i.e., largest in our
study) connections is smallest for the skewed high distribution,
followed by the uniform and skewed low distribution; this is
consistent with the results shown in the two figures. However,
there are 91 (= 14× 13/2) connections for the NSFNET
but 496 (= 32× 31/2) connections for the larger GEANT2
network. Therefore, as we observe in the two figures, c con-
nections make up a smaller fraction of total demand for the
GEANT2 network relative to NSFNET. Consequently, opti-
mizing for c connections is expected to have a smaller relative
improvement in solution quality for GEANT2 than NSFNET,
consistent with the results we presented earlier.

Overall, we can draw several general conclusions regarding
the performance of our RSA algorithm across the network
topologies and traffic distributions used in our study: 1) solu-
tion quality improves with both path and connection diversity;
2) connection diversity has relatively higher benefits than
path diversity; 3) the gains of path diversity level off after
k = 4, consistent with earlier studies of alternate path rout-
ing; and 4) exhaustively exploring the solution space of a few
high-priority connections pays off significantly even when
these connections represent a relatively small fraction of total
demand.
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4. CONCLUDING REMARKS

We have studied two variants of the spectrum assignment
problem, one without guard band constraints (i.e., SA) and
one with such constraints (i.e., DSA). For each variant, we con-
sidered two objectives: min-max, which minimizes the highest
spectrum slot index assigned to any connection, and min-frag,
which minimizes the sum of the number of unused slots in
spectrum fragments across all links. We have shown that the
FF algorithm may be used to solve optimally the min-max SA
and min-frag SA problems. Likewise, the DSA-FF algorithm,
which operates similarly to FF but takes into consideration
the guard band constraints, may be used to solve optimally
the min-max DSA and min-frag DSA problems. We also
showed that while the two objectives, min-max and min-frag,
attempt to minimize fragmentation, they may lead to different
solutions.

Our results transform all four spectrum assignment prob-
lems into permutation problems with a well-structured and
symmetry-free solution space and show that seemingly dis-
parate variants of spectrum assignment have a common
underlying structure and may be tackled using similar
approaches. Building upon this new insight, we developed
the first spectrum symmetry-free algorithm that can be applied
to all variants of the RSA problem. Our method explores
the whole solution space of a subset of connections, and our
simulation results indicate that connection diversity is more
beneficial than path diversity. Our group is working on scaling
this approach in terms of the size of solution space that can
be explored. Our work represents the first step towards new
algorithmic approaches to optical network design.
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