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ABSTRACT

The efficacy of sensor arrays improves with more ele-

ments, yet increased number of elements leads to higher com-

putational demands, cost and power consumption. Sparse ar-

rays offer a cost-effective solution by utilizing only a subset of

available elements. Each subset has a different effect on the

performance properties of the array. This paper presents an

unsupervised learning approach for sensor selection based on

a deep generative modeling. The selection process is treated

as a deterministic Markov Decision Process, where sensor

subarrays arise as terminal states. The Generative Flow Net-

work (GFlowNet) paradigm is employed to learn a distribu-

tion over actions based on the current state. Sampling from

the aforementioned distribution ensures that the cumulative

probability of reaching a terminal state is proportional to the

sensing performance of the corresponding subset. The ap-

proach is applied for transmit beamforming where the per-

formance of a subset is inversely proportional to the error

between its corresponding beampattern and a desired beam-

pattern. The method can generate multiple high-performing

subsets by being trained on a small percentage of the possi-

ble subsets (less than 0.0001% of the possible subsets for the

conducted experiments).

Index Terms— sensor selection, GFlowNets, deep learn-

ing, deep generative modeling

1. INTRODUCTION

The size and number of elements in a sensor array greatly

affect its performance. However, larger arrays result in in-

creased costs, computational demands, and power consump-

tion. Sparse arrays offer a cost-effective solution by utilizing

only a subset of available elements. Since each array element

has a different effect on the array beampattern, the main chal-

lenge lies in developing efficient methods to select the optimal

subset for performance optimization.

Several analytical methods have been proposed for de-

signing sparse sensor arrays. For example, in [1], a greedy

algorithm is introduced. The algorithm selects a subarray

that maximizes the mutual information between the collected

measurements and the far-field array pattern for cognitive ra-

dio systems. Another approach, presented in [2], focuses on a
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Multiple-Input-Multiple-Output (MIMO) radar. It introduces

a semidefinite programming method to choose a Tx-Rx pair

that maximizes the separation between desired and undesired

directions of arrival. For massive MIMO systems, convex

optimization frameworks have been proposed in [3, 4]. Fur-

thermore, [5] explores a distributed multiple-radar scenario

and presents a greedy approach to sensor selection where

the Cramér-Rao Bound (CRB) of the target estimates is opti-

mized. The work in [6] proposes a kernel approach for sensor

selection in the context of decentralized detection.

Machine learning approaches have also been considered.

Support Vector Machines for sparse antenna array design in

wireless communications is proposed in [7]. Similarly, in [8],

the antenna selection problem is cast as a classification prob-

lem and a Convolutional Neural Network is proposed as a

classifier. In [9], a supervised deep learning method is pro-

posed to learn the optimal antenna selection and precoding

matrix. The work of [10] proposes a supervised deep learn-

ing approach to select antennas based on a channel state in-

formation extrapolation metric for massive MIMO systems.

In [11], antenna selection in MIMO transmit beamforming is

considered, using a classifier that is a neural network com-

posed of elementary operations that resemble self-attention.

A similar approach is proposed in [12] for sensor selection in

Dual-Function Radar and Communications systems.

The limitation of analytical methods is that they are

criterion-dependent. They rely on specific properties of the

particular selection objective in order to employ convex re-

laxations or greedy selection. Additionally, such approaches

are prone to getting trapped in local optima. On the other

hand, supervised learning methods which treat selection as a

multilabel classification problem necessitate extensive apriori

annotation and data preprocessing which is challenging to

obtain for dynamic sensor selection problems. The current

paper proposes a general framework for sensor selection that

explicitly addresses the limitations of prior research. The pro-

posed method is criterion-agnostic, eliminating the need for

specific assumptions regarding the selection objective (e.g.,

convexity, differentiability, etc.), and is unsupervised, thereby

removing the reliance on annotation.

The novelty of the proposed approach lies in the model-

ing of the selection process as a deterministic Markov Deci-

sion Process (MDP) with a unique root, as opposed to for-
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mulating it as a multiclass classification problem. By doing

so, the selection of each sensor subarray corresponds to an

MDP trajectory that leads to a specific terminal state. The

reward assigned to each non-terminal state is zero, while the

reward of each terminal state is determined by evaluating the

selection objective for the corresponding sensor subset. By

adopting such formulation, the goal becomes to learn a dis-

tribution over actions, conditioned on the state, such that the

cumulative probability of arriving at a terminal state is propor-

tional to the state’s reward. Although Markov Chain Monte

Carlo (MCMC) [13] sampling methods can be utilized for

this purpose, they primarily explore locally, necessitating a

substantial number of transitions to converge. Here, we pro-

pose the use of Generative Flow Networks (GFlowNets) [14]

framework, a recently proposed deep generative modeling ap-

proach, to learn the distribution over actions for the sensor se-

lection MDP. GFlowNets introduce a flow quantity to amor-

tize the learning cost of distributions over composite objects.

The approach converts flow-matching equations into a learn-

ing objective, shifting the distribution learning problem from

the combinatorial object space to the continuous parameter

space of a function approximator. Stochastic gradient descent

methods, known for their generalization capabilities to unseen

examples, can be utilized. GFlowNet employs a neural net-

work to parameterize the flow of the MDP. However, for the

sensor selection MDP, the inputs to the flow network consist

of binary vectors. Recent learning theory results highlight the

limited effectiveness of dense neural networks in handling bi-

nary vector inputs, known as Spectral Bias [15]. To overcome

this issue, we propose replacing the input layer of the flow

network with a Fourier features preprocessing kernel [16].

This modification improves training speed by a factor of 5.

The proposed approach is applied to the problem of an-

tenna selection for MIMO transmit beamforming, where the

aim is to select the subarray whose output best matches a pre-

defined beampattern. Despite being trained on a small frac-

tion of the possible subarrays (less than 0.0001% of the to-

tal), the proposed method demonstrates superior performance

compared to Metropolis-Hastings MCMC and compared to

the greedy approach of [5].

2. GENERATIVE FLOW NETWORKS
Consider an MDP, where S is the set of states and X ¢ S is

the set of terminal states. Let A be the set of discrete actions

and A(s) the set of permissible actions at state s. The MDP

is a Directed Acyclic Graph (DAG), where the leaf nodes

possess positive reward, all intermediate states possess zero

reward (R(s) = 0 ∀s /∈ X ) and there is a unique root s0.

The DAG is non-injective, implying that different action se-

quences (starting from the root) can lead to the same state.

The objective is to learn an action selection policy, such that

the probability of reaching a terminal state is proportionate to

the state’s reward.

The GFlowNet views the MDP as a flow network. The

flow quantity stems from the root and there is a flow sink at

each leaf node. Assuming that action a is performed at state s,

the next state s′ can be denoted as T (s,a) = s′. The MDP is

deterministic, therefore, T (s,a) is unique for every pair. The

flow of edge (s,a) is denoted as F (s,a), and the total flow

going through state s as F (s). In order to satisfy the flow

balance conditions, the incoming flow of each state should

match the outgoing flow. For any node s′, the in-flow is:

F (s′) =
∑

s,a:T (s,a)=s′

F (s,a)

On the other hand, the out-flow can be defined as

F (s′) =
∑

a′∈A(s′)

F (s′,a′)

With R(s) = 0 for non terminal nodes and A(s) = ∅ for leaf

nodes, the flow balance equations are:
∑

s,a:T (s,a)=s′

F (s,a) = R(s′) +
∑

a′∈A(s′)

F (s′,a′) (1)

Assuming that the flow of the MDP is known, the following

theorem can be proven.

Theorem 1 [14] Let us define a policy Ã that sequentially

generates trajectories starting in state s0 by sampling actions

a ∈ A(s) according to:

Ã(a|s) =
F (s,a)

F (s)
(2)

where F (s,a) > 0 is the flow through allowed edge (s,a),
F (s) = R(s) +

∑

a∈A(s) F (s,a) where R(s) = 0 for non

terminal nodes s and F (x) = R(x) > 0 for terminal nodes

x. The flow consistency equation
∑

s,a:T (s,a)=s′
F (s,a) =

R(s′) +
∑

a′∈A(s′) F (s′,a′) is satisfied at every node. Let

Ã(s) denote the probability of visiting state s when starting at

s0 and following Ã(·|·). Then

Ã(s) =
F (s)

F (s0)
(3)

F (s0) =
∑

x∈X

R(x) (4)

Ã(x) =
R(x)

∑

x′∈X
R(x′)

(5)

The above theorem suggests that if F (s,a) is known for

all state-action pairs in the MDP, then by sampling trajecto-

ries using the flow-induced policy (eq. (2)), the probability

of reaching the terminal state x is proportional to the reward

R(x). The GFlowNet paradigm involves parameterizing the

flow F using a function approximator Fw. Trajectories of

the MDP are sampled, and for each state s′, we minimize the

following objective using gradient descent on w:

Lw(s′) =
∑

s,a:T (s,a)=s′

Fw(s,a)−R(s′)−
∑

a′∈A(s′)

Fw(s′,a′) (6)



3. GFLOWNET FOR SENSOR SELECTION

The problem of sensor selection involves selecting a subset

of M active sensors from a sensor array with N elements, in

order to optimize a performance metric Q. With
(

N

M

)

possible

subsets to choose from, the challenge lies in identifying the

subset that maximizes (or minimizes) the performance metric.

The sensor selection MDP is defined as follows: each

state s is a binary vector of N elements. The “1” elements of

the state represent active sensor elements in the correspond-

ing sensor positions, while the “0” elements represent inac-

tive sensor elements. The initial state s0 is the zero vector,

where all elements are inactive. The action space is also dis-

crete, with permissible actions at each state corresponding to

the addition of one extra active element from the set of inac-

tive ones. The terminal states correspond to state vectors with

exactly M active elements (s ≡ x ∈ X iff ∥s∥1 = M ).

The reward for all intermediate states (∥s∥1 < M ) is zero.

For all terminal states x, the reward is defined based on the

evaluation of the performance objective (f(Q(x)). The gen-

eral graph corresponding to the sensor selection MDP is il-

lustrated in Fig. 1. Assuming that Q(x) > 0 ∀x, the reward

function can be defined to be R(x) = Q(x) if maximiza-

tion is required, or as R(x) = 1
Q(x) if minimization is re-

quired. The proposed algorithm for sensor selection, denoted

Fig. 1. Sensor selection MDP that corresponds to selecting 2 sensor

elements out of 3. The red circles correspond to active elements

whereas white circles denote inactive elements.

as GFlowNet for sensor selection (GFLOW-SS), is presented

in Algorithm 1. GFLOW-SS parameterizes the MDP flow

with a neural network and trajectories are sampled on-policy.

The network’s weights are updated using stochastic gradient

descent on the trajectory balance loss (eq. (6)). Following

training, subsets can be sampled as terminal states using the

action policy defined in eq. (2). Importantly, this method is

objective-agnostic, as it doesn’t require annotations or make

assumptions about the smoothness, differentiability, or con-

vexity of the system performance objective. The only require-

ment is that the objective can be evaluated for a given sensor

element subset. This provides an advantage over analytical

methods proposed in [1–4], which rely on application-specific

properties of the objective to utilize convex relaxations or

greedy selection.

Algorithm 1 GFLOW - SS

Initialize Fw, ϵ ∈ [0, 1] for exploration, learning rate ¸
for all root-to-leaf trajectories do

s = s0
for M − 1 transitions do

Sample z ∼ U(0, 1) (Uniform distribution)

If z > ϵ choose a ∈ A(s) randomly

If z f ϵ choose a = argmaxa′ Fw(s,a′)
Apply action a, compute sub. state s′

w′ → w − ¸∇wLw(s′) eq. (6) R(s′) = 0
s = s′

end for

Sample z ∼ U(0, 1)
If z > ϵ choose a ∈ A(s) randomly

If z f ϵ choose a = argmaxa′ Fw(s,a′)
Apply action a, compute terminal state x

w′ → w − ¸∇wLθ(x) R(x) = Q(x) or 1
Q(x)

end for

3.1. Antenna Selection for MIMO Radar

We consider a uniform linear sensor array consisting of N
antenna elements. The antennas are equally spaced, with

the distance between two consecutive elements denoted as

d. Each antenna transmits narrowband signals with a carrier

wavelength of ¼. The array output at angle ¹ is:

y(t; ¹) = a(¹)Hv(t), (7)

where a(¹) is the steering vector at direction ¹ and v(t) ∈ C
N

is the transmitted array snapshot at time t. Let v(t) = Ce(t)
where e(t) ∈ C

N is a white signal vector and C ∈ C
N×N

is a precoding matrix. The array output vector at K different

angles is:

y(t) =
[

y(t; ¹1), . . . , y(t; ¹K)
]

= AHv(t) (8)

with A =
[

a(¹1), . . . ,a(¹K)
]

∈ C
N×K being the steering

matrix. Assuming that a binary selection vector x is provided

(∥x∥1 = M ), the sparse array output:

ysparse(t) = AHS(x)v(t) (9)

The matrix S(x) = diag(x) ∈ R
N×N is a selection matrix

that corresponds to the selection vector x. Assuming that the

selection vector x and the precoding matrix C have been pro-

vided, the output power of the sparse array at angle ¹i is:

p̂i = aH(¹i)S(x)CCHS(x)a(¹i) (10)

To solve the selection problem, we start with the desired

signal power for all K angles, denoted by the vector pd =
[p1, p2, . . . , pK ]T . The objective is to find the selection vector

x and the precoding matrix C that minimize the difference

between the desired power and the sparse array output power

(beampattern error):

Q(x,C) = ∥p− diag{AHS(x)CCHS(x)A}∥2 (11)



The GFLOW-SS algorithm utilizes the terminal state reward

R(x), which is chosen as the inverse of the beampattern error

( 1
Q(x,C) ). However, the beampattern error depends not only

on the selection vector x but also on the precoding matrix C

(this is the reason that the notation of the performance objec-

tive in (11) is not only a function of the subset but of the pre-

coding matrix as well). Therefore, upon obtaining the selec-

tion vector x as the terminal state of the MDP, the optimal pre-

coding matrix is computed through a fixed number of gradient

descent steps, minimizing the beampattern error (eq. (11)).

Since this objective is a function of a complex matrix C, we

implement the Wirtinger conjugate gradient method [17].
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Fig. 2. The trajectory loss for 300 trajectories of the sensor selection

MDP for GFLOW-SS and GFLOW-SS-FF.

3.2. Fourier features
One critical question is how to parameterize the flow net-

work Fw. The basic GFLOW-SS algorithm employs a rec-

tified linear (ReLU) multilayer perceptron (MLP) as a func-

tion approximator. However, recent graphics research [16]

suggests that ReLU MLPs are ineffective for binarized inputs

due to Spectral Bias [15]. To tackle this issue, we propose a

modified version of GFLOW-SS called GFLOW-SS-FF. In

GFLOW-SS-FF, we replace the input layer of the flow net-

work with a learnable Fourier features kernel, which includes

a linear transformation and a sinusoidal activation [18]. For

kernel element initialization, we adopt a zero-mean Gaussian

distribution with a variance of 0.001.
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Fig. 3. The beampatterns achieved by the best subsets sampled

by GFLOW-SS and GFLOW-SS-FF in comparison to the desired

beampattern. The selected subsets are comprised by M = 10 ele-

ments and the array size is N = 40.

3.3. Experiments
The goal is to choose 12 out of 42 antenna elements, spaced

at a distance of d = λ
2 , where ¼ = 1.25 cm represents the

wavelength. To maintain a fixed aperture, the subarray always

includes the first and last sensors, resulting in the selection of

M = 10 out of N = 40 elements. The desired beampattern

consists of two main lobes centered at −50◦ and −30◦ (0◦

denotes the direction perpendicular to the array face) and a

width of 20 degrees for each lobe. To model the MDP flow of

GFLOW-SS, we utilize a 3-layer dense neural network with

ReLU activations, incorporating 512 neurons per layer. The

Adam optimizer [19] with a learning rate of 0.0001 is em-

ployed for optimization. In the case of GFLOW-SS-FF, the

first layer is substituted with the Fourier kernel, ensuring that

both variations maintain an equivalent number of parameters.

The flow network was trained using 300 root-to-leaf-node

trajectories for both variations. Each trajectory’s leaf corre-

sponds to a specific subset out of the total of 847, 660, 528
possible subsets resulting from choosing 10 elements out of

40 (
(

40
10

)

= 847, 660, 528). As depicted in Fig. 2, the trajec-

tory balance loss (eq. (6)) for both variations approaches val-

ues close to 0 by the end of training. Notably, GFLOW-SS-

FF exhibits a significantly faster loss reduction rate compared

to GFLOW-SS. Furthermore the loss of the GFLOW-SS-FF

is lower than that of GFLOW-SS at the end of training. A

smaller loss indicates a more accurate estimation of the flow.
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Fig. 4. The beampatterns corresponding to the best and 2nd best

subsets generated by GFLOW-SS-FF and the beampattern that cor-

responds to the subset generated by MCMC. M = 10 and N = 40.

To sample the optimal subset using the trained flow net-

work, the greedy sampling strategy is employed by select-

ing the action that maximizes the flow at each state. Conse-

quently, the leaf node of the trajectory corresponds to the sub-

set that minimizes the beampattern error. Fig.3 presents the

beampatterns of the best subsets generated by GFLOW-SS

and GFLOW-SS-FF respectively. Notably, the beampattern

associated with GFLOW-SS-FF is closer to the desired one

compared to the beampattern of the best GFLOW-SS sub-

set. This disparity can be attributed to the superior capability

of the function approximator of GFLOW-SS-FF in captur-

ing the MDP flow within the given number of trajectories (as

evidenced by the lower loss at the end of training).

We compare the beampattern produced by the best sub-

set generated by GFLOW-SS-FF with the beampattern that

corresponds to the subset generated by Metropolis-Hastings

MCMC [13], another unsupervised method for sampling

from distributions over complex structures. To conduct
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Fig. 5. The beampatterns corresponding to the best subset generated

by GFLOW-SS-FF and the one generated by the greedy approach

of [5]. The number of antenna elements is N = 5 from which M =

100 are selected.

MCMC, we process 3000 root-to-leaf trajectories of the

MDP, which is 10 times more than the number of trajectories

used for the GFlowNet-based methods. However, despite

the increased number of trajectories, the proposed GFLOW-

SS-FF paradigm outperforms MCMC, as evidenced by the

significantly closer beampattern to the desired one (Fig. 4).

Fig. 5 illustrates the comparison between the best subset

generated by GFLOW-SS-FF and the greedy approach pro-

posed in [5]. The selection problem involves choosing N = 5
elements out of M = 100. The GFLOW-SS-FF approach

is trained using only 300 trajectories. The beampatterns of

the two approaches are similar. Notably, the GFLOW-SS-

FF approach achieves its beampattern within approximately

3 minutes, while the method in [5] requires 36 minutes.

GFlowNet, trained to represent a distribution over sam-

pling policies rather than maximizing reward, enables the

generation of not only the best subset but also subsequent

subsets without additional training. For instance, to sample

the second-best subset, we select the action corresponding

to the second-highest flow value at the current state. The

beampattern of the second best subset produced by GFLOW-

SS-FF is also included in Fig. 4. The beampattern of the

second best subset surpasses the one that corresponds to the

MCMC subset . Training the flow network for each one of

the GFlowNet-based methods took approximately 4 minutes

on a Quadro RTX8000 NVIDIA GPU with 48GB memory.

Fig.7 illustrates the beampattern error attained by GFLOW-

SS-FF, GFLOW-SS, and MCMC for varying values of M
when N = 40. Each method is trained independently for

each value of M . Fig. 6 demonstrates the beampatterns of the

subset generated by GFLOW-SS-FF and the one generated

by MCMC for a large example where N = 500 and M = 8.

Regarding the large example, GFLOW-SS-FF was trained

for 1000 trajectories whereas MCMC was trained for 5000.

3.4. Discussion

Both GFlowNet variations outperform MCMC sampling, pro-

ducing array subsets with lower beampattern error within the

given trajectory budget. The superiority of GFlowNet lies in

Theorem 1 and its reformulation of the problem of learning
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Fig. 6. The beampatterns corresponding to the best subset generated

by GFLOW-SS-FF and the one generated by MCMC. The number

of antenna elements is N = 500 from which M = 8 are selected.

a distribution over composite objects. By shifting from the

combinatorial space of subsets to the continuous parameter

space of the flow network, gradient descent optimization can

be employed, enabling generalization to unseen inputs.

For M = 10 and N = 40, both GFLOW-SS and

GFLOW-SS-FF recover well-performing subsets by pro-

cessing only 300 out of approximately 850 million possible

configurations (less than 0.0001% of all subarrays). Each

variation requires 10 × 300 = 3000 gradient descent steps,

without preprocessing or annotation. GFLOW-SS-FF has

an advantage over GFLOW-SS that can be attributed to

the Spectral Bias of the function approximator of the lat-

ter. The use of the Fourier preprocessing kernel results in

convergence with fewer gradient steps and therefore fewer

trajectories. The superior performance of GFLOW-SS-FF

over MCMC remains in the large setting where M = 8
elements are selected out of N = 500.
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Fig. 7. The beampattern error achieved by GFLOW-SS-FF,

GFLOW-SS and MCMC for different values of M when N = 40

4. CONCLUSION
We have proposed a novel deep generative modeling frame-

work for sensor selection. Instead of posing the selection

problem as a multilabel classification, we have modeled the

selection process as a deterministic MDP, where the sensor

subsets arise as terminal states. This formulation enables the

use of GFlowNets in order to learn a distribution over the

actions, conditioned on the state, such that the probability

of arriving at each terminal state is proportional to the per-

formance of the corresponding subset. The subset selection

can be performed by sampling from the policy defined by the

trained GFlowNet. The proposed approach is unsupervised



and therefore it requires no annotations. The method’s effi-

cacy has been demonstrated in antenna selection for MIMO

radar transmit beamforming, effectively identifying high-

performing subarrays by being trained on a small fraction of

the possible subsets and MDP trajectories.
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