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Abstract

For multivariate stationary time series many important properties, such as par-
tial correlation, graphical models and autoregressive representations are encoded in
the inverse of its spectral density matrix. This is not true for nonstationary time
series, where the pertinent information lies in the inverse infinite dimensional covari-
ance matrix operator associated with the multivariate time series. This necessitates
the study of the covariance of a multivariate nonstationary time series and its rela-
tionship to its inverse. We show that if the rows/columns of the infinite dimensional
covariance matrix decay at a certain rate then the rate (up to a factor) transfers
to the rows/columns of the inverse covariance matrix. This is used to obtain a
nonstationary autoregressive representation of the time series and a Baxter-type
bound between the parameters of the autoregressive infinite representation and the
corresponding finite autoregressive projection. The aforementioned results lay the
foundation for the subsequent analysis of locally stationary time series. In partic-
ular, we show that smoothness properties on the covariance matrix transfer to (i)
the inverse covariance (ii) the parameters of the vector autoregressive representa-
tion and (iii) the partial covariances. All results are set up in such a way that the
constants involved depend only on the eigenvalue of the covariance matrix and can
be applied in the high-dimensional settings with non-diverging eigenvalues.
Keywords and phrases: Autoregressive parameters, Baxter’s inequality, high dimen-

sional time series, local stationarity and partial covariance.



1 Introduction

Several important properties in multivariate analysis are encrypted within the inverse co-
variance of the underlying random vector. For example, the partial correlation, regression
parameters and the network corresponding to the (Gaussian) graphical model. For mul-
tivariate time series the covariance is now an infinite dimensional matrix. Nevertheless,
analogous to classical multivariate analysis many interesting properties in time series are
encoded in the inverse infinite dimensional variance matrix. They include (i) the partial
covariance between different components of time series after conditioning on the other
time series (ii) time series graphical models which takes into account the conditional rela-
tionships over the entire time series and (iii) vector autoregressive representations which
yield information on Granger causality. For stationary time series, however, it is rare to
directly deduce these relationships from the inverse covariance, as these quantities have
an equivalent representation in terms of the finite dimensional inverse spectral density
matrix corresponding to the autocovariance of the time series. For example, the partial
covariance can be expressed in terms of the partial spectral coherence (which is a function
of the inverse spectral density matrix; see, Priestley (1981), Chapter 9.2). The stationary
time series graphical model can be deduced from the zero and non-zeroes of the inverse
spectral density matrix (see, |[Dahlhaus (2000a)) and the vector autoregressive regressive
representation can be deduced from the causal factorisation of the inverse spectral density
matrix (see |Wiener and Masani ((1958)). However, once one moves away from station-
arity, a rigorous understanding of the above properties can only be achieved by directly
studying the inverse of the infinite dimensional covariance matrix (and its relationship to
the corresponding covariance). This is the main objective of this paper, which we make
precise below.

Let {X; = (Xt(l), X ))T;t € Z} denote a p-dimensional multivariate time series
with p x p-dimensional covariance matrix C;, = Cov[X;, X,] for all t,7 € Z. Using
{Cir}i- we define the linear operator or, equivalently, infinite dimensional matrix C =
(Cir;7,t € Z). Under suitable conditions on C, the inverse D = Cc = (Dyrit, T € Z)
exists. Basu and Subba Rao (2021), Section 2, show that a graphical model for nonsta-
tionary time series can be defined from the structure of D (based on zero, Toeplitz and
non-Toeplitz submatrices in D). This general framework does not impose any conditions
on the nonstationary structure of the time series. However, in order to learn the network
from data [Basu and Subba Rao (2021) focus on locally stationary time series; by now a

widely accepted and used class of nonstationary time series. Specifically, smoothness con-



ditions are placed on the inverse covariance D, and the subsequent analysis is done under
these conditions. However, most locally stationary conditions are stated in terms of the
covariance rather than the inverse covariance. This leads to the question “do smoothness
conditions on C' transfer to smoothness on D?” and provided the initial motivation for
this paper. It naturally lead to further questions on the ”transfer” of smoothness on C
to (a) vector autoregressive representations and (b) the partial covariance. Therefore, our
aim is to develop a suite of tools that answer such questions. To the best of our knowl-
edge there exists very few results in this area. One notable exception is the recent work
of Ding and Zhou (2021)), but the aims and results in their work are different to those of
this paper. Ding and Zhou (2021) specifically focus on the univariate nonstationary time
series (Xi,...,X,) (with n — c0). They show that there exists an autoregressive repre-
sentation of increasing order over the time points, whose coefficients decay at a certain
rate. The results are used to test for correlation stationarity. In contrast, we work within
the multivariate time series framework, and allow for both low and high dimensional time
series. The latter case is important because often to make meaningful conditional state-
ments about components in the time series (in terms of Granger causality and conditional
covariance) the number of time series included in the analysis may need to be extremely
large. We summarise the main results below.

In order to reconcile C and its inverse D, in Section [2J] we show if ||Cy ,[» < K|t —7|7*
for t # 7 and some k > 1 (|| - |2 denotes the induced ¢5/spectral norm), then || D; |2 <
K(1+log [t—T])*(|t—7|)~"!. This leads to a nonstationary VAR(oco) representation of the
time series { X; }; where the corresponding VAR parameters decay at the same rate. We use
this result to obtain a Baxter-type bound between the parameters of autoregressive infinite
representation and the corresponding finite autoregressive projection. It is noteworthy
that the constant K depends only on the eigenvalues of C, but not on the dimension
p. Hence, if the eigenvalues of C' do not grow with dimension p, these results hold for
arbitrary dimension.

The results in Section [2] are instrumental to proving the results in Section [3] where
we focus on locally stationary time series. In terms of second order structure, a time
series is called second order locally stationary if its covariance structure can locally be
approximated by a smooth function C(u). We show in Section that C(u) is an
autocovariance of a stationary time series. In Section we show that locally stationary
conditions based on the covariance structure imply that its inverse covariance can locally

be approximated by a smooth function D(u), which is the inverse autocovariance of a



stationary time series i.e. D(u) = C(u)~'. We use this result to show that the parameters
of the vector autoregressive representation of the time series can be approximated by a
smooth function. Finally, in Section [3.4] we show that the smoothness conditions on the
nonstationary covariance transfer to smoothness conditions on the partial covariances.
We use this result to justify using an estimator of the local spectral density function
to estimate the local partial spectral coherence (as was done in |Park et al. (2014)) and
the local partial correlation. The proof of the results can be found in Section [4| and the

Appendix.

2 Rate of decay of the inverse covariance

2.1 Notation and assumptions

In order to derive the results in this paper we need to define the space on which the
operator C' is acting. Let R denote the real numbers, Z all (positive and negative)
integers and IN strictly positive integers.

For u,v € R? let (u,v) = u"v and ||v||> denote the Euclidean distance. We use ¢, and
{5, to denote the sequence spaces lo = {u = (..., u_1,up, uy,...);u; € R and Zjez u? <

oo} and by = {v = (..., v_1,v,v1,...);v; € R and Y7, [lv;[53 < oo}. On the spaces

ly and fy), we define the two inner products (u,v) = >, uv; (for u,v € fy) and
(T, y) = > ienl®yyy) (for z = (.o 21,20, 21,0 ),y = (-, ¥-1,Y0, Y1, -.) € Lap). For
x € lyy, let ||zl = (x,x). Furthermore, for x € ¢y, and s € Z,a € 1,...,p, we

use z." to denote the sth element of the ath (column) space. Suppose {As, 55 }s1.5 are

p X p-dimensional matrices, using this we define the infinite dimensional matrix A =
(As, 50551, S2 € Z). Under suitable conditions on A, A is a linear operator A : {5, — la,
in the sense that if Ax =y, then y = (..., y_1,%0,v1,...) where for all t € Z, y, € RP and
Yt = D .cq At r2,. Similarly, suppose { By, s, }s,,s, are p1 X po dimensional matrices, like A,
we define the infinite dimensional operator B = (B, ,; S1, S2 € Z) where B : {5, — l3,,.

All operators are written in bold uppercase letters.
Assumption 2.1. Let v(-) = max(1,]-]).

(1) The covariance operator is positive definite with Asyp = SUDyer, , olz=1(Vs Cv) <

and 0 < Aing = infyep, , jjojl=1 (v, Cv).

(ii) There exists some k > 1 such that for all t # T we have for the p X p-dimensional



sub-matrices
[Cerll2 < Kv(t—7)77,

where K < 0o is some positive constant.

Since C' is positive definite, the inverse covariance operator exists with D = C~! =
(Dtrit,7 € Z). We mention that the condition Ag,p < oo is implied by Assumption
B

The results in this paper allow for both low and high dimensional multivariate time
series and the assumptions used are specifically designed to allow for this. For high
dimensional time series, the condition that the largest eigenvalue is bounded excludes time
series with common factorsE] but allows for high dimensional sparse time series. Popular
examples include high dimensional sparse time series regression and vector autoregressive
(VAR) models which have recently received considerable attention; see, for example, |[Basu
and Michailidis (2015) Krampe et al. (2021), Krampe and Paparoditis (2021), (in the
context of stationary VAR models) and Ding et al.| (2017) (for time-varying VAR models).
The condition that A,y > 0 omits co-linearity, where one component in the time series can
be perfectly explained by other components. Assumption [2.1)ii) quantifies the pairwise
dependencies between the components (over time) and is stated in terms of the (induced)
{y-norm ||-||2 of the px p matrices. However, no conditions are placed on the ¢;-norm, which
can grow with dimension p (as sparsity usually does in the sparse regression context). All
results in this paper are derived in terms of the || - ||o-norm. Thus we show that if
the pairwise interactions are controlled in the /¢, sense as p grows, then the conditional
interactions are also controlled in the #5-sense.

Throughout this paper we use K to denote a generic constant that only depends on
Ainfs Asup, K, & and whose value may change from line to line. We let ((j) = v(log[v(y)])/v(j),
where v(-) = max(1, |- |). The proofs in this section can be found in Section

2.2 The inverse covariance

In the following theorem we obtain a bound on the rate of decay of the matrices D, . that
make up the inverse covariance D = C~*. C is a bi-infinite matrix in the sense that the

entries Cy , span t,7 € Z. We will also consider the one-sided infinite dimensional matrix

!By common factors we refer to the common component described in the representation given in [Forni
et al. (2000). The common component contains (if any) the diverging eigenvalues of the process.

“Note that the finite sample error bounds derived in [Basu and Michailidis| (2015]) for the Lasso express
the dependence of the processes also in terms of Aips and Agyp.



C(—00,T) = (Cyr;t, 7 <T). As will be clear later in the paper, the inverse of C(—o00,T)
contains (up to a factor) the AR prediction coefficients and the following result will be

used to obtain a bound on its rate of decay.

Theorem 2.1. Under Assumption[2.1], for all t,7 € Z we have
D7 ll2 < KC(t— 7)<, (1)

where K is a constant depending on K, K, Aint, and Asyp only and ((j) = v(logv(y)])/v(j).
Fort,m <T

IC (=00 T) Herlla < KC(E — 7). (2)

The above result shows that if the pairwise interaction between the components is
bounded with a certain rate in the fs-sense then the conditional interactions are also
bounded with a certain rate in the />-sense, see Remark for a discussion on the role

of the dimension p.

Remark 2.1. A key ingredient in the proof of Theorem is that the inverse of banded
matrices decay geometrically; see|Demko et al. (1984) and our adapted version for block-
banded matrices in Lemma [4.1. Because of this, if the entries in C decay geometrically

or are banded, then the entries of D decay at a geometric rate.

Remark 2.2 (An alternative representation of the covariance C' and its inverse). We
recall that we defined C as C = (Cy,;t, 7 € Z), where C, . are p X p-dimensional matrices.
An alternative method for defining C is to group the covariances according to component
ie. C = (CD:1 < ab<p) where [C@D], = Ct(fi’b) = Cov[X!™, XY, C is simply a
permutation of C, thus D = 6’_1 15 a permutation of D. In certain applications, such
as nonstationary graphical models or condition covariance between two components of a
time series, the representations C and D may be more useful in the analysis than C and
D (see, for example, Basu and Subba Rao (2021)).

We now compare Theorem with the classical result for stationary time series. For
this, suppose C = (Cy_.;t,7 € Z) is a block Toeplitz operator from ¢5,, to ls,, where C
satisfies the rate and positive definiteness conditions in Assumption ThenD =C™' =
(D;_;t, 7 € Z) exists and is also a block Toeplitz operator. For block Toeplitz operators
Cheng and Pourahmadi| (1993); Meyer and Kreiss (2015) work with a global condition on



the sequence (Cj)sez instead of the individual one used in this paper. They showed that
if the global condition ) __, (1 + [s]*)[|Cs||2 < oo holds, then > ., (1 + [s]*)[|Dsl|2 < oo.
The global condition ) ., (1+[s]*)[|Cs||2 < oo is equivalent to a s-times differentiability
condition on the spectral density f(-) = (2m)~' > ., Cs exp(—is-). To elaborate, since the
operator is block Toeplitz it has the representation C' = ( fo% flw)exp(i(t — T)w)dw): ;
and D = ([7
transfers from f to f~!i.e., if f is k-times differentiable, then f~! is x-times differentiable.
Consequently, > (14 [s]")||Cs|l2 < oo implies > ., (1 + [s]®)||Ds|l2 < oo. This global
condition implies for all ¢,7 € Z that ||Ci—;|2 < Kov(t — 7)7" and ||Di—|]2 < Ko(t —
7)~". Interestingly, the individual condition that yields the global condition is ||Cy_, |2 <

f(w) texp(i(t — T)w)dw); . This means the differentiability condition

Kuv(t —7)7%"17¢. In summary, even for block Toeplitz matrices, at the individual level if
|Ci—r|l2 < Kv(t — 7)7%7¢ then the above arguments yield

1De-rll2 < Ku(t — 1), (3)

which is (without the log-factor) same as the rate derived in Theorem [2.1] To the best
of our knowledge, it is an open question if this rate at the individual level for the inverse

can be improved for stationary as well general nonstationary time series.

2.3 Vector Autoregressive representation and Baxter’s inequal-
ity

It is well known that for stationary time series the entries of C(—o0,T') are closely related

to vector autoregressive(VAR)(oo) parameters of the underlying time series. The same

is true for nonstationary time series. Precisely, under Assumption and by using the

projection theorem the bottom row of C(—oo,T)™" contains the VAR(c0) coefficients in

the linear projection of X7 onto the space spanned by sp(Xr_1, X7_o,...) i.e.,

XT = Z (I)T,jXT_j + €T, where (I)T,j = —([C(—OO,T)_I]T’T)_l[C(—OO,T)_I]T,T_j, (4)
j=1
and er is uncorrelated with {X7_;}%2,. Substituting the bound in Theorem into
gives the bound

107ll2 < K¢t — 7). ()



In practice, it is often not possible to estimate the infinite number of AR parameters from
a finite data set. Therefore one often estimates the parameters of the projection of X

onto the finite past sp(X7_1,..., Xr_q) i€,

d
Xp = Z D g X7r_j+era (6)

J=1

The above is analogous to the best fitting VAR(d) parameters for stationary time se-
ries. In stationary time series the difference between the finite past projection and the
corresponding infinite past projection is called the Baxter inequality see Section 6 in [Han-
nan and Deistler (1988), Cheng and Pourahmadi (1993), and Meyer and Kreiss (2015).
In the same spirit, we now obtain a Baxter-type bound for nonstationary multivariate
time series, between the VAR(0o) coefficients {®r;}; and the finite prediction coefficients
{®ra;};-

The coefficients {®74;},; are embedded in the bottom row of the finite dimensional
matrix C(T — d,T)™" where C(T — d,T) = (C;;T —d+1 < t,7 < T). Thus the
coefficients {®7;}; and {®74;}; are connected through C(T'—d,T) and C(—o0,T) and
their inverses. Due to this connection we use Theorem and the block inverse identity

to prove the result below.

Theorem 2.2 (Baxter type inequality). Suppose Assumption (2.1 holds with k > 3/2. Let
{®r;}; and {®rq;} be defined as in and @ respectively. Then ford e N, 7 =1,...,d

we have
Sup @74 — Prjlla < KC(d)32¢(d — 5)~%2. (7)

Furthermore, if Assumption holds with k > 5/2 we have

d
sup D N ®ra; — Prylla < KC(d)2, (8)

j=1
Inequality and Theorem are related to Theorem 2.4 in [Ding and Zhou (2021),
who obtain autoregressive approximations for nonstationary univariate time series. How-
ever, it is important to note that there are some differences in the autoregressive rep-
resentations derived in both papers. The autoregressive representation derived in (Ding
and Zhou, 2021) is based on the finite vector (X7,...,X,) and their aim is to build an

autoregressive representation of increasing order over the time points of the data vector,



i.e., X; is represented as an AR(i — 1) model. In contrast, we derive an autoregressive
representation of a time series { X;;t € Z} where each time point is represented by a (vec-
tor) AR(co) model. In the stationary context, building an autoregressive representation
of an increasing order relates to the Cholesky decomposition of Var(X7, ..., X,)"! where
the ¢th model is given by the ith line. The AR(co) model using the entire time series
can be considered as a limit of this, see Section 2 in Krampe and McMurry (2021) for
further discussion. With this fundamental difference in mind, we now compare the rates
in Section [2.2| with the results in Theorem 2.4 in Ding and Zhou (2021). Their decay rate
for the autoregressive coefficients matches with that derived in . In terms of Baxter’s
inequality, they show maxys, maxi<j<p |Prr_1; — Prp ;| < C(logb)*to~"+3. With The-
orem we cannot directly compare the coefficients of the two finite AR models (order
T — 1 and order b), however it is possible to use this theorem to obtain tighter bounds for

their result. To be precise

max [|[®r.r-1; = Prpjlle < max((|Prr-1y — Prjllz +[|Pr; — Prpllo)

<K (T~ 7)32 4 (b — j)”*i”/?) (log(b) /b)" /2.

The above leads to the bound (without the log-factors) maxps, maxi<j<p |[Pror_1; —
®ry | = O(b~"F3/2) instead of O(b=*F3).

We now compare Theorem to the stationary set-up. Meyer and Kreiss (2015)
showed that under the following global condition on the vector autoregressive parameters
2 sez (1 +[s]")[[@sl2 < oo, that

d
> 1+ 5)"||Day — q>|\2</cz 1+ )@,

Jj=1 j=d+1

noting that we have dropped T as it is not necessary under stationarity. This implies
23‘1:1 | @4, — Pjll2 < Kd™". Based on the discussion in Section , at the individual level
this means if ||C|l2 < Kv(s)™"7¢, then 2?:1 g, —Pjll2 < Kd™"+1 whereas Theorem
gives Z?Zl @4 — ®j]l2 < Kd="F3/2. Thus stationarity of the time series yields a better
approximation bound between the finite and infinite AR parameters than the bound in
Theorem [2.2



3 Locally stationary time series

The first rigorous treatment of locally stationary time series was given in (Dahlhaus,
1997, 2000b). This was done by representing {X;r}., in terms of a Cramer represen-
tation X, = 0% Ay p(w)dZ(w), where {Z(w);w € [0,27]} is an orthogonal increment
process and the time-varying transfer function A;r(w) can locally be approximated by
the Lipschitz smooth function A(w;-) i.e. ||A¢r(w)—A(w;u)||2 < K(|t/N—u|+1/N). This
definition immediately leads to certain smoothness properties on the covariance structure
of the time series. More recently, several authors have extended this definition to non-
linear time series cf. (Dahlhaus and Subba Rao, [2006; Subba Rao, 2006; Zhou and Wu,
2009; Vogt, 2012; [Truquet|, 2019; Dahlhaus et al., 2019; Karmakar et al., 2021). In this
section, we return, in some sense, to the original formulation of local stationarity and
focus on the locally stationary second order structure. However, unlike (Dahlhaus, 1997,
2000b)), we work within the time domain and not the frequency domain. We start by
introducing the locally stationary setting, i.e., we impose certain smoothness conditions
on the nonstationary time series. In Section we obtain bounds on the eigenvalues of
the underlying covariance. Using Theorem in Section we show that smoothness
conditions placed on the covariance structure transfer over to the inverse covariance and
the parameters in the nonstationary AR(oco) representation. Finally (in Section we
apply these results to show that the smoothness conditions also transfer to the partial

covariances. Unless stated otherwise, the proofs in this section can be found in Section

4.2

3.1 Assumptions

We start by defining an infinite array, where for each N € IN we associate a (non)stationary
multivariate time series {X;y;t € Z} and covariance C’t(’]j) = Cov[X; N, X, n] (for all
t,7 € 7). For each N we define the infinite dimensional covariance matrix CV) =
(C’t(,]j); t,7 € Z). In the assumptions below we explicitly connect the sequence of infinite
dimensional covariance matrices {C(N )} ~en through N, which plays the role of a smooth-
ing parameter. We mention that it is standard practice in the locally stationary literature
to define X, y on a triangular array i.e. {X;n},. However, to avoid confusion, we do
not link NV to sample size. It is also worth pointing out that we use N € IN to simplify
the exposition, we could without loss of generality allow /N to be a non-integer and define

it on N € [a,00) (for some « > 0).
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Assumption 3.1. (i) Figenvalue condition: There exists some Ny > 1 where

0 < Aipg < Inf )\inf(C(N)) and sup )xsup(C(N)) < Aup < 00.
N>Ng N>No

(i1) Covariance decay condition: For all N, t and T |]C§ZX)||2 < ﬁ

(11i) Smoothness condition: There exists a Lipschitz continuous matriz function {C,(-),r €
Z} where (a) Cp(u) = C_.(u)", (b) for allu,v € R,r € Zsup, ||Cr(u)]|2 < K/v(r)",

and (¢) ||Cr(u) — Cr(v)]]2 < Ii}'gﬂ;:', such that for all N

N i .
I8~ Gt < i memin (755 ) "

We assume that k > 3.

Note that the above assumptions imply that

(N) _ < L ; _ i l L
1C = Crr(u)l2 < o= min l(|u N| + N) =]

Furthermore, the sequence {C,.(-),r € Z} defines the infinite dimensional matrix operator
C() = (Ci—r(-);t,7 € Z) (from ¢y, to {5,), where C(-) is block Toeplitz.

Assumption [3.1)i) and (ii) can be viewed as Assumption within the framework
of an infinite array. Assumption [3.1iii) places smoothness conditions on the covariance
i.e., the (potentially) non-Toeplitz-operator C (M) can locally be approximated by a block
Toeplitz-operator C(-), where the approximation error is determined by the smoothing
parameter N. The use of min in Assumption [3.1{(iii) is not standard within the locally
stationary literature. This arises because the time series {X; y}; is defined on t € Z
and not ¢ = 1,..., N (the typical locally stationary set-up). If |t — 7| < 2N (which is
within the classical locally stationary framework), then Assumption [3.1fiii) implies that
HC’t(,]X) — Ci—+(t/N)]l2 < W (the classical locally stationary condition). On the
other hand, if [t — 7| > 2N (as can happen if t,7 € Z), then the smoothing parameter
N does not improve on the individual terms C't(f;[) and Cy_,(t/N) (which are extremely

small) and we have ||C't(f) —Ci—(t/N)|2 < % To distinguish these two cases all the

relevant results will be stated with min.

Remark 3.1 (The role of dimension p). In Assumption we have not included the

dimension p as an additional variable. This is to reduce cumbersome notation. However, it

11



1s possible to the state Assumption in terms of uniform bounds over a three dimensional
array where the eigenvalues are uniformly bounded over both N and p (and c™) and C(u)
are indezed with p too). If these assumptions hold, then the results in this section hold

for high dimensional p too.

Assumption is satisfied by a wide range of locally stationary time series. In Ex-
ample (below) and we define the time-varying Vector Moving Average (tv-VMA)
model and show that this model satisfies Assumption [3.1].

Example 3.1 (The time-varying vector MA(oco)(tv-VMA) process). Consider the tv-
VMA(oc0)

Xin = Z \Ifgjj)Et —j Z \Ilgg)Et_j + \Ijt,Ogta t e,

j=1

where {e¢}+ are uncorrelated random variables with zero mean and variance I, (see|Dahlhaus
(1997) and|Dahlhaus and Polonik (2006) for the case p = 1). In order for the process to be
well defined certain summability or decay conditions need to be imposed on the coefficients
{WU,;}. As in|Dahlhaus (1997), we assume that Sup ey SUDPez, H\IJ H2 < Kv(j)=". With

this, we have

N N
Ct(T) = COV(Z ‘Ijg,j)gt—ﬁz\lj;j)gT J Z\Ilt] Tj+T t) )
7=0 7=0 JEZ

where we set \If(

=0 forj < 0. Using the above decay condition on \I/( ) and Lemma|B. 5
we have HOI:(]X)HZ < Kou(t — 7)"; thus Assumption (zz) holds. We now introduce the
locally stationary approzimation to {X;n}. For this, suppose there exists a Lipschitz
+ Supye | W)

U;(v)]l2 < Kl|lu—v|v())™", and ||\I/g) U, (t/N)|| < Kv(j) "‘/NI Using this, we define
the stationary process { Xi(u)}; where Xi(u) = 372 Wy j(u)er—j which has autocovariance
Cr(u) =3 ez U (u) W (u) " (where we set W;(u) =0 for j <0). Note sup, ||Cr(u)||2 <

continuous matriz function V;(-) where sup,cg [|[V;(u)|zs < Kv(j)™

3Note that without a change in rate, the condition can be weakened to ||\II(N) - U;(t/N)| <
Kuv(j)~®=Y/N. For illustrative purposes, we use the rate —x here.

12



K/v(r)* (this follows from Lemma[B.5). Furthermore, under these conditions we have

IO = Cor (/N2 < DI — 05 (/N o192
JEZ
A /N2 (1¥r i (t/N) = Wi (7/N) 2
JEZ

Wi (T/N) — \If< D rill2)

|t =7l )
<
- NJGZZ( ”vj—l—t—T) 1+v(j)”v(j+t—7)”
< L
~ No(t—T7)1

Thus Assumption [3.1)(iit) holds. We observe that this exzample illustrates why the rate
drops from k to Kk — 1 in ||C§]TV) — Ci—(t/N)||2; there is an additional "cost” due to the
inclusion of the term |t — T|.

In Example (in Section we show that Assumption [3.1)(i) is also satisfied (for
sufficiently large N ).

3.2 Properties of the locally stationary covariance

In this subsection we show that positive definiteness of C™) transfers to C(-) under the
stated smoothness condition. Conversely, we show that also the other direction holds i.e.,
for a sufficiently large Ny positive definiteness of C(u) implies that C™) is also positive
definite.

Theorem 3.1 (Positive definiteness of C(u)). Suppose Assumption holds. Then,
for all u € R {C,(u)}, is a positive definite sequence where for any ¢ > 0 we have
>\inf — & S )\mf(C(u)) S Asup(c(u)) S /\sup + €.

Proof. See Appendix [A] O

Under the above theorem, {C,(u)}, is a positive definite sequence. Consequently
by Kolmogorov’s extension theorem there exists a stationary multivariate time series
{Xi(u) }1ez which has {C,(u)},cz as its autocovariance function. This justifies call-
ing {X; n}iez a “locally” second order stationary time series. A further implication of
Lemma is that the inverse of C(u) exists, which we denote by D(u) = C(u)™! =
{D_;(u);t,7 € Z}. Like C(u), D(u) is also block Toeplitz and by Theorem the
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p x p-dimension matrix D;_,(u) has the bound
sup || Dy—r (u)]|2 < KC(t — )7 (10)

Assumption (1) is difficult to directly verify given a particularly nonstationary

model. However, we now show that given a positive definite sequence {C,(u)}, which

similar result is given in (Ding and Zhou, 2021, Proposition 2.9).

Theorem 3.2. Suppose {Xin}iez is a locally stationary time series whose covariance
CcCW) = (C't(f); t,T € Z) satisfies Assumption(ii,iii). Let f(w;u) = >, o, Cr(u) exp(irw)
be the local spectral density. If

0 < Yine < Infinf A (f(w;w)) < sup sup Apax(f(w; ) < Ysup < 00,

u w

then there exists a Ny, Aint and Aeup where for all N > Ny we have
0 < Aint < Ainf(C™) and Agup (C™) < Agup < 0.

Proof. See Appendix [A] O
Equipped with the above results, we return to Example |3.1}
Example 3.2 (Example , continued). We define the local spectral density as
flwsu) =D W5(t/N) exp(—ijw)][Y | ¥,(t/N) exp(ijw)] "
5=0 5=0

Under the conditions of Example we have sup,, SUp,, Amax(f(w;u)) < ZjeZ Ku(j)™" =:

Ysup < 00. Furthermore, if we have a non-vanishing filter in the sense

0o
inf )\min 2 J > .1/2>0
uER,;élC,|z|:1 <32:; ](U)Z ) = “inf ’

then inf, inf, Apin (f(w;w)) > Yine. Thus the conditions in Theorem are satisfied, and
for a sufficiently large Ny, there exists 0 < Aips < Asup < 00 such that for all N > Ny we

have

0 < Aint < Aint(C™) and Agyp (CN)) < Mgy < 00.
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In summary, the results in this section tell us the following. If an array of nonstation-
ary time series satisfy Assumption then there exists a stationary time series {X;(u)}
whose covariance is {C,(u)}. Conversely, if we define a nonstationary time series {X; n }+
with covariance CV) and an accompanying stationary time series {X;(u)}; whose covari-
3.1J(i) holds. One important application of this result is given in Example [3.1 However,
the same result holds for more general models; define X; vy = Gy n(gt, 4-1,...) (or Xpn =
G(Xi—1ns .-, Xi—pn;t/N)), this is the general nonlinear physical dependence model de-
scribed in Zhou and Wu| (2009), Dahlhaus et al. (2019), Karmakar et al. (2021) and Ding
and Zhou (2021)) and the auxillary stationary time series X;(u) = G(u;ey,&-1,...) (or
Xi(u) = G(Xy—1(u), ..., Xi—p(u);uw)). If these two models together satisfy Assumption

m(l) also holds. Thus the results in the following sections apply to these models.

3.3 Locally stationary approximations of the inverse covariance

In this section we show that properties on the covariance operator C'") transfer to the

inverse covariance operator D) = (C’(N ))*1. Specifically, in the following theorem we

to D) and D(u) = C(u)~" up to a (small) loss in rate. This result is used to show

”approximate” smoothness of the time-varying VAR coefficients in representation (4)).

Theorem 3.3. Suppose Assumption holds. Then for allt,T € Z, D;_,(u) is Lipschitz,
in the sense that for all u,v € R

|D—r () = Dpr(v)]2 < Klu = v[¢(T — )" (11)
Furthermore, we have for all t,7 € Z

H [D(N) - D(t/N)] < K¢(t — 7)* 2 min(1/N, 2((t — 7)), (12)

2

t,T
where IKC is a finite constant that is independent of u,v,t, 7.

An important consequence of Theorem [3.3]is that when working with C and D it is
enough to put smoothness conditions on one of them as the smoothness transfers to the
other. In particular, conditions can be stated in terms of the covariance of the original

time series. Furthermore, we note that differentiablity conditions also transfer from C.(u)
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to D,(u). E.g., if one starts with the condition that for all r sup, || =5~ dc’" 4O < K¢(r)r
then using the same arguments as those used in the proof of Theorem |3.3 - (outlined after
the proof of Theorem [3.3)) we have

dD()

[———ll2 < K¢(r)™ (13)

Smoothness and differentiability conditions on DY) and D(u) are used in Basu and
Subba Rao (2021) (stated in Assumption 4.2) to obtain certain rates of decay on the
Fourier transform of DY), Theorem and 1} show that these conditions can be
equivalently stated in terms of smoothness and differentiability conditions on covariance
C™) and C(u). It is worth noting that the loss in the rate of decay for the inverse in
Section [2|is also present in Theorem

We now apply the above result to the popular time-varying VAR model. Let us
suppose that {X; v} has the tv-VAR(d) representation

d
Xin =Y Q;(t/N)X,_jn+I(t/N) e,  tel, (14)

i=1

where {e;}; are uncorrelated random vectors with variance I,. In contrast to the tv-VAR
representation given in @, the tv-VAR model is defined with Lipschitz conditions on the
matrices ®;(-) and X(-). The tv-VAR(d) model with smooth AR coefficients as defined
in ([14) is attractive because its coefficients are straightforward to interpret and has been
used in econometrics and in neuroscience (see, for example, Ding et al. (2017); [Safikhani
and Shojaie (2020); [Yan et al. (2021)). Let C™) denote the covariance corresponding to
{X:n}. Obtaining a rate of decay for the covariance by directly analyzing C M) is unwieldy
(see [Kiinsch (1995) for the univariate proof). However, we show below that starting with
the inverse DW) = (C™))~1 (which is a banded matrix) we can use Theorem and
[3.3] to transfer the information on the rate of decay of the inverse covariance operator to

the covariance operator itself.

Corollary 3.1 (Application to VAR models). Suppose that the multivariate time series
{Xi N}t has the time-varying VAR(d) representation in , where we assume there exists
a 0 >0 and v where

d

uE]R,zElﬂljl,|z|§1+§ (Zy ; j(u)z?) >
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and the matrices ®;(-) are Lipschitz continuous in the sense that ||®;(u) — ®;(v)|l2 <
Kl|u—v|. We further assume that 3(-) is Lipschitz continuous in the sense that ||X(u) —
Y|l < Klu —v| and for all w € R X(u) is positive definite (with eigenvalues that
are bounded from above and away from zero uniformly over all u). Let C™) denote the
covariance operator of {X;n}: and C.( fo (w; u) exp(—irw)dw, where f(w;u) =
[ p_ijl P, (u) exp(—ijw)] X (u)(] p—zjzl ®;(u) exp(ijw)]™")T. Then, there exists an
No and 0 < p < 1 such that for all N > Ny we have ||C't(];[)||2 <Ko= |C(u) = Cr(w) |2 <
Klu— oo™, and |C{Y) — Coor(t/N)||2 < Kp!7I/N.

Proof. See Appendix [A] ]

Remark 3.2. As mentioned after Theorem 3.5 smoothness conditions in terms of differ-
entiability transfer between C(-) and D(-). Applied to the above corollary, this implies
that smoothness conditions formulated in terms of differentiability of the transition ma-
trices ®;(-) transfer to D(-) and consequently to C(-). |Ding et al. (2017), Lemma 3.1
also prove that differentiability of ®1(-) implies differentiability of the covariance for tv-
VAR(1) models. They show this result by directly connecting the covariance to ®y(-)
through the tv-VAR(1) model. However, their proof requires the additional condition that
[ @1]]1 = max|z,=1 [|P12][1 < 1, which places quite strict conditions on the VAR parame-

ters.

We have shown in that under certain conditions all nonstationary time series have
an AR(oo) representation. But there is no guarantee that the AR parameters are smooth.
However, we show below that under the locally stationary conditions in Assumption
a smooth approximation is possible.

We recall from that {X7 x}: has the representation

N
XT,N = ZQ;,J)XT*],N +€T,N, (15)
j=1
where {er y }ez are uncorrelated random vectors with X7 y = Var[er x]. We have shown
in Section that under Assumption there exists a stationary time series {X;(u)}:
with autocovariance {C;(u)},. Using the arguments leading to ([4), it can be shown that
{X:(u)}+ has the VAR(00) representation

W) = 350X () + 24l (16)

J=1
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where &;(u) are uncorrelated random vectors with variance ¥(u) = Var[e,(u)]. In the
following theorem we show that {CID(TA;)} can be approximated by the stationary VAR
coefficients {®;(u)}.

Theorem 3.4. Suppose the array of time series { X7 n}e satisfy Assumption and let
{@im}j be defined as in with Z%N) = Varlery]. Additionally, let {X(u)}: be the

J
locally stationary approximation defined in (@)

(i) Then for all T € Z and j > 1 we have

1= —S(T/N)||, <
and @) — &;(T/N)l2 < KC(5)< 2min(2¢(5), 1/N)

=ike

(i1) For all uy,us € R and j > 1

[13(u1) — E(uz)|l2
and [|[®;(ur) — @;(uz)ll2 < KC()" " ur — uol.

IN

IC|U1 —U2|

A potential benefit of Theorem is that it could be used to develop a bootstrap
procedure for nonstationary time series by transferring the widely used AR-sieve to the
locally stationary setup.

Remark 3.3 (Innovations and Kolomogorov’s formula). An immediate implication of the
above result 1s that the time varying innovation variance EEN) can be approximated by

Kolomogorov’s formula

det[s™M] = / ’ log det[f(t/N;w)]dw + O(1/N)

—T

where f(u;w) =Y o, Cr(u) exp(irw). A similar result was obtained in |Liv et al. (2021)),

Proposition 1 for a specific class of locally stationary time series.

3.4 The partial covariance of a locally stationary time series

The partial covariance is commonly used in the analysis of time series as a measure of
linear dependence between two time series after accounting for all the other components

in the time series. For stationary time series, the analysis is typically conducted through
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the partial spectral coherence which is the standardized Fourier transform of the partial
covariance, and is, conveniently, a function of the spectral density matrix function(cf.
Priestley| (1981); Brillinger| (2001); |Dahlhaus (2000a); Krampe and Paparoditis| (2022)).
For nonstationary time series the time-varying partial spectral coherence can be defined
as a function of the localized inverse spectral density, as was done in |Park et al.| (2014).
However, as far as we are aware, there are no results that connect this definition (of the
time-varying partial spectral coherence) to the actual partial covariance of the underlying
nonstationary time series.

We use the results on inverse covariances (developed in Section to show that the
partial covariance of a locally stationary time series (as defined in Assumption can
be approximated by a smooth function, which, in turn, is the partial covariance of the
locally stationary approximation {X;(u)};. We show below that this result can be used
to justify using the time-varying partial spectral coherence as an approximation of the
Fourier transform of the localized partial covariance.

We start by defining the partial covariance for nonstationary time series. For this,
let HWY) = @(Xt(;i,;t € Z,1 < ¢ < p) denote the space spanned by the entire multivari-
ate time series. Furthermore, let S C {1,...,p} =: V be a set of indices referring to
components of the time series and HY) — (X©;c € S) = @[XS(CJ)V, s € Z,c € 8] be the
space spanned by the entire time series of the components in &’ only, where S’ denotes
the complement of S. Let Py(Y) denote the orthogonal projection of Y € H™) onto
the subspace M. For any § C V, we define the residual of Xt(?\), after projecting on
HN) — (X©;ce S) as

a)|-8 a a
xS = Xt{ ) _ Pryvr—(x©s0e) (Xt(’]\),),t c7. (17)

)

In the definitions below we focus on the two sets S = {a,b} and S = {a},a,b € V,a # b.
a)|-{a,b a)l-{a,b
b)|-{a,b ’ b)|-{a,b
xipen )\ ien

Al ) = ol i) 19

Using the above, we define the partial covariance

{ab} Pia%_{a’b} Pga’bz)\}_{a’b}
Arv = | ha{ad} p(’b,%n—{a,b} = Cov

t,7,N t,7,N

and self partial covariance

As will become clear in the proof of the following theorem At{:‘ﬁ} and pﬁf’;f}v"{“} can be
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expressed in terms of the matrix operator C™) and its inverse. Under Assumption
and by Theorem there exists a stationary time series { X;(u)}; which has covariance
C(u), that locally approximates C'"). Using C/(u) we will define the partial covariances
corresponding to the stationary time series { X;(u)};. In the theorem below we show that
the partial covariances of {X;(u) = (Xt(l)(u), . ,Xt(p)(u))T}t locally approximates the
partial covariance of {X; y = (Xt(’lj\),, o ,Xt(f;z,)T}t. To do this, analogous to , and
we define

Hr(Xff);ceS)(Xt(a) (u)) for t € Z, (20)

Xt(a)l-{aﬁb}(u) X_ga)l-{a,b} (u) (21)
Xt(b)l_{a’b} (u) ’ Xib)\-{%b} (u)

o pal- ) e )
A= W) = | ol ay SO0 | = Cov

pu t—1 u,t—1

and self partial covariance
A () = Cov[XGT (w), X[ (w)]. (22)

We note that a key ingredient in the proof of the theorem below is that the partial

covariance can be expressed as
b -1 T
Var | X (33[‘ {a, },t S Z,e € {a,b} = 0573 — 0873105/75/08731,

where S = {a,b}, Css = (C®?):e, f € S) (similarly for Css and Cg ) and CF) =
(Cov[Xt A X ( )]; t,7 € 7). The presence of Cg,{ s in the above expression explains why
the results in the previous sections (in particular Theorem are necessary for proving

the result.
Theorem 3.5. Suppose Assumption holds and let A;{Ta}s}, pgaTaN)l {a} A, {a b}( ) and

ptT {a}( ) be deﬁnedasm@ (.) 21 and(.) Then for all a, be{l ., p}

1A — A /N1
1849 () — A9 )]
)
)

IN

K¢t — )" 2min(1/N,((t — 7))  (23)
Klu—v|¢(t —7)"* (24)
(25)
(26)

IN

oty = kT /N

IN

K¢t — 1) 2min(1/N, ((t — 7)) 25

(a,a)- {a}( ) — (a,0)|- {a}(v Klu —v|¢(t — 7)Y, 2%

Pt—r

IN

and ||p;~x
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where IC is a positive generic constant.
Proof. See Appendix [A] O

The above result provides the tools to prove the following. Let {X; y}+ be an array of
nonstationary time series that satisfy Assumption 3.1]and {C,(u)}, the corresponding sta-
tionary approximation covariance. Let f(w;u) =, ., Cp(u)e™ and I'(w; u) = f(w;u)™".
Using the stationary partial spectral coherence (see Priestley (1981), Section 9.3 and
Dahlhaus (2000a)), the localized (complex) partial spectral coherence is defined as

(w: ) @b (w;t/N)
ab\W;U) = — s
b (T@) (w; £/N)TCD) (w; 1/N)) 2

where T'(®") (w) denotes the (a, b) entry of the matrix I'(w; u). Under Assumption (for
k> 3) and by using Theorem it can be shown that

a,b a,b .
ez Ao explirw)

)|-{a.b} (b,b)|-{a,b} = Gap (Wi t/N) +O(N7Y).
\/ZTEZ Piiien  €XPliTW) D ez Priirn  eXp(irw)

In other words, the estimated local partial spectral coherence (based on an estimator of
the local spectral density function) is an estimator of the Fourier transform of the partial
covariances of the nonstationary time series localised about time point ¢. This justifies

using local spectral density estimation approaches for estimating the partial covariance.

4 Proofs of the Main Results

Before proceeding with the proofs, we need to introduce further notation. We define below
unit vectors of appropriate dimension to select sub-matrices or elements from the operator
A lyy, — by, Thatis, Ay, s, = (5, @1,) T A(es, ® 1), where @ is the Kronecker product
and [, denotes the identity operator in RP. Furthermore, ALY = (e, @ ea)T Ales, ® €)
and we introduce the short notation for this unit vector as e(,5) = (s ® €q).

In the proofs below we will often consider sub-matrices, where one column or row
has been removed. To set-up the matrix notation for this, let I denote the identity
operator in ¢ and I_j the identity operator after removing the kth row, i.e., for u € /s,
I yu = (... ,u_1,up, U, ..., Ug_1,Uks1,--.). The same notation is used for operators

in R? and similar spaces. Furthermore, for an operator in ¢, we use (I_; ® I,) to
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remove the p-dimensional row I guess you mean the kth block row of dimension p? and
(I_s ®1_4) =: I_(q, to remove the (a, s) row.

An important tool in the proofs is the inversion and manipulation of infinite dimen-
sional (block) matrices. Under certain conditions on both the matrices and the spaces we
can treat these in much the same way as finite dimensional matrices. An identity that we
will make frequent use of is the analogous version of the block inversion identity but for

infinite dimensional operators. Suppose that U : (S, S2) — (S1,S2) where S; and S, are

o-(23)

If the eigenvalues of U are bounded away from zero and from infinite, then using equation
(1.7.4) in Tretter (2008), page 43 (setting A = 0) for the inversion of block operator

two Hilbert spaces and

matrices we have

gi_(ABY _ A ~ABD™! (o)
" \¢c b)) \ -D'CA D'+D'CABD!

where from Definition 1.6.1 in [Tretter (2008), page 35 we have
A=(A-BD'C)'and D= (D-CA'B)". (28)

An immediately consequence of the above is that the difference in the block diagonal

entries 1s
A-A =BD'C. (29)

We will make frequent uses of and in the proofs below.

4.1 Proofs of results in Section [2

The proof of Theorem [2.1]is based on decomposing C " in terms of the inverse of a banded
block matrix and its remainder, and balancing these two terms. An important result on
the inverse of banded matrices is given in [Demko et al.| (1984), Theorem 2.4. Specifically,

they consider positive definite infinite dimensional matrices of the form A : /5 — {5 where
A = (A t,7 € Z) (A € R). They show that if A has bandwidth M (in the sense
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A, =0if [t—7| > M) and A™' = B = (B,,;t,7 € Z), then

L+r)? .
‘Btw‘ < %ptt I/MJ+17 (3())

where 7 = b/a and p = (7 — 1)/(v/r + 1) with a = inf,cp, ju,=1(v, Av) and b =
SUD e, (|ofs=1(V, AV). An interesting application of this results is given in |Ding and Zhou
(2021), who use it to obtain a rate of decay for the parameters in an autoregressive
approximation. As our results are in the multivariate (possibly high dimensional) setting
we require a bound on the block entries of a banded matrix (and not just the individual

entries). Thus in the following lemma we obtain generalisation of for block matrices.

Lemma 4.1. Let A be a linear operator on ly, where A = (Apq;t,7 € Z) and As,
is a p X p dimensional matriz. We suppose that A is block-banded with bandwidth M
and block-size p in the sense that for all sy,sy with |sy — so| > M, Ay s, = 0. Let
b = SUPye, , fvfs=1(V; AV), and a = infyeq, , jop=1(v, Av). Furthermore, r = b/a, p =
(Ve —1)/(\/r+1). Let B= A" = (B,;t,7 € Z) (where B, is a p x p dimensional
matriz). Then, the following bound holds for all p x p sub-matrices and t # T

1+vr)?
| Bt,rll2 < %ptt |/M|+1

where || denotes the largest integer less than or equal to x.

Let A = (I_x+®1,)TA(I_1®1,) be a sub-matriz without the kth p-dimensional row and
column, where k € Z.. Then, forE = Ail with Etﬁ = (((Lk®1’p)zil(Lk®[p)T)tJ; t,T €
Z) the following bound holds for all p X p sub-matrices and t # T

B L+7)? |,

Proof. See Appendix [B.1. O
Using the above lemma we now prove Theorem [2.1]

Proof of Theorem[2.1]. For we focus here on the case t # 7 and [t — 7| > 2. Define
the set U = {1 € Z,7 # t}, and denote Cyyy = (e, @ I,)'C(I_; ® I,) and Cyyy =
(I_y®1,)"C(I_;® I,). Without loss of generality we consider a permuated version of C,
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which contains C; in the top left hand corner of C

o ( Cii Cru )
Cus Cuu
Using the permuted C' makes the proof easier to follow. The same proof applies to the
non-permuted C too. Note that in this paper usually all infinite dimensional operators
are in bold. Thus Cyy, Cyyy and Cyyy should be in bold. But this makes the notation
in the proof quite overbearing, so for this proof we have dropped the bold for these sub-

operators. Using the block matrix inversion formula (see Tretter (2008), page 35; for

operators) we have

D-—C!— Dty —D; ' CuCyyy ‘
_Cz;,lucbl,tD;tl (Cuy — Cu,tC;tht,u)‘l

From the above we observe that the D, , matrix is
Dt,T = _D;tlct,ucz,?},{(-[—t X Ip>T(6T ® Ip)a

L < Dyy < A\ we have || Dy |2 < >\sup||(Ct,uCz;},{>(-[IteT ® I,)||2. Thus we

sup — inf

focus on bounding the induced ¢;-norm of A; ; = (Ct,uoﬁ,lu)(]jt& ® 1,).

using that A

In Lemma [4.1| we obtain the rate of decay for the entries of the inverse of a block
M-banded matrix. We leverage on this result to obtain a rate of decay for C&,lu- Thus
the main outline in the proof below is to (a) replace Cyy with a (block) banded matrix
(b) obtain a bound on the replacement error and (c) balance the rate of decay of the
inverse banded matrix approximation with the replacement error (both of which depend
on the bandwidth M).

To align the dimensions of Cyyy and C we will pad Cy s with zeros in the sense that
(It ®1I,)Chuy(I-;®1,)" and C are identical everywhere except at the ¢th p-dimensional
row/column. Using this notation, we define the following banded matrix. We replace Cy;y
with a banded matrix B, of bandwidth M in the sense that for all p x p sub-matrices
and s1,89 € Z

(I ® L) By (Tt ® 1) ")y g = LJs1 = s2| < M)((Ie ® L) Cyuas(I-¢ @ I) s 505 (31)

where 1 denotes the indicator function. To invert Cyy we use the identity C’Z;’lu =
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B,}[I + By} (Cyy — By)]™'. From Lemma , equation (55) we show that ||Cyz —
Bylls < 2K/(k —1)(M —1)7**!. Thus if M is sufficiently large, i.e., M > 1+ (2K/(x —
1)Y= we have ||Cyy — Bayll2 < 1, this leads to the Neumann series Cpyy, = B/ [I +
> o2 1 (=1)*[B}; (Cyuye — Bay))®]. Substituting the above into A, - = (CyyCyyy,) (I e; @ I,)

gives

Ar = CuBR I+ Y (~1)°[B3 (Cuu — Ba) (e, @ 1,)

s=1

= Ct,MBle(]jteT ® I, + CruBi; Z(_l)S[BX;(CM,M — By)P’|(Ie, ® Iy).

s=1

By applying the triangular inequality to the above we have ||A; |2 < Ji + Jo where

Ji = CuBy (ILLer @ I)]l2
and Jo = [CouByt > (=1)°[Bif (Cupe — Ba)|(I L er @ L)|2.
s=1

We now bound J; and Jy. By using Lemma [B.1, we bound J, with

o < CuByf 2> (KPM ) <2K/(k — 1) (M — 1),

s=1

We next bound J;. First, we expand the matrix multiplication of Ct,uB]T/[l, then use the

sub-multiplicativety of || - ||o. This gives

Jo< ) MGl - (U= @ 1) Bof (I © L))o

SEZ,s#t

Under Assumption we have [|Cy s||2 < Kv(t — s)7", whereas Lemma gives

N (1 T v TM)Q s—T
(T ® L) By (Lt @ L))l < S 2T,
sup,

where v = )\sup,M/Ainf,Ma )\sup,M S /\sup+2K/(/{_ 1)<M_ 1)_R+17 /\inf,M Z /\inf_zK/(H_
D(M—1)="*"and ppr = (Vi —1)/(V/Far+1). IEM > (2K/(k—1) max(2/Ning, 1/ Asup) ) D4
1, we have Aipgar > Aine/2 and Agup s < 2Agup. This means, 7y < 4r and py <
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(2y/r —1)/(2y/r + 1) =: p, where © = A\gyp/Aine. With this, we have

2(1+2vr)* plls=rl/al 1

(I @ L) By (I ® 1)) sl < .
sup

Hence

2K (14 2+/7)? T
Ji < ( V7) Z |s — ¢| 7 plls—rI/AMI+L <

/\sup Z

Asup s—t—I—T)

SEZ,s7#t se€Z

Thus when M > K, := (2K/(k — 1) max(2/Aint, 1/Asup)) 5~V + 1, the above bounds for
Ji and Jy hold and we have || Dy ;|l2 < Asup(J1 + J2).

The final part in the proof is to balance the two bounds J; and J,. For this, for each
t, 7 € Zweset M = M, . := —% (note 0 < p < 1). When |t — 7| is sufficiently
large i.e., M;_, > K, by substituting M,_, into the bounds for J; and J; it can be shown

that

) 2K ( |log(p)| |t =]
Dila < 2K(1+2Vr)* (28 +28,)|t — 7|t —1 .
1Derllo < (1+2v7)*(2" + 2541t — 7] +/£—1 (2(&—1)log\t—7'|

On the other hand, if |t — 7| is small, i.e., M;_, < K, then it can be shown that

log(p)| =7 1)

2K
D < 1/ A < (mMin(ing /2, Asup) Aing) ™
1Derlle < 1/t < (minhan 2 A )22 (2T

The above gives the following global bound for all ¢,7 € Z

IDirlls < 2K(1+2vr)2(2% + 28, )u(t — 1)~

2K (|1og<p>| ot —7) ))_l>‘““

+max(1, (min(Aint/2, Adsup) Aint) ™) (k—1) \2(k — 1) v(logv(t — 7

< K¢t—7)h

Note that in the proof we have carefully tracked all the constants, to demonstrate that
the constants only depend on iy, Asup, X and x. To reduce notation, in the remainder of
the paper we use a generic constant .

To prove , we only need to slightly modified the arguments. We use U = {17 <
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T, T # t} and obtain

C(—OO'T): Ct,t Ct,L{
’ Cus Cuu

This leads to
[C(—00i T)ir = —[C(=00: )i CrueCihy(Is © 1) (e, © ).
Then, we can follow the same strategy. Note that the sums involved are now from —oo

to T but they are bounded from above by the sums given in (|1]). O]

Proof of Theorem[2.2. As mentioned in Section in order to connect the coefficients
{®r;} and &7 4 ; we first need to connect the inverses of C(7'—d,T") and C(—o0,T). For
this let

C(—00,T) = ( C(—o0, T —d) C(=00,T—d,T) )

C(-o00,T—d,T)T C(T—d,T)

where C(—o00, T — d,T) = (Ci7;t < T —d,T—d+1<7<T)and C(T —d,T) =
(Cir;T —d+1 <t,7 <T). In order to compare the AR coefficients we use the block

decomposition of C(—o0,T)™!

D(—00,T —d) D(—00,T —d,T)
D(—co, T —d, T)T  D(T—d,T) '

C(—00,T) ! = ( ~ -

Note we have used the notation D to show that they are not the inverse of the corre-
sponding submatrix of C. To prove the result we start by showing that for all 1 <¢,7 <d

we have
I[C(T =d. 1) = D(T —d, Dlr-sr—rll < K(d—)*2¢(d —7) 2 (32)
Using Schur’s complement we have

C(T—d,T)'—D(T —d,T)=—-D(—00,T — d, T)D(—00,T — d) "' D(—00,T —d,T)".
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Thus block-wise for all 1 < t¢,7 < d we have

[C(T —d, 7)™ = D(T = d, Tzt
—[(er—¢ ® L) T D(—=o00, T — d, T)|D(—00,T) “[(er—r ® I,) " D(—00,T — d,T)]".

Using the above we obtain the bound

IC(T = d, )™ = D(T = d, T)lr17-|2
< /\SUPH(eT—t & Ip)Tb(—OO, T— d7 T>H2||(6T—T ® Ip)Tﬁ(_OO7 T— d= T)H? (3?))

Next we obtain a bound for the matrix rows (ep_, @ 1,) T D(—o00, T —d, T') = (D(—o0, T —
d,T)r-1+s;¢ <T). By applying Lemma and using Theorem we have

T—d—1
ler—e ® I,) ' D(—00,T —d, T)|la < ( > [[D(=00,T — d, T)r—p[|3)""?
{=—00
T—d—-1
< IC Z C 2(Ii 1)1/2 < ICC( )5—3/2'
f=—00

Substituting the above into we have
O = d,T) " = BT = d Dol < KC(d - 8 2C(d - 7y

This proves .
We now compare the bottom rows of C(T'—d,T)~ and D(T —d, T) and 1) to prove
. That is setting t = 0 and 7 = j gives

1070, — Prjlle < Aapl[C(T = d, )" = D(T' = d, T)lrr—]2
< KC(d)*E(d = ),
This proves (7). Using we immediately obtain ({8]). ]

Note that projection methods can also be used to prove the above result (and the
same bound obtained). In this case the proof would be similar to that given in the proof

of Theorem 3.2 in Meyer et al. (2017) (in the context of spatially stationary processes).
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4.2 Proofs of results in Section 3

Proof of Theorem [3.5. We begin with the proof of (I1)). Note that C~' = D. Using the

classical matrix inverse expansion we have

D(u) - D(v) = C(u)™' = C(v)"' =C(u)"'[C(v) - C(u)]C(v)™"
= D)[C(v) = C(u)]|D(v). (34)

Thus by the Lipschitz continuity of C (see Assumption [3.1fiii)) and Theorem [2.1] we have

1Dt (1) = Dir(v)ll2 = Y (D(0))15,(C(w) = C ()51, (D (W) sorr

81,82€Z
<K}C2 t—S —Kk+1 ‘/U/—’U| 5 _7__5_'_1
<K 3 o e )
- R s1)7 i = v 89) T < A9K K2 u — v|C(T — t)F L,
51§ZC< 1) U<82+T_t—81)”C( 2) < | |C( )

where the last inequality follows from Lemma and K is finite constant, independent
of u,v,t, 7. This proves .

To prove , we note that using the classical inverse matrix expansion (analogous to
(34])) we have

D™ _D(t/N) = D™ (C(t/N) - C<N>> D(t/N).

Theorem gives bounds for the entries in D(t/N) and D™). On the other hand,
Assumption [3.1] gives the bound

851,82

|(c/N)=C™) s < [(CH/N)=Clsi/N))

51,82

o+ | (Cls1/N) =€) |,

1,82

< % (i |t — 51 2 " 1
min :
- Nuv(sy — s9)% v(s1 — 89)" Nuv(s) — s9)~1
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Substituting these bounds into [D®) (C(t/N) - C'(N)> D(t/N)):.» gives

I(D™) — D(t/N))er 2

. . |t — 81| 2 1 P
KK? Z C(t—s1) 1 <mln(NU(S1 ) (e = 82)5) + Nols; — 82)5—1) C(T — s9) 1

S$1,82€7Z

IA

1
- X C(T — 82)”71,

[\
=
3
z
=
VR
o~
~
|
&
=
X
=
=

— X (7 — 59)" 7 < O8KKCAC(t — 7)" 2 min(1/N,2((t — 7))

where the last bound follows from Lemma E This proves . O

Proof of . By using we have

D, (u) = Dy(v) = Z Dy, (w)[Cs, (u) — Cs, ()] Dy, —r (v).

S1,82€7Z

Let h € R\{0}, and substitute v = u + h and u = u into the above to give

Do) — Do(ut Wb =3 Dy(w)Ca=Culuthlly sy

Taking the limit ~ — 0 (and using dominated convergence to exchange limit and sum)

gives the entry-wise matrix derivative

dD _ _ Z DSl dCSl 52< )DsziT(u)
and the bound
dD'r‘ u d081 s a
H d_qf ) < > IDg ()] C )ll | Dgy—r(w)][|2 < KCC(r)™
2 S1,52

where the last inequality follows from Theorem , the condition sup,, || %u@ o < K¢(r)< !
and Lemma [B.5. O

To prove Theorem [3.4] below, we require the following corollary of Theorem [3.3]
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Corollary 4.1. Suppose Assumptionm holds and let C™)(—co, T) = (Ct(,]j);t,T <T)
and C(—o0,T;u) = (Cy,(u);t,7 <T) Then for allt,7 < T we have

| [€™) (=00, T)7" = C (=00, T;T/N)!| |

t,T

< K¢t —7)" *min(1/N,2¢(t — 7))

K((s1—s2)"1. The assertion follows by the same steps as in the proof of Theorem . O

Proof. The result uses that ||[[C™) (=00, T) s, s, < KC(51—59)" " and ||[C(—o00, T;u) s, .6 <

Proof of Theorem[3.4. To prove the result we start with the following identities

o) = —([C™M (=00, T) 1) C(—00, T) 1wy (35)
and ®;(u) = —([C(—o0,T;u) ) ' [C(—00, T;u) rr_j

where C™Y) (=00, T) = (C't(’iv);t,r < T) and C(—o00,T;u) = (Cyr(u);t,7 < T). These
identities together with Corollary will be used to prove the result.
We first obtain a bound for ||Z(TN) — X(T/N)|l2. We note that

2 —2(T/N) = ([C™(~00, T) Yrz) ™t = ([C(~00, T; T/N) rr) ™"
= ([C(~00,T;T/N) gz) " H([C(~00, T; T/N) Yr — [C™N (=00, T) ) ([CN (—00, T) V)

Thus by using Corollary (with t =T and 7 = T') we have

1= = 2@t/N)ls < I(C(=00, T; T/N) rz) "Iz - [[C (=00, T; T/N) ™ — C™ (=00, T) rzrl2
< [([C™) (—00, T) rr) s < KNL (36)

This proves the first part of (i)
To prove the second part of (ii), we use to give the decomposition ‘I)E,];‘[) —®,(t/N) =
J1 + Jo, where

i = = |([C"W (=00, T) M) = [Cl—o00, t;t/N) rr) | [CW) (—00, T) Mz,

T = —(C(=00, T T/N) Jrg) ! [[OW(=00,T) ™ = C(=00, T T/N) 1]
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First we bound J; this gives
I7ll < (€ (=00, 1) i)™ = [C(=00, T T/N) i) ™| NE (=00, T) izl
< KGO0 x )y

where we have used the bounds in Theorem and in the above. Using a similar
argument (and Corollary (witht =T and 7 =T — j) ) we have

|7l < (€00, T T/N) i) ™2 ||[C (=00, 7)™ = C(=00, TiT/N) iz,
< KCG) ™ min(2(7), 1/N).

Altogether this gives ||(I>§FA;) — ®,(T/N)|l2 < K{(5)*?min(2¢(j),1/N). Thus we have
proved the second part of (i). The proof for (ii) follows a similar method as given in the
proof of Theorem [3.3, and we omit the details. O
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A Proofs of remaining results in Sections and

Proof of Theorem[3.1. Our aim is to show that the || - [;-norm of the matrix function

Gu(w) = Z Cy(u) exp(irw) (37)
reZ

is bounded above and below by the Ag,, and Aiys respectively (for all w). Since C(u) is a
(block) Toeplitz matrix then by Toeplitz theorem (see Toeplitz (1911) and Bottcher and
Grudsky| (2000), Theorem 1.1) this would immediately prove that the eigenvalues of C'(u)

are bounded above and below by Agyp and Aiys (thus proving the result).
For a given u € R and N € IN we define the integer T, x as T, v = |uN]| (where |z]
denotes the largest integer smaller than x). Let M € 2IN and define an M x M-dimensional
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submatrix of C™) that is centred about 7. u,N

Cly = (O g i) ssm itz = (I8 @ L)TC™(IE) @ 1,).

7777 u, N w, N

We show below that if M is sufficiently small, then CiNAZ is an approximation of the

M x M-dimensional submatrix of C(u)
M M
Cu(u) = (Comas(W))syamrtpzernrre = (L) ® 1) Clu)(I{s) @ ).

We start by obtaining a finite approximation of G,(w) in terms of Cys(u). Let

Ty, N+M/2
Guy(w) = % Y. G (wexp(i(t — 7)w) = (v, ® 1,)"Cy(u)(z, ® 1), (38)

t,7=T, N—M/2+1

where 2, = 1/vV M (exp(—itw) )11, x—M/2+1,...T, y+M/2- Using CfLN]& for each M € 2N and
w € [0, 27] we define the quantity

1 Tu7N+M/2

Gui@ =7 Y et —1w) = (1,8 L) C (. © L), (39)
t,r=T, N—M/2+1

Since Cl(%\,) is a finite dimensional submatrix of C™), for N > Ny, the eigenvalues of
CELNA} are bounded above and below by Aiy¢ and Mgy respectively. Then, since ||z, |2 = 1

we have
Xing < IGP @)z < Asp for all N, M and w. (40)
By using Lemma equation we have
s |G () = G5 ()]l < K (a1

where K is a generic constant that depends only on K and x. The above immediately
implies Aipf — KM /N < |Gy (w)|l2 < Asup + KM /N. Finally we return to G, (w). Using
Lemma [B.2, equation we have sup,, ||Gu(w) — Gy m(w)|l2 < K/M. By using this and
we have

M 1
IGu(@)ll2 = IGE (@) ]l2 + 0 (W N M) |
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Finally, we set M = 2| N'/2| and substitute it into the above, this together with

gives

K K
Ainf — N2 < [Gu(w)ll2 < Asup + N2
As this holds for all N > N, we have that for any € > 0 Ajpr — £ < [|Gu(w)]]2 < Asup + &,

as required. O

Proof of Theorem[3.2. To prove that Assumption (1) holds (a uniform bound on the
eigenvalues of CW )) for a sufficiently large N, we first replace the infinite dimensional
matrix CY) with an infinite dimensional banded matrix CE\]}[) (where the bound for the
difference between the two matrices is small). The central part of the proof is to obtain a
bound for the eigenvalues of C’g\]p (that is uniform over a sufficiently large N). And the
key observation is that the banded matrix embeds an infinite number of (M +1) x (M 41)-
dimensional block matrices, where each block matrix can be approximated by a stationary
matrix. It can be shown that lower and upper bounds for the eigenvalues of the locally
stationary approximation block matrix are given by 7y and vs,p. This approximation
gives a bound for the eigenvalues of each block matrix. Finally, motivated by the proof
of Proposition 2.9 in Ding and Zhou (2021), we show that the eigenvalues of the banded
matrix C’%IV) can be bounded by the eigenvalues of “overlapping” block matrices. This
will prove the result.

We start by defining the infinite dimensional (block) banded matrix CW where for all
t, 7 € Z the entries are defined by [Cﬁfj)]t,T = 1(|t—7| < M)C} .. Without loss of generality
we assume that M = 2m, m € N. Using Lemma@we have ||C™) — Cg\i[V)Hz < KMt
Our aim is to obtain bounds for xTCE\]/}[)x where x = (..., x_1, 20,21, .. )T e lyp, ;€ RP
and ||z|2 = 1. To do this we define the (M + 1)p-dimensional shifting subsequence
Tomstm = (Ts_my -+, Torm) and the (M + 1)p x (M + 1)p dimensional (block) banded
matrix

C(N)(s—m,s+m):(C(N);s—mgt,T§s+m).

t,T

For each u € Z we define the stationary approximation matrix C(s — m, s + m;u)

C(s—m,s+mu) = (Ci_r(u);s —m <t,7 < s+m).
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Under Assumption [3.1](iii) we have with Lemma

HC(N)(S —m,s+m)—C(s—m,s+m;s/N)|a
s+m

< s G = Cisls/N)]le < K (42)

te(s_m78+m) T=8—m

where K is a generic constant that holds for all N and s. The condition 0 < ~j,r <
inf,, inf, Amin(f(w;u)) < sup, sup,, Amax(f(w;u)) < Ysup < 00 implies (see, among others,
(Basu and Michailidis, 2015, Proposition 2.3)) that for all u € R A\yin[C(s—m, s+m;u)] >
infy, Amin[f(w; ©)] > Yinf and Apax[C (s—m, s+m; u)] < infy, Mpax[f(w; ©)] < ~Ysup. Therefore
by using and the above we have

<%nf - /C@

m
N) ||xs—m,s+m||2 S CC;I—_rrL75_|_1r;,Cj(N) (S —m,s + m)xs—m,s—&—m S (/ysup + KN) ||Is—m,s+m||2-

(43)

This gives a bound for each block. Next we obtain a bound between
xTCg\]/}]) Z Z Ly CE L+ Litr (44)
LEL r=—

with the overlapping block matrix inner-product

1
M+1

X mOXar = Z Ls—m s+mC(N)<S — M, 8+ M)Ts s pm-

Note we have not formally defined X,; or O, but have simply set it to equal the above.

Basic algebra gives

M
M+1-
X OMXM = Z Z < M+ 1 |) xETCE,€+rx€+r' (45>

eEZ r=—M

Using and we have

¢ CopirTopr.
KEZ r=—M

35



Hence under Assumption [3.1](ii) we have

1 I
T (V) T
Hx Ch f_XMOMXMHQ < M1 E E v(r>,{||5”é||2||$£+r||2

LEL r=—m

2 — 1 ) 2 = 1
M+1 (Zv(r "“—1>ZHWH2:M—|—1 (;W)

r=1 LeZ

IN

~—

where the last line follows because ||z = >, [lz¢]|3 = 1. Finally we use to give

(Yint — Km/N) (Ysup + Km/N)
M Z H'Tsfm,s+m|’§ S X]T\/[OMXM S . M Z ||xsfm,s+m”§'

SEZL SEZL

Using that Y. [|Zs—msiml3 = (M + 1)||z]|3 = (M + 1) we have
Yint — Km/N < X0y Xy < Ysup + Km/N.
Hence by using , [c™ — |, < KM=+ and setting m = | N'/*| we have
it — KNS < e TOWg < g JON =11,

where K is generic constant that does not depend on N or M. Thus for a sufficiently

large N we have the result. O]

Proof of Corollary[3.1. We show the result follows from Theorem [3.2] Lemma 4.1 and
Theorem using the inverse matrix D) = (C™)~! which has simple properties.

Define the matrix

I, 7=0
Qj(t/N) = —®;(t/N) 1<j<p
0 otherwise

Using {®;(u)}; we define the stationary time X;(u) = Z;lzl i (u) X j(u) + S(u)/%e;.
This has the inverse (stationary) covariance D(u) = (D;_,(u);t, T € Z) where
d ~ ~
Dy, (u) = Z () S () Dy pe(u).

£=0

The corresponding inverse spectral density is f(w;u)™" = > ., Dy(u) exp(irw). Under
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the stated conditions on the roots associated with {®;(u)}, we have that for some 7,
and 7y, that 0 < v < inf, inf, Apin(f(w; u) ™) < sup, sup, Amax(f(w;u) ™) < 95 < o0
and thus the eigenvalues of D(u) are uniformly bounded away from v; and 7,. Let
C(u) = D(u)™' = (Cy_,;t,7 € Z). Then by using Lemma [4.1] we have

sup [|C(u) [l < Kpl" (47)

for some 0 < p < 1. Further, by using (applied to exponential decay rather than
polynomial decay) we have ||C,(u) — C,.(v) |2 < Kp"l|u — v].

Using the Cholesky decomposition it can be shown that the inverse covariance is
DY) = (D, .;t,7 € 7) where

d T —1
~ [(t+/ t+/¢ ~ t+/
ol =Y a () () Fen ()
=0

The Lipschitz conditions on ®;(-) together with (47) and (48) imply that Dg) is approx-
imated by D;_.(t/N). Le.

% [t —7| <d

DN — D, . (t/N)|, < .
2 i (t/ )Ilz_{ 0 tor|>d

Now by using the above and Theorem [3.2]for large enough N the conditions in Assumption
hold (in terms of the inverse covariance). Therefore for sufficiently large N, the rate
HCt(,]X)H2 < Kpl=l follows from Lemma Further, the conditions in Theorem [3.3| hold

and we have

Ir|
|G = Corlt/N) | < K55
’ N
which gives HCt(f) — Ci+(t/N)||2 < IC%. Thus we have proved the result. O

We now prove Theorem To prove this result we will use the alternative repre-
sentation of the covariance operator C") defined in Remark With this in mind, we
define the sub-operators C“/) : ¢4 — ¢, which are infinite dimensional matrices where
ce’ )]t,T = (Cov[Xt(jz,, Xt(f\),] Note that to reduce cumbersome notation, we have dropped
the N from the definition C®¥). We also define the corresponding “stationary” matrix
operators C“9)(u) : £y — £y, where [C®F) ()], = COV[Xt(e) (u), Xt(f) (u)]. This represen-

tation is instrumental in proving the result below.
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Proof of Theorem[3.5. We first prove and . We start by obtaining an expression

for

Var [Xt(c)"{a’b};t cZcel, 2}} — (A e
and Var [Xt(u)(c)|‘{“’b}; teZ,ce{l,2}] = (Ai‘i’b}(u);t, TEZL).

To simplify notation, and without loss of generality, we focus on the case a = 1,b = 2.
We will represent the above in terms of block matrices of C™) and C(u). We define
A(1’2) : £272 — £2,2, B(1’2) : €27p,2 — 6272 and E(1’2) : 627;,,,2 — gg’p,Q where

402 ctl o2 2) ct3 o cotp)
= ooy gea ] B = ges  cew
and E1? = (C®D:e fe{3,...,p}).

Analogously, we define A(I’Q)(u), B2 (u), E(I’Q)(u). It is clear the operators A2, B(1:2)
and E"? are comprised of an infinite number of 2 x 2, 2 x (p —2) and (p — 2) x (p —
2) matrices respectively. To denote these sub-matrices we use the following notation.
Suppose H : ly,, — {5, for some py,py then [H],, := (I,, ® ¢;)T B&P (I, @ e,) refers
to their p; X po-dimensional submatrices.

It is well known that the conditional covariance of Xt(cjz, and Xt(c) (u) can be represented

as the Schur complement
var [ X ez ce {1,2)] = ALY - BOA(EBID)(BUD)T
and
Var [Xt(u)(cn’{m};t €Z,cedl, 2}] = A(l’Q)(u) — B2 (u)(E(l’Q)(u))_l(B(LQ)(u))T.
Then, we have

A;{a},s} _ [A(1’2) . B(1,2)(E(l,Z))—l(B(1,2)>T]tT
and A" () = [AMD () = BO () (B () (B (@) ] (48)
We use the above representations to prove . Using we have
1A = AL /N o <+ o+ s +

T
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where

o= [(ATD = ARAI(E/N)) 2

Jo = ||(B”)( P HBY — BUA(t/N) el

Jy = [(BU(EN) — (BN (t/N) B E/N)) il
Jio= (B = BE2(t/N)(EN (t/N) H(BU2(t/N)) irll2-

Under Assumption and by using Theorem we bound the terms above (the proof
is in the spirit of the proof of Theorem . Assumption directly implies

1

— (172)_ (172) < -0
L A

The bounds for Js, J3 and J; are more involved, however all three follow a similar strategy.

We focus on obtaining a bound for J3. Using standard matrix multiplication it can be

seen that
Js = | Y B, (BY) ™ — (BYD(t/N)) " asBY (E/N) ar 2
S1,82€7Z
< D B allz - NESD) = (B (t/N) Mo w2 1(BY2 (E/N)) ayr 2 (49)
S$1,82€7Z

To bound |[[BY)], . ||» and [[(BY? (t/N))T]s,-|l2 we simply use Assumption 3.1} which

immediately gives
IB"?]is,ll2 < Ko(t = s1)™ and [|(BU2(¢/N) oy el < Kv(sy —7)7" (50)

The bound for ||[(E*?)~! — (E®2(t/N))"Y,, s |l2 needs a little more work. We first
note that the covariance operator E? is a suboperator of C®™Y)| thus it satisfies As-
sumption where E(1’2)(u) is its locally stationary approximation. Therefore we can
apply the results of Theorem Iﬁl to (EM?)~! and this gives

[(EM SN — (BT (51/N)) s sall < KC(s1 — 52)"  min(1/N,2((s1 — 52)) (51)
and

(B2 (s1/N)) 7 = (B2 (¢ /N)spsalle < Klst = tl¢ (51— 52)" 7 /N. (52)
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Substituting , and into we have
1

J; < KK? ZEZW x (¢(s1 — s2)" 2 min(1/N, 2¢(s1 — s2))
1
+ |51 — t|¢(s1 — s2)" ' /N) o p———

< 2x (49)K2KC(t — 7)" 2 min(1/N,((t — 7)) = K{(t — 7)" 2 min(1/N, ((t — 7)),

where the last line follows from Lemma [B.5!
To bound .J,, we use Theorem [2.1]to give, ||[(E"?) ", ol < KC(s1 — s2)* Y. This
together with , using the bounds stated in Assumption (iii) and following the same

proof as above we can show that
Jo < K¢t —7)"'/N and J, < K((t—7)"1/N.
Altogether the bounds for Ji, Js, J3 and J; prove
1A = AL @/, < K¢t — 7)" 2 min(1/N, ¢t — 7))

thus proving . The proof of follows a similar technique.

Finally, the proofs for and are the same as the proofs for and , thus
we omit the details. O

B Technical lemmas

B.1 Proofs and lemmas for the proof of Theorem [2.1

Proof of Lemmal[4.1. The proof is based on the proof of Proposition 2.2 in [Demko et al.
(1984), with a small modification to allow block matrices. We use the notation from
Proposition 2.2 in [Demko et al. (1984). More precisely, let II,, denote the space of poly-
nomials up to order n. A key ingredient in the proof is the following result from spectral

theory
A~ = p(A)]2 < max [1/2 — p(z)],

z€la,b]

where p is a real polynomial and recall b = sup,cg, _ |ju),=1(v; Av), and a = infoep, , fofp=1(v, Av).
Set r =b/a, p=(y/r—1)/(y/r+1). For any complex valued function f on K, define the
norm || fl|x = sup{|f(2)| : z € K} (thus ||1/2 — p(2)||[a5 = Maxgeny |1/ — p(x)|). In
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Proposition 2.1, |Demko et al. (1984) show that

it {1/~ p(@)ly p € 11} = LV (53)

Using this, we define the polynomial

Pl = argye, f{]| 1/ — p(@)uy : p € I}, (54)

We note for any polynomial p,, of order n and M block-banded matrix A with block size
p, if [t — 7| > nM then p,(A);, = 0 where p,(A)):, denotes the (¢,7) p x p dimension
block matrix in p,(A).

For a given t and 7, set n = ||t — 7|/M|. Let p’ be defined as in (54). Then by
definition of n we have p}(A);, = 0. Since B;, = (A_l)t,r this gives

1. 21 . L4+ 7)? s
IBirll2 = (AT =pi(A))rlla < AT =pi(A) 2 = [|11/2—p}(2) |0 = %p“ Ml

where the last part follows from (53)). This completes the proof of the first assertion.
For the second assertion we slightly modify g, invert it and link the modified matrix
to the inverse of A. Since A is missing a row and column, the idea is to extend this matrix
to its original dimension. For this, note first that D := (I_; ® [p)j([,k ®I,)" + cler ®
L) (ex®1,)" is a block-banded matrix and with ¢ = ||(ex ®I,) " A(ex ® 1,2 its largest and
smallest eigenvalues are bounded by b and a. Hence, the previous assertion applies to D.
Let I be the identity operator on f5,. Then, we have (I_; ® I,)(I_x ® I,)" is I without
the kth p-dimensional row/column. This implies ||(I_x ® [,) (I ® I,) ' D(I_x ® I,)(I_; ®
L)Dirll2 < [[(D)ir|l2. Additionally, we have the following (I_; ® I,)"(I_; ® I,,) is the
identity operator on the reduced space, (I_; @ I,)(I_x @ )" + (e ® I,)(ex @ I,)T =1,
and (e, ® I,)" (I ® I,) = 0. We now show (I, ® [,)"D (I, ® I,) = (A)~! which
gives the assertion. For this, we show (I_y ® I,)TD (I @ YA = (I_x ® I,) T (I, ® L,)

and use the uniqueness of the inverse operator.

I @L) DI @ L)A=(I @ L) (I @ LA x @ I,)" +c(es ® I)(ex @ I,) )™
x (I @ L)AL ® 1) +cley @ L)(ex @ 1)
—cler @ L)(ex ® 1) NIy ® 1)
=(I;® L) (I ® I,) + 0.
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Thus, (I_, ® I,) "D '(I_}, ® I,,) is an inverse of A and the second assertion follows. [
We now apply the above result to B); defined in .

Lemma B.1. [Properties of Bys] Suppose Assumption is satisfied and let By be a
banded matriz defined as in . Define the space of vectors 62_; ={v="_(...,01,041, V42, ...);Vj €
RP, S lvsll3 < oo} and the eigenvalues

ay = inf (v, Byv) and by = sup (v, Bpyv)
UEZ;,;’H'UHQZI UGZ;;),Hsz:l
Then
ICs,s = Bullz < 2K /(s — 1)(M — 1), (55)

anr > Amin — 2K/ (5 — 1)(M — 1)7"" and byy < Apax + 2K /(5 — 1)(M — 1)7"t1 (56)

1B37 112 < (Auwin — 2K/ (5 — 1)(M — 1))~ (57)

The same rates apply also if C itself or C(—oo;T| are approximated by (a corresponding)
banded matriz B y.
Proof. We first prove . For this, we first expand Cs s — By with zero such that it is

an operator from (5, to {5, again. Then, we use Lemma [B.4 and obtain

ICss = Bl =I5 ® L,)(Css = Bu)I 4 @ 1,) [la <sup Y [[(Cs,s = Bar)syss 12
st

>

|s|>M

K
|5~

<2K ) / e dr = 2K /(k — 1)(M — 1)7"F,

s>M -

To prove we use that By = Css + (Cs,s — By) and the eigenvalues of Cs s are
in [Amin, Amax]- Thus, with we have

Ainf(Bar) > Amin — 2K/ (5 — 1)(M — 1) and A\yp(Bayr) < Amax + 2K/ (k — 1)(M — 1)7"T1(58)

The proof of immediately follows from ([56]). O
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B.2 Technical lemmas for the proof of results in Section [3

The following lemma is used in the proof of Theorem

Lemma B.2. Suppose Assumption E holds and let Gy (W), G(HNA}(w) and Gy (w) be
defined as in @, (@) and respectively. Then

M
sup |Gt (w) = Gy (@)ll2 < K5 (59)
and

sup [Gul) = Gusr(wla < (7 + 3725 ) (60)

where IC is a constant that only depends on K and k.

Proof. Under Assumption [3.1fiii) we have

Tu7N+M/2

N 1 N
IG @) = Cun@: < 52 Y G = G
t,TZTunyM/2+1
Ty, N+M/2
L L Z N (€ A
- M No(t—71)+1  No({t—7)) ~ N’

t,r=Ty n—M/2+1

this proves . To prove we use that
1
Gulw) = G, yw)+ i Z |7|C(u) exp(irw) Z Cr(u) exp(irw).

Ir|<M/2 Ir|>M/2
Under Assumption [3.1iii) we have ||C,(u)|2 < K/v(r)"* (where £ > 2), thus

1 1 1
I6,6) = Cuns@e < 37 X IG5 16l < (57 + 575 )

r|<M/2 |r|>M/2

Thus proving the result. O]

Lemma B.3. Suppose that {A;}72, is a sequence of p X p dimensional matrices where
S A3 < o0o. Define the sequence space o, = {w = (v1,v2,...) : v; € RP} and the
linear operator A = (Ag; 0 > 0), where A : ly,,; — R. Then

[All2 < ZHAzH )/
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Proof. Let © = (x1,29,...) where z; € RP. By definition of the || - || operator norm we

have
o0
|A|l2 = sup t" AT Az = sup  ( Z :vZAlTlAble)lm
llzll2=1,2€¢2 .1 lellz=1e€lopr ¢ 7=
o0
< sup Y flanllafl Al
HZ”Q:l,xEéQJ)y] =1
o0 oo
< sup o O 32O IA3)? (by the Cauchy-Schwarz inequality)
lzlle=1z€lopr |5 I=1
oo
=D A4l
=1
thus proving the result. O

We use the following result in the proof of Lemma [B.1 and Theorem

Lemma B.4. Let B be a symmetric linear operator from ly,, to ly, with ||Blly < oco.
Then,

IBll2 < max > [1Boya s

SoEZ

Proof. To prove the result we define the following operator based on B. Let B =

(I Bsy.s5112)s1.5, be an operator from fs to ¢y. Since B is symmetric, we have

|Bll2 = sup v'Br = Sup Z x;—lBSl,SQI&S sup Z ||x51||2||B81782||2”x82“2

l[zlla=1 lellz=1 ;5 ez lll2=1 g ez
= [|Bll2 < [|Bllos = max Y [|Bsy sl
! so€Z
This proves the result. [

The following lemma is used in the proofs of Theorems 3.3, and

Lemma B.5. Let v(j) = max(1,]j|) and ((j) = v(log[v(j)])/v(j) We have for some
yeR,peZ andp > 2

D ) P+ y) < (P + 3y —1)7" (61)

JEZ
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and

> CHCG+y)P <T¢(y—3) (62)

JEZ

Further, suppose that p,q,r > 2 then

D (i) (G +y) P < (7 By — 1) e, (63)

JEZ

D CHCG +y)? < T¢(y — 3D, (64)

JEZ

S wlsy ) Polss + 52) To(ss + 7)< (17 4 320t — 7 — 2)7 ™) (65)

51,82€7Z

and

D s+ 1)PC(s1 + 52)"C(s2 + 7)< AI((E — 7 — 6)mnEen) (66)

81,82€Z

Proof. First note that > 2 k=% = 72/6. The strategy is to split the sum in several parts
and for each part we pull one of the factors out of say, of v(j) Pv(j + y) 7, leverage on
the pulled factor and show that the remaining sum is finite.

We first prove . Without loss of generality, let y > 0 and y € IN. We have

ng)fpv(j +y) P =0+ 1+ I3,
€z

where

L= v(i) "o +y) " < (7°/6+ Do(y) 7,
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—y/2 -2

L=2y—1)"+ Y o Pi+y) P+ Y. vG) PvG+y)”
Jj=—y+2 j=—y/2+1

< 20(y — 1) + 20(y/2) P27+
<2u(y—1)"P+ v(y)’p8(7r2/6 - 1)
<20(y — 1) +o(y) P(2/37%),

—y
L= v(j) ™o +y)™" < (7/6+ o(y)™.
j=—o0

Putting the bounds for /; — I3 immediately proves (61)). Furthermore, we have v(|y|—1)
v(|ly|/2). This follows immediately for |y| > 2. For |y| < 2 note that v(Jy| — 1) =1 =
o(lyl/2).

To proof (62), note first that Y7, ((k)? =1+ Y70, ((k)? <1+ [ (log(z)/z)*dx =
1 + 2. Second note that ((-) is monotonic decreasing after ((3), and we have 1 = ((1),
¢(2) = ¢(4) < ¢(3). With this, we can follow the arguments as above and split the sum
up into three parts Iy + I, + I3. Wlog let y > 9. We have

[e. 9]

L= ¢ +y)P <3¢(y)

§=0

Furthermore, since ((4) < 0.5 and for y > 9,p > 2 it holds ((y — 3)? + ((y/2)*(y/2) <
¢(y)?, we have

=S COPCG+9) =200y — 1P+ Cly — 2P + 20y — 3

J==vy
—y/2 —4
+ > CHCGHYP+ D> CHCG+y)
J=—y+2 Jj=—y/2+1

<20(y — 1P+ Cly — 27+ Cly = 3)" + C(y/2)™(y/2) + C(y/2)P (42 C(5)?

=4

< 7¢(y —3)°

and

L= 3 COPCG + )P <3

j=—o0
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The proof of uses that v(7)™ > v(j)~9, then the result immediately follows from

@}
To prove of , let us suppose wlog that p < ¢ < r, then by using we have

Z v(sy+1t)"v(s1 + s2) Pu(sg+ 7)1 = Z v(s1+1t)7" Z v(s1+ s2) Pu(se + 7)1

81,52€7Z S1€Z s2€Z
< (7*+3) Z v(sy+t)Tv(sy —T—1)7P
S1E€EZ
< (7 +3)? Zv(t—T—Q)’p
S1E€EZ

where the last two lines follow from . This proves the result. and follow
analogously. O]
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