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Abstract

For multivariate stationary time series many important properties, such as par-

tial correlation, graphical models and autoregressive representations are encoded in

the inverse of its spectral density matrix. This is not true for nonstationary time

series, where the pertinent information lies in the inverse infinite dimensional covari-

ance matrix operator associated with the multivariate time series. This necessitates

the study of the covariance of a multivariate nonstationary time series and its rela-

tionship to its inverse. We show that if the rows/columns of the infinite dimensional

covariance matrix decay at a certain rate then the rate (up to a factor) transfers

to the rows/columns of the inverse covariance matrix. This is used to obtain a

nonstationary autoregressive representation of the time series and a Baxter-type

bound between the parameters of the autoregressive infinite representation and the

corresponding finite autoregressive projection. The aforementioned results lay the

foundation for the subsequent analysis of locally stationary time series. In partic-

ular, we show that smoothness properties on the covariance matrix transfer to (i)

the inverse covariance (ii) the parameters of the vector autoregressive representa-

tion and (iii) the partial covariances. All results are set up in such a way that the

constants involved depend only on the eigenvalue of the covariance matrix and can

be applied in the high-dimensional settings with non-diverging eigenvalues.

Keywords and phrases: Autoregressive parameters, Baxter’s inequality, high dimen-

sional time series, local stationarity and partial covariance.
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1 Introduction

Several important properties in multivariate analysis are encrypted within the inverse co-

variance of the underlying random vector. For example, the partial correlation, regression

parameters and the network corresponding to the (Gaussian) graphical model. For mul-

tivariate time series the covariance is now an infinite dimensional matrix. Nevertheless,

analogous to classical multivariate analysis many interesting properties in time series are

encoded in the inverse infinite dimensional variance matrix. They include (i) the partial

covariance between di↵erent components of time series after conditioning on the other

time series (ii) time series graphical models which takes into account the conditional rela-

tionships over the entire time series and (iii) vector autoregressive representations which

yield information on Granger causality. For stationary time series, however, it is rare to

directly deduce these relationships from the inverse covariance, as these quantities have

an equivalent representation in terms of the finite dimensional inverse spectral density

matrix corresponding to the autocovariance of the time series. For example, the partial

covariance can be expressed in terms of the partial spectral coherence (which is a function

of the inverse spectral density matrix; see, Priestley (1981), Chapter 9.2). The stationary

time series graphical model can be deduced from the zero and non-zeroes of the inverse

spectral density matrix (see, Dahlhaus (2000a)) and the vector autoregressive regressive

representation can be deduced from the causal factorisation of the inverse spectral density

matrix (see Wiener and Masani (1958)). However, once one moves away from station-

arity, a rigorous understanding of the above properties can only be achieved by directly

studying the inverse of the infinite dimensional covariance matrix (and its relationship to

the corresponding covariance). This is the main objective of this paper, which we make

precise below.

Let {Xt = (X(1)
t , . . . , X

(p)
t )>; t 2 Z} denote a p-dimensional multivariate time series

with p ⇥ p-dimensional covariance matrix Ct,⌧ = Cov[Xt, X⌧ ] for all t, ⌧ 2 Z. Using

{Ct,⌧}t,⌧ we define the linear operator or, equivalently, infinite dimensional matrix C =

(Ct,⌧ ; ⌧, t 2 Z). Under suitable conditions on C, the inverse D = C�1 = (Dt,⌧ ; t, ⌧ 2 Z)
exists. Basu and Subba Rao (2021), Section 2, show that a graphical model for nonsta-

tionary time series can be defined from the structure of D (based on zero, Toeplitz and

non-Toeplitz submatrices in D). This general framework does not impose any conditions

on the nonstationary structure of the time series. However, in order to learn the network

from data Basu and Subba Rao (2021) focus on locally stationary time series; by now a

widely accepted and used class of nonstationary time series. Specifically, smoothness con-
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ditions are placed on the inverse covariance D, and the subsequent analysis is done under

these conditions. However, most locally stationary conditions are stated in terms of the

covariance rather than the inverse covariance. This leads to the question “do smoothness

conditions on C transfer to smoothness on D?” and provided the initial motivation for

this paper. It naturally lead to further questions on the ”transfer” of smoothness on C

to (a) vector autoregressive representations and (b) the partial covariance. Therefore, our

aim is to develop a suite of tools that answer such questions. To the best of our knowl-

edge there exists very few results in this area. One notable exception is the recent work

of Ding and Zhou (2021), but the aims and results in their work are di↵erent to those of

this paper. Ding and Zhou (2021) specifically focus on the univariate nonstationary time

series (X1, . . . , Xn) (with n ! 1). They show that there exists an autoregressive repre-

sentation of increasing order over the time points, whose coe�cients decay at a certain

rate. The results are used to test for correlation stationarity. In contrast, we work within

the multivariate time series framework, and allow for both low and high dimensional time

series. The latter case is important because often to make meaningful conditional state-

ments about components in the time series (in terms of Granger causality and conditional

covariance) the number of time series included in the analysis may need to be extremely

large. We summarise the main results below.

In order to reconcile C and its inverse D, in Section 2 we show if kCt,⌧k2  K|t� ⌧ |
�

for t 6= ⌧ and some  > 1 (k · k2 denotes the induced `2/spectral norm), then kDt,⌧k2 

K(1+log |t�⌧ |)(|t�⌧ |)�+1. This leads to a nonstationary VAR(1) representation of the

time series {Xt}t where the corresponding VAR parameters decay at the same rate. We use

this result to obtain a Baxter-type bound between the parameters of autoregressive infinite

representation and the corresponding finite autoregressive projection. It is noteworthy

that the constant K depends only on the eigenvalues of C, but not on the dimension

p. Hence, if the eigenvalues of C do not grow with dimension p, these results hold for

arbitrary dimension.

The results in Section 2 are instrumental to proving the results in Section 3, where

we focus on locally stationary time series. In terms of second order structure, a time

series is called second order locally stationary if its covariance structure can locally be

approximated by a smooth function C(u). We show in Section 3.2 that C(u) is an

autocovariance of a stationary time series. In Section 3.3 we show that locally stationary

conditions based on the covariance structure imply that its inverse covariance can locally

be approximated by a smooth function D(u), which is the inverse autocovariance of a
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stationary time series i.e. D(u) = C(u)�1. We use this result to show that the parameters

of the vector autoregressive representation of the time series can be approximated by a

smooth function. Finally, in Section 3.4, we show that the smoothness conditions on the

nonstationary covariance transfer to smoothness conditions on the partial covariances.

We use this result to justify using an estimator of the local spectral density function

to estimate the local partial spectral coherence (as was done in Park et al. (2014)) and

the local partial correlation. The proof of the results can be found in Section 4 and the

Appendix.

2 Rate of decay of the inverse covariance

2.1 Notation and assumptions

In order to derive the results in this paper we need to define the space on which the

operator C is acting. Let R denote the real numbers, Z all (positive and negative)

integers and N strictly positive integers.

For u, v 2 Rp let hu, vi = u
>
v and kvk2 denote the Euclidean distance. We use `2 and

`2,p to denote the sequence spaces `2 = {u = (. . . , u�1, u0, u1, . . .); uj 2 R and
P

j2Z u
2
j <

1} and `2,p = {v = (. . . , v�1, v0, v1, . . .); vj 2 Rp and
P

j2Z kvjk
2
2 < 1}. On the spaces

`2 and `2,p we define the two inner products hu, vi =
P

j2Z ujvj (for u, v 2 `2) and

hx, yi =
P

j2Zhxj, yji (for x = (. . . , x�1, x0, x1, . . .), y = (. . . , y�1, y0, y1, . . .) 2 `2,p). For

x 2 `2,p, let kxk2 = hx, xi. Furthermore, for x 2 `2,p and s 2 Z, a 2 1, . . . , p, we

use x
(a)
s to denote the sth element of the ath (column) space. Suppose {As1,s2}s1,s2 are

p ⇥ p-dimensional matrices, using this we define the infinite dimensional matrix A =

(As1,s2 ; s1, s2 2 Z). Under suitable conditions on A, A is a linear operator A : `2,p ! `2,p

in the sense that if Ax = y, then y = (. . . , y�1, y0, y1, . . .) where for all t 2 Z, yt 2 Rp and

yt =
P

⌧2Z At,⌧x⌧ . Similarly, suppose {Bs1,s2}s1,s2 are p1⇥p2 dimensional matrices, like A,

we define the infinite dimensional operatorB = (Bs1,s2 ; s1, s2 2 Z) where B : `2,p2 ! `2,p1 .

All operators are written in bold uppercase letters.

Assumption 2.1. Let v(·) = max(1, | · |).

(i) The covariance operator is positive definite with �sup = supv2`2,p,kvk2=1hv,Cvi < 1

and 0 < �inf = infv2`2,p,kvk2=1hv,Cvi.

(ii) There exists some  > 1 such that for all t 6= ⌧ we have for the p ⇥ p-dimensional
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sub-matrices

kCt,⌧k2  Kv(t� ⌧)�
,

where K < 1 is some positive constant.

Since C is positive definite, the inverse covariance operator exists with D = C�1 =

(Dt,⌧ ; t, ⌧ 2 Z). We mention that the condition �sup < 1 is implied by Assumption

2.1(ii).

The results in this paper allow for both low and high dimensional multivariate time

series and the assumptions used are specifically designed to allow for this. For high

dimensional time series, the condition that the largest eigenvalue is bounded excludes time

series with common factors1 but allows for high dimensional sparse time series. Popular

examples include high dimensional sparse time series regression and vector autoregressive

(VAR) models which have recently received considerable attention; see, for example, Basu

and Michailidis (2015)2, Krampe et al. (2021), Krampe and Paparoditis (2021), (in the

context of stationary VAR models) and Ding et al. (2017) (for time-varying VAR models).

The condition that �inf > 0 omits co-linearity, where one component in the time series can

be perfectly explained by other components. Assumption 2.1(ii) quantifies the pairwise

dependencies between the components (over time) and is stated in terms of the (induced)

`2-norm k·k2 of the p⇥pmatrices. However, no conditions are placed on the `1-norm, which

can grow with dimension p (as sparsity usually does in the sparse regression context). All

results in this paper are derived in terms of the k · k2-norm. Thus we show that if

the pairwise interactions are controlled in the `2 sense as p grows, then the conditional

interactions are also controlled in the `2-sense.

Throughout this paper we use K to denote a generic constant that only depends on

�inf ,�sup, K, and whose value may change from line to line. We let ⇣(j) = v(log[v(j)])/v(j),

where v(·) = max(1, | · |). The proofs in this section can be found in Section 4.1.

2.2 The inverse covariance

In the following theorem we obtain a bound on the rate of decay of the matrices Dt,⌧ that

make up the inverse covariance D = C�1. C is a bi-infinite matrix in the sense that the

entries Ct,⌧ span t, ⌧ 2 Z. We will also consider the one-sided infinite dimensional matrix

1By common factors we refer to the common component described in the representation given in Forni
et al. (2000). The common component contains (if any) the diverging eigenvalues of the process.

2Note that the finite sample error bounds derived in Basu and Michailidis (2015) for the Lasso express
the dependence of the processes also in terms of �inf and �sup.
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C(�1, T ) = (Ct,⌧ ; t, ⌧  T ). As will be clear later in the paper, the inverse of C(�1, T )

contains (up to a factor) the AR prediction coe�cients and the following result will be

used to obtain a bound on its rate of decay.

Theorem 2.1. Under Assumption 2.1, for all t, ⌧ 2 Z we have

kDt,⌧k2  K⇣(t� ⌧)�1
, (1)

where K is a constant depending on K,,�inf , and �sup only and ⇣(j) = v(log[v(j)])/v(j).

For t, ⌧  T

k[C(�1;T )]�1]t,⌧k2  K⇣(t� ⌧)�1
. (2)

The above result shows that if the pairwise interaction between the components is

bounded with a certain rate in the `2-sense then the conditional interactions are also

bounded with a certain rate in the `2-sense, see Remark 3.1 for a discussion on the role

of the dimension p.

Remark 2.1. A key ingredient in the proof of Theorem 2.1 is that the inverse of banded

matrices decay geometrically; see Demko et al. (1984) and our adapted version for block-

banded matrices in Lemma 4.1. Because of this, if the entries in C decay geometrically

or are banded, then the entries of D decay at a geometric rate.

Remark 2.2 (An alternative representation of the covariance C and its inverse). We

recall that we defined C as C = (Ct,⌧ ; t, ⌧ 2 Z), where Ct,⌧ are p⇥p-dimensional matrices.

An alternative method for defining C is to group the covariances according to component

i.e. eC = (C(a,b); 1  a, b  p) where [C(a,b)]t,⌧ = C
(a,b)
t,⌧ = Cov[X(a)

t , X
(b)
⌧ ]. eC is simply a

permutation of C, thus eD = eC
�1

is a permutation of D. In certain applications, such

as nonstationary graphical models or condition covariance between two components of a

time series, the representations eC and eD may be more useful in the analysis than C and

D (see, for example, Basu and Subba Rao (2021)).

We now compare Theorem 2.1 with the classical result for stationary time series. For

this, suppose C = (Ct�⌧ ; t, ⌧ 2 Z) is a block Toeplitz operator from `2,p to `2,p, where C

satisfies the rate and positive definiteness conditions in Assumption 2.1. ThenD = C�1 =

(Dt�⌧ ; t, ⌧ 2 Z) exists and is also a block Toeplitz operator. For block Toeplitz operators

Cheng and Pourahmadi (1993); Meyer and Kreiss (2015) work with a global condition on

6



the sequence (Cs)s2Z instead of the individual one used in this paper. They showed that

if the global condition
P

s2Z(1 + |s|
)kCsk2 < 1 holds, then

P
s2Z(1 + |s|

)kDsk2 < 1.

The global condition
P

s2Z(1+ |s|
)kCsk2 < 1 is equivalent to a -times di↵erentiability

condition on the spectral density f(·) = (2⇡)�1
P

s2ZCs exp(�is·). To elaborate, since the

operator is block Toeplitz it has the representation C = (
R 2⇡

0 f(!) exp(i(t � ⌧)!)d!)t,⌧

and D = (
R 2⇡

0 f(!)�1 exp(i(t � ⌧)!)d!)t,⌧ . This means the di↵erentiability condition

transfers from f to f�1 i.e., if f is -times di↵erentiable, then f
�1 is -times di↵erentiable.

Consequently,
P

s2Z(1 + |s|
)kCsk2 < 1 implies

P
s2Z(1 + |s|

)kDsk2 < 1. This global

condition implies for all t, ⌧ 2 Z that kCt�⌧k2  Kv(t � ⌧)� and kDt�⌧k2  Kv(t �

⌧)�. Interestingly, the individual condition that yields the global condition is kCt�⌧k2 

Kv(t� ⌧)��1�". In summary, even for block Toeplitz matrices, at the individual level if

kCt�⌧k2  Kv(t� ⌧)��" then the above arguments yield

kDt�⌧k2  Kv(t� ⌧)�+1
, (3)

which is (without the log-factor) same as the rate derived in Theorem 2.1. To the best

of our knowledge, it is an open question if this rate at the individual level for the inverse

can be improved for stationary as well general nonstationary time series.

2.3 Vector Autoregressive representation and Baxter’s inequal-

ity

It is well known that for stationary time series the entries of C(�1, T ) are closely related

to vector autoregressive(VAR)(1) parameters of the underlying time series. The same

is true for nonstationary time series. Precisely, under Assumption 2.1 and by using the

projection theorem the bottom row of C(�1, T )�1 contains the VAR(1) coe�cients in

the linear projection of XT onto the space spanned by sp(XT�1, XT�2, . . .) i.e.,

XT =
1X

j=1

�T,jXT�j + "T , where �T,j = �([C(�1, T )�1]T,T )
�1[C(�1, T )�1]T,T�j, (4)

and "T is uncorrelated with {XT�j}
1

j=1. Substituting the bound in Theorem 2.1 into (4)

gives the bound

k�T,jk2  K⇣(t� ⌧)�1
. (5)
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In practice, it is often not possible to estimate the infinite number of AR parameters from

a finite data set. Therefore one often estimates the parameters of the projection of XT

onto the finite past sp(XT�1, . . . , XT�d) i.e.,

XT =
dX

j=1

�T,d,jXT�j + "T,d. (6)

The above is analogous to the best fitting VAR(d) parameters for stationary time se-

ries. In stationary time series the di↵erence between the finite past projection and the

corresponding infinite past projection is called the Baxter inequality see Section 6 in Han-

nan and Deistler (1988), Cheng and Pourahmadi (1993), and Meyer and Kreiss (2015).

In the same spirit, we now obtain a Baxter-type bound for nonstationary multivariate

time series, between the VAR(1) coe�cients {�T,j}j and the finite prediction coe�cients

{�T,d,j}j.

The coe�cients {�T,d,j}j are embedded in the bottom row of the finite dimensional

matrix C(T � d, T )�1 where C(T � d, T ) = (Ct,⌧ ;T � d + 1  t, ⌧  T ). Thus the

coe�cients {�T,j}j and {�T,d,j}j are connected through C(T � d, T ) and C(�1, T ) and

their inverses. Due to this connection we use Theorem 2.1 and the block inverse identity

to prove the result below.

Theorem 2.2 (Baxter type inequality). Suppose Assumption 2.1 holds with  > 3/2. Let

{�T,j}j and {�T,d,j} be defined as in (4) and (6) respectively. Then for d 2 N, j = 1, . . . , d

we have

sup
T

k�T,d,j � �T,jk2  K⇣(d)�3/2
⇣(d� j)�3/2

. (7)

Furthermore, if Assumption 2.1 holds with  > 5/2 we have

sup
T

dX

j=1

k�T,d,j � �T,jk2  K⇣(d)�3/2
. (8)

Inequality (5) and Theorem 2.2 are related to Theorem 2.4 in Ding and Zhou (2021),

who obtain autoregressive approximations for nonstationary univariate time series. How-

ever, it is important to note that there are some di↵erences in the autoregressive rep-

resentations derived in both papers. The autoregressive representation derived in (Ding

and Zhou, 2021) is based on the finite vector (X1, . . . , Xn) and their aim is to build an

autoregressive representation of increasing order over the time points of the data vector,
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i.e., Xi is represented as an AR(i � 1) model. In contrast, we derive an autoregressive

representation of a time series {Xt; t 2 Z} where each time point is represented by a (vec-

tor) AR(1) model. In the stationary context, building an autoregressive representation

of an increasing order relates to the Cholesky decomposition of Var(X1, . . . , Xn)�1 where

the ith model is given by the ith line. The AR(1) model using the entire time series

can be considered as a limit of this, see Section 2 in Krampe and McMurry (2021) for

further discussion. With this fundamental di↵erence in mind, we now compare the rates

in Section 2.2 with the results in Theorem 2.4 in Ding and Zhou (2021). Their decay rate

for the autoregressive coe�cients matches with that derived in (5). In terms of Baxter’s

inequality, they show maxT>bmax1jb |�T,T�1,j � �T,b,j|  C(log b)�1
b
�+3. With The-

orem 2.2 we cannot directly compare the coe�cients of the two finite AR models (order

T � 1 and order b), however it is possible to use this theorem to obtain tighter bounds for

their result. To be precise

max
T

k�T,T�1,j � �T,b,jk2  max
T

(k�T,T�1,j � �T,jk2 + k�T,j � �T,b,jk2)

 K
�
⇣(T � j)�3/2 + ⇣(b� j)�3/2

�
(log(b)/b)�3/2

.

The above leads to the bound (without the log-factors) maxT>bmax1jb |�T,T�1,j �

�T,b,j| = O(b�+3/2) instead of O(b�+3).

We now compare Theorem 2.2 to the stationary set-up. Meyer and Kreiss (2015)

showed that under the following global condition on the vector autoregressive parameters
P

s2Z(1 + |s|
)k�sk2 < 1, that

dX

j=1

(1 + j)k�d,j � �jk2  K

1X

j=d+1

(1 + j)k�jk2,

noting that we have dropped T as it is not necessary under stationarity. This implies
Pd

j=1 k�d,j ��jk2  Kd
�. Based on the discussion in Section 2.2, at the individual level

this means if kCsk2  Kv(s)��", then
Pd

j=1 k�d,j��jk2  Kd
�+1, whereas Theorem 2.2

gives
Pd

j=1 k�d,j � �jk2  Kd
�+3/2. Thus stationarity of the time series yields a better

approximation bound between the finite and infinite AR parameters than the bound in

Theorem 2.2.
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3 Locally stationary time series

The first rigorous treatment of locally stationary time series was given in (Dahlhaus,

1997, 2000b). This was done by representing {Xt,T}
T
t=1 in terms of a Cramèr represen-

tation Xt,T =
R 2⇡

0 At,T (!)dZ(!), where {Z(!);! 2 [0, 2⇡]} is an orthogonal increment

process and the time-varying transfer function At,T (!) can locally be approximated by

the Lipschitz smooth function A(!; ·) i.e. kAt,T (!)�A(!; u)k2  K(|t/N�u|+1/N). This

definition immediately leads to certain smoothness properties on the covariance structure

of the time series. More recently, several authors have extended this definition to non-

linear time series cf. (Dahlhaus and Subba Rao, 2006; Subba Rao, 2006; Zhou and Wu,

2009; Vogt, 2012; Truquet, 2019; Dahlhaus et al., 2019; Karmakar et al., 2021). In this

section, we return, in some sense, to the original formulation of local stationarity and

focus on the locally stationary second order structure. However, unlike (Dahlhaus, 1997,

2000b), we work within the time domain and not the frequency domain. We start by

introducing the locally stationary setting, i.e., we impose certain smoothness conditions

on the nonstationary time series. In Section 3.2 we obtain bounds on the eigenvalues of

the underlying covariance. Using Theorem 2.1, in Section 3.3 we show that smoothness

conditions placed on the covariance structure transfer over to the inverse covariance and

the parameters in the nonstationary AR(1) representation. Finally (in Section 3.4) we

apply these results to show that the smoothness conditions also transfer to the partial

covariances. Unless stated otherwise, the proofs in this section can be found in Section

4.2.

3.1 Assumptions

We start by defining an infinite array, where for eachN 2 N we associate a (non)stationary

multivariate time series {Xt,N ; t 2 Z} and covariance C
(N)
t,⌧ = Cov[Xt,N , X⌧,N ] (for all

t, ⌧ 2 Z). For each N we define the infinite dimensional covariance matrix C(N) =

(C(N)
t,⌧ ; t, ⌧ 2 Z). In the assumptions below we explicitly connect the sequence of infinite

dimensional covariance matrices {C(N)
}N2N through N , which plays the role of a smooth-

ing parameter. We mention that it is standard practice in the locally stationary literature

to define Xt,N on a triangular array i.e. {Xt,N}
N
t=1. However, to avoid confusion, we do

not link N to sample size. It is also worth pointing out that we use N 2 N to simplify

the exposition, we could without loss of generality allow N to be a non-integer and define

it on N 2 [↵,1) (for some ↵ > 0).
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Assumption 3.1. (i) Eigenvalue condition: There exists some N0 � 1 where

0 < �inf  inf
N�N0

�inf(C
(N)) and sup

N�N0

�sup(C
(N))  �sup < 1.

(ii) Covariance decay condition: For all N , t and ⌧ kC(N)
t,⌧ k2 

K
v(t�⌧) .

(iii) Smoothness condition: There exists a Lipschitz continuous matrix function {Cr(·), r 2

Z} where (a) Cr(u) = C�r(u)>, (b) for all u, v 2 R, r 2 Z supu kCr(u)k2  K/v(r),

and (c) kCr(u)� Cr(v)k2 
K|u�v|
v(r) , such that for all N

kC
(N)
t,⌧ � Ct�⌧ (t/N)k2 

K

v(t� ⌧)�1
min

✓
1

N
,

2

v(t� ⌧)

◆
. (9)

We assume that  > 3.

Note that the above assumptions imply that

kC
(N)
t,⌧ � Ct�⌧ (u)k2 

K

v(t� ⌧)�1
min

✓
|u�

t

N
|+

1

N

◆
,

2

v(t� ⌧)

�
.

Furthermore, the sequence {Cr(·), r 2 Z} defines the infinite dimensional matrix operator

C(·) = (Ct�⌧ (·); t, ⌧ 2 Z) (from `2,p to `2,p), where C(·) is block Toeplitz.

Assumption 3.1(i) and (ii) can be viewed as Assumption 2.1 within the framework

of an infinite array. Assumption 3.1(iii) places smoothness conditions on the covariance

i.e., the (potentially) non-Toeplitz-operator C(N) can locally be approximated by a block

Toeplitz-operator C(·), where the approximation error is determined by the smoothing

parameter N . The use of min in Assumption 3.1(iii) is not standard within the locally

stationary literature. This arises because the time series {Xt,N}t is defined on t 2 Z
and not t = 1, . . . , N (the typical locally stationary set-up). If |t � ⌧ | < 2N (which is

within the classical locally stationary framework), then Assumption 3.1(iii) implies that

kC
(N)
t,⌧ � Ct�⌧ (t/N)k2 

K
Nv(t�⌧)�1 (the classical locally stationary condition). On the

other hand, if |t � ⌧ | � 2N (as can happen if t, ⌧ 2 Z), then the smoothing parameter

N does not improve on the individual terms C
(N)
t,⌧ and Ct�⌧ (t/N) (which are extremely

small) and we have kC(N)
t,⌧ �Ct�⌧ (t/N)k2 

2K
v(t�⌧) . To distinguish these two cases all the

relevant results will be stated with min.

Remark 3.1 (The role of dimension p). In Assumption 3.1 we have not included the

dimension p as an additional variable. This is to reduce cumbersome notation. However, it
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is possible to the state Assumption 3.1 in terms of uniform bounds over a three dimensional

array where the eigenvalues are uniformly bounded over both N and p (and C(N)
and C(u)

are indexed with p too). If these assumptions hold, then the results in this section hold

for high dimensional p too.

Assumption 3.1 is satisfied by a wide range of locally stationary time series. In Ex-

ample 3.1 (below) and 3.2 we define the time-varying Vector Moving Average (tv-VMA)

model and show that this model satisfies Assumption 3.1.

Example 3.1 (The time-varying vector MA(1)(tv-VMA) process). Consider the tv-

VMA(1)

Xt,N =
1X

j=0

 (N)
t,j "t�j =

1X

j=1

 (N)
t,j "t�j + t,0"t, t 2 Z,

where {"t}t are uncorrelated random variables with zero mean and variance Ip (see Dahlhaus

(1997) and Dahlhaus and Polonik (2006) for the case p = 1). In order for the process to be

well defined certain summability or decay conditions need to be imposed on the coe�cients

{ t,j}. As in Dahlhaus (1997), we assume that supN2N supt2Z k 
(N)
t,j k2  Kv(j)�

. With

this, we have

C
(N)
t,⌧ = Cov(

1X

j=0

 (N)
t,j "t�j,

1X

j=0

 (N)
⌧,j "⌧�j) =

X

j2Z

 (N)
t,j ( (N)

⌧,j+⌧�t)
>
,

where we set  (N)
t,j = 0 for j < 0. Using the above decay condition on  (N)

t,j and Lemma B.5

we have kC
(N)
t,⌧ k2  Kv(t � ⌧); thus Assumption 3.1(ii) holds. We now introduce the

locally stationary approximation to {Xt,N}. For this, suppose there exists a Lipschitz

continuous matrix function  j(·) where supu2R k j(u)k2  Kv(j)�
, supu2R k j(u) �

 j(v)k2  K|u� v|v(j)�
, and k (N)

t,j �  j(t/N)k  Kv(j)�
/N .

3
Using this, we define

the stationary process {Xt(u)}t where Xt(u) =
P

1

j=0 t,j(u)"t�j which has autocovariance

Cr(u) =
P

j2Z j(u) j+r(u)> (where we set  j(u) = 0 for j < 0). Note supu kCr(u)k2 

3Note that without a change in rate, the condition can be weakened to k (N)
t,j �  j(t/N)k 

Kv(j)�(�1)/N . For illustrative purposes, we use the rate � here.

12



K/v(r) (this follows from Lemma B.5). Furthermore, under these conditions we have

kC
(N)
t,⌧ � Ct�⌧ (t/N)k2 

X

j2Z

k (N)
t,j � j(t/N)k2k 

(N)
⌧,j+⌧�tk2

+
X

j2Z

k j(t/N)k2
�
k j+⌧�t(t/N)� j+⌧�t(⌧/N)k2

+k j+⌧�t(⌧/N)� (N)
⌧,j+⌧�tk2

�


K

N

X

j2Z

✓
1

v(j)v(j + t� ⌧)�1
+

|t� ⌧ |

v(j)v(j + t� ⌧)

◆


K

Nv(t� ⌧)�1
.

Thus Assumption 3.1(iii) holds. We observe that this example illustrates why the rate

drops from  to  � 1 in kC
(N)
t,⌧ � Ct�⌧ (t/N)k2; there is an additional ”cost” due to the

inclusion of the term |t� ⌧ |.

In Example 3.2 (in Section 3.2) we show that Assumption 3.1(i) is also satisfied (for

su�ciently large N).

3.2 Properties of the locally stationary covariance

In this subsection we show that positive definiteness of C(N) transfers to C(·) under the

stated smoothness condition. Conversely, we show that also the other direction holds i.e.,

for a su�ciently large N0 positive definiteness of C(u) implies that C(N) is also positive

definite.

Theorem 3.1 (Positive definiteness of C(u)). Suppose Assumption 3.1 holds. Then,

for all u 2 R {Cr(u)}r is a positive definite sequence where for any " > 0 we have

�inf � "  �inf(C(u))  �sup(C(u))  �sup + ".

Proof. See Appendix A.

Under the above theorem, {Cr(u)}r is a positive definite sequence. Consequently

by Kolmogorov’s extension theorem there exists a stationary multivariate time series

{Xt(u)}t2Z which has {Cr(u)}r2Z as its autocovariance function. This justifies call-

ing {Xt,N}t2Z a “locally” second order stationary time series. A further implication of

Lemma 3.1 is that the inverse of C(u) exists, which we denote by D(u) = C(u)�1 =

{Dt�⌧ (u); t, ⌧ 2 Z}. Like C(u), D(u) is also block Toeplitz and by Theorem 2.1 the
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p⇥ p-dimension matrix Dt�⌧ (u) has the bound

sup
u

kDt�⌧ (u)k2  K⇣(t� ⌧)�+1
. (10)

Assumption 3.1(i) is di�cult to directly verify given a particularly nonstationary

model. However, we now show that given a positive definite sequence {Cr(u)}r which

satisfies Assumption 3.1(ii,iii), then Assumption 3.1(i) holds. For the univariate case, a

similar result is given in (Ding and Zhou, 2021, Proposition 2.9).

Theorem 3.2. Suppose {Xt,N}t2Z is a locally stationary time series whose covariance

C
(N) = (C(N)

t,⌧ ; t, ⌧ 2 Z) satisfies Assumption 3.1(ii,iii). Let f(!; u) =
P

r2Z Cr(u) exp(ir!)

be the local spectral density. If

0 < �inf  inf
u
inf
!
�min(f(!; u))  sup

u
sup
!

�max(f(!; u))  �sup < 1,

then there exists a N0, �inf and �sup where for all N � N0 we have

0 < �inf  �inf(C
(N)) and �sup(C

(N))  �sup < 1.

Proof. See Appendix A.

Equipped with the above results, we return to Example 3.1.

Example 3.2 (Example 3.1, continued). We define the local spectral density as

f(!; u) = [
1X

j=0

 j(t/N) exp(�ij!)][
1X

j=0

 j(t/N) exp(ij!)]>.

Under the conditions of Example 3.1 we have supu sup! �max(f(!; u)) 
P

j2ZKv(j)� =:

�sup < 1. Furthermore, if we have a non-vanishing filter in the sense

inf
u2R,z2C,|z|=1

�min(
1X

j=0

 j(u)z
j) � �

1/2
inf > 0,

then infu inf! �min(f(!; u)) � �inf . Thus the conditions in Theorem 3.2 are satisfied, and

for a su�ciently large N0, there exists 0 < �inf  �sup < 1 such that for all N � N0 we

have

0 < �inf  �inf(C
(N)) and �sup(C

(N))  �sup < 1.
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In summary, the results in this section tell us the following. If an array of nonstation-

ary time series satisfy Assumption 3.1, then there exists a stationary time series {Xt(u)}

whose covariance is {Cr(u)}. Conversely, if we define a nonstationary time series {Xt,N}t

with covariance C(N) and an accompanying stationary time series {Xt(u)}t whose covari-

ances satisfy Assumption 3.1(ii,iii), then the positive definite condition in Assumption

3.1(i) holds. One important application of this result is given in Example 3.1. However,

the same result holds for more general models; define Xt,N = Gt,N("t, "t�1, . . .) (or Xt,N =

G(Xt�1,N , . . . , Xt�p,N ; t/N)), this is the general nonlinear physical dependence model de-

scribed in Zhou and Wu (2009), Dahlhaus et al. (2019), Karmakar et al. (2021) and Ding

and Zhou (2021)) and the auxillary stationary time series Xt(u) = G(u; "t, "t�1, . . .) (or

Xt(u) = G(Xt�1(u), . . . , Xt�p(u); u)). If these two models together satisfy Assumption

3.1(ii,iii) (and certain conditions on the spectral density of {Xt(u)}t), then Assumption

3.1(i) also holds. Thus the results in the following sections apply to these models.

3.3 Locally stationary approximations of the inverse covariance

In this section we show that properties on the covariance operator C(N) transfer to the

inverse covariance operator D(N) = (C(N))�1. Specifically, in the following theorem we

show that the relationship between C(N) and C(u) in Assumption 3.1(ii,iii) carry over

to D(N) and D(u) = C(u)�1 up to a (small) loss in rate. This result is used to show

”approximate” smoothness of the time-varying VAR coe�cients in representation (4).

Theorem 3.3. Suppose Assumption 3.1 holds. Then for all t, ⌧ 2 Z, Dt�⌧ (u) is Lipschitz,

in the sense that for all u, v 2 R

kDt�⌧ (u)�Dt�⌧ (v)k2  K|u� v|⇣(⌧ � t)�1
. (11)

Furthermore, we have for all t, ⌧ 2 Z

����
h
D(N)

�D(t/N)
i

t,⌧

����
2

 K⇣(t� ⌧)�2 min(1/N, 2⇣(t� ⌧)), (12)

where K is a finite constant that is independent of u, v, t, ⌧ .

An important consequence of Theorem 3.3 is that when working with C and D it is

enough to put smoothness conditions on one of them as the smoothness transfers to the

other. In particular, conditions can be stated in terms of the covariance of the original

time series. Furthermore, we note that di↵erentiablity conditions also transfer from Cr(u)
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to Dr(u). E.g., if one starts with the condition that for all r supu k
dCr(u)

du k2  K⇣(r)�1,

then using the same arguments as those used in the proof of Theorem 3.3 (outlined after

the proof of Theorem 3.3) we have

k
dDr(u)

du
k2  K⇣(r)�1

. (13)

Smoothness and di↵erentiability conditions on D(N) and D(u) are used in Basu and

Subba Rao (2021) (stated in Assumption 4.2) to obtain certain rates of decay on the

Fourier transform of D(N). Theorem 3.3 and (13) show that these conditions can be

equivalently stated in terms of smoothness and di↵erentiability conditions on covariance

C(N) and C(u). It is worth noting that the loss in the rate of decay for the inverse in

Section 2 is also present in Theorem 3.3.

We now apply the above result to the popular time-varying VAR model. Let us

suppose that {Xt,N} has the tv-VAR(d) representation

Xt,N =
dX

j=1

�j(t/N)Xt�j,N + ⌃(t/N)1/2"t, t 2 Z, (14)

where {"t}t are uncorrelated random vectors with variance Ip. In contrast to the tv-VAR

representation given in (6), the tv-VAR model is defined with Lipschitz conditions on the

matrices �j(·) and ⌃(·). The tv-VAR(d) model with smooth AR coe�cients as defined

in (14) is attractive because its coe�cients are straightforward to interpret and has been

used in econometrics and in neuroscience (see, for example, Ding et al. (2017); Safikhani

and Shojaie (2020); Yan et al. (2021)). Let C(N) denote the covariance corresponding to

{Xt,N}. Obtaining a rate of decay for the covariance by directly analyzingC(N) is unwieldy

(see Künsch (1995) for the univariate proof). However, we show below that starting with

the inverse D(N) = (C(N))�1 (which is a banded matrix) we can use Theorem 2.1 and

3.3, to transfer the information on the rate of decay of the inverse covariance operator to

the covariance operator itself.

Corollary 3.1 (Application to VAR models). Suppose that the multivariate time series

{Xt,N}t has the time-varying VAR(d) representation in (14), where we assume there exists

a � > 0 and � where

inf
u2R,z2C,|z|1+�

�min(Ip �
dX

j=1

�j(u)z
j) � � > 0,
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and the matrices �j(·) are Lipschitz continuous in the sense that k�j(u) � �j(v)k2 

K|u� v|. We further assume that ⌃(·) is Lipschitz continuous in the sense that k⌃(u)�

⌃(v)k2  K|u � v| and for all u 2 R ⌃(u) is positive definite (with eigenvalues that

are bounded from above and away from zero uniformly over all u). Let C(N)
denote the

covariance operator of {Xt,N}t and Cr(u) =
R 2⇡

0 f(!; u) exp(�ir!)d!, where f(!; u) =

[Ip�
Pd

j=1�j(u) exp(�ij!)]�1⌃(u)([Ip�
Pd

j=1�j(u) exp(ij!)]�1)>. Then, there exists an

N0 and 0 < ⇢ < 1 such that for all N > N0 we have kC
(N)
t,⌧ k2  K⇢

|t�⌧ |
, kCr(u)�Cr(v)k2 

K|u� v|⇢
|t�⌧ |

, and kC
(N)
t,⌧ � Ct�⌧ (t/N)k2  K⇢

|t�⌧ |
/N.

Proof. See Appendix A.

Remark 3.2. As mentioned after Theorem 3.3 smoothness conditions in terms of di↵er-

entiability transfer between C(·) and D(·). Applied to the above corollary, this implies

that smoothness conditions formulated in terms of di↵erentiability of the transition ma-

trices �j(·) transfer to D(·) and consequently to C(·). Ding et al. (2017), Lemma 3.1

also prove that di↵erentiability of �1(·) implies di↵erentiability of the covariance for tv-

VAR(1) models. They show this result by directly connecting the covariance to �1(·)

through the tv-VAR(1) model. However, their proof requires the additional condition that

k�1k1 = maxkxk1=1 k�1xk1 < 1, which places quite strict conditions on the VAR parame-

ters.

We have shown in (4) that under certain conditions all nonstationary time series have

an AR(1) representation. But there is no guarantee that the AR parameters are smooth.

However, we show below that under the locally stationary conditions in Assumption 3.1

a smooth approximation is possible.

We recall from (4) that {XT,N}t has the representation

XT,N =
1X

j=1

�(N)
T,j XT�j,N + "T,N , (15)

where {"T,N}t2Z are uncorrelated random vectors with ⌃T,N = Var["T,N ]. We have shown

in Section 3.2 that under Assumption 3.1 there exists a stationary time series {Xt(u)}t

with autocovariance {Cr(u)}r. Using the arguments leading to (4), it can be shown that

{Xt(u)}t has the VAR(1) representation

Xt(u) =
1X

j=1

�j(u)Xt�j(u) + "t(u), (16)
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where "t(u) are uncorrelated random vectors with variance ⌃(u) = Var["t(u)]. In the

following theorem we show that {�(N)
T,j } can be approximated by the stationary VAR

coe�cients {�j(u)}.

Theorem 3.4. Suppose the array of time series {XT,N}t satisfy Assumption 3.1 and let

{�(N)
t,j }j be defined as in (15) with ⌃(N)

T = Var["T,N ]. Additionally, let {Xt(u)}t be the

locally stationary approximation defined in (16).

(i) Then for all T 2 Z and j � 1 we have

k⌃(N)
T � ⌃(T/N)k2 

K

N

and k�(N)
T,j � �j(T/N)k2  K⇣(j)�2 min(2⇣(j), 1/N)

(ii) For all u1, u2 2 R and j � 1

k⌃(u1)� ⌃(u2)k2  K|u1 � u2|

and k�j(u1)� �j(u2)k2  K⇣(j)�1
|u1 � u2|.

A potential benefit of Theorem 3.4 is that it could be used to develop a bootstrap

procedure for nonstationary time series by transferring the widely used AR-sieve to the

locally stationary setup.

Remark 3.3 (Innovations and Kolomogorov’s formula). An immediate implication of the

above result is that the time varying innovation variance ⌃(N)
t can be approximated by

Kolomogorov’s formula

det[⌃(N)
t ] =

Z ⇡

�⇡

log det[f(t/N ;!)]d! +O(1/N)

where f(u;!) =
P

r2Z Cr(u) exp(ir!). A similar result was obtained in Liu et al. (2021),

Proposition 1 for a specific class of locally stationary time series.

3.4 The partial covariance of a locally stationary time series

The partial covariance is commonly used in the analysis of time series as a measure of

linear dependence between two time series after accounting for all the other components

in the time series. For stationary time series, the analysis is typically conducted through
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the partial spectral coherence which is the standardized Fourier transform of the partial

covariance, and is, conveniently, a function of the spectral density matrix function(cf.

Priestley (1981); Brillinger (2001); Dahlhaus (2000a); Krampe and Paparoditis (2022)).

For nonstationary time series the time-varying partial spectral coherence can be defined

as a function of the localized inverse spectral density, as was done in Park et al. (2014).

However, as far as we are aware, there are no results that connect this definition (of the

time-varying partial spectral coherence) to the actual partial covariance of the underlying

nonstationary time series.

We use the results on inverse covariances (developed in Section 3.3) to show that the

partial covariance of a locally stationary time series (as defined in Assumption 3.1) can

be approximated by a smooth function, which, in turn, is the partial covariance of the

locally stationary approximation {Xt(u)}t. We show below that this result can be used

to justify using the time-varying partial spectral coherence as an approximation of the

Fourier transform of the localized partial covariance.

We start by defining the partial covariance for nonstationary time series. For this,

let H(N) = sp(X(c)
t,N ; t 2 Z, 1  c  p) denote the space spanned by the entire multivari-

ate time series. Furthermore, let S ✓ {1, . . . , p} =: V be a set of indices referring to

components of the time series and H
(N)

� (X(c); c 2 S) = sp[X(c)
s,N ; s 2 Z, c 2 S

0] be the

space spanned by the entire time series of the components in S
0 only, where S

0 denotes

the complement of S. Let PM(Y ) denote the orthogonal projection of Y 2 H
(N) onto

the subspace M. For any S ✓ V , we define the residual of X(a)
t,N after projecting on

H
(N)

� (X(c); c 2 S) as

X
(a)|9S
t,N := X

(a)
t,N � P

H(N)�(X(c);c2S)(X
(a)
t,N), t 2 Z. (17)

In the definitions below we focus on the two sets S = {a, b} and S = {a}, a, b 2 V, a 6= b.

Using the above, we define the partial covariance

�9{a,b}
t,⌧,N =

 
⇢
(a,a)|9{a,b}
t,⌧,N ⇢

(a,b)|9{a,b}
t,⌧,N

⇢
(b,a)|9{a,b}
t,⌧,N ⇢

(b,b)|9{a,b}
t,⌧,N

!
:= Cov

" 
X

(a)|9{a,b}
t,N

X
(b)|9{a,b}
t,N

!
,

 
X

(a)|9{a,b}
⌧,N

X
(b)|9{a,b}
⌧,N

!#
(18)

and self partial covariance

⇢
(a,a)|9{a}
t,⌧,N = Cov[X(a)|9{a}

t,N , X
(a)|9{a}
⌧,N ]. (19)

As will become clear in the proof of the following theorem �9{a,b}
t,⌧,N and ⇢

(a,a)|9{a}
t,⌧,N can be
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expressed in terms of the matrix operator C(N) and its inverse. Under Assumption 3.1

and by Theorem 3.1 there exists a stationary time series {Xt(u)}t which has covariance

C(u), that locally approximates C(N). Using C(u) we will define the partial covariances

corresponding to the stationary time series {Xt(u)}t. In the theorem below we show that

the partial covariances of {Xt(u) = (X(1)
t (u), . . . , X(p)

t (u))>}t locally approximates the

partial covariance of {Xt,N = (X(1)
t,N , . . . , X

(p)
t,N)

>
}t. To do this, analogous to (17), (18) and

(19) we define

X
(a)|9S
t (u) := X

(a)
t,N(u)� P

Hu�(X
(c)
u ;c2S)

(X(a)
t (u)) for t 2 Z, (20)

�9{a,b}
t�⌧ (u) =

 
⇢
(a,a)|9{a,b}
u,t�⌧ ⇢

(a,b)|9{a,b}
u,t�⌧

⇢
(b,a)|9{a,b}
u,t�⌧ ⇢

(b,b)|9{a,b}
u,t�⌧

!
:= Cov

" 
X

(a)|9{a,b}
t (u)

X
(b)|9{a,b}
t (u)

!
,

 
X

(a)|9{a,b}
⌧ (u)

X
(b)|9{a,b}
⌧ (u)

!#
(21)

and self partial covariance

⇢
(a,a)|9{a}
t�⌧ (u) = Cov[X(a)|9{a}

t (u), X(a)|9{a}
⌧ (u)]. (22)

We note that a key ingredient in the proof of the theorem below is that the partial

covariance can be expressed as

Var
h
X

(e)|9{a,b}
t,N ; t 2 Z, e 2 {a, b}

i
= CS,S �CS,S0C�1

S0,S0C>

S,S0 ,

where S = {a, b}, CS,S = (C(e,f); e, f 2 S) (similarly for CS,S0 and CS0,S0) and C(e,f) =

(Cov[X(e)
t,N , X

(f)
⌧,N ]; t, ⌧ 2 Z). The presence of C�1

S0,S0 in the above expression explains why

the results in the previous sections (in particular Theorem 3.3) are necessary for proving

the result.

Theorem 3.5. Suppose Assumption 3.1 holds and let �9{a,b}
t,⌧,N , ⇢

(a,a)|9{a}
t,⌧,N , �9{a,b}

t�⌧ (u) and

⇢
(a,a)|9{a}
t�⌧ (u) be defined as in (18), (19), (21) and (22). Then for all a, b 2 {1, . . . , p}

k�9{a,b}
t,⌧,N ��9{a,b}

t�⌧ (t/N)k2  K⇣(t� ⌧)�2 min(1/N, ⇣(t� ⌧)) (23)

k�9{a,b}
t�⌧ (u)��9{a,b}

t�⌧ (v)k2  K|u� v|⇣(t� ⌧)�1 (24)

k⇢
(a,a)|9{a}
t,⌧,N � ⇢

(a,a)|9{a}
t�⌧ (t/N)k2  K⇣(t� ⌧)�2 min(1/N, ⇣(t� ⌧)) (25)

and k⇢
(a,a)|9{a}
t�⌧ (u)� ⇢

(a,a)|9{a}
t�⌧ (v)k2  K|u� v|⇣(t� ⌧)�1

, (26)
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where K is a positive generic constant.

Proof. See Appendix A.

The above result provides the tools to prove the following. Let {Xt,N}t be an array of

nonstationary time series that satisfy Assumption 3.1 and {Cr(u)}r the corresponding sta-

tionary approximation covariance. Let f(!; u) =
P

r2Z Cr(u)eir! and �(!; u) = f(!; u)�1.

Using the stationary partial spectral coherence (see Priestley (1981), Section 9.3 and

Dahlhaus (2000a)), the localized (complex) partial spectral coherence is defined as

ga,b(!; u) = �
�(a,b)(!; t/N)

(�(a,a)(!; t/N)�(b,b)(!; t/N))1/2
,

where �(a,b)(!) denotes the (a, b) entry of the matrix �(!; u). Under Assumption 3.1 (for

 > 3) and by using Theorem 3.5 it can be shown that

P
r2Z ⇢

(a,b)|9{a,b}
t,t+r,N exp(ir!)

qP
r2Z ⇢

(a,a)|9{a,b}
t,t+r,N exp(ir!)

P
r2Z ⇢

(b,b)|9{a,b}
t,t+r,N exp(ir!)

= ga,b (!; t/N) +O(N�1).

In other words, the estimated local partial spectral coherence (based on an estimator of

the local spectral density function) is an estimator of the Fourier transform of the partial

covariances of the nonstationary time series localised about time point t. This justifies

using local spectral density estimation approaches for estimating the partial covariance.

4 Proofs of the Main Results

Before proceeding with the proofs, we need to introduce further notation. We define below

unit vectors of appropriate dimension to select sub-matrices or elements from the operator

A : `2,p ! `2,p. That is, As1,s2 = (es1 ⌦ Ip)>A(es2 ⌦ Ip), where ⌦ is the Kronecker product

and Ip denotes the identity operator in Rp. Furthermore, A(a,b)
s1,s2 = (es1 ⌦ ea)>A(es2 ⌦ eb)

and we introduce the short notation for this unit vector as e(a,s) = (es ⌦ ea).

In the proofs below we will often consider sub-matrices, where one column or row

has been removed. To set-up the matrix notation for this, let I denote the identity

operator in `2 and I�k the identity operator after removing the kth row, i.e., for u 2 `2,

I�ku = (. . . , u�1, u0, u1, . . . , uk�1, uk+1, . . . ). The same notation is used for operators

in Rp and similar spaces. Furthermore, for an operator in `2,p we use (I�k ⌦ Ip) to
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remove the p-dimensional row I guess you mean the kth block row of dimension p? and

(I�s ⌦ I�a) =: I�(a,s) to remove the (a, s) row.

An important tool in the proofs is the inversion and manipulation of infinite dimen-

sional (block) matrices. Under certain conditions on both the matrices and the spaces we

can treat these in much the same way as finite dimensional matrices. An identity that we

will make frequent use of is the analogous version of the block inversion identity but for

infinite dimensional operators. Suppose that U : (S1, S2) ! (S1, S2) where S1 and S2 are

two Hilbert spaces and

U =

 
A B

C D

!
.

If the eigenvalues of U are bounded away from zero and from infinite, then using equation

(1.7.4) in Tretter (2008), page 43 (setting � = 0) for the inversion of block operator

matrices we have

U�1 =

 
eA eB
eC eD

!
=

 
eA �eABD�1

�D�1C eA D�1 +D�1C eABD�1

!
(27)

where from Definition 1.6.1 in Tretter (2008), page 35 we have

eA = (A�BD�1C)�1 and eD = (D �CA�1B)�1
. (28)

An immediately consequence of the above is that the di↵erence in the block diagonal

entries is

A� eA
�1

= BD�1C. (29)

We will make frequent uses of (27) and (29) in the proofs below.

4.1 Proofs of results in Section 2

The proof of Theorem 2.1 is based on decomposingC�1 in terms of the inverse of a banded

block matrix and its remainder, and balancing these two terms. An important result on

the inverse of banded matrices is given in Demko et al. (1984), Theorem 2.4. Specifically,

they consider positive definite infinite dimensional matrices of the form A : `2 ! `2 where

A = (At,⌧ ; t, ⌧ 2 Z) (At,⌧ 2 R). They show that if A has bandwidth M (in the sense
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At,⌧ = 0 if |t� ⌧ | > M) and A�1 = B = (Bt,⌧ ; t, ⌧ 2 Z), then

|Bt,⌧ | 
(1 +

p
r)2

b
⇢
b|t�⌧ |/Mc+1

, (30)

where r = b/a and ⇢ = (
p
r � 1)/(

p
r + 1) with a = infv2`2,kvk2=1hv,Avi and b =

supv2`2,kvk2=1hv,Avi. An interesting application of this results is given in Ding and Zhou

(2021), who use it to obtain a rate of decay for the parameters in an autoregressive

approximation. As our results are in the multivariate (possibly high dimensional) setting

we require a bound on the block entries of a banded matrix (and not just the individual

entries). Thus in the following lemma we obtain generalisation of (30) for block matrices.

Lemma 4.1. Let A be a linear operator on `2,p where A = (At,⌧ ; t, ⌧ 2 Z) and At,⌧

is a p ⇥ p dimensional matrix. We suppose that A is block-banded with bandwidth M

and block-size p in the sense that for all s1, s2 with |s1 � s2| > M , As1,s2 = 0. Let

b = supv2`2,p,kvk2=1hv,Avi, and a = infv2`2,p,kvk2=1hv,Avi. Furthermore, r = b/a, ⇢ =

(
p
r � 1)/(

p
r + 1). Let B = A�1 = (Bt,⌧ ; t, ⌧ 2 Z) (where Bt,⌧ is a p ⇥ p dimensional

matrix). Then, the following bound holds for all p⇥ p sub-matrices and t 6= ⌧

kBt,⌧k2 
(1 +

p
r)2

b
⇢
b|t�⌧ |/Mc+1

where bxc denotes the largest integer less than or equal to x.

Let eA = (I�k⌦Ip)>A(I�k⌦Ip) be a sub-matrix without the kth p-dimensional row and

column, where k 2 Z. Then, for eB = eA
�1

with eBt,⌧ = (((I�k⌦Ip)eA
�1
(I�k⌦Ip)>)t,⌧ ; t, ⌧ 2

Z) the following bound holds for all p⇥ p sub-matrices and t 6= ⌧

k eBt,⌧k2 
(1 +

p
r)2

b
⇢
b|t�⌧ |/Mc+1

.

Proof. See Appendix B.1.

Using the above lemma we now prove Theorem 2.1.

Proof of Theorem 2.1. For (1) we focus here on the case t 6= ⌧ and |t � ⌧ | � 2. Define

the set U = {⌧ 2 Z, ⌧ 6= t}, and denote Ct,U = (et ⌦ Ip)>C(I�t ⌦ Ip) and CU ,U =

(I�t ⌦ Ip)>C(I�t ⌦ Ip). Without loss of generality we consider a permuated version of C,
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which contains Ct,t in the top left hand corner of C

C =

 
Ct,t Ct,U

CU ,t CU ,U

!
.

Using the permuted C makes the proof easier to follow. The same proof applies to the

non-permuted C too. Note that in this paper usually all infinite dimensional operators

are in bold. Thus Ct,U , CU ,t and CU ,U should be in bold. But this makes the notation

in the proof quite overbearing, so for this proof we have dropped the bold for these sub-

operators. Using the block matrix inversion formula (see Tretter (2008), page 35; for

operators) we have

D = C�1 =

 
Dt,t �D

�1
t,t Ct,UC

�1
U ,U

�C
�1
U ,UCU ,tD

�1
t,t (CU ,U � CU ,tC

�1
t,t Ct,U)�1

!
.

From the above we observe that the Dt,⌧ matrix is

Dt,⌧ = �D
�1
t,t Ct,UC

�1
U ,U(I�t ⌦ Ip)

>(e⌧ ⌦ Ip),

using that ��1
sup  Dt,t  �

�1
inf we have kDt,⌧k2  �supk(Ct,UC

�1
U ,U)(I

>

�te⌧ ⌦ Ip)k2. Thus we

focus on bounding the induced `2-norm of At,⌧ = (Ct,UC
�1
U ,U)(I

>

�te⌧ ⌦ Ip).

In Lemma 4.1 we obtain the rate of decay for the entries of the inverse of a block

M-banded matrix. We leverage on this result to obtain a rate of decay for C�1
U ,U . Thus

the main outline in the proof below is to (a) replace CU ,U with a (block) banded matrix

(b) obtain a bound on the replacement error and (c) balance the rate of decay of the

inverse banded matrix approximation with the replacement error (both of which depend

on the bandwidth M).

To align the dimensions of CU ,U and C we will pad CU ,U with zeros in the sense that

(I�t ⌦ Ip)CU ,U(I�t ⌦ Ip)> and C are identical everywhere except at the tth p-dimensional

row/column. Using this notation, we define the following banded matrix. We replace CU ,U

with a banded matrix BM of bandwidth M in the sense that for all p ⇥ p sub-matrices

and s1, s2 2 Z

((I�t ⌦ Ip)BM(I�t ⌦ Ip)
>)s1,s2 = 1(|s1 � s2|  M)((I�t ⌦ Ip)CU ,U(I�t ⌦ Ip)

>)s1,s2 , (31)

where 1 denotes the indicator function. To invert CU ,U we use the identity C
�1
U ,U =

24



B�1
M [I + B�1

M (CU ,U � BM)]�1. From Lemma B.1, equation (55) we show that kCU ,U �

BMk2  2K/(� 1)(M � 1)�+1. Thus if M is su�ciently large, i.e., M > 1+ (2K/(�

1)1/(�1), we have kCU ,U �BMk2 < 1, this leads to the Neumann series C�1
U ,U = B�1

M [I +
P

1

s=1(�1)s[B�1
M (CU ,U �BM)]s]. Substituting the above into At,⌧ = (Ct,UC

�1
U ,U)(I

>

�te⌧ ⌦ Ip)

gives

At,⌧ = Ct,UB
�1
M [I +

1X

s=1

(�1)s[B�1
M (CU ,U �BM)]s](I>

�te⌧ ⌦ Ip)

= Ct,UB
�1
M (I>

�te⌧ ⌦ Ip) + Ct,UB
�1
M

1X

s=1

(�1)s[B�1
M (CU ,U �BM)]s](I>

�te⌧ ⌦ Ip).

By applying the triangular inequality to the above we have kAt,⌧k2  J1 + J2 where

J1 = kCt,UB
�1
M (I>

�te⌧ ⌦ Ip)k2

and J2 = kCt,UB
�1
M

1X

s=1

(�1)s[B�1
M (CU ,U �BM)]s](I>

�te⌧ ⌦ Ip)k2.

We now bound J1 and J2. By using Lemma B.1, we bound J2 with

J2  kCt,UB
�1
M k2

1X

s=1

(K2
M

�+1)s  2K/(� 1)(M � 1)�+1
.

We next bound J1. First, we expand the matrix multiplication of Ct,UB
�1
M , then use the

sub-multiplicativety of k · k2. This gives

J1 

X

s2Z,s 6=t

kCt,sk2 · k((I�t ⌦ Ip)B
�1
M (I�t ⌦ Ip))s,⌧k2.

Under Assumption 2.1 we have kCt,sk2  Kv(t� s)�, whereas Lemma 4.1 gives

k((I�t ⌦ Ip)B
�1
M (I�t ⌦ Ip))s,⌧k2 

(1 +
p
rM)2

�sup,M
⇢
b|s�⌧ |/Mc+1
M ,

where rM = �sup,M/�inf,M ,�sup,M  �sup+2K/(�1)(M�1)�+1
,�inf,M � �inf�2K/(�

1)(M�1)�+1, and ⇢M = (
p
rM�1)/(

p
rM+1). IfM > (2K/(�1)max(2/�inf , 1/�sup))(1/(�1)+

1, we have �inf,M � �inf/2 and �sup,M  2�sup. This means, rM  4r and ⇢M 
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(2
p
r � 1)/(2

p
r + 1) =: ⇢, where r = �sup/�inf . With this, we have

k((I�t ⌦ Ip)B
�1
M (I�t ⌦ Ip))s,⌧k2 

2(1 + 2
p
r)2

�sup
⇢
b|s�⌧ |/Mc+1

,

Hence

J1 
2K(1 + 2

p
r)2

�sup

X

s2Z,s 6=t

|s� t|
�

⇢
b|s�⌧ |/Mc+1


2K(1 + 2

p
r)2

�sup

X

s2Z

⇢
|s|/M 1

v(s� t+ ⌧)
.

Thus when M > Kc := (2K/(� 1)max(2/�inf , 1/�sup))(1/(�1)+1, the above bounds for

J1 and J2 hold and we have kDt,⌧k2  �sup(J1 + J2).

The final part in the proof is to balance the two bounds J1 and J2. For this, for each

t, ⌧ 2 Z we set M = Mt�⌧ := �
|t�⌧ | log(⇢)

2(�1) log(|t�⌧ |) (note 0 < ⇢ < 1). When |t�⌧ | is su�ciently

large i.e., Mt�⌧ � Kc by substituting Mt�⌧ into the bounds for J1 and J2 it can be shown

that

kDt,⌧k2  2K(1 + 2
p
r)2(2 + 2S)|t� ⌧ |

�+1 +
2K

� 1

✓
| log(⇢)|

2(� 1)

|t� ⌧ |

log |t� ⌧ |
� 1

◆�+1

.

On the other hand, if |t� ⌧ | is small, i.e., Mt�⌧ < Kc then it can be shown that

kDt,⌧k2  1/�inf  (min(�inf/2,�sup)�inf)
�1 2K

� 1

✓
| log(⇢)|

2(� 1)

|t� ⌧ |

log |t� ⌧ |
� 1

◆�+1

.

The above gives the following global bound for all t, ⌧ 2 Z

kDt,⌧k2  2K(1 + 2
p
r)2(2 + 2S)v(t� ⌧)�+1

+max(1, (min(�inf/2,�sup)�inf)
�1)

2K

(� 1)

✓
| log(⇢)|

2(� 1)

v(t� ⌧)

v(log v(t� ⌧))
� 1

◆�+1

 K⇣(t� ⌧)�1
.

Note that in the proof we have carefully tracked all the constants, to demonstrate that

the constants only depend on �inf ,�sup, K and . To reduce notation, in the remainder of

the paper we use a generic constant K.

To prove (2), we only need to slightly modified the arguments. We use U = {⌧ 
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T, ⌧ 6= t} and obtain

C(�1;T ) =

 
Ct,t Ct,U

CU ,t CU ,U

!
.

This leads to

[C(�1;T )�1]t,⌧ = �[C(�1;T )�1]�1
t,t Ct,UC

�1
U ,U(I�t ⌦ Ip)

>(e⌧ ⌦ Ip).

Then, we can follow the same strategy. Note that the sums involved are now from �1

to T but they are bounded from above by the sums given in (1).

Proof of Theorem 2.2. As mentioned in Section 2.3 in order to connect the coe�cients

{�T,j} and �T,d,j we first need to connect the inverses of C(T �d, T ) and C(�1, T ). For

this let

C(�1, T ) =

 
C(�1, T � d) C(�1, T � d, T )

C(�1, T � d, T )> C(T � d, T )

!

where C(�1, T � d, T ) = (Ct,⌧ ; t  T � d, T � d + 1  ⌧  T ) and C(T � d, T ) =

(Ct,⌧ ;T � d + 1  t, ⌧  T ). In order to compare the AR coe�cients we use the block

decomposition of C(�1, T )�1

C(�1, T )�1 =

 
eD(�1, T � d) eD(�1, T � d, T )

eD(�1, T � d, T )> eD(T � d, T )

!
.

Note we have used the notation eD to show that they are not the inverse of the corre-

sponding submatrix of C. To prove the result we start by showing that for all 1  t, ⌧  d

we have

k[C(T � d, T )�1
� eD(T � d, T )]T�t,T�⌧k2  K⇣(d� t)�3/2

⇣(d� ⌧)�3/2
. (32)

Using Schur’s complement we have

C(T � d, T )�1
� eD(T � d, T ) = � eD(�1, T � d, T ) eD(�1, T � d)�1 eD(�1, T � d, T )>.
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Thus block-wise for all 1  t, ⌧  d we have

[C(T � d, T )�1
� eD(T � d, T )]T�t,T�⌧

= �[(eT�t ⌦ Ip)
> eD(�1, T � d, T )] eD(�1, T )�1[(eT�⌧ ⌦ Ip)

> eD(�1, T � d, T )]>.

Using the above we obtain the bound

k[C(T � d, T )�1
� eD(T � d, T )]T�t,T�⌧k2

 �supk(eT�t ⌦ Ip)
> eD(�1, T � d, T )k2k(eT�⌧ ⌦ Ip)

> eD(�1, T � d, T )k2. (33)

Next we obtain a bound for the matrix rows (eT�t⌦Ip)> eD(�1, T �d, T ) = ( eD(�1, T �

d, T )T�t,`; ` < T ). By applying Lemma B.3 and using Theorem 2.1 we have

k(eT�t ⌦ Ip)
> eD(�1, T � d, T )k2  (

T�d�1X

`=�1

k eD(�1, T � d, T )T�t,`k
2
2)

1/2

 K(
T�d�1X

`=�1

⇣(T � t� `)2(�1))1/2  K⇣(d� t)�3/2
.

Substituting the above into (33) we have

k[C(T � d, T )�1
� eD(T � d, T )]T�t,T�⌧k2  K⇣(d� t)�3/2

⇣(d� ⌧)�3/2
.

This proves (32).

We now compare the bottom rows of C(T �d, T )�1 and eD(T �d, T ) and (32) to prove

(7). That is setting t = 0 and ⌧ = j gives

k�T,d,j � �T,jk2  �supk[C(T � d, T )�1
� eD(T � d, T )]T,T�jk2

 K⇣(d)�3/2
⇣(d� j)�3/2

.

This proves (7). Using (7) we immediately obtain (8).

Note that projection methods can also be used to prove the above result (and the

same bound obtained). In this case the proof would be similar to that given in the proof

of Theorem 3.2 in Meyer et al. (2017) (in the context of spatially stationary processes).
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4.2 Proofs of results in Section 3

Proof of Theorem 3.3. We begin with the proof of (11). Note that C�1 = D. Using the

classical matrix inverse expansion we have

D(u)�D(v) = C(u)�1
�C(v)�1 = C(u)�1[C(v)�C(u)]C(v)�1

= D(u)[C(v)�C(u)]D(v). (34)

Thus by the Lipschitz continuity of C (see Assumption 3.1(iii)) and Theorem 2.1, we have

kDt�⌧ (u)�Dt�⌧ (v)k2 =
X

s1,s22Z

(D(v))t,s1(C(u)�C(v))s1,s2(D(u))s2,⌧

 KK
2
X

s1,s22Z

⇣(t� s1)
�+1 |u� v|

v(s2 � s1)
⇣(s2 � ⌧)�+1

= KK
2
X

s1,s22Z

⇣(s1)
�+1 |u� v|

v(s2 + ⌧ � t� s1)
⇣(s2)

�+1
 49KK

2
|u� v|⇣(⌧ � t)�1

,

where the last inequality follows from Lemma B.5 and K is finite constant, independent

of u, v, t, ⌧ . This proves (11).

To prove (12), we note that using the classical inverse matrix expansion (analogous to

(34)) we have

D(N)
�D(t/N) = D(N)

⇣
C(t/N)�C(N)

⌘
D(t/N).

Theorem 2.1 gives bounds for the entries in D(t/N) and D(N). On the other hand,

Assumption 3.1 gives the bound

k

⇣
C(t/N)�C(N)

⌘

s1,s2
k2  k (C(t/N)�C(s1/N))s1,s2 k2 + k

⇣
C(s1/N)�C(N)

⌘

s1,s2
k2

 K

✓
min

✓
|t� s1|

Nv(s1 � s2)
,

2

v(s1 � s2)

◆
+

1

Nv(s1 � s2)�1

◆
.
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Substituting these bounds into [D(N)
⇣
C(t/N)�C(N)

⌘
D(t/N)]t,⌧ gives

k(D(N)
�D(t/N))t,⌧k2

 KK
2
X

s1,s22Z

⇣(t� s1)
�1

✓
min(

|t� s1|

Nv(s1 � s2)
,

2

v(s1 � s2)
) +

1

Nv(s1 � s2)�1

◆
⇣(⌧ � s2)

�1

 KK
2 min

✓ X

s1,s22Z

⇣(t� s1)
�2

⇥
1

Nv(s1 � s2)
⇥ ⇣(⌧ � s2)

�1
,

2
X

s1,s22Z

⇣(t� s1)
�1

⇥
1

Nv(s1 � s2)
⇥ ⇣(⌧ � s2)

�1

◆

+KK
2
X

s1,s22Z

⇣(t� s1)
�1

⇥
1

Nv(s1 � s2)�1
⇥ ⇣(⌧ � s2)

�1
 98KK

2
⇣(t� ⌧)�2 min(1/N, 2⇣(t� ⌧)),

where the last bound follows from Lemma B.5. This proves (12).

Proof of (13). By using (34) we have

Dr(u)�Dr(v) =
X

s1,s22Z

Ds1(u)[Cs1(u)� Cs2(v)]Ds2�r(v).

Let h 2 R\{0}, and substitute v = u+ h and u = u into the above to give

[Dr(u)�Dr(u+ h)]/h =
X

s1,s22Z

Ds1(u)
[Cs1(u)� Cs2(u+ h)]

h
Ds2�r(u+ h).

Taking the limit h ! 0 (and using dominated convergence to exchange limit and sum)

gives the entry-wise matrix derivative

dDr(u)

du
= �

X

s1,s2

Ds1(u)
dCs1�s2(u)

du
Ds2�r(u)

and the bound

����
dDr(u)

du

����
2



X

s1,s2

kDs1(u)k2k
dCs1�s2(u)

du
k2kDs2�r(u)]k2  K⇣(r)�1

,

where the last inequality follows from Theorem 3.3, the condition supu k
dCr(u)

du k2  K⇣(r)�1

and Lemma B.5.

To prove Theorem 3.4, below, we require the following corollary of Theorem 3.3.
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Corollary 4.1. Suppose Assumption 3.1 holds and let C(N)(�1, T ) = (C(N)
t,⌧ ; t, ⌧  T )

and C(�1, T ; u) = (Ct,⌧ (u); t, ⌧  T ) Then for all t, ⌧  T we have

k

h
C(N)(�1, T )�1

�C(�1, T ;T/N)�1
i

t,⌧
k2

 K⇣(t� ⌧)�2 min(1/N, 2⇣(t� ⌧))

Proof. The result uses that k[C(N)(�1, T )�1]s1,s2  K⇣(s1�s2)�1 and k[C(�1, T ; u)�1]s1,s2 

K⇣(s1�s2)�1. The assertion follows by the same steps as in the proof of Theorem 3.3.

Proof of Theorem 3.4. To prove the result we start with the following identities

�(N)
T,j = �([C(N)(�1, T )�1]T,T )

�1[C(�1, T )�1]T,T�j (35)

and �j(u) = �([C(�1, T ; u)�1]T,T )
�1[C(�1, T ; u)�1]T,T�j

where C(N)(�1, T ) = (C(N)
t,⌧ ; t, ⌧  T ) and C(�1, T ; u) = (Ct,⌧ (u); t, ⌧  T ). These

identities together with Corollary 4.1 will be used to prove the result.

We first obtain a bound for k⌃(N)
T � ⌃(T/N)k2. We note that

⌃(N)
T � ⌃(T/N) = ([C(N)(�1, T )�1]T,T )

�1
� ([C(�1, T ;T/N)�1]T,T )

�1

= ([C(�1, T ;T/N)�1]T,T )
�1([C(�1, T ;T/N)�1]T,T � [C(N)(�1, T )�1]T,T )([C

(N)(�1, T )�1]T,T )
�1
.

Thus by using Corollary 4.1 (with t = T and ⌧ = T ) we have

k⌃(N)
t � ⌃(t/N)k2  k([C(�1, T ;T/N)�1]T,T )

�1
k2 · k[C(�1, T ;T/N)�1

�C(N)(�1, T )�1]T,Tk2

⇥k([C(N)(�1, T )�1]T,T )
�1
k2  KN

�1
. (36)

This proves the first part of (i)

To prove the second part of (ii), we use (35) to give the decomposition �(N)
t,j ��j(t/N) =

J1 + J2, where

J1 = �

h
([C(N)(�1, T )�1]T,T )

�1
� [C(�1, t; t/N)�1]T,T )

�1
i
[C(N)(�1, T )�1]T,T�j,

J2 = �([C(�1, T ;T/N)�1]T,T )
�1
h
[C(N)(�1, T )�1

�C(�1, T ;T/N)�1]T,T�j

i
.
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First we bound J1 this gives

kJ1k2 

���([C(N)(�1, T )�1]T,T )
�1

� [C(�1, T ;T/N)�1]T,T )
�1
���
2
k[C(N)(�1, T )�1]T,T�jk2

 K
1

N
⇣(0)�1

⇥ ⇣(j)�1
.

where we have used the bounds in Theorem 2.1 and (36) in the above. Using a similar

argument (and Corollary 4.1 (with t = T and ⌧ = T � j) ) we have

kJ2k2  k([C(�1, T ;T/N)�1]T,T )
�1
k2

���[C(N)(�1, T )�1
�C(�1, T ;T/N)�1]T,T�j

���
2

 K⇣(j)�2 min(2⇣(j), 1/N).

Altogether this gives k�(N)
T,j � �j(T/N)k2  K⇣(j)�2 min(2⇣(j), 1/N). Thus we have

proved the second part of (i). The proof for (ii) follows a similar method as given in the

proof of Theorem 3.3, and we omit the details.
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A Proofs of remaining results in Sections 3.3 and 3.4

Proof of Theorem 3.1. Our aim is to show that the k · k2-norm of the matrix function

Gu(!) =
X

r2Z

Cr(u) exp(ir!) (37)

is bounded above and below by the �sup and �inf respectively (for all !). Since C(u) is a

(block) Toeplitz matrix then by Toeplitz theorem (see Toeplitz (1911) and Böttcher and

Grudsky (2000), Theorem 1.1) this would immediately prove that the eigenvalues of C(u)

are bounded above and below by �sup and �inf (thus proving the result).

For a given u 2 R and N 2 N we define the integer Tu,N as Tu,N = buNc (where bxc

denotes the largest integer smaller than x). LetM 2 2N and define anM⇥M -dimensional
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submatrix of C(M) that is centred about Tu,N

C(N)
u,M := (C(N)

Tu,N+s1,Tu,N+s2
)s1,s2=�M/2+1,...,M/2 =: (I(M)

Tu,N
⌦ Ip)

>C(N)(I(M)
Tu,N

⌦ Ip).

We show below that if M is su�ciently small, then C(N)
u,M is an approximation of the

M ⇥M -dimensional submatrix of C(u)

CM(u) := (Cs1�s2(u))s1,s2=�M/2+1,...,M/2 =: (I(M)
(u) ⌦ Ip)

>C(u)(I(M)
(u) ⌦ Ip).

We start by obtaining a finite approximation of Gu(!) in terms of CM(u). Let

Gu,M(!) =
1

M

Tu,N+M/2X

t,⌧=Tu,N�M/2+1

Ct�⌧ (u) exp(i(t� ⌧)!) = (x! ⌦ Ip)
⇤CM(u)(x! ⌦ Ip), (38)

where x! = 1/
p
M(exp(�it!))t=Tu,N�M/2+1,...,Tu,N+M/2. Using C(N)

u,M for each M 2 2N and

! 2 [0, 2⇡] we define the quantity

G
(N)
u,M(!) =

1

M

Tu,N+M/2X

t,⌧=Tu,N�M/2+1

C
(N)
t,⌧ exp(i(t� ⌧)!) = (x! ⌦ Ip)

⇤C(N)
u,M(x! ⌦ Ip). (39)

Since C(M)
u,N is a finite dimensional submatrix of C(N), for N > N0, the eigenvalues of

C(N)
u,M are bounded above and below by �inf and �sup respectively. Then, since kx!k2 = 1

we have

�inf  kG
(N)
u,M(!)k2  �sup for all N , M and !. (40)

By using Lemma B.2, equation (59) we have

sup
!

kGu,M(!)�G
(N)
u,M(!)k2  K

M

N
, (41)

where K is a generic constant that depends only on K and . The above immediately

implies �inf �KM/N  kGu,M(!)k2  �sup +KM/N . Finally we return to Gu(!). Using

Lemma B.2, equation (60) we have sup! kGu(!)�Gu,M(!)k2  K/M . By using this and

(41) we have

kGu(!)k2 = kG
(N)
u,M(!)k2 +O

✓
M

N
+

1

M

◆
.
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Finally, we set M = 2bN1/2
c and substitute it into the above, this together with (40)

gives

�inf �
K

N1/2
 kGu(!)k2  �sup +

K

N1/2
.

As this holds for all N > N0 we have that for any " > 0 �inf � "  kGu(!)k2  �sup + ",

as required.

Proof of Theorem 3.2. To prove that Assumption 3.1(i) holds (a uniform bound on the

eigenvalues of C(N)) for a su�ciently large N , we first replace the infinite dimensional

matrix C(N) with an infinite dimensional banded matrix C(N)
M (where the bound for the

di↵erence between the two matrices is small). The central part of the proof is to obtain a

bound for the eigenvalues of C(N)
M (that is uniform over a su�ciently large N). And the

key observation is that the banded matrix embeds an infinite number of (M+1)⇥(M+1)-

dimensional block matrices, where each block matrix can be approximated by a stationary

matrix. It can be shown that lower and upper bounds for the eigenvalues of the locally

stationary approximation block matrix are given by �inf and �sup. This approximation

gives a bound for the eigenvalues of each block matrix. Finally, motivated by the proof

of Proposition 2.9 in Ding and Zhou (2021), we show that the eigenvalues of the banded

matrix C(N)
M can be bounded by the eigenvalues of “overlapping” block matrices. This

will prove the result.

We start by defining the infinite dimensional (block) banded matrix C(N)
M where for all

t, ⌧ 2 Z the entries are defined by [C(N)
M ]t,⌧ = 1(|t�⌧ |  M)Ct,⌧ .Without loss of generality

we assume that M = 2m,m 2 N. Using Lemma B.1 we have kC(N)
�C(N)

M k2  KM
�+1.

Our aim is to obtain bounds for x>C(N)
M x where x = (. . . , x�1, x0, x1, . . .)> 2 `2,p, xl 2 R

p

and kxk2 = 1. To do this we define the (M + 1)p-dimensional shifting subsequence

xs�m,s+m = (xs�m, . . . , xs+m)> and the (M + 1)p⇥ (M + 1)p dimensional (block) banded

matrix

C(N)(s�m, s+m) = (C(N)
t,⌧ ; s�m  t, ⌧  s+m).

For each u 2 Z we define the stationary approximation matrix C(s�m, s+m; u)

C(s�m, s+m; u) = (Ct�⌧ (u); s�m  t, ⌧  s+m).
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Under Assumption 3.1(iii) we have with Lemma B.4

kC(N)(s�m, s+m)�C(s�m, s+m; s/N)k2

 sup
t2(s�m,s+m)

s+mX

⌧=s�m

kCt,⌧ � Ct�⌧ (s/N)k2  K
m

N
, (42)

where K is a generic constant that holds for all N and s. The condition 0 < �inf 

infu inf! �min(f(!; u))  supu sup! �max(f(!; u))  �sup < 1 implies (see, among others,

(Basu and Michailidis, 2015, Proposition 2.3)) that for all u 2 R �min[C(s�m, s+m; u)] �

inf! �min[f(!; u)] � �inf and �max[C(s�m, s+m; u)]  inf! �max[f(!; u)]  �sup. Therefore

by using (42) and the above we have

⇣
�inf �K

m

N

⌘
kxs�m,s+mk2  x

>

s�m,s+mC
(N)(s�m, s+m)xs�m,s+m 

⇣
�sup +K

m

N

⌘
kxs�m,s+mk2.

(43)

This gives a bound for each block. Next we obtain a bound between

x
>C(N)

M x =
X

`2Z

MX

r=�M

x
>

` C`,`+rx`+r (44)

with the overlapping block matrix inner-product

X
>

MOXM :=
1

M + 1

X

s2Z

x
>

s�m,s+mC
(N)(s�m, s+m)xs�m,s+m.

Note we have not formally defined XM or OM but have simply set it to equal the above.

Basic algebra gives

X
>

MOMXM =
X

`2Z

MX

r=�M

✓
M + 1� |r|

M + 1

◆
x
>

` C`,`+rx`+r. (45)

Using (44) and (45) we have

x
>C(N)

M x�X
>

MOMXM =
1

M + 1

X

`2Z

MX

r=�M

|r|x
>

` C`,`+rx`+r.
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Hence under Assumption 3.1(ii) we have

���x>C(N)
M x�X

>

MOMXM

���
2


1

M + 1

X

`2Z

mX

r=�m

|r|

v(r)
kx`k2kx`+rk2


2

M + 1

 
1X

r=1

1

v(r)�1

!
X

`2Z

kx`k
2
2 =

2

M + 1

 
1X

r=1

1

v(r)�1

!
,(46)

where the last line follows because kxk2 =
P

`2Z kx`k
2
2 = 1. Finally we use (43) to give

(�inf �Km/N)

M

X

s2Z

kxs�m,s+mk
2
2  X

>

MOMXM 
(�sup +Km/N)

M

X

s2Z

kxs�m,s+mk
2
2.

Using that
P

s2Z kxs�m,s+mk
2
2 = (M + 1)kxk22 = (M + 1) we have

�inf �Km/N  X
>

MOMXM  �sup +Km/N.

Hence by using (46), kC(N)
�C(N)

M k2  KM
�+1 and setting m = bN

1/
c we have

�inf �KN
�1+1/

 x
>C(N)

x  �sup +KN
�1+1/

,

where K is generic constant that does not depend on N or M . Thus for a su�ciently

large N we have the result.

Proof of Corollary 3.1. We show the result follows from Theorem 3.2, Lemma 4.1, and

Theorem 3.3 using the inverse matrix D(N) = (C(n))�1 which has simple properties.

Define the matrix

e�j(t/N) =

8
>><

>>:

Ip j = 0

��j(t/N) 1  j  p

0 otherwise

.

Using {�j(u)}j we define the stationary time Xt(u) =
Pd

j=1�j(u)Xt�j(u) + ⌃(u)1/2"t.

This has the inverse (stationary) covariance D(u) = (Dt�⌧ (u); t, ⌧ 2 Z) where

Dt�⌧ (u) =
dX

`=0

e�`(u)
>⌃(u)�1e�(t�⌧)+`(u).

The corresponding inverse spectral density is f(!; u)�1 =
P

r2Z Dr(u) exp(ir!). Under
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the stated conditions on the roots associated with {�j(u)}r we have that for some �1

and �2 that 0 < �1  infu inf! �min(f(!; u)�1)  supu sup! �max(f(!; u)�1)  �2 < 1

and thus the eigenvalues of D(u) are uniformly bounded away from �1 and �2. Let

C(u) = D(u)�1 = (Ct�⌧ ; t, ⌧ 2 Z). Then by using Lemma 4.1 we have

sup
u

kCr(u)k2  K⇢
|r| (47)

for some 0 < ⇢ < 1. Further, by using (11) (applied to exponential decay rather than

polynomial decay) we have kCr(u)� Cr(v)k2  K⇢
|r|
|u� v|.

Using the Cholesky decomposition it can be shown that the inverse covariance is

D(N) = (Dt,⌧ ; t, ⌧ 2 Z) where

D
(N)
t,⌧ =

dX

`=0

e�`

✓
t+ `

N

◆>

⌃

✓
t+ `

N

◆�1

e�(t�⌧)+`

✓
t+ `

N

◆
.

The Lipschitz conditions on �j(·) together with (47) and (48) imply that D(N)
t,⌧ is approx-

imated by Dt�⌧ (t/N). I.e.

|D
(N)
t,⌧ �Dt�⌧ (t/N)k2 

(
K

N |t� ⌧ |  d

0 |t� ⌧ | > d
.

Now by using the above and Theorem 3.2 for large enough N the conditions in Assumption

3.1 hold (in terms of the inverse covariance). Therefore for su�ciently large N , the rate

kC
(N)
t,⌧ k2  K⇢

|t�⌧ | follows from Lemma 4.1. Further, the conditions in Theorem 3.3 hold

and we have

kC
(N)
t,⌧ � Ct�⌧ (t/N)k  K

⇢
|r|

N
,

which gives kC(N)
t,⌧ � Ct�⌧ (t/N)k2  K

⇢|t�⌧ |

N . Thus we have proved the result.

We now prove Theorem 3.5. To prove this result we will use the alternative repre-

sentation of the covariance operator C(N) defined in Remark 2.2. With this in mind, we

define the sub-operators C(e,f) : `2 ! `2 which are infinite dimensional matrices where

[C(e,f)]t,⌧ = Cov[X(e)
t,N , X

(f)
t,N ]. Note that to reduce cumbersome notation, we have dropped

the N from the definition C(e,f). We also define the corresponding “stationary” matrix

operators C(e,f)(u) : `2 ! `2, where [C(e,f)(u)]t,⌧ = Cov[X(e)
t (u), X(f)

t (u)]. This represen-

tation is instrumental in proving the result below.
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Proof of Theorem 3.5. We first prove (23) and (24). We start by obtaining an expression

for

Var
h
X

(c)|9{a,b}
t ; t 2 Z, c 2 {1, 2}

i
= (�9{a,b}

t,⌧,N ; t, ⌧ 2 Z)

and Var
⇥
Xt(u)

(c)|9{a,b}; t 2 Z, c 2 {1, 2}
⇤

= (�9{a,b}
t�⌧ (u); t, ⌧ 2 Z).

To simplify notation, and without loss of generality, we focus on the case a = 1, b = 2.

We will represent the above in terms of block matrices of C(N) and C(u). We define

A(1,2) : `2,2 ! `2,2, B
(1,2) : `2,p�2 ! `2,2 and E(1,2) : `2,p�2 ! `2,p�2 where

A(1,2) =

 
C(1,1) C(1,2)

C(2,1) C(2,2)

!
,B(1,2) =

 
C(1,3)

. . . C(1,p)

C(2,3)
. . . C(2,p)

!

and E(1,2) = (C(e,f); e, f 2 {3, . . . , p}).

Analogously, we define A(1,2)(u),B(1,2)(u),E(1,2)(u). It is clear the operators A(1,2), B(1,2)

and E(1,2) are comprised of an infinite number of 2 ⇥ 2, 2 ⇥ (p � 2) and (p � 2) ⇥ (p �

2) matrices respectively. To denote these sub-matrices we use the following notation.

Suppose H : `2,p1 ! `2,p2 for some p1, p2 then [H ]t,⌧ := (Ip1 ⌦ et)>B(1,2)(Ip2 ⌦ e⌧ ) refers

to their p1 ⇥ p2-dimensional submatrices.

It is well known that the conditional covariance of X(c)
t,N and X

(c)
t (u) can be represented

as the Schur complement

Var
h
X

(c)|9{1,2}
t,N ; t 2 Z, c 2 {1, 2}

i
= A(1,2)

�B(1,2)(E(1,2))�1(B(1,2))>

and

Var
⇥
Xt(u)

(c)|9{1,2}; t 2 Z, c 2 {1, 2}
⇤

= A(1,2)(u)�B(1,2)(u)(E(1,2)(u))�1(B(1,2)(u))>.

Then, we have

�9{a,b}
t,⌧,N = [A(1,2)

�B(1,2)(E(1,2))�1(B(1,2))>]t,⌧

and �9{a,b}
t�⌧ (u) = [A(1,2)(u)�B(1,2)(u)(E(1,2)(u))�1(B(1,2)(u))>]t,⌧ . (48)

We use the above representations to prove (23). Using (48) we have

k�9{a,b}
t,⌧,N ��9{a,b}

t�⌧ (t/N)k2  J1 + J2 + J3 + J4
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where

J1 = k(A(1,2)
�A(1,2)(t/N))t,⌧k2

J2 = k(B(1,2)(E(1,2))�1(B(1,2)
�B(1,2)(t/N))>)t,⌧k2

J3 = k(B(1,2)((E(1,2))�1
� (E(1,2)(t/N))�1)(B(1,2)(t/N))>)t,⌧k2

J4 = k((B(1,2)
�B(1,2)(t/N))(E(1,2)(t/N))�1(B(1,2)(t/N))>)t,⌧k2.

Under Assumption 3.1 and by using Theorem 2.1 we bound the terms above (the proof

is in the spirit of the proof of Theorem 3.3). Assumption 3.1 directly implies

J1 = k(A(1,2)
�A(1,2)(t/N))t,⌧k2  K

1

Nv(t� ⌧)�1
.

The bounds for J2, J3 and J4 are more involved, however all three follow a similar strategy.

We focus on obtaining a bound for J3. Using standard matrix multiplication it can be

seen that

J3 = k

X

s1,s22Z

[B(1,2)]t,s1 [(E
(1,2))�1

� (E(1,2)(t/N))�1]s1,s2 [B
(1,2)(t/N))>]s2,⌧k2



X

s1,s22Z

k[B(1,2)]t,s1k2 · k[(E
(1,2))�1

� (E(1,2)(t/N))�1]s1,s2k2 · k(B
(1,2)(t/N))>]s2,⌧k2 (49)

To bound k[B(1,2)]t,s1k2 and k(B(1,2)(t/N))>]s2,⌧k2 we simply use Assumption 3.1, which

immediately gives

k[B(1,2)]t,s1k2  Kv(t� s1)
� and k(B(1,2)(t/N))>]s2,⌧k2  Kv(s2 � ⌧)�

. (50)

The bound for k[(E(1,2))�1
� (E(1,2)(t/N))�1]s1,s2k2 needs a little more work. We first

note that the covariance operator E(1,2) is a suboperator of C(N), thus it satisfies As-

sumption 3.1 where E(1,2)(u) is its locally stationary approximation. Therefore we can

apply the results of Theorem 3.3 to (E(1,2))�1 and this gives

k((E(N),(1,2))�1
� (E(1,2)(s1/N))�1)s1,s2k2  K⇣(s1 � s2)

�2 min(1/N, 2⇣(s1 � s2)) (51)

and

k((E(1,2)(s1/N))�1
� (E(1,2)(t/N))�1)s1,s2k2  K|s1 � t|⇣(s1 � s2)

�1
/N. (52)
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Substituting (50), (51) and (52) into (49) we have

J3  KK
2
X

s1,s22Z

1

v(t� s1)
⇥
�
⇣(s1 � s2)

�2 min(1/N, 2⇣(s1 � s2))

+ |s1 � t|⇣(s1 � s2)
�1

/N
� 1

v(s2 � ⌧)

 2⇥ (49)K2
K⇣(t� ⌧)�2 min(1/N, ⇣(t� ⌧)) =: K⇣(t� ⌧)�2 min(1/N, ⇣(t� ⌧)),

where the last line follows from Lemma B.5.

To bound J2, we use Theorem 2.1 to give, k[(E(1,2))�1]s1,s2k  K⇣(s1 � s2)(�1). This

together with (50), using the bounds stated in Assumption 3.1(iii) and following the same

proof as above we can show that

J2  K⇣(t� ⌧)�1
/N and J4  K⇣(t� ⌧)�1

/N.

Altogether the bounds for J1, J2, J3 and J4 prove

k�9{a,b}
t,⌧,N ��9{a,b}

t�⌧ (t/N)k2  K⇣(t� ⌧)�2 min(1/N, ⇣(t� ⌧))

thus proving (23). The proof of (24) follows a similar technique.

Finally, the proofs for (25) and (26) are the same as the proofs for (23) and (24), thus

we omit the details.

B Technical lemmas

B.1 Proofs and lemmas for the proof of Theorem 2.1

Proof of Lemma 4.1. The proof is based on the proof of Proposition 2.2 in Demko et al.

(1984), with a small modification to allow block matrices. We use the notation from

Proposition 2.2 in Demko et al. (1984). More precisely, let ⇧n denote the space of poly-

nomials up to order n. A key ingredient in the proof is the following result from spectral

theory

kA�1
� p(A)k2  max

x2[a,b]
|1/x� p(x)|,

where p is a real polynomial and recall b = supv2`2,p,kvk2=1hv,Avi, and a = infv2`2,p,kvk2=1hv,Avi.

Set r = b/a, ⇢ = (
p
r� 1)/(

p
r+1). For any complex valued function f on K, define the

norm kfkK = sup{|f(z)| : z 2 K} (thus k1/x � p(x)k[a,b] = maxx2[a,b] |1/x � p(x)|). In
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Proposition 2.1, Demko et al. (1984) show that

inf{k1/x� p(x)k[a,b] : p 2 ⇧n} =
(1 +

p
r)2

b
⇢
n+1

. (53)

Using this, we define the polynomial

p
⇤

n = argp2⇧n
inf{k1/x� p(x)k[a,b] : p 2 ⇧n}. (54)

We note for any polynomial pn of order n and M block-banded matrix A with block size

p, if |t � ⌧ | � nM then pn(A)t,⌧ ⌘ 0 where pn(A))t,⌧ denotes the (t, ⌧) p ⇥ p dimension

block matrix in pn(A).

For a given t and ⌧ , set n = b|t � ⌧ |/Mc. Let p
⇤

n be defined as in (54). Then by

definition of n we have p
⇤

n(A)t,⌧ = 0. Since Bt,⌧ = (A�1)t,⌧ this gives

kBt,⌧k2 = k(A�1
�p

⇤

n(A))t,⌧k2  kA�1
�p

⇤

n(A)k2 = k1/x�p
⇤

n(x)k[a,b] =
(1 +

p
r)2

b
⇢
b|t�⌧ |/Mc+1

,

where the last part follows from (53). This completes the proof of the first assertion.

For the second assertion we slightly modify eA, invert it and link the modified matrix

to the inverse of eA. Since eA is missing a row and column, the idea is to extend this matrix

to its original dimension. For this, note first that D := (I�k ⌦ Ip) eA(I�k ⌦ Ip)> + c(ek ⌦

Ip)(ek⌦Ip)> is a block-banded matrix and with c = k(ek⌦Ip)>A(ek⌦Ip)k2 its largest and

smallest eigenvalues are bounded by b and a. Hence, the previous assertion applies to D.

Let I be the identity operator on `2,p. Then, we have (I�k ⌦ Ip)(I�k ⌦ Ip)> is I without

the kth p-dimensional row/column. This implies k(I�k ⌦ Ip)(I�k ⌦ Ip)>D(I�k ⌦ Ip)(I�k ⌦

Ip)>)t,⌧k2  k(D)t,⌧k2. Additionally, we have the following (I�k ⌦ Ip)>(I�k ⌦ Ip) is the

identity operator on the reduced space, (I�k ⌦ Ip)(I�k ⌦ Ip)> + (ek ⌦ Ip)(ek ⌦ Ip)> = I,

and (ek ⌦ Ip)>(I�k ⌦ Ip) = 0. We now show (I�k ⌦ Ip)>D
�1(I�k ⌦ Ip) = ( eA)�1 which

gives the assertion. For this, we show (I�k ⌦ Ip)>D
�1(I�k ⌦ Ip)eA = (I�k ⌦ Ip)>(I�k ⌦ Ip)

and use the uniqueness of the inverse operator.

(I�k ⌦ Ip)
>D�1(I�k ⌦ Ip)eA =(I�k ⌦ Ip)

>((I�k ⌦ Ip) eA(I�k ⌦ Ip)
> + c(ek ⌦ Ip)(ek ⌦ Ip)

>)�1

⇥ (I�k ⌦ Ip)(eA(I�k ⌦ Ip)
> + c(ek ⌦ Ip)(ek ⌦ Ip)

>

� c(ek ⌦ Ip)(ek ⌦ Ip)
>)(I�k ⌦ Ip)

=(I�k ⌦ Ip)
>(I�k ⌦ Ip) + 0.
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Thus, (I�k ⌦ Ip)>D
�1(I�k ⌦ Ip) is an inverse of eA and the second assertion follows.

We now apply the above result to BM defined in (31).

Lemma B.1. [Properties of BM ] Suppose Assumption 2.1 is satisfied and let BM be a

banded matrix defined as in (31). Define the space of vectors `
�t
2,p = {v = (. . . , vt�1, vt+1, vt+2, . . .); vj 2

Rp
,
P

j 6=t kvjk
2
2 < 1} and the eigenvalues

aM = inf
v2`�t

2,p,kvk2=1
hv,BMvi and bM = sup

v2`�t
2,p,kvk2=1

hv,BMvi

Then

kCS,S �BMk2  2K/(� 1)(M � 1)�+1
, (55)

aM � �min � 2K/(� 1)(M � 1)�+1
and bM  �max + 2K/(� 1)(M � 1)�+1 (56)

kB�1
M k2  (�min � 2K/(� 1)(M � 1)�+1)�1 (57)

The same rates apply also if C itself or C(�1;T ] are approximated by (a corresponding)

banded matrix BM .

Proof. We first prove (55). For this, we first expand CS,S �BM with zero such that it is

an operator from `2,p to `2,p again. Then, we use Lemma B.4 and obtain

kCS,S �BMk2 =k(I�k ⌦ Ip)(CS,S �BM)(I�k ⌦ Ip)
>
k2  sup

s1

X

s2

k(CS,S �BM)s1,s2k2



X

|s|>M

K

|s|�
 2K

X

s>M

Z s

s�1

x
�

dx = 2K/(� 1)(M � 1)�+1
.

To prove (56) we use that BM = CS,S + (CS,S �BM) and the eigenvalues of CS,S are

in [�min,�max]. Thus, with (55) we have

�inf(BM) � �min � 2K/(� 1)(M � 1)�+1 and �sup(BM)  �max + 2K/(� 1)(M � 1)�+1(58)

The proof of (57) immediately follows from (56).
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B.2 Technical lemmas for the proof of results in Section 3

The following lemma is used in the proof of Theorem 3.1.

Lemma B.2. Suppose Assumption 3.1 holds and let Gu,M(!), G
(N)
u,M(!) and Gu(!) be

defined as in (38), (39) and (37) respectively. Then

sup
!

kGu,M(!)�G
(N)
u,M(!)k2  K

M

N
(59)

and

sup
!

kGu(!)�Gu,M(!)k2  K

✓
1

M
+

1

M�1

◆
(60)

where K is a constant that only depends on K and .

Proof. Under Assumption 3.1(iii) we have

kG
(N)
u,M(!)�Gu,M(!)k2 

1

M

Tu,N+M/2X

t,⌧=Tu,N�M/2+1

kC
(N)
t,⌧ � Ct�⌧ (u)k2


1

M

Tu,N+M/2X

t,⌧=Tu,N�M/2+1

✓
1

Nv(t� ⌧)�1
+

|(Tu,N � t)|

Nv(t� ⌧)

◆
 K

M

N
,

this proves (59). To prove (60) we use that

Gu(!) = Gu,M(!) +
1

M

X

|r|M/2

|r|Cr(u) exp(ir!) +
X

|r|>M/2

Cr(u) exp(ir!).

Under Assumption 3.1(iii) we have kCr(u)k2  K/v(r) (where  > 2), thus

kGu(!)�Gu,M(!)k2 
1

M

X

|r|M/2

|r|kCr(u)k2 +
X

|r|>M/2

kCr(u)k2  K

✓
1

M
+

1

M�1

◆
.

Thus proving the result.

Lemma B.3. Suppose that {A`}
1

`=1 is a sequence of p ⇥ p dimensional matrices where
P

1

`=1 kA`k
2
2 < 1. Define the sequence space `2,p,1 = {w = (v1, v2, . . .) : vj 2 Rp

} and the

linear operator A = (A`; ` � 0), where A : `2,p,1 ! R. Then

kAk2  (
1X

`=1

kA`k
2
2)

1/2
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Proof. Let x = (x1, x2, . . .) where xl 2 Rp. By definition of the k · k2 operator norm we

have

kAk2 = sup
kxk2=1,x2`2,p,1

x
>A>Ax = sup

kxk2=1,x2`2,p,1

(
1X

l1,l2=1

x
>

l1A
>

l1Al2xl2)
1/2

 sup
kxk2=1,x2`2,p,1

1X

l=1

kxlk2kAlk2

 sup
kxk2=1,x2`2,p,T

(
1X

l=1

kxlk
2
2)

1/2(
1X

l=1

kAlk
2
2)

1/2 (by the Cauchy-Schwarz inequality)

= (
1X

l=1

kAlk
2
2)

1/2
,

thus proving the result.

We use the following result in the proof of Lemma B.1 and Theorem 3.1.

Lemma B.4. Let B be a symmetric linear operator from `2,p to `2,p with kBk2 < 1.

Then,

kBk2  max
s1

X

s22Z

kBs1,s2k2

Proof. To prove the result we define the following operator based on B. Let eB =

(kBs1,s2k2)s1,s2 be an operator from `2 to `2. Since B is symmetric, we have

kBk2 = sup
kxk2=1

x
>Bx = sup

kxk2=1

X

s1,s22Z

x
>

s1Bs1,s2xs2  sup
kxk2=1

X

s1,s22Z

kxs1k2kBs1,s2k2kxs2k2

= k eBk2  k eBk1 = max
s1

X

s22Z

kBs1,s2k2.

This proves the result.

The following lemma is used in the proofs of Theorems 3.3, 3.4 and 3.5.

Lemma B.5. Let v(j) = max(1, |j|) and ⇣(j) = v(log[v(j)])/v(j) We have for some

y 2 R, p 2 Z and p � 2

X

j2Z

v(j)�p
v(j + y)�p

 (⇡2 + 3)v(y � 1)�p (61)
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and

X

j2Z

⇣(j)p⇣(j + y)p  7⇣(y � 3)p (62)

Further, suppose that p, q, r � 2 then

X

j2Z

v(j)�q
v(j + y)�p

 (⇡2 + 3)v(y � 1)�min(p,q)
, (63)

X

j2Z

⇣(j)p⇣(j + y)q  7⇣(y � 3)min(p,q)
, (64)

X

s1,s22Z

v(s1 + t)�p
v(s1 + s2)

�q
v(s2 + ⌧)�r

 (⇡2 + 3)2v(t� ⌧ � 2)�min(p,q,r)
, (65)

and

X

s1,s22Z

⇣(s1 + t)p⇣(s1 + s2)
q
⇣(s2 + ⌧)�r

 49⇣(t� ⌧ � 6)min(p,q,r) (66)

Proof. First note that
P

1

k=1 k
�2 = ⇡

2
/6. The strategy is to split the sum in several parts

and for each part we pull one of the factors out of say, of v(j)�p
v(j + y)�p, leverage on

the pulled factor and show that the remaining sum is finite.

We first prove (61). Without loss of generality, let y > 0 and y 2 N. We have

X

j2Z

v(j)�p
v(j + y)�p = I1 + I2 + I3,

where

I1 =
1X

j=0

v(j)�p
v(j + y)�p

 (⇡2
/6 + 1)v(y)�p

,
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I2 = 2v(y � 1)�p +
�y/2X

j=�y+2

v(j)�p
v(j + y)�p +

�2X

j=�y/2+1

v(j)�p
v(j + y)�p

 2v(y � 1)�p + 2v(y/2)�p2�p+2

 2v(y � 1)�p + v(y)�p8(⇡2
/6� 1)

 2v(y � 1)�p + v(y)�p(2/3⇡2),

I3 =
�yX

j=�1

v(j)�p
v(j + y)�p

 (⇡2
/6 + 1)v(y)�p

.

Putting the bounds for I1�I3 immediately proves (61). Furthermore, we have v(|y|�1) �

v(|y|/2). This follows immediately for |y| � 2. For |y| < 2 note that v(|y| � 1) = 1 =

v(|y|/2).

To proof (62), note first that
P

1

k=1 ⇣(k)
2 = 1+

P
1

k=2 ⇣(k)
2
 1 +

R
1

1 (log(x)/x)2dx =

1 + 2. Second note that ⇣(·) is monotonic decreasing after ⇣(3), and we have 1 = ⇣(1),

⇣(2) = ⇣(4) < ⇣(3). With this, we can follow the arguments as above and split the sum

up into three parts I1 + I2 + I3. Wlog let y � 9. We have

I1 =
1X

j=0

⇣(j)p⇣(j + y)p  3⇣(y)p.

Furthermore, since ⇣(4)  0.5 and for y � 9, p � 2 it holds ⇣(y � 3)p + ⇣(y/2)2p(y/2) 

⇣(y)p, we have

I2 =
�1X

j=�y

⇣(j)p⇣(j + y)p = 2⇣(y � 1)p + ⇣(y � 2)p + 2⇣(y � 3)p

+
�y/2X

j=�y+2

⇣(j)p⇣(j + y)p +
�4X

j=�y/2+1

⇣(j)p⇣(j + y)p

 2⇣(y � 1)p + ⇣(y � 2)p + ⇣(y � 3)p + ⇣(y/2)2p(y/2) + ⇣(y/2)p⇣(4)p�2
1X

j=4

⇣(j)2

 7⇣(y � 3)p

and

I3 =
�yX

j=�1

⇣(j)p⇣(j + y)p  3⇣(y)p.
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The proof of (63) uses that v(j)�p
> v(j)�q, then the result immediately follows from

(61).

To prove of (65), let us suppose wlog that p  q  r, then by using (63) we have

X

s1,s22Z

v(s1 + t)�r
v(s1 + s2)

�p
v(s2 + ⌧)�q =

X

s12Z

v(s1 + t)�r
X

s22Z

v(s1 + s2)
�p
v(s2 + ⌧)�q

 (⇡2 + 3)
X

s12Z

v(s1 + t)�r
v(s1 � ⌧ � 1)�p

 (⇡2 + 3)2
X

s12Z

v(t� ⌧ � 2)�p

where the last two lines follow from (63). This proves the result. (64) and (66) follow

analogously.
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