2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Visualizing PRAM Algorithm for Mergesort

Cade Wiley
Department of Computer Science
Wake Forest University
Winston-Salem, NC, USA
wilecr18 @wfu.edu

Abstract—Undergraduate algorithms courses are a natural
setting for teaching many of the theoretical ideas of parallel
computing. Mergesort is a fundamental sequential divide-and-
conquer algorithm often analyzed in such courses. In this work,
we present a visualization tool to help demonstrate a novel
PRAM algorithm for mergesort that is work efficient and has
polylogarithmic span. Our implementation uses the Thread-Safe
Graphics Library, which has an existing visualization of parallel
mergesort. We demonstrate that our proposed algorithm has
better work and span than the one currently visualized.

Index Terms—multithreaded programming, animation, sort-
ing, work/span analysis, OpenMP, pedagogical tools

[. INTRODUCTION

Parallel computing topics can naturally be incorporated into
undergraduate algorithms courses. In particular, introducing
the PRAM model along with work/span analysis requires little
overhead, and many of the algorithmic techniques, such as di-
vide and conquer and dynamic programming, can be revisited
in a parallel context. One of the popular textbooks for such
courses devotes a chapter to multithreaded programming using
PRAM with a focus on the divide-and-conquer algorithms for
matrix multiplication and mergesort [1, Chapter 27].

We propose a visualization tool to help teach students a
parallel algorithm for mergesort that is work efficient and has
polylogarithmic span. The PRAM algorithm we propose in
§ II is different from the textbook algorithm [1]. While it has
the same work and span complexity, we argue it simplifies
the analysis. Our visualization tool is built using the Thread-
Safe Graphics Library (TSGL) [2]-[4], which is designed to
help students interact with and understand the execution of
parallel programs. The library has an existing visualization of
mergesort, but we demonstrate that the algorithm used is both
work inefficient and has limited parallelism. We present screen
captures of the animations of both existing and new algorithms
in § III to illustrate the differences in the visualizations.

Combined with previous work on visualization of two paral-
lel dynamic programming algorithms (Knapsack and Longest
Common Subsequence) [5], the proposed tool can be used
by instructors to demonstrate parallelization of two separate
algorithmic paradigms using the PRAM model. We recom-
mend the tool as a supplement to explanations of the parallel
algorithm and analysis. Its interactivity can generate questions

This work is supported by the National Science Foundation under Grant
Numbers CCF-1942892 and OAC-2106920.

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00083

365

Grey Ballard
Department of Computer Science
Wake Forest University
Winston-Salem, NC, USA
ballard @wfu.edu

and suggestions from students in class, and it can be compared
against algorithms with limited parallelism. As we describe in
§ IV, we hope to incorporate our new mergesort visualization
into TSGL for wider dissemination. In this way, it will inherit
the usability, documentation, and reach of the greater library.

II. PRAM ALGORITHMS FOR MERGESORT

Mergesort is a divide-and-conquer algorithm that yields a
nice example of parellelization using the spawn/sync mecha-
nism of the multithreaded programming paradigm [1, Section
27.3]. The recursive calls to sort each half of the input array
are independent and can be executed in parallel. The merge
operation cannot occur until both recursive calls have returned,
so it executes after a synchronization. Algorithm 1 presents the
pseudocode for parallel mergesort using a function call for the
merge operation. We discuss multiple merge algorithms in the
following subsections.

The mergesort pseudocode is written in C-style, with the
input data initially copied into both arrays A and B and the
sorted output stored in B upon return. Note that the recursive
calls swap the source and target arrays, which is a pointer-
swapping technique used to avoid an explicit copy. In this
way, the merging is performed back and forth between the
two arrays in memory across the levels of recursion. To ensure
correctness for recursion depth of any parity, the function
requires that the input data is initially stored in both arrays.
We assume the merge function takes two sorted arrays as input
and outputs the sorted union in the third argument.

Algorithm 1 PRAM Algorithm for Mergesort

Require: On input, A, B contain identical unsorted data
Ensure: On output, B is sorted in increasing order
1: function PARMERGESORT(A, B)

2 if length(A) = 1 then return

3 Partition A = [AL AR], B = [BL BR] evenly
4: spawn PARMERGESORT(By,, Ar)

5: PARMERGESORT(BR, AR)

6 sync

7: PARMERGE(Apr, AR, B)

8: end function

In the work/span analysis of parallel mergesort, we see that
the complexity in both cases depends on the complexity of the

merge. The work TMS(n) and span TMS(n) of mergesort are
given by the recurrences

1Y% (n) = 2- T (n/2) + TY' (n),

T (n) = T (n/2) + T(n) W

where TM(n) and TM(n) are the work and span of merge,
respectively. As long as TM(n) O(n), we have that
TMS(n) = O(nlogn), which implies that parallel mergesort is
work efficient. The span of merge varies based on how merge
is parallelized; we consider four alternatives below.

A. Sequential Merge

We first consider performing a sequential merge. In this
case, we have identical work and span: TM(n) = TM(n)
O(n). This implies from eq. (1) that the span of mergesort is
TMS(n) = O(n), as it is dominated by the final merge.

While this approach yields a work-efficient mergesort, this
span implies that the parallelism, or limit of perfect scaling,
is O(logn), which is quite small. To obtain efficient span, we
must parallelize the merge operation.

B. Sequential In-Place Merge

The mergesort algorithm currently visualized within TSGL
(see §III-B) uses a sequential in-place merge. That is, it does
not require the extra memory of a temporary buffer. The merge
procedure is performed using a circular shift of input data
(when necessary). That is, the algorithm processes items from
the two consecutive sorted arrays, and when the left array’s
item is smaller, no work is required. When the right array’s
item is smaller, that item is shifted into place and the larger
items of the left array are all shifted to the right. Because the
circular shift requires O(n) operations, and it occurs O(n)
times in the worst case, this in-place merge costs O(n?).

The in-place merge is sequential, so we have identical work
and span: TM(n) = TM(n) = O(n?). This implies from
eq. (1) that the work and span of mergesort is dominated
by the final merge: TMS(n) = TMS(n) = O(n?). Thus, the
algorithm is not work efficient and has constant parallelism.

C. Parallel Merge using Median of One Input

The first parallel merge we consider is proposed in [1,
Chapter 27]. The idea is to determine a value by which we
can partition the output array into a left part and a right part.
Because the input arrays are sorted, we can also partition those
arrays by the value. In this way, the left parts of the input
can be merged into the left part of the output independently
from the merge of the right parts. We can select the median
of the larger array in constant time and then use (sequential)
binary search to partition the smaller array by that value. After
determining the partitioning, we use two recursive calls to
merge both parts in parallel. Choosing the median of the larger
array guarantees that the size of the larger part of the output
is no more than 3/4 the size of the entire array.

We first consider the span of this parallel merge algorithm.
Because the left and right merges execute in parallel, the span
recurrence is based on the more costly of the two parts, which

366

Algorithm 2 PRAM Median-of-Union Algorithm for Merge

Require: On input, A and B are individually sorted arrays
Ensure: On output, S is sorted union of A and B
1: function PARMERGE(A, B, S)
: if length(A) = 0 and length(B) = 0 then return
Find median m of AU B
Partition A = |Ap, AR], B = [BL BR] by m
Partition S =[S, Sg] evenly
spawn PARMERGE(Ar, By, S)
PARMERGE(ARg, Bg, Sr)
sync
end function

2
3
4
5
6:
7
8
9:

is bounded above in size by 3n/4. Thus, the span recurrence
is given by TM(n) < TM(3n/4) + O(logn) and solves to
TM(n) = O(log® n). The work recurrence is given by

TM(n) = T (an) + TY((1 — a)n) + O(logn)

where 1/4 < o < 3/4 and « can vary throughout the
recurrence. This recurrence solves to 7™ (n) = O(n), so that
we see this recursive approach is work efficient, though the
recurrence is harder to solve.

Given this analysis of the merge algorithm and eq. (1),
we see that using this as a subroutine within the mergesort
algorithm obtains a mergesort span of O(log®n). With poly-
logarithmic span, we obtain much larger parallelism.

D. Parallel Merge using Median of Union of Inputs

We propose an alternative parallel merge algorithm based
on computing the median of the union of the two input arrays,
given in Alg. 2 and illustrated in Fig. 1. It works by partition-
ing the input arrays by the median of their union so that the
output array can be partitioned evenly. Again, we use C-style
pseudocode with the output array S passed in as a parameter
and overwritten with the sorted data. The main advantage of
this approach is that the even division of the output array yields
work and span recurrences that are easier to solve than the
parallel merge algorithm described in § II-C. Computing the
median of the union of two sorted arrays is more complicated

Ap <m Ar>m Br <m |Br>m
N | J
¢ J
Y

S

Fig. 1: Diagram of arrays for recursive merge (Alg. 2) using
median of union with value m so that the output array is evenly
divided for recursive calls, denoted by red and blue colors.

than a single binary search, but it has complexity O(logn)
and is a nice homework problem for students learning the
(sequential) divide-and-conquer algorithmic technique (see [1,
Exercise 9.3-8] and [6, Exercise 2.22]).

Given the complexity of the sequential median-of-union
algorithm, the work and span recurrences are given by

T™(n) = 2TM(n/2) + O(logn)
TM(n) = TM(n/2) + Oflogn),

which solve to TM(n) = O(n) and TM(n) = O(log® n). We
note that the work recurrence is solved via a straightforward
application of the master theorem. From eq. (1), this implies
that the work of mergesort is TM5(n) = O(nlogn) (so it
is work efficient) and the span of mergesort is TMS(n)
O(log®), which matches the complexities of the median-of-
one-input algorithm described in § II-C.

III. MERGESORT VISUALIZATIONS

In this section we describe the existing mergesort visualiza-
tion as well as our proposed implementation and visualization.
Both use the Thread-Safe Graphics Library (TSGL), described
in more detail in § III-A, and both implementations use
OpenMP. The current implementation is iterative and works
bottom-up, with a single parallel region and manual task
assignment. Our implementation is recursive and uses nested
task parallelism, so its structure follows Algs. 1 and 2 more
closely. We build upon the existing implementation, following
many of its visualization conventions and color choices.

We distinguish between two phases of computation within
parallel mergesort to compare the current visualization with
our own. Letting n be the length of the array and p be the
number of threads, we define the first phase to be the execution
of the bottom log(n/p) recursive levels, which corresponds to
each thread independently sorting a subarray of approximate
length n/p. We define the second phase to be the execution
of the top log p levels, which corresponds to the merging of
p individually sorted subarrays.

A. TSGL Background

TSGL is a C++ library that allows for real time visual-
izations of multithreaded programs [2]-[4]. Currently TSGL
contains about 30 example visualizations including image pro-
cessing, numerical methods, sorting, dynamic programming,
and more. The innovation of TSGL is that it allows thread-
safe drawing to a shared canvas during parallel computation.
It is designed for primarily pedagogical purposes, allowing
students to visualize the behavior of multiple threads working
simultaneously. As such, it comes with the ability to pause the
canvas to slow down the action for users with sleep functions.

B. TSGL’s Current Visualization

The current TSGL visualization demonstrates parallel
mergesort using a sequential in-place merge. See § II-B for the
work/span analysis of this algorithm. The visualization itself,
as shown in Fig. 2, is a single array with entries represented
by rectangles stacked side by side and values that correspond

367

(a) Phase 1: independent mergesorts in parallel

(b) Phase 2: sequential final merge

Fig. 2: TSGL’s current parallel mergesort visualization.

to rectangle height. The rectangles progressively get sorted
from shortest on the left to tallest on the right. White is used
to signify active progress on a rectangle and unique colors
represent the work done by each processor. An opaque color
demonstrates that the processor has already performed its task
upon the data and a translucent color shows that the processor
has not yet performed its task upon the data.

1) Phase 1: Phase 1 is the independent sorting of subarrays
of size approximately n/p. A screen capture of the first phase
running with four processors is shown in Fig. 2a. In this
example, all four processors are working independently on
each subarray, and we see that each processor is performing
the final merge for the subarray. In this phase, the algorithm
is achieving full parallelism and is perfectly load balanced. In
the animation, the left translucent input array of each merge
shifts to the right as the merge operation proceeds, as the
algorithm works in place. As mentioned in § II-B, when the
right subarray of a merge has a value smaller than the left
subarray, the larger values of the left array must be shifted.
This subarray shift occurs within a single visualization step,
so the O(n) cost is hidden from the viewer.

2) Phase 2: After each processor has sorted their subarray
of approximately n/p data, the p sorted subarrays must be
merged. During this second phase, the use of a sequential
merge implies that the algorithm loses parallelism as proces-
sors start to drop out of the computation. In the example shown
in Fig. 2, after Phase 1 completes, only two processors are
active, each merging 2 of the remaining 4 subarrays. Figure 2b
depicts the final merge of two sorted subarrays into the final
output. In this case, only one processor is active, which is
why we observe only one color, and it is performing O(n?)
work. This loss of parallelism leads to a large span and limited
theoretical possible speedup.

C. Our Visualization

We implement our proposed algorithm as described in §II-D
using many of the conventions of TSGL’s current visualization.
Because our algorithm is out of place, we visualize both arrays,
and we display the sorted output in the second (bottom) array.
We again use rectangle height to denote value, the same color
scheme to distinguish among processors, and white to signify
active progress. One difference in our visualization is that
we shade a rectangle with a translucent color whenever a
particular processor reads the corresponding value and with an
opaque color whenever a processor writes the corresponding
value. Screen captures of our visualization are given in Fig. 3.

1) Phase 1: The first phase of our visualization is similar
to TSGL’s current visualization where each processor indepen-
dently sorts their subarray. In the animation, we can observe
the merging processing working both from top to bottom and
bottom to top as the pointers get swapped in the depth of
the recursion. Fig. 3a shows the very end of Phase 1 for four
processors, and we see that it looks similar to TSGL’s current
visualization (see Fig. 2a) except for the fact that it uses a
second array. Note that the color order is different because the
OpenMP scheduler nondeterministically maps tasks to threads
in our implementation.

2) Phase 2: The second phase of our visualization differs
greatly from the current TSGL visualization, as we use a
parallel merge algorithm as described in § II-D. In our imple-
mentation, all processors work throughout Phase 2. Figure 3b
depicts the merging of four sorted subarrays into two subarrays
(note that at this depth, the merging occurs from bottom
to top). In this screen capture, we see that each of the
processors is merging into a subarray of the top array of size
approximately n/4, but we note that the two input subarrays
in the bottom array have varying sizes. We also show the end
of Phase 2 in Fig. 3c to see that in the final merge of two
sorted subarrays, all four processors write approximately n/4
data to the bottom array. This load balancing allows for low
span and high theoretical parallel speedup.

IV. CONCLUSION

Parallel mergesort is an ideal topic for incorporating parallel
computing into an algorithms course. Students can recognize
the independence between recursive calls for natural task par-
allelism, but parallelizing the merge is a challenging task. Our
proposed algorithm is work efficient and has polylogarithmic
span, and it utilizes a clever algorithm for computing the
median of the union of two sorted arrays. Our visualization
helps students to understand the execution of the recursive
structure and observe the importance of merging in parallel.

The tool is currently being used for in-class demonstrations
in multiple algorithms courses at Wake Forest. Students are
encouraged to suggest input parameters to illustrate both the
flexibility of the algorithm as well as the limitations. For
example, students can observe load imbalance for non-powers-
of-two numbers of processors. In follow-up assignments, stu-
dents can be asked to fill in gaps in the work/span analysis,
design PRAM algorithms for problems with similar structure

368

(a) Phase 1: independent mergesorts in parallel

414{ 4
- < (4

(b) Phase 2: full parallelism across two merges

- -

——*

(c) Phase 2 complete: end of final merge in parallel

Fig. 3: Our parallel mergesort visualization.

such as the FFT, or implement mergesort using OpenMP task-
based parallelism. We plan to incorporate our visualization
into the main TSGL repository so that it can be used by more
instructors.

REFERENCES
(1

[2]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

J. C. Adams, P. A. Crain, and M. B. Vander Stel, “TSGL: A
thread safe graphics library for visualizing parallelism,” Procedia
Computer Science, vol. 51, pp. 1986-1995, 2015. [Online]. Available:
https://doi.org/10.1016/j.procs.2015.05.463

J. C. Adams, P. A. Crain, and C. P. Dilley, “Seeing multithreaded
behavior using TSGL,” in Proceedings of EduPar, 2016, pp. 972-977.
[Online]. Available: https://doi.org/10.1109/IPDPSW.2016.17

J. C. Adams et al., “TSGL: A tool for visualizing multithreaded behavior,”
Journal of Parallel and Distributed Computing, vol. 118, pp. 233-246,
2018. [Online]. Available: https://doi.org/10.1016/j.jpdc.2018.02.025

G. Ballard and S. Parsons, “Visualizing parallel dynamic programming
using the thread safe graphics library,” in Proceedings of EduHPC, 2021,
pp. 24-31. [Online]. Available: https://doi.org/10.1109/EduHPC54835.
2021.00009

S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms, 1st ed.
New York, NY, USA: McGraw-Hill, Inc., 2006.

[3]

[4]

[5

[6]

