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1 Introduction

Several extensions of the Standard Model (SM) propose the augmentation of the Higgs sector by the
addition of a second complex Higgs doublet [1, 2] (2HDM), giving rise to five Higgs bosons: two CP-even
scalar fields & and H, one CP-odd pseudo-scalar A, and two charged fields H*. The two CP-even scalars
are expected to mix; however, the measurement of Higgs boson properties has revealed no deviations from
the expectations of the Standard Model [3, 4]. This implies that extra scalars from 2HDMs have to be
either very heavy (decoupling limit) or have a vanishingly small mixing with the SM Higgs (alignment
limit). To avoid flavour changing neutral Higgs (FCNH) couplings mediated by the SM Higgs, a discrete
Z> symmetry is usually imposed [1, 2]. A large set of searches for heavy scalars or pseudo-scalars with
flavour-conserving decays has been performed in ATLAS [5-12] and CMS [13-25]. However, if the
Z, symmetry is dropped, alignment automatically emerges when all heavy Higgs quartic couplings are
O(1) [26]. Therefore, models without Z, symmetry can lead naturally to the alignment limit and predict
FCNH couplings in the heavy Higgs sector, while respecting the SM-like nature of the & (125) discovered
at the LHC.

The search presented here targets a general two Higgs doublet model (g2HDM) without Z, symmetry [27],
where the heavy Higgs bosons feature FCNH couplings. Only couplings involving top-quarks are considered:
P1t> Pre, and py,. The pap parameters indicate the coupling of the heavy Higgs boson to particles A
and B. The notation p, is used to refer to both the p,. and p;,, couplings. The g2ZHDM model with its
additional top Yukawa couplings is phenomenologically interesting since it can explain the generation of
the baryon asymmetry through the couplings p;; or p; [28]. No distinction is performed between the

different chiralities in the coupling, and an effective coupling p;, = ﬁ%L ar T p\éLtR /V2 is used, where
the hat symbol is used to denote the original couplings in the g2HDM Lagrangian.

The production and decay modes at tree level considered in the analysis are shown in Figure 1. The presence
of the p;4 coupling opens the possibility of same-sign top production, as shown in Figures 1(a) (sstt)
and 1(b) (ttq), and also three-top production, as shown in Figures 1(c) (ttt) and 1(d) (tttq). The three-top
signature is a sensitive probe of beyond-the-SM (BSM) physics [27, 29-31]. Additionally, four-top quarks
can be produced, as shown in Figure 1(e) (tttt) '. The targeted final state is characterised by multiple
leptons (electrons and muons) and multiple jets containing b-flavoured hadrons (b-jets). Many of the
production modes are expected to be charge-asymmetric (with preference to positively charged), and this
feature is exploited in the search. The relevance of each production mode depends on the chosen coupling.
A benchmark of p;; = 0.4 and p;, = 0.2 is chosen to guide the analysis design and optimisation. The
values are chosen so that the signal could account for the higher 1#W and t#¢f yields observed in ATLAS
analyses [32-36]. Significant kinematic differences and a much stronger charge asymmetry are expected
from the targeted signals, which allow them to be differentiated from simple rescalings of both processes.
For the chosen couplings, the #H production (Figures 1(b) and 1(c)) cross section is two orders of magnitude
larger than ¢¢H production (Figures 1(d) and 1(e)), and three orders of magnitude larger than same-sign
tops production via ¢-channel H (Figures 1(a)).

This analysis is the first to target BSM production leading to three-top final states and the first to probe
the g2HDM. The production of four-tops in the SM or via heavy scalars was explored previously by
ATLAS [35-39] and CMS [40-43]. Limits on the g22HDM model couplings can be derived from LHC
Higgs measurements, B physics, and assuming the couplings stay perturbative [44], leading to p;; < 2,

! The g2HDM signal processes sstt, ttq, ttt, tttq, and tttt include ¢t and 77, ttq and ifq, ttf and fft, titq and tfiq, and titf,
respectively, where the g can be an up/charm or anti-up/anti-charm quark.
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Figure 1: Signal diagrams for the dominant production and decay modes of the heavy scalar considered in the analysis.
The subsequent decay can lead to a final state with high multiplicity of leptons and b-jets that is targeted by the
search. Single H production through gluon—gluon fusion, gg — H — tf/tq, is not considered since the decay does
not lead to the relevant multi-lepton final state.

Prrcr < 1.5,and P, s, < 0.1, implying p;. < 1.06. In addition, K — K mixing provides the constraint
Peptr < 0.14[45],and D — D mixing provides the constraint | Dt cr ﬁt*LuRl < 0.02 [45], which translates to
|ptcpf,| < 0.01 assuming a negligible py,, ;.. These constraints are derived assuming my ~ mpg+ = 500
GeV, and become weaker for higher masses.

The event selections optimised for the heavy scalar signal models are also sensitive to models based
on R-parity-violating (RPV) supersymmetry (SUSY). These models are motivated by the recent flavour
anomalies [46-50] and (g — 2), anomaly [51], and can provide a successful explanation with different
choices of particles, masses, and couplings [52—61]. The RPV SUSY models discussed below are also
used to interpret the results of this search.

The first model features production of electroweakinos (wino or Higgsino) that decay via a lepton-number-
violating RPV coupling of the LQ D type to a lepton and third-generation quarks. The corresponding term
in the superpotential has the form /1233L,-Q3D_3, where i € 2,3 is a generation index, and L, Q, D are the
lepton doublet, quark doublet, and down-type quark singlet superfields, respectively. Relevant diagrams for
the production and decay are shown in Figures 2(a) and 2(b). The second model features direct smuon
production and decay to a bino-like neutralino, which in turn decays via the same RPV coupling (4},,), as
shown in Figure 2(c).
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Figure 2: Signal diagrams for the RPV SUSY signals used as additional interpretation in the analysis. The subsequent
decay can lead to a final state with high multiplicity of leptons and b-jets that is targeted by the search.

2 ATLAS detector

The ATLAS detector [62] at the LHC covers nearly the entire solid angle around the collision point.? Tt
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and
hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core toroidal
magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the region || < 2.5. The high-granularity silicon pixel detector covers the vertex region
and typically provides four measurements per track, the first hit normally being in the insertable B-layer
(IBL) installed before Run 2 [63, 64]. It is followed by the silicon microstrip tracker (SCT), which
usually provides eight measurements per track. These silicon detectors are complemented by the transition
radiation tracker (TRT), which enables radially extended track reconstruction up to || = 2.0. The TRT
also provides electron identification information based on the fraction of hits (typically 30 in total) above a
higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range || < 4.9. Within the region || < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |r7| < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |77| < 1.7, and two copper/LAr hadron endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers
of precision chambers, each consisting of layers of monitored drift tubes, cover the region |g| < 2.7,

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as 7 = —Intan(6/2). Angular distance is measured in units of

AR = (An)? + (Ag)2.



complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range || < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

Interesting events are selected by the first-level trigger system implemented in custom hardware, followed
by selections made by algorithms implemented in software in the high-level trigger [65]. The first-level
trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level
trigger reduces further to record events to disk at about 1 kHz.

An extensive software suite [66] is used in the reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated event samples

This analysis uses data from pp collisions at v/s = 13 TeV collected by the ATLAS experiment during
2015-2018. After the application of data-quality requirements [67], the data sample corresponds to an
integrated luminosity of 139 fb~! [68]. The number of additional pp interactions per bunch crossing
(pile-up) in this sample ranges from about 8 to 70, with an average of 34. Only events recorded under stable
beam conditions and for which all detector subsystems were known to be in a good operating condition are
used. The trigger requirements are discussed in Section 5.

Monte Carlo (MC) simulation samples were produced for the different signal and background processes.
Table 1 shows the configurations used in this analysis, with the samples in parentheses and in grey indicating
those used to estimate the systematic uncertainties. All simulated samples, except those produced with the
SHERPA [69] event generator, utilised EvTGen 1.2.0 [70] to model the decays of heavy-flavour hadrons.
All samples showered with PyTHia use the A14 set of tuned parameters [71] (referred to as ‘tune’),
whereas those showered with HErwiG use the H7-UE tune [72]. Pile-up was modelled using events from
minimum-bias interactions generated with Pytaia 8.186 [73] with the A3 tune [74], and overlaid onto
the simulated hard-scatter events according to the luminosity profile of the recorded data. The generated
events were processed through either a full simulation of the ATLAS detector geometry and response
using GEANT4 [75], or a faster simulation where the full GEANT4 simulation of the calorimeter response
is replaced by a detailed parameterisation of the shower shapes [76]. Both types of simulated events
were processed through the same reconstruction software used for the pp collision data. Corrections
were applied to the simulated events so that the particle candidates’ selection efficiencies, energy scales
and energy resolutions match those determined from data control samples. The simulated samples are
normalised to their cross sections, and generated to the highest order available in perturbation theory.

Samples used to model the g22HDM signal were generated at leading-order (LO) in QCD with MAD-
GRAPH v2.9.3 [77] with the NNPDF3.1nLo [78] parton distribution function (PDF) set. Samples were
generated for masses in the range of 200 GeV to 1.5 TeV with a 100 GeV step, and processed with the
ATLAS Fast Simulation [76]. All signals were produced with the set of couplings p;; = psc = pru = 0.1.
Each signal process described in Section 1 was generated as a separate MC sample. The LO cross section
obtained from Madgraph is used for the normalisation of the signals. Simulated events for different coupling
values are obtained by rescaling the samples to match the target cross section and branching ratio of each
subprocess. For a given choice of couplings all the processes are taken into account and rescaled. The
RPV SUSY signal samples were generated with MADGRAPH v2.9.3, with up to two extra jets at LO in QCD.
The matching scale is set at 1/4 of the mass of the SUSY particle being produced. Supersymmetric particle



decays via the RPV coupling are simulated with 25% branching ratio to u/7 /v, /v+ each, a b-quark, and a
b- or t-quark depending on the lepton charge. The identical branching ratio to second- and third-generation
leptons follows from the choice of },, = A},,, while the balance in charged and neutral leptons is an
assumption. This assumption originates naturally from the presence of a left-handed lepton superfield in
the LQOD coupling, but is distorted by the large mass difference between top and bottom quarks and also
affected by the choice of tan(8). Signal cross sections are calculated to next-to-leading order in the strong
coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithmic accuracy
(NLO+NLL) [79-83]. The nominal cross section and the uncertainty are taken from an envelope of
cross-section predictions using different PDF sets and factorisation and renormalisation scales, as described
in Ref. [84]. All signal events were showered with PyTHia 8.245 [73] using the NNPDF2.310 [85] PDF

set.

The samples used to model the ¢7W and the t7(Z/y* — ¢*¢~) backgrounds were generated using SHERPA-
2.2.10 [86] and SuerPA-2.2.11, where the matrix element (ME) were calculated for up to one and zero
additional partons at next-to-leading-order (NLO) in QCD, respectively, and up to two partons at LO in
QCD using Cowmix [87] and OpenLoops [88]. The ME were merged with the SHERPA parton shower
(PS) [89] using the MEPs @NLo prescription [90], with a CKKW merging scale of 30 GeV for the 1tW
sample. These samples are generated using the NNPDF3.0nnLo [91] PDF set, along with the dedicated set
of tuned parton-shower parameters developed by the SHERPA authors. The invariant mass of the lepton
pair (mg+¢-) in the t7(Z/y* — €*€7) sample is set to be greater than 1 GeV. Both the factorisation and
renormalisation scales are set to u, = iy = mr /2 in the ttW sample, where mr is defined as the scalar sum

of the transverse masses /m? + p% of the particles generated from the ME calculation. In addition to this
ttW prediction at NLO in QCD, higher-order corrections relating to electroweak (EW) contributions are
also included. First, event-by-event correction factors are applied that provide virtual NLO EW corrections
of the order aZag derived using the formalism described in Ref. [92] along with LO corrections of order .
Second, real emission contributions from the sub-leading EW corrections at order @3a, [93] are simulated
with an independent SHERPA-2.2.10 sample produced at LO in QCD. The complete #W simulation is
normalised to the total cross section of o (1tW) = 614.7 fb that comes from the SHERPA configuration
outlined above considering NLO QCD and NLO EWK effects, based on a similar strategy as used in
Ref. [94]. The t7Z/v* sample is normalised to the cross section o (tfZ/y*) = 839 fb, calculated at NLO
QCD and NLO EW accuracy using MADGRAPHS_AMC@NLO [95] and scaled by an off-shell correction
estimated at one-loop level in as.

The production of SM ¢#tf events was modelled using the MApGrRAPHS_AMC@NLO v2.6.2 generator that
provides matrix elements at NLO in QCD with the NNPDF3.1~nLo PDF set. The functional form of the
renormalisation and factorisation scales are set to u, = uy = mr /4. Top quarks are decayed at LO using
MaDSPIN to preserve all spin correlations. The events are interfaced with PyTHia 8.230 for the parton
shower and hadronisation, using the NNPDF2.3Lo PDF set. The production of ##¢f events is normalised to
a cross section of 12 fb computed at NLO in QCD including EW corrections [93].

Diboson (VV) background processes were simulated with SHERPA 2.2.2 [86]. The matrix element was
calculated using Comrx [87] and OPeNLoops [88] with NLO accuracy in QCD for up to one additional
parton and at LO accuracy for up to three additional partons, and merged with the SHERPA PS using
MEePs@NrLo prescription [90]. The NNPDF3.0nnLo set of PDFs was used, along with the dedicated
parton-shower tune for SHERPA. The cross section of o-(VV) = 104 pb used to normalise the sample was
computed by SHERPA 2.2.2.



Samples for #7h, tf, and single top production were generated using the NLO generator PowHEG-Box-
v2 [96-101] and interfaced with PyTHia 8 for the parton showering and fragmentation. These samples
used the NNPDF3.0nLo PDF set. The hgamp parameter, which controls the transverse momentum of the
first additional emission beyond the LO Feynman diagram in the PS and therefore regulates the high-pr
radiation, is set to 3/4 X (m; + m; + my,) in the tth sample and to 1.5 X m; in the ¢f and single top samples,
where m; (my,) denotes the mass of the top quark (SM Higgs boson).

A dedicated 7 sample including rare t — Wby*(— €*£7) radiative decays, tf — W*bW~bl*¢~, was
generated using a ME calculated at LO in QCD and requiring me+- > 1 GeV. In this sample the
photon can be radiated from the top quark, the W boson, or the b-quark. Both the t7(Z/y* — ¢*¢~) and
tf — WTbW~bt*(~ samples are combined and together form the “¢7Z/y*” sample. The contribution
from internal photon conversions (y* — €*£7) with m¢+,- < 1 GeV were modelled by QED multi-photon
radiation via the PS in an inclusive #f sample and is referred to as “tfy* (LM)”. Dedicated Z+jets samples
containing electrons from material photon conversion (y — e*e™) or internal photon conversion were
generated with PowHEG-Box and interfaced with PyThia 8 for the parton showering and fragmentation.
These samples are used to model the data in control regions enriched in material and internal conversion
electrons, as explained in Section 5.

The remaining rare background contributions listed in Table 1 are normalised using their NLO theoretical
cross sections, except for the t7t, ttW*W~, tiZZ, tthh, and ttW h processes, for which a LO cross section
is used.



Table 1: The configurations used for event generation of signal and background processes. The samples used to
estimate the systematic uncertainties are indicated in parentheses and grey. V refers to production of an electroweak
boson (W or Z/y*). The matrix element order refers to the order in the strong coupling constant of the perturbative
calculation. The “#tW (EW)” sample also includes next-to-leading-order electroweak corrections. Tune refers to
the underlying-event tune of the parton shower generator. MG5_aMC refers to MADGrRAPHS_aAMC@NLO 2.2, 2.3,
or 2.6; PyTtHia 8 refers to version 8.2 [102]; MEPs @NLo refers to the method used in SHERPA to match the matrix
element to the parton shower. All samples include leading-logarithm photon emission, either modelled by the parton
shower generator or by PHoTOs [103]. The mass of the top quark (m,) and SM Higgs boson were set to 172.5 GeV
and 125 GeV, respectively.

Process Generator ME order Parton shower PDF Tune

g2HDM signal MGS5_aMC LO PytHiA 8 NNPDF3.InLo  Al4

SUSY signal MG5_aMC LO PyTHIA 8 NNPDF3.InLo  Al4

ttw SHERPA 2.2.10 MEPs@NLo SHERPA NNPDF3.0NNLO  SHERPA default
(MG5_aMC) (NLO) (PyTH1A 8) (NNPDF3.0nLO) (Al4)

ttw (EW) SHeErPA 2.2.10 LO SHERPA NNPDF3.0NNLO  SHERPA default
(MG5_aMC) (LO) (PyTHIA 8) (NNPDF3.0nLO) (A14)

titt MG5_aMC NLO PyTHiA 8 NNPDF3.InLo  Al4
(SHERPA 2.2.10) (MEPs@NLO) (SHERPA) (NNPDF3.0nNLO) (SHERPA default)

tth Pownec-BOX NLO PyTtHIA 8 NNPDF3.0nLo Al4
(Pownec-BOX) (NLO) (HErw1G7.0.4) (NNPDF3.0nLo) (H7-UE-MMHT)
(MG5_aMC) (NLO) (PyTHIA 8) (NNPDF3.0nLO) (A14)

tH(Z]y* — €H7) SuerpA 2.2.11 MEeEPs@NLo SHERPA NNPDF3.0NNLO  SHERPA default
(MG5_aMC) (NLO) (PyTHiA 8) (NNPDF3.0nLO) (A14)

tf — WbW- bt ¢~ MG5_aMC LO PytHIA 8 NNPDF3.0Lo Al4

t(Z]y") MG5_aMC NLO PyTHIA 8 NNPDF2.3L0 Al4

tW(Z/vy*) MGS5_aMC NLO PyTHiA 8 NNPDF2.3L0 Al4

tr Pownec-BOX NLO PyTHIA 8 NNPDF3.0nLo  Al4
(Powneg-BOX) NLO (HErwiG7.1.3) (NNPDF3.0nLo) (H7-UE-MMHT)

tt MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4

Single top Powneg-Box NLO PytHIA 8 NNPDF3.0nLo  Al4

(t-, Wt-, s-channel)

VV,qqVV,VVV SHERPA 2.2.2 MEPs@NrLo SHERPA NNPDF3.0NNLO  SHERPA default

Z — e SHERPA 2.2.1 MEPs@NLo SHERPA NNPDF3.0nLo  SHERPA default

Z - ("¢ (y » e*e”) Pownec-BOX NLO PyTHIA 8 CTEQ6LINLO Al4

Z — ¢~ (yx — e*e”) Pownec-BOX NLO PyTHIA 8 CTEQ6LINLO  Al4

W+jets SHERPA 2.2.1 MEPs@NLo SHERPA NNPDF3.0nLo  SHERPA default

Vh Pownec-BOX NLO PyTHiA 8 NNPDF3.0nLo  Al4

HtW*r*w- MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4

ttZ7 MG5_aMC LO PyTHiA 8 NNPDF2.3L0 Al4

tthh MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4

tiwh MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4




4 Event reconstruction and object identification

Interaction vertices from the pp collisions are reconstructed from at least two tracks with transverse
momentum (p) larger than 500 MeV that are consistent with originating from the beam collision region in
the x—y plane. If more than one primary vertex candidate is found in the event, the candidate for which the
associated tracks form the largest sum of squared pr is selected as the hard-scatter primary vertex [104].

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter matched to a
track in the ID [105]. They are required to satisfy pr > 10GeV and |n¢yster| < 2.47, with the transition
region between the endcap and barrel calorimeters (1.37 < [fcpuster] < 1.52) excluded. Loose and tight
electron identification working points are used [105], based on a likelihood discriminant that employs
calorimeter, tracking and combined variables to distinguish between electrons and jets. The associated
track of an electron candidate is required to have at least two hits in the pixel detector and seven hits total
in the pixel and silicon-strip detectors combined. For the tight identification working point, one of these
pixel hits must be in the innermost layer, or the next-to-innermost layer if the module traversed in the
innermost layer is non-operational, and there must be no association with a vertex from a reconstructed
photon conversion [106] in the detector material (denoted as ‘material conversion’).

Muon candidates are reconstructed by combining tracks in the ID with tracks in the MS [107]. The resulting
muon candidates are re-fit using the complete track information from both detector systems [108]. They
are required to satisfy pr > 10 GeV and || < 2.5. Loose and medium muon identification working points
are used [108].

Electron (muon) candidates are matched to the primary vertex by requiring that their transverse impact
parameter, dy, satisfies |dy/o (dp)| < 5(3), where o (dp) is the measured uncertainty in dy, and requiring
that the longitudinal impact parameter, z, satisfies |zo sin 6| < 0.5 mm, where 6 is the polar angle of the
track.

To further suppress leptons from heavy-flavour hadron decays, misidentified jets, or photon conversions
(collectively referred to as ‘non-prompt leptons’), lepton candidates are also required to be isolated in the
tracker and in the calorimeter [109]. A track-based lepton isolation criterion is defined by calculating the
quantity Ig = ), pffk, where the scalar sum includes all tracks (excluding the lepton candidate itself) within
the cone defined by AR < R around the direction of the lepton. The value of R is the smaller of 7y,
and 10 GeV/ p‘%, where i, is set to 0.2 (0.3) for electron (muon) candidates and where pf} is the lepton pr.
All lepton candidates must satisfy /g / p?r < 0.15. Additionally, electrons (muons) are required to satisfy a
calorimeter-based isolation criterion: the sum of the transverse energy within a cone of size AR = 0.2
around the lepton, after subtracting the contributions from pile-up and the energy deposit of the lepton
itself, is required to be less than 20% (30%) of pf}. Muons are required to be separated by AR > 0.2 from
any selected jets (defined below). If two electrons are closer than AR = 0.1, only the one with the higher
pr is considered. Electrons within AR = 0.1 of a selected muon are removed.

The selection criteria described above greatly suppress the contribution from non-prompt leptons. However,
several channels considered in this search have additional suppression requirements targeting the main
non-prompt lepton types. Non-prompt leptons from hadron decays that contain bottom- and charm-quarks,
denoted by ‘heavy-flavour (HF) non-prompt leptons’, are further rejected using a boosted decision tree
(BDT) discriminant, referred to as the non-prompt lepton BDT [107, 110], which uses isolation and
displacement information associated with a track jet that matches the selected light lepton. Three working
points (WPs) are used: Tight, VeryTight, and Tight-not-VeryTight. The Tight WP allows to select
prompt-like leptons with an efficiency for muons (barrel/endcap electrons) that satisfy the calorimeter-



and track-based isolation criteria of about 60% (60/70%) for pr ~ 20 GeV and reaches a plateau of
95% (95/90%) at pt ~ 40 (40/65) GeV. The prompt lepton efficiency of the VeryTight WP for muons
(barrel/endcap electrons) that satisfy the calorimeter- and track-based isolation criteria is about 55%
(55/60%) for pt ~ 20 GeV and reaches a plateau of 90% (85/83%) at pt ~ 40 (40/65) GeV. The
corresponding rejection factor® against muons (electrons) from the decay of h-hadrons ranges from 33 to
50 (20 to 50) for the Tight WP, and from 50 to 100 (33 to 66) for the VeryTight WP, depending on pt and
n, after resolving ambiguities between overlapping reconstructed objects. The Tight-not-VeryTight WP
allows to select non-prompt leptons and is part of the event selection of the control regions enriched in HF
non-prompt lepton background, as described in Section 6.

To further suppress electrons with incorrect charge assignment, a BDT discriminant based on calorimeter
and tracking quantities [111] is used. An efficiency of approximately 96% in the barrel region and 81% in
the endcaps is obtained, with rejection factors of 19 in the barrel region and 40 in the endcaps. Material and
internal conversion candidates are identified based on a combination of requirements on the invariant mass
of tracks and the radius from the reconstructed displaced vertex to the primary vertex. Material conversion
candidates have a reconstructed displaced vertex with radius » > 20 mm that includes the track associated
with the electron.* The invariant mass of the associated track and the closest (in An) opposite-charge track,
calculated at the conversion vertex, is required to be less than 100 MeV. Internal conversion candidates,
which correspond to the internal photon conversions (see Section 3), must fail the requirements for material
conversions, and the invariant mass of the track pair, calculated at the primary vertex, is also required to be
less than 100 MeV.

The lepton working points used in this analysis are summarised in Table 2. After the initial categorisation
based on loose leptons (corresponding to “L”), the most optimal lepton working point to further optimise
the event selection is chosen depending on the main background processes and the expected number of
events in each category. The defined working points are medium inclusive (“M”’), medium exclusive
(“Mex”), and tight (“7”’). The various choices can be seen for the signal and control regions in Section 5.
Electron candidates from internal or material conversion are rejected from the M, M, and T electron
selections. They are used to define control regions enriched in internal or material conversions, and are
collectively denoted e* (see Section 5).

The constituents for jet reconstruction are identified by combining measurements from both the ID and
the calorimeter using a particle flow (PFlow) algorithm [112, 113]. Jet candidates are reconstructed from
these PFlow objects using the anti-k; algorithm [114, 115] with a radius parameter of R = 0.4. They
are calibrated using simulation with corrections obtained from in situ techniques in data [113]. Only jet
candidates with pt > 25 GeV that satisfy || < 2.5 are selected. To reduce the effects of pile-up, each jet
with pt < 60 GeV and |n| < 2.4 is required to satisfy the “Tight” working point of the Jet Vertex Tagger
(JVT) [116] criteria used to identify the jets as originating from the selected primary vertex. A set of
quality criteria is also applied to reject events containing at least one jet arising from non-collision sources
or detector noise [117].

Jets containing b-hadrons are identified (b-tagged) via the DL1r algorithm [118, 119] that uses a deep-
learning neural network based on the distinctive features of the b-hadrons in terms of the impact parameters
of tracks and the displaced vertices reconstructed in the ID. Additional input to this network is provided
by discriminant variables constructed by a recurrent neural network [120], which exploits the spatial and
kinematic correlations between tracks originating from the same b-hadron. For each jet, a value for the

3 The rejection factor is defined as the reciprocal of the efficiency.
4 The beampipe and insertable B-layer inner radii are 23.5 mm and 33 mm, respectively.

10



Table 2: Description of the loose inclusive (“L”), medium inclusive (“M”’), medium exclusive (“Mc”), and tight
(“T”) lepton definitions. The electron e* is required to fulfil, in addition to the corresponding lepton definition
requirements, those corresponding to an internal or material conversion candidate.

e u

Lepton categorization L ‘ M ‘ M ‘ T L ‘ M ‘ My T

Isolation Yes Yes

Non-prompt lepton BDT WP No Tight | Tight-not- | VeryTight No Tight | Tight-not- | VeryTight
VeryTight VeryTight

Identification Loose Tight Loose Medium

Electron charge-misassignment veto No Yes Not applicable

Electron conversion candidate veto No Yes (except e*) Not applicable

Transverse impact parameter <5 <3

significance |dy| /o4,

Longitudinal impact parameter < 0.5 mm

|zo sin 6|

multivariate b-tagging discriminant is calculated. A jet is b-tagged if the b-tagging score is above a certain
threshold, referred to as a working point (WP). Four WPs are defined with average expected efficiencies
for b-jets of 60%, 70%, 77% and 85%, as determined in simulated ¢f events. The b-tagging distribution
obtained by ordering the resulting five exclusive bins from the four WPs from higher to lower b-jet
efficiency is referred to as “pseudo-continuous” b-tagging score, and it is used as input to the multivariate
analysis discriminant described in Section 5. In this search, a jet is considered b-tagged if it passes the WP
corresponding to 77% or 60% efficiency to tag a b-jet, with a light-jet® rejection factor of about 200 or
2500, and a charm-jet (c-jet) rejection factor of about 6 or 40, as determined for jets with pt > 20 GeV
and |n| < 2.5 in simulated 7 events [118]. Correction factors derived from dedicated calibration samples
enriched in b-jets, c-jets, or light jets, are applied to the simulated samples [121-123]. The notation »77%
and %% is used to denote the number of h-tagged jets with the corresponding WP.

Ambiguities between independently reconstructed electrons, muons and jets can arise. A sequential
procedure, referred to as ‘overlap removal’, is performed to resolve these ambiguities and, thus, avoids
double counting of particle candidates. This procedure is applied to leptons satisfying the L criteria. If two
electrons are closer than AR = 0.1, only the one with the higher pr is considered. If an electron and a
muon overlap within AR = 0.1, the muon is removed if it is reconstructed from a track and calorimeter
deposits consistent with a minimum ionising particle, else the electron is removed. If an electron and a
selected jet are within AR < 0.2 of each other, the jet is removed if it is not a h-tagged jet © or if it has
prt > 200 GeV. Muons are required to be separated by AR > 0.4 from any jet that is ghost-associated [124]
to it. If the jet satisfying the AR < 0.4 requirement is not a b-tagged jet and contains less than three tracks
with pr > 500 MeV, the overlapping jet is rejected from the event, otherwise, the muon is rejected. A
lepton lying within a variable-size cone depending on the lepton pr and with a maximum radius of R = 0.4
around a selected jet that survived all previous overlap criteria is rejected.

The missing transverse momentum ﬁ}nisg (with magnitude EaniSS) is defined as the negative vector sum of the
pr of all selected and calibrated objects in the event, including a term to account for the momentum from
soft particles that are not associated with any of the selected objects [125]. This soft term is calculated from

5 “Light jet’ refers to a jet originating from the hadronisation of a light quark (u, d, s) or a gluon.
6 For the overlap removal, a jet is considered b-tagged if it passes the 70% working point. However, the choice of the b-tagging
working point does not have a sizeable impact on the signal acceptance.
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inner-detector tracks matched to the selected primary vertex, which makes it more resilient to contamination
from pile-up interactions. The EF"** distribution is used as an input variable to the machine learning
training discussed in Section 5.

5 Search strategy

Events are required to satisfy a minimal preselection and are categorised into orthogonal signal regions
(SRs) based on different criteria such as number of leptons, total lepton charge (indicated by Q), and a
multi-output deep neural network classifier (DNN). This categorisation provides a set of regions that
are sensitive to all the possible signal production and decay modes considered in this search. A deep
neural network is trained in each of the signal regions to discriminate the signal from the backgrounds
(DNN3B). Additional orthogonal control regions (CRs) are defined in order to fit the normalisation of the
main backgrounds. Dedicated kinematic selections are applied to the control regions to improve the purity
of the targeted backgrounds. A maximum-likelihood fit is performed across categories to test for a possible
signal and constrain in-situ the leading backgrounds simultaneously.

At trigger level, events were selected for read-out using a combination of single-lepton and dilepton
triggers, requiring the electrons or muons to satisfy identification criteria similar to those used in the offline
reconstruction and isolation requirements [126, 127]. Single-electron triggers require a minimum pr
threshold of 24 (26) GeV in the 2015 (2016, 2017 and 2018) data-taking period(s), while single-muon
triggers have a lowest pt threshold of 20 (26) GeV in 2015 (2016-2018). The dielectron triggers require
two electrons with minimum p thresholds ranging from 12 GeV in 2015 to 24 GeV in 2017-2018, whereas
the dimuon triggers use asymmetric p thresholds for leading (subleading) muons: 18 (8) GeV in 2015 and
22 (8) GeV in 2016-2018. Finally, an electron+muon trigger requires events to have an electron candidate
with a 17 GeV threshold and a muon candidate with a 14 GeV threshold for all periods.

For the analysis selection, at least two jets and at least two leptons are required in the event, and leptons are
required to match, with AR < 0.15, the corresponding leptons reconstructed by the trigger and to have a
pt exceeding the trigger pr threshold by 1 GeV. Events are required to contain at least one b-tagged jet
with the 60% efficiency working point, or at least two b-tagged jets with the 77% efficiency working point.
If events contain pairs of opposite-sign charge and same-flavour leptons (OS-SF), all pairs are required to
satisfy a mass requirement on the dilepton system mass of m%S;SF > 12 GeV and |m?+sf__SF —-mz| > 10
GeV. Three disjoint event categories are defined according to the number of loose leptons in the event:
same-charge dilepton (2£SS), three-lepton (3¢), and four-lepton (4¢) categories. The four-lepton category
is inclusive and contains events with higher lepton multiplicity, while the other two are exclusive. Leptons
are ordered by pr in the 2£SS and 4¢ regions. In the 3¢ regions the lepton with opposite-sign charge is
taken first, followed by the two same-sign leptons in pt order. The pt and identification requirements of
each lepton in each category are optimised based on a compromise between non-prompt lepton background
suppression and signal acceptance enhancement, and are summarized in Table 3.

Multiple control regions (CRs) are defined in order to fit the normalisation of the leading backgrounds.
These regions are orthogonal to the signal regions and with one another based on different requirements
on the lepton working points, dilepton invariant mass, and jet and b-jet multiplicities. Two regions
enriched in diboson and tfZ are defined by requiring one OS-SF pair compatible with a Z boson,
|m§,’+s€iSF —mz| < 10 GeV, differing in the jet multiplicity requirement. Two control regions enriched in
photon conversions from Z — uuy*(— ee) are defined, according to the identification of the electron as a
material conversion or internal conversion candidate. Finally, six control regions are defined enriched in
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Table 3: Event selection summary in the signal regions. Leptons are ordered by pr in the 2£SS and 4¢ regions. In the
3¢ regions the lepton with opposite-sign charge is taken first, followed by the two same-sign leptons in pt order. In
the lepton selection, 7, M, L stand for Tight, Medium and Loose lepton definitions. In the region naming, the “CAT
ttX” denotes the category based on the DNN output enriched in the signal process “ttX”. Each of these regions is
split according to the lepton charge of the same-sign lepton pair (“++” or “- -7).

Lepton category 2(SS 3¢ 4¢

Lepton definition

(T, T) with > 1 p%% ||
(T, M) with > 2 p77%

(L, T, M) with > 1 %% ||
(L, M, M) with > 2 p"7%

(L’ L, L? L)

Lepton pr [GeV | (20, 20) (10, 20, 20) (10, 10, 10, 10)
{(155731: [GeV ] - > 12
[mOS5F —mz| [GeV ] - > 10
Niets >2
No—jets > 1 p00% || » 2 p77%
Region split (sstt, ttq, ttt, tttq, tttt) X (Q**, 077) (ttt, tttq, tttt) X (Q*, 07) -
Region naming 2{SS ++ CAT sstt 3¢ ++ CAT ttt 4¢
2£SS ++ CAT ttq 3¢ ++ CAT tttq
2¢SS ++ CAT ttt 3¢ ++ CAT tttt
2£SS ++ CAT tttq 3¢ —— CAT ttt
2SS ++ CAT tttt 3¢ —— CAT tttq
20SS —— CAT sstt 3¢ —— CAT titt

26SS —— CAT ttq
26SS —— CAT ttt
2¢8S —— CAT tttq
2¢SS —— CAT titt

HF non-prompt leptons, making use of the exclusive lepton identification M to be orthogonal to the signal
regions. Events with two same-sign leptons are split according to the criteria (T, Mex), (Mex, T), (Mex, Mex)
for the leading and subleading leptons in p, and further split according to the fake-lepton-candidate
flavour. The fake-lepton candidate is assumed to be the subleading lepton in the (T, Mey), (Mex, Mex)
regions, and the leading lepton in the (Mg, T') region. This splitting creates six control regions sensitive
to different relative composition of electron and muon non-prompt lepton backgrounds. Additionally,
the transverse mass of the leading lepton and the missing transverse energy, mr({p, E%ﬁss), defined as

\/2Em‘ss b (1 = cos(gmiss — %)), is required to be lower than 250 GeV in the (T, Mex) and (Mex, T)
regions to reduce the tfW contribution in these CRs. The full definition of the kinematic selection applied
to each control region is given in Table 4. Figure 3 illustrates the categorisation and definition of the signal
and control regions that are fit simultaneously. The signal contamination is found to be at most 3% of the
total prediction in the control regions, assuming m g = 400 GeV and p,; = 0.4, p; = 0.2, and p;,, = 0.2.
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Table 4: Event selection summary in the control regions. The notation e* is used to denote material conversion or
internal conversion candidates, as described in Section 4. In the HF non-prompt lepton region naming, “2£SStt(e)”
(“2€SStt(u)”) refers to the control region enriched in non-prompt electrons (muons) from semileptonic b-decays
originating mostly from ¢f and with the lepton flavours for the leading and subleading leptons corresponding to
“ee,ue” (“uu,epn’”). The additional (T, Mey), (Mex, T), and (Mex, Mex) subscripts refer to the lepton definitions
required for the leading and subleading leptons in each region.

Control regions wZ 1tz Conversions HF non-prompt

Niets 2or3 >4 >0 >2

N jets > 1 pO0% || » 2 p77% 0 p77% 1 p77%

Lepton requirement 3¢ pue* 2(SS

Lepton definition (L,M, M) (T, Mex) | (Mex, T) || (Mex, Mex)

Lepton pt [GeV ] (10, 20, 20) (20, 20)

m55F [GeV | > 12 > 12 -

Im®55F —mz| [GeV ] <10 > 10 -

lmece —mz| [GeV ] - <10 _

mr(bo, EF™) [GeV ] - <250

Region split - - internal / material subleading e/u X [(T, Mex), (Mex, T), (Mex, Mex)]

Region naming 3¢(VV 3¢ttZ 3¢IntC 2066(8) (T, Mey) » 2€10(€) (Mey,T) > 200(€) (Mo, M)
3¢(MatC 2060(10) (7, Moy ) » 2000(1) (Mo, T) > 200(1) (Mo, Moy

In order to better target each of the possible signals, a DNN is trained to identify each of the five possible
production and decay modes of the g2HDM signal. Two DNN®* are trained individually for the 2£SS and
3¢ channels using the Keras library [128] with TENsorFLoOW as a backend [129] and Adam optimiser [130].
Hyperparameters are optimised with the Talos library [131]. The networks consist of nine input features,
two dense fully connected layers of 33 nodes with rectified linear units as activation functions, interleaved
with a drop-out layer with 20% rate, and five (three) output nodes with a soft-max activation function for
the categorisation of 2£SS (3¢) events. The output categories correspond to the five production modes
considered, ignoring in the 3¢ category signals that cannot produce three leptons. Each event is categorised
according to the highest class probability. The nine input features are the number of jets, b-tagging score
of the three leading jets, sum of b-tagging score of all jets, sum of all pair-wise angular distances between
leptons, scalar sum of jet pr, scalar sum of lepton pr, and the event E%‘iss. The network is trained with
batch size of 2000 and up to 100 epochs, using all the available signal mass points. To avoid discarding
signal events in the evaluation, cross-training is used with the events divided by even/odd event number.

Since several of the probed signal processes are expected to be charge-asymmetric, all the 2£SS and 3¢
regions are further split into two categories each, corresponding to the positive and negative total lepton
charge selections. Figures 4(a) and 4(b) show the normalized distributions of the targeted signals with
a scalar mass of 400 GeV or 1000 GeV, compared to the expected background distribution across the
various categories described in Table 3. At high signal mass, a strong migration is observed from the
ttt to the tttq category, due to the high probability of additional radiation. Figures 4(c) and 4(d) show
the expected fractional signal contribution in each category for the benchmark coupling. The signals
originating from top-Higgs associated production (ttq and ttt) are expected to dominate across all regions,

14



accept conversion
candidate electrons

veto conversion

candidate electrons

28SS

HF non-prompt £ CRs
[=2], 1bj]

Lsublead Pr Leublead
[P Zsublead

pr

SRs [=2], 21bj]
[TT or TM]
split: [++/- -] x [DNNCAT]

3¢ 3¢
Conversions CRs VV/ttZ CRs [LMM] SRs [22}, =1bj]
[LMM] [0bj] [2-3}, 21bj] [24), 21bj] [LTMor LMM]
split: [++/- -] x [DNNCAT]
SR
=1Zcand.
Nevents Nevents ijets

no conversion

requirement

4¢

SRs [22], =1bj]
[LLLL]

=0Z cand.
DNNsB

Figure 3: Illustrative sketch of the definition of the signal and control regions. The corresponding observable used in
the simultaneous fit, as described in Section 8, is given at the bottom of each region box. The notation Nj (Nbj) is
used to denote selections on the jet (b-jet) multiplicity.

Table 5: Input variables to the training of the DNN and DNNSB discriminants.

Variable

DNNcat

Number of jets (Niets)

Sum of pseudo-continuous b-tagging scores of jets

Pseudo-continuous b-tagging score of 1st, 2nd, 3rd leading jet in pr

Sum of pr of the jets and leptons (Htjets, HTlep)
Angular distance of leptons (sum in the case of 3¢ and 4¢)

Missing transverse energy

Leading transverse momentum of jet

Invariant mass of leading lepton and missing transverse energy
Di/tri/quad-lepton type variable (associated with the number of electrons/muons in event)

AN N NN YN

S
SO NENONE NN
w
&

including the categories designed to target other processes, due to the much larger production cross section.
This contribution is however strongly dependent on the coupling choice. For the benchmark coupling of
prr = 0.4, pre = 0.2, pgy, = 0.2, decays to top-quark pairs dominate when not suppressed by the available

phase-space.

A total of 27 analysis regions are defined, with 17 signal regions (10 with 2¢SS, 6 with 3¢, and one 4£) and
10 control regions. In each region, a given kinematic variable is fit to improve the sensitivity to the targeted
signal process (signal regions) or to improve the modelling of a particular background process (control

regions).
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Figure 4: Distribution of signal processes and total background between the different DNN categories (top row), for
(a) 400 GeV and (b) 1000 GeV scalar masses. All distributions are normalised to unity. The vertical dashed grey
lines separate categories targeting each of the main signal processes: sstt, ttq, ttt, tttq, and tttt. Signal contributions
below 2% in a single bin are omitted for clarity. The expected fractional signal contribution in each category (bottom
row) is shown for (c) 400 GeV and (d) 1000 GeV scalar masses for the coupling set p;; = 0.4, p;c = 0.2, pgy = 0.2.
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A DNNSB classifier is trained in each signal region to separate the targeted signal from the sum of
backgrounds. The networks consist of 12 input features, two dense fully connected layers of 36 and 48
nodes respectively with sigmoid activation functions, interleaved with a drop-out layer with 40% rate, and
one output node with a sigmoid activation function. The 12 input features are the leading jet pt, number
of muons, transverse mass of leading lepton and EITniSS system, and the nine variables that are used in the
DNN€®, Table 5 summarises the input variables used for each multivariate discriminant. To achieve good
sensitivity over the large range of masses that are tested, the output of the classifier is decorrelated from
the signal mass introducing an additional term to the loss function via distance correlation [132, 133]. A
hyperparameter A controls the weight of the additional penalty term, with a value of 4 = 0.5. The value
was optimised to achieve a minimal signal mass dependence without compromising the discrimination
power. A separate training is performed in each lepton category and signal category. The same DNNSB is
used in both positive- and negative-charge regions. The same DNN® and DNNSB classifiers trained under
the g22HDM signal hypothesis are also used in the interpretation based on the SUSY models. Figure 5
shows the DNNSB distribution of the targeted signal in each signal-enriched category, the total signal, and
the background in the 2£SS ++ CAT sstt, 2£SS ++ CAT ttq, 3¢ ++ CAT ttt, 3¢ ++ CAT tttq, 3¢ ++ CAT tttt,
and 4¢ categories.

In the diboson and #Z control regions the fitted variable is the b-jet multiplicity, Nj_jes, Where the
distribution is binned with an upper limit of > 2 b-jets and > 3 b-jets respectively. The subleading lepton
pt spectrum is used in the HF non-prompt control regions. Finally, the total event yield is fit in the control
regions enriched in electrons from photon conversion.

6 Background estimation

The background processes passing the signal region selections are categorised into irreducible and
reducible backgrounds. Irreducible backgrounds (Section 6.1) produce prompt leptons in their decay, i.e.
leptons originating from W/Z boson decays, leptonic T-lepton decays, or internal conversions. Reducible
backgrounds (Section 6.2) have prompt leptons with misassigned charge or at least one non-prompt
lepton.

Except for the background from electrons with misassigned charge (denoted as QMisID), all other
backgrounds are estimated using the simulated samples described in Section 3. In some cases, the simulation
is improved using additional corrections derived from data control samples before the simultaneous fit
to data. In particular, the event kinematics of the simulated 77 and VV backgrounds require dedicated
corrections to better describe the data. In addition, the yields of some simulated backgrounds, in particular
ttW, ttZ, VV and non-prompt-lepton backgrounds, are adjusted via normalisation factors that are determined
by performing a likelihood fit to data across all event categories (signal and control regions as defined in
Tables 3 and 4) as discussed in Section 8.

6.1 Irreducible backgrounds
Background contributions with prompt leptons originate from a wide range of physics processes with

the relative importance of individual processes varying by channel. The main irreducible backgrounds
originate from ¢fW, tftt, and t7Z /v* production, followed by VV (in particular WZ) and tth production,
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Figure 5: Comparison of the DNNSE distribution of the targeted signal (solid line), the total signal (dashed line) and
the background (filled grey area) in the (a) 2£SS CAT sstt, (b) 2¢SS CAT ttq, (c) 3¢ CAT ttt, (d) 3¢ CAT tttq, (e)
3¢ CAT tttt, and (f) 4¢ categories, for an assumed mpg = 400 GeV (pink) and mg = 800 GeV (violet), with couplings
prr = 0.4 and py, = 0.2. All distributions are normalised to unity.
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and have final states and kinematic properties similar to the g22HDM signal. Smaller contributions originate
from the following rare processes: tZ, tW, tWZ, ttWW, VVV, and ¢ttt production.

6.1.1 tfW background

The W background represents the leading background in several event categories. Despite the use of
state-of-the-art simulations, accurate modelling of additional QCD and QED radiation in ##W production
remains challenging. Given the excellent discriminating power of the DNNSB in the signal regions, the
events at lower values of the DNNSB score are enriched in and sensitive to the 17W background. Additionally,
the signal regions in the 2¢ and 3¢ categories are split by the sign of the total lepton charge (Q) to better
discriminate some g2HDM signal processes and the t#W process, which have a large charge asymmetry,
from other SM backgrounds that are charge symmetric. This discrimination increases the sensitivity to this
background in the simultaneous fit. Finally, the DNN categories with negative total lepton charge, which
are depleted in signals with large charged lepton asymmetry, provide additional constraints on the 1tW
background, in particular at high values of the DNN®B distribution tail.

Disagreement between the data and the prefit prediction from the simulation is observed, which is
accommodated by an overall normalisation factor that is assigned to the W background, and that is
determined during the likelihood fit. The measured normalisation factor for the background-only hypothesis
is /in‘w = 1.50 = 0.14, which is compatible with that determined in the SM ¢7¢f analysis [134], and with a
previous measurement of the #W production cross section [135].

6.1.2 VV and ¢tZ |y* backgrounds

A data-driven correction to the jet multiplicity spectrum is derived from an inclusive trilepton diboson-
enriched region with zero b-jets defined with the 85% WP for b-jet efficiency and at least one jet (denoted
as 3¢VVO0b region). The events are required to have three leptons that satisfy the same selection as in the
3¢VV CR.

Figure 6(a) shows the jet multiplicity distribution in the 3/VVO0b region before the correction. After the
correction is applied to VV, a good modelling of the Njes distribution is found in a 3¢ region with at least
one jet and exactly one b-jet defined with the 60% WP, as shown in Figure 6(b).

The 3¢VV and 3¢ttZ CRs are used in the likelihood fit to improve the prediction of the background
contribution from the VV and tfZ/y* processes; these processes have purities of 15% and 75% in the
corresponding CRs. The numbers of jets and b-jets provide good discrimination between these two
processes and are used to build the control regions (number of jets) and as variables in the fit (number of
b-jets). The measured normalisation factors for the background-only hypothesis are: Ayy = 0.85 + 0.30
and A,77 = 0.97 £ 0.19, where the uncertainty includes both statistical and systematic contributions.

Figures 7(a) and 7(b) show the b-jet multiplicity distribution in the 3¢VV and 3£ttZ CRs after the likelihood
fit to data.
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Figure 6: Comparison between data and the background prediction for the distribution of (a) the number of jets in the
3¢VVO0b region before the VV jet multiplicity correction and (b) the number of jets in a 3¢ region with at least one jet
and exactly one b-jet defined with the 60% WP after the VV jet multiplicity correction. The ratio of the data to the
background prediction (‘“Pred.”) is shown in the lower panel. The size of the combined statistical and systematic
uncertainty in the background prediction is indicated by the blue hatched band. The last bin in each figure contains
the overflow.

6.1.3 Other irreducible backgrounds

The rate of the background from internal conversions with m(e*e™) < 1 GeV is estimated using the two
dedicated CRs, 3¢IntC and 3¢/MatC, with a purity of 98% and 30%, respectively. The total yield in each
category is used in the likelihood fit to determine the normalisation factor, which is measured for the
background-only hypothesis to be /ilemc = 1.06 + 0.23, where the uncertainty is dominated by the statistical
uncertainty.

6.2 Reducible backgrounds
6.2.1 Non-prompt leptons

Non-prompt leptons originate from material conversions, heavy-flavour hadron decays, or the improper
reconstruction of other particles, with an admixture that depends strongly on the lepton quality requirements
and varies across event categories. These backgrounds are small in all 2¢ and 3¢ SRs and thus are
estimated from simulation, with the normalisation determined by the likelihood fit. The non-prompt lepton
background contribution in the 4¢ SR is very small and is therefore taken from simulation without dedicated
data-driven corrections. The main contribution to the non-prompt-lepton background is from ¢# production,
with much smaller contributions from V+jets and single-top-quark processes. The non-prompt leptons
in the simulated samples are labelled according to whether they originate from heavy-flavour (HF) or
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Figure 7: Comparison between data and the background prediction for the distribution of the b-jet multiplicity in the
(a) 3¢VV and (b) 3(ttZ CRs after the VV jet multiplicity correction. The background contributions after the likelihood
fit to data (“Post-Fit”) for the background-only hypothesis are shown as filled histograms. The ratio of the data to the
post-fit background prediction (“Pred.”) is shown in the lower panel, separately for post-fit background (black points)
and pre-fit background (dashed blue line). The size of the combined statistical and systematic uncertainty in the
background prediction is indicated by the blue hatched band. The last bin in each figure contains the overflow.

light-flavour (LF) hadron decays, or from a material conversion candidate (Mat. Conv.). The HF category
includes leptons from both bottom and charm decays.

Two corrections are applied to the ¢7 and the overall non-prompt lepton background simulation before the fit.
First, the 7 +> 1 b-jet contribution from simulation is known to be mismodelled and is therefore corrected
by a factor of 1.3 as measured by a previous ATLAS analysis sensitive to the in-situ measurement of this
contribution in the single- and opposite-sign dilepton final states [136]. This correction is well motivated
since the mismodelling of additional b-jets in ¢ is not expected to depend on the presence of additional
non-prompt leptons in the event. Second, the shape of the b-jet multiplicity in the non-prompt lepton
background simulation is corrected for electrons and muons separately to match data in an orthogonal
2¢SS validation region enriched with non-prompt leptons, where one of the leptons must satisfy a looser
requirement on the non-prompt lepton BDT score but fail the M lepton WP criteria.

Several of the event categories introduced in Section 5 were designed to be enriched in specific processes
and are used to derive normalisation factors to improve their modelling by the simulation. The 3¢{MatC
CR is enriched in material conversions with a purity of 70% and only the total event yield is used. There
are six 2¢ CRs enriched in contributions from HF non-prompt leptons in ¢ events, i.e. 2{tt(e) (1, pm,,)»
200(€) (Mo, T)» 20t(€) (Meox,Mer)» 2001 (T, Mo 2C8(10) (M, T)» and 2€tt (1) (a1, M.,)- In these CRs, the
transverse momentum of the fake-lepton-candidate distribution is used to be able to correct for a possible
mismodelling in the pt of the non-prompt lepton. The fake-lepton candidate is assumed to be the subleading
lepton in the (T, Mex), (Mex, Mex) regions, and the leading lepton in the (M, T) region. The event
requirement to have at least one M lepton provides separation from the irreducible backgrounds, in
particular t#W, and thus increases the sensitivity to the HF non-prompt electron and muon contributions.
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Figure 8: Comparison between data and the background prediction for the distribution of the transverse momentum
of the sub-leading lepton (P, subleading lep) in (a) the 2£tt(e) (7, pm,,) CR and (b) the 2£tt(u) (7, a1,,) CR. The background
contributions after the likelihood fit to data (‘“Post-Fit”) for the background-only hypothesis are shown as filled
histograms. The ratio of the data to the post-fit background prediction (“Pred.”) is shown in the lower panel,
separately for post-fit background (black points) and pre-fit background (dashed blue line). The size of the combined
statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band. The last bin
in each figure contains the overflow.

Normalisation factors for three non-prompt-lepton background contributions are estimated from the
likelihood fit. The normalisation factor for HF non-prompt leptons is estimated separately for electrons
and muons, A1 and Ai‘f‘d, respectively. An additional normalisation factor is determined for the material
conversions background, AM €1V The measured normalisation factors for the background-only hypothesis
are: A8 = 1.05+£0.31, A% = 0.92  0.18, and A} ™ = 1.16 + 0.29, where the uncertainties include
systematic effects but are dominated by the statistical uncertainty.

Figures 8(a) and 8(b) display the fake-lepton-candidate pt distribution in the 2ftt(e)(r, a,,) and
20tt(u) (1, m.,) CRs after the likelihood fit to data. As shown in the figures, the purity of HF non-
prompt lepton background is 45% and 55%, respectively, which was possible to achieve with the usage of
the exclusive M.y lepton working point.

6.2.2 Charge misassignment

Backgrounds with leptons with the charge incorrectly assigned affect primarily the 2¢ channel and
predominantly arise from ¢f production, where one electron udergoes a hard bremsstrahlung and an
asymmetric conversion (e* — e*y* — e*e*e™) or a mismeasured track curvature. The muon charge
misassignment rate is negligible in the pt range relevant to this analysis. The electron charge misassignment
rate is measured in data using samples of Z — e*e™ events reconstructed as same-charge pairs and as
opposite-charge pairs, with the background subtracted via a sideband method [105].
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The charge misassignment rate is parameterised as a function of electron pt and |;|. It varies from about
1073 for low-pr electrons (17 < pr < 50 GeV) that satisfy || < 1.37, to about 4 x 1073 for high-pr
electrons (pr = 100 GeV) in the region 2 < || < 2.47. To estimate the QMisID background in each of
the corresponding event categories, the measured charge misassignment rate is then applied to data events
satisfying the requirements of the 2¢ channels, except that the two leptons are required to be of opposite
charge.

6.3 Background modelling

The modelling of some representative variables at preselection level is showed in Figure 9. The background
prediction includes all the corrections previously described as well as the normalisation factors determined
through a likelihood fit to data as discussed in Section 8. Good modelling is observed across all variables
and lepton categories.

7 Systematic uncertainties

The signal and background yields in each signal and control region may be affected by several sources of
systematic uncertainty, described in the following subsections. Given the low background yields and good
signal-to-background separation provided by the final discriminating variable used in the signal-rich event
categories, the search sensitivity is determined by the limited number of data events rather than by the
systematic uncertainties on the background estimate. The final uncertainty in the background estimate
in the SRs is dominated by the uncertainty in the fitted background normalisations, in particular t7W. A
summary of all systematic uncertainties included in the analysis is given in Table 6.

7.1 Experimental uncertainties

The combined 2015-2018 integrated luminosity, obtained using the LUCID-2 detector [137] for the primary
luminosity measurements, has an uncertainty of 1.7% [68].

Uncertainties associated with the lepton selection arise from the trigger, reconstruction, identification
and isolation efficiencies, and lepton momentum scale and resolution [105, 107, 111]. Uncertainties
associated with the jet selection arise from the jet energy scale (JES), the JVT requirement and the jet
energy resolution (JER) [113, 138].

The efficiency of the flavour-tagging algorithm is measured for each jet flavour using control samples in
data and in simulation. From these measurements, correction factors are derived to correct the tagging
rates in the simulation [121, 122, 139]. These systematic uncertainties are taken as uncorrelated between
b-jets, c-jets, and light-flavour jets. An additional uncertainty is assigned to account for the extrapolation
of the b-tagging efficiency measurement from the pr region used to determine the correction factors to
regions with higher transverse momentum [140]. This uncertainty is the leading experimental uncertainty
in the analysis, with relative variations up to 25% on the signal.

The treatment of the uncertainties associated with reconstructed objects is common to all analysis
channels and applies to all signal and background samples, except for the background from electrons with
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Figure 9: Comparison between data and the background prediction for the distribution of the jet multiplicity (a, d), sum
of pseudo-continuous b-tagging scores of jets (b, e) and the sum of pt of the jets and leptons (c, f), in the 2¢ (a-c) and
3¢ (d-f) signal region selections before any categorisation based on DNN. The expected signal for mg = 900 GeV
and couplings p;;=0.6, p;-=0.0, and p;,,=1.1, along with the background contributions, is shown after the likelihood
fit to data (“Post-Fit”) for the background-only hypothesis. The ratio of the data to the prediction (“Pred.”) is shown
in the lower panel, separately for post-fit signal-plus-background (black points) and pre-fit background (dashed blue
line). The size of the combined statistical and systematic uncertainty in the signal-plus-background prediction is
indicated by the blue hatched band. The last bin in each Figure contains the overflow.
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misidentified charge, and thus these are considered as fully correlated among different analysis regions and
samples.

7.2 Theoretical uncertainties

The modelling uncertainties on the main irreducible backgrounds are assessed through comparisons with
alternative MC samples, as listed in Table 1. Additional uncertainties are evaluated from renormalisation
and factorisation scale variations by a factor of 0.5 and 2, relative to the nominal scales, for the tfW, tfZ,
and diboson samples. An additional 20% uncertainty is assigned to the W electroweak contribution [141].
An additional 50% uncertainty is assigned to (W, tfZ, and 7 events with additional heavy-flavour jets,
following Ref. [34]. This normalisation uncertainty is not applied to diboson events with heavy-flavour since
its normalisation is fit to data. The statistical uncertainty on the fitted parameters for the VV jet-multiplicity
correction is propagated as an uncertainty on the diboson background. The leading theoretical uncertainties
arise from ##W modelling and additional heavy-flavour uncertainties.

Finally, additional normalisation uncertainties are included for all processes whose normalisation is not
obtained from the fit. The ¢7t7, tth, and ¢tZ processes are assigned an uncertainties of 20% [93], 11% [95],
and 5% [142], respectively. As a conservative estimate, a 50% cross section uncertainty is assigned to the
tit, tWZ, ttWW, and triboson backgrounds, which are small backgrounds with low impact on the search.

Uncertainties on the modelling of the signal samples are evaluated through independent variations of the
factorisation and renormalisation scales by a factor of two. Additional uncertainties due to PDF effects are
estimated through an ensemble of eigenvariations of the NNPDF set, and by taking the differences with
respect to alternative PDF sets [143].

7.3 Reducible background uncertainties

The normalisation of HF non-prompt leptons is obtained from regions including at least one M.y lepton and
extrapolated to the signal regions where the same-sign leptons fulfil the T or M identification requirements.
An uncertainty of 20% on the extrapolation from M to T leptons is applied from the comparison of
the relative efficiency between nominal and alternative 7 MC samples. An additional 50% uncertainty
is assigned to events originating from ¢f +> 1b and 7 +> 1c¢, decorrelated between flavours. Validation
regions with looser lepton requirements and further enriched in non-prompt leptons are defined. A good
agreement between data and background prediction is observed in all kinematic variables except for
the number of b-jets. Based on this disagreement, an N;,_jes-dependent uncertainty is added to the HF
non-prompt background ranging from 6%—40% for 1-3 additional b-jets in the non-prompt muon regions,
and 10%-80% in the non-prompt electron regions.

The modelling of internal and material conversions is tested in dedicated validation regions with two tight
same-sign leptons, requiring one of them to be a conversion candidate. Additional uncertainties of 10%
and 50% are assigned to the material and internal conversion backgrounds, respectively, evaluated from the
data to background agreement in the validation regions.

A systematic uncertainty of 10%—60% is assigned to the background from electrons with misidentified
charge. The uncertainty increases with electron pr and decreases with |5|. The uncertainty is assessed
combining the uncertainties from the measurement of the charge misassignment rate, the difference in rates
from varying the mz window selection, and the different rates measured in data and Z — e*e™ MC.
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Table 6: Sources of systematic uncertainty considered in the analysis. “N”’ means that the uncertainty is taken as
normalisation-only for all processes and channels affected. Some of the systematic uncertainties are split into several
components, as indicated by the number in the rightmost column.

Systematic uncertainty Components  Systematic uncertainty Components

Signal modelling Luminosity 1
QCD scale 1 Pile-up reweighting 1
PDFs+ag 3 Physics objects

ttW modelling Electron 6
QCD scale 3 Muon 15
Generator 2 Electron Non-prompt BDT 14
Electroweak cross section 1 Muon Non-prompt BDT 20
Additional heavy-flavour 1 Jet energy scale 30

ttZ [y* modelling Jet energy resolution 12
QCD scale 2 Jet vertex fraction 1
Generator 2 Jet flavour tagging 62
Additional heavy-flavour 1 Emiss 3

tth modelling Total (Experimental) 165
Cross section (N) 1 Data-driven reducible background estimates
Parton shower and hadronisation model 1 Material conversions modelling 1
Generator 1 Internal conversions modelling 1
QCD scale 1 Charge misassignment 1
Additional heavy-flavour 1 HF non-prompt 8

WZ modelling t7 additional heavy-flavour 2
QCD scal§ 1 Total (Data-driven reducible background) 13
Cross section (N) : Total (Overall) 210
Extra-jets correction 1

titf modelling
Generator 1
Cross section (N) 1

Other background modelling
Cross section (N) 6

Total (Signal and background modelling) 32

8 Results

A maximum-likelihood fit is performed on all bins in the 27 signal and control regions considered in this
search to simultaneously determine the background and the signal yields that are most consistent with
the data. The DNNSB is used as the discriminating variable in the signal regions, whereas the Np_jets
fake-lepton-candidate pt and event yields are fit in the control regions. The sum of all the g2HDM signal
processes studied here (sstt, ttq, ttt, tttq, tttt) is considered as a single signal template and its acceptance in
each category is predicted by the simulation. The same procedure is followed for the SUSY signals.

The likelihood function £ (u, A, 5) is constructed as a product of Poisson probability terms over all bins
considered in the search, and depends on the signal-strength parameter, ¢, a multiplicative factor applied
to the predicted yield for the g2HDM signal (depending on the coupling configuration p;;, ptc, Pr, and
on the assumed mass mpy), Z, the normalisation factors for several backgrounds (see Section 6), and
6, a set of nuisance parameters (NP) encoding systematic uncertainties in the signal and background
expectations [144]. Systematic uncertainties can impact the estimated signal and background rates, the
migration of events between categories, and the shape of the fitted distributions; they are summarised in
Table 6. Both u and A are treated as free parameters in the likelihood fit. The NPs 6 allow variations of
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the expectations for signal and background according to the systematic uncertainties, subject to Gaussian
or Poisson constraints in the likelihood fit. Their fitted values represent the deviations from the nominal
expectations that globally provide the best fit to the data. Statistical uncertainties in each bin due to
the limited size of the simulated samples are taken into account by dedicated parameters using the
Beeston—Barlow “lite” technique [145].

The test statlstlc qu is defined as the profile likelihood ratio: g, = -2In(L(u, A, 1 qﬂ)/ L(a, 4, 1 ju))
where a, /1 a» and 9 are the values of the parameters that maximise the likelihood function, and /l and

0,, are the values of the parameters that maximise the likelihood function for a given value of yu. The
test statistic g, is evaluated with the RooFit package [146]. A related statistic is used to determine the
probability that the observed data are incompatible with the background-only hypothesis (i.e. the discovery
test) by setting u = 0 in the profile likelihood ratio (gg). The p-value (referred to as pg) representing the
probability of the data being compatible with the background-only hypothesis is estimated by integrating
the distribution of go from background-only pseudo-experiments, approximated using the asymptotic
formulae given in Ref. [147], above the observed value of gyg. Some model dependence exists in the
estimation of the pg, as a given signal scenario must be assumed in the calculation of the denominator of
qo, even if the overall signal normalisation is allowed to float and is fit to data. The observed py is checked
for each explored signal scenario. Upper limits on the signal production cross section for each of the signal
scenarios considered are derived by using g, in the CL; method [148, 149]. For a given signal scenario,
values of the production cross section (parameterised by u) yielding CLg < 0.05, where CL is computed
using the asymptotic approximation [147], are excluded at > 95% confidence level (CL).

The smallest pg value is observed when assuming a signal with mg = 900 GeV and couplings p;,=0.6,
p1=0.0, and p;,=1.1, corresponding to a local significance of 2.8 standard deviations. The fitted signal
strength is ¢ = 0.07 £ 0.03, pointing to an incompatibility of the model prediction with the size of the
excess or else the need for additional undetected decay modes taking up 93% of the branching ratio. The
signal cross section resulting from the fit to data for this g22HDM signal hypothesis is 154 fb, with fractional
contributions of 55% ttq, 31% sstt, and 14% ttt. The signal with the fitted signal strength closest to unity
(1 =0.9+0.4) corresponds to my = 900 GeV and couplings p;,=0.2, p;-=0.4, and p;,,=0.4 and a local
significance of 2.4 0. Figure 10 shows the local significance as a function of the three couplings normalised
to the sum of the couplings. This normalisation eliminates one degree of freedom related to the total
normalisation of the signal, which is not relevant for the computation of the significance. However, a
residual dependency on the actual value of the coupling remains as the normalization of the sstt process
scales as the fourth power of the couplings, while the rest of the processes scale as a function of the
couplings squared.

A comparison of the distributions of observed and expected yields is shown Figure 11(a) for the 17 SRs, and
Figure 11(b) for the 10 CRs, after the combined likelihood fit for the signal-plus-background hypothesis.
The corresponding post-fit yields for the SRs can be found in Tables 7, 8, and 9 for the 2£SS positively
charged, 2¢SS negatively charged, and 3¢ and 4¢ SRs, respectively. The signal shown in the figures and
tables is the g2HDM signal with couplings p,;,=0.6, p;-=0.0, and p;,=1.1, and mass of 900 GeV, which
corresponds to the largest observed significance above the background only hypothesis. Good agreement
between the data and fitted signal-plus-background yields is found across all event categories.

The systematic uncertainties with the largest impact on the signal strength originate from the modelling
of ttW with and without additional heavy flavour jets, t7Z, tth, and tftf processes. The signal strength is
partially anti-correlated with 4,7y, with a linear correlation value of —35%. The search is dominated by
statistical uncertainties.
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Figure 10: Observed significance for a heavy scalar with a mass of 900 GeV as a function of the three couplings
normalised to the sum of the couplings. This normalisation eliminates one degree of freedom related to the total
normalisation of the signal, which is not relevant for the computation of the significance. A residual dependency on
the actual value of the coupling remains as the normalization of the sstt process scales as the fourth power of the
couplings, while the rest of the processes scale as a function of the couplings squared. The star indicates the coupling
configuration leading to the highest observed significance of 2.8 standard deviations.

Comparisons between data and the background prediction for the DNNSB distributions used in the different
SRs are shown in Figures 12 and 13. The binning used for the DNNSB distributions in the different SRs
represents a compromise between preserving enough discrimination in the fit between the background and
the signal for the different values of the heavy H mass considered and keeping the MC statistical uncertainty
of the background prediction per bin well below 30%. The signal regions with the largest pre-fit tension
between data and the background yields (shown in the blue dashed line) at high values of the DNNSB are
the 2£SS ++ CAT tttq, the 2¢SS ++ CAT tttt, the 2¢SS ++ CAT sstt, and the 2SS ++ CAT ttq regions.
Within this model, the /i,;w remains higher than 1, as observed by other analyses [33, 42, 150-152]. Since
the largest discrepancies between data and the background expectation before the fit are observed in signal
categories with positive total lepton charge, this tension cannot be explained by the lepton-charge-symmetric
SM rttt production. The goodness-of-fit based on the saturated model [153] for the best fit g22HDM signal
plus background is 62%, which shows a better fit to data than the background-only hypothesis with a
goodness-of-fit of 45%.

Exclusion limits on the heavy Higgs boson mass are set for different choices of the couplings, as shown
in Figure 14. Masses of an additional scalar boson mg between 200-620 (200-840) GeV with couplings
prr = 0.4, pre = 0.2, and p;,, = 0.2 are observed (expected) to be excluded at 95% confidence level. Limits
on the heavy Higgs boson mass are also set for a scenario without coupling to two top quarks, p;; = 0,
Pre = 0.2, pr = 0.2, resulting on an observed (expected) limit of 200-320 (200-560) GeV on the heavy
Higgs boson mass. No limits can be set on scenarios without off-diagonal couplings, leading only to
four-top final states with a coupling set p;r = 1, pre = 0, pry = 0. The sensitivity of the analysis on the
four-top final state is similar to previous ATLAS analyses [39]. The excluded mass is also presented as a
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Figure 11: Comparison between data and the background prediction for the event yields in (a) the 17 signal region
categories and (b) the 10 control region categories. The expected signal for my = 900 GeV and couplings p;+=0.6,
p1=0.0, and p;,,=1.1, along with the background contributions, is shown after the likelihood fit to data (“Post-Fit”)
for the signal-plus-background hypothesis. The total background prediction before the likelihood fit to data (“Pre-Fit”)
is shown as a dashed blue histogram in the upper panel. The ratio of the data to the total prediction is shown in the
lower panel, separately for post-fit signal-plus-background (black points) and pre-fit background (dashed blue line).
The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue
hatched band.
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function of two couplings for different assumptions, as shown in Figure 15.

The search is also used to set limits on RPV SUSY models using the existing DNNs that were trained for
the g2HDM model. Figures 16(a) and 16(b) show the exclusion limits obtained on the higgsino and wino
models, respectively. Higgsinos (winos) with masses up to 585 (670) GeV are excluded. Figure 17 shows
limits on the smuon-bino model. Smuon masses up to 460 GeV are excluded, with weaker exclusion limits
for small mass splittings between the smuon and the lightest SUSY particle (LSP), or for LSP masses close
to the top-quark threshold.

Table 7: Post-fit yields of the 2¢SS positively charged signal regions. The best-fit signal for mpy = 900 GeV and
couplings p;;=0.6, p;-=0.0, and p;,,=1.1, is shown for a signal strength ¢ = 0.07 + 0.03.

26SS ++ CAT sstt~ 26SS ++ CAT ttq  26SS ++ CAT ttit - 2€SS ++ CAT tttq 2£SS ++ CAT tttt
Signal 35+13 19 +7 5822 18 +7 3.6+1.4
titt 0.19 +0.05 0.45 +0.09 2.3 +0.5 4.7+0.9 79 +1.4
titw 220 +20 135 +10 214 +16 70 +7 15.7 2.3
ttH 17.2 £2.6 154 £2.6 37 +5 152 £3.2 6.3 £1.5
ttZ [y 43 +5 23.6 £2.8 53 +5 13.4 £1.4 5.5+0.8
tty= (LM) 5.6£3.1 45 2.7 5.5+3.0 1.5 £1.0 0.6 £0.5
vv 22 +7 11 +4 5220 22+09 0.16 +£0.08
tZ 23.7+14 9.3 0.6 53 +0.4 0.72 +0.06 0.007 +0.006
Non-prompt £ 42 +15 20 7 19 £6 4.7 £2.7 0.6 0.6
Mat Conv 19 +5 6.1 £1.6 7322 1.7 £0.7 0.86 +0.24
QMisID 74 £2.7 1.7 £0.6 1.4 £0.5 0.20 +0.08 0.021 +0.009
Other 59+2.0 4.1+1.4 8.1+2.2 6.2 £1.9 2.4 +0.6
Total 441 £16 250 +8 365 +12 138 +7 43.6 +2.8
Data 434 261 342 138 46

Table 8: Post-fit yields of the 2¢ negatively charged signal regions. The best-fit signal for my = 900 GeV and
couplings p;;=0.6, p;-=0.0, and p;,,=1.1, is shown for a signal strength ¢ = 0.07 + 0.03.

2¢£SS —— CAT sstt

20SS —— CAT ttq

2¢SS —— CAT ttt

2SS —— CAT titq

2¢SS —— CAT tttt

Signal 3221 1.4 0.7 0.48 +0.26 0.9 +0.4 0.20 £0.09
titt 0.20 +£0.05 0.49 +0.11 2.4 +0.6 4.7 0.9 79 +1.4
titw 110 +9 70 £5 124 +9 38 +4 9.8 £1.5
ttH 17.1 £2.5 153 +2.2 37 £6 155 +£3.2 6.2+1.4
ttZ/]yx 42 +5 234 +2.6 53 +5 13.7+£1.5 5.5+0.8
tiy* (LM) 10 £5 3.7 2.1 7 +4 1.6 £1.0 0.31 £0.26
4% 21 +6 7.5 +2.6 3.7+1.5 1.4 +£0.5 0.11 £0.05
tZ 13.0 £0.8 5.53 £0.33 3.25 £0.28 0.274 +0.033 0.045 £0.017
Non-prompt £ 54 +16 22 +8 25 +9 2.7+0.9 0.9 £0.6
Mat Conv 16 +5 4.0=+1.1 6.9 +1.9 0.8 +0.4 1.3 +0.6
QMisID 7.4 2.7 1.7 £0.6 1.4 £0.5 0.19 +0.08 0.021 +£0.009
Other 6.5 +2.1 3912 7.8 +2.3 5.8 1.8 2.3 +0.6
Total 300 +10 159 +5 271 +8 86 +4 34.6 +2.4
Data 296 158 282 78 35
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Table 9: Post-fit yields of the 3¢ and 4¢ signal regions. The best-fit signal for mgy = 900 GeV and couplings p;;=0.6,
p1=0.0, and p;,,=1.1, is shown for a signal strength ¢ = 0.07 + 0.03.

30 ++ CAT tttt 30 ++ CAT ttt 30 ++ CAT tttq 36 —— CAT et 3¢ —— CAT ttt 3¢ —— CAT tttq 4¢
Signal 0.9 £0.4 1.5 +0.6 2209 0.049 +£0.022 0.08 +0.04 0.10 +0.04 0.034 £0.013
titt 3.8 £0.7 0.80 +0.17 1.74 £0.32 3.8+£0.7 0.87 £0.21 1.71 £0.32 1.4 £0.9
tHiw 4.9 +0.6 97 +8 23.1 £3.0 2.8 0.4 54 +4 124 £1.5 0.50 £0.11
ttH 49+1.0 23.0 £3.1 8.0+1.6 4.8 1.0 23.1£3.2 79 %15 11.4 £2.8
titZ |y 10.9 1.1 55 +6 129 1.9 10.8 £1.2 55 +6 13.0 1.7 242 +29
tty+ (LM) 0.23 +0.26 2.8 £1.6 0.7 £0.4 0.0 0.0 3.5+2.0 0.5+0.4 0(0)
vv 0.46 +0.20 10 +4 2.3 +09 0.43 +0.18 7.6 £3.0 2.1 £0.6 3.6+1.3
tZ 0.268 +£0.028 12.5 +0.8 2.53 +0.17 0.106 +0.013 7.2+0.4 1.19 +0.08 0.0+0.0
Non-prompt £ 0.0 £0.0 11 +4 1.9 £0.8 0.23 +0.16 12 +6 1.2 £0.6 2.09 +0.35
Mat Conv 0.21 +0.07 33 =11 0.49 +0.26 0.10 +0.06 9 +6 0.037 £0.010 0(0)
Other 2.0 £0.6 7.6 £2.3 33 +£1.0 1.8 £0.5 6.1 £2.1 3.4 +£1.0 2.7+0.9
Total 28.5 +1.6 226 +7 59.2 £3.1 249 +1.6 179 +7 43.5+2.2 46 +4
Data 30 236 53 27 195 47 45
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Figure 12: Comparison between data and prediction for the DNNSB distribution used in different signal region
categories of the 2SS channel: (a) 2SS —— CAT sstt, (b) 2£SS ++ CAT sstt, (¢) 2¢SS —— CAT ttq, (d) 2¢SS ++ CAT ttq,
(e) 2£SS —— CAT ttt, (f) 2€SS ++ CAT ttt, (g) 2£SS —— CAT tttq, (h) 2£SS ++ CAT tttq, (i) 2£SS —— CAT tttt, and (j)
2(SS ++ CAT tttt. The expected signal for mpy = 900 GeV and couplings p;;=0.6, p;=0.0, and p;,,=1.1, along with
the background contributions, is shown after the likelihood fit to data (“Post-Fit”) for the signal-plus-background
hypothesis. The ratio of the data to the prediction (“Pred.”) is shown in the lower panel, separately for post-fit
signal-plus-background (black points) and pre-fit background (dashed blue line). The size of the combined statistical
and systematic uncertainty in the signal-plus-background prediction is indicated by the blue hatched band.
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Figure 13: Comparison between data and prediction for the DNNSB distribution used in different signal region
categories of the 3¢ and 4¢ channels: (a) 3¢ —— CAT ttt, (b) 3¢ ++ CAT ttt, (c) 3¢ —— CAT tttq, (d) 3¢ ++ CAT tttq,
(e) 3¢ —— CAT tttt, (f) 3¢ ++ CAT tttt, and (g) 4¢. The expected signal for mgy = 900 GeV and couplings p;;=0.6,
Prc=0.0, and ps,=1.1, along with the background contributions, is shown after the likelihood fit to data (“Post-Fit”)
for the signal-plus-background hypothesis. The ratio of the data to the prediction (“Pred.”) is shown in the lower
panel, separately for post-fit signal-plus-background (black points) and pre-fit background (dashed blue line). The
size of the combined statistical and systematic uncertainty in the signal-plus-background prediction is indicated by
the blue hatched band.
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Figure 14: Observed and expected exclusion limits at 95% confidence level on the heavy Higgs boson mass for the
22HDM signal model for different couplings choices: (a) p;; = 0.4, pre = 0.2, pryy = 0.2, (b) prr =0, pre = 0.2,
o =02, pir =1, pre =0, pry =0, and (d) psr = 0.6, pre = 0, pry = 1.1, the latter corresponding to the
couplings yielding the most significant excess. The yellow and green contours of the band around the expected limit
are the =10 and +2¢ variations including all uncertainties, respectively. The theoretical prediction for the signal
production cross section is also shown as a red line. The production cross section is the sum of the five production
modes considered in the search.
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Figure 15: Observed (solid line) and expected (dashed line) exclusion limits on the scalar mass as a function of the
coupling for different assumptions: (a) p;c = Py, (b) pru =0, (¢) ptc =0, and (d) psy = 0.
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Figure 16: Expected and observed exclusion limits on the cross section X branching ratio of electroweakino production
in RPV SUSY models as a function of the sparticle masses: (a) higgsino model, and (b) wino model. The yellow and
green contours of the band around the expected limit are the +10- and +20 variations including all uncertainties,
respectively. The theoretical prediction for the signal production cross section is also shown as a red line.
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Figure 17: Expected and observed exclusion limits on the smuon plus bino RPV SUSY model. The yellow and
green contours of the band around the expected limit are the +10- and +20 variations including all uncertainties,
respectively. The diagonal grey lines indicates the allowed kinematic limit for the decays. The neutralino is assumed
to decay to tbl or bbv with equal probability.
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9 Conclusion

A search for a general two Higgs doublet model is presented, where the heavy Higgs bosons feature flavour
changing couplings. Such couplings allow for same-sign top and three-top production among others, with a
sizeable charge asymmetry. The targeted final state is characterised by multiple leptons and multiple b-jets.
To improve the sensitivity of the search, events are categorised according to the lepton multiplicity, total
lepton charge, and a multi-output deep neural network classifier. The dominant backgrounds originate from
titW, ttZ, and tf, and are estimated from Monte-Carlo simulation and normalised to data. The analysis is
performed with proton—proton collision data at y/s = 13 TeV collected from 2015 to 2018 with the ATLAS
detector at the LHC, corresponding to an integrated luminosity of 139 fb~!. This search is the first collider
result on general two Higgs doublet model with flavour violation. It also represents the first search to target
explicitly beyond-the-standard-model production of three top quarks.

The largest deviation observed with respect to the Standard Model expectation corresponds to a local
significance of 2.8 standard deviations for a signal with mg = 900 GeV and couplings p;,=0.6, p;-=0.0,
and p;,=1.1. Exclusion limits are set on the mass and couplings of the heavy Higgs bosons, where an
additional scalar boson with couplings p;; = 0.4, p;c = 0.2, and p;,, = 0.2 is excluded at 95% confidence
level observed (expected) for masses m g between 200—620 (200-840) GeV. Additional mass limits are
set for different coupling choices. For a fixed mass of my = 400 GeV, exclusion limits are set on the
allowed coupling strengths as low as ps; = 0.3, pye = pry = 0.18. Different assumptions are tested to set
2-dimensional exclusion limits on the three couplings. Additional models based on R-parity-violating
supersymmetry with the lepton-number-violating coupling A’,, (with i € 2, 3), are used to further interpret
the results of the search. Scenarios with direct electroweak production of higgsinos (winos) are excluded
for masses between 200-585 (200-670) GeV. Smuons with masses between 225 and 460 GeV are excluded
in a model with direct smuon production and decay to a bino-like neutralino, which in turn decays via the
A5, coupling. These are the first collider limits for these models.
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