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1 Introduction

In the context of string model building, moduli stabilization refers to the lifting of flat
directions in the deformation space of string compactifications by symmetry breaking and
dynamical effects. It has been at the forefront of research in string phenomenology for more
than two decades. The influential early work that proposed various promising scenarios and
constructions is reviewed, for example, in [1–3]. Explicit model building has however been
hampered by many computational challenges as well as deep conceptual problems. In recent
years, the swampland program has emerged as a hopeful guiding principle to disentangle
these complications. Reversing the burden of proof, it calls into question the very existence of
low-energy effective theories that would naturally be expected as part of the string landscape,
but have proven difficult to realize in practice. This encompasses 4-dimensional Anti-de
Sitter, Minkowski, and de Sitter vacua with specific conditions on spectrum and interactions.
Given the absence of massless scalar fields in our universe, moduli stabilization remains the
greatest current challenge among all of these. Continued effort as well as the development of
new techniques and approaches are required to tackle this profound problem.

In this paper we continue our study [4–10] of this problem in an orientifold of the 19

Landau-Ginzburg model that is mirror dual to a rigid Calabi-Yau manifold. It describes the
compactification on a “non-geometric” Calabi-Yau manifold with h1,1 = 0. The absence of
Kähler moduli makes it an excellent test case in which to study the stabilization of complex
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structure moduli in type IIB flux compactifications. The seminal GKP construction [11]
described how fluxes stabilize the complex structure moduli. Early explicit realizations [12–14]
seemed to confirm the expectation that generic fluxes will stabilize all complex structure
moduli. In the last few years this expectation has been examined more closely and called
into question. In the concrete example of the sextic Calabi-Yau fourfold, it was observed
that there is a tension between satisfying the tadpole constraint and stabilizing all complex
structure moduli [15]. This tension has been formalized in the tadpole conjecture in [16].

The tadpole conjecture states that the fluxes used to stabilize moduli contribute to
the D3-brane tadpole by an amount that grows in an unacceptable way the more moduli
one wishes to stabilize. In quantitative terms, the conjecture says that the number nstab of
moduli that are stabilized1 for a specific choice of flux, and the contribution Nflux of this
flux to the D3-brane tadpole satisfy the constraint

Nflux >
1
3nstab . (1.1)

To preserve supersymmetry, all other contributions to the D3-brane tadpole are positive.
They can only be cancelled by the fixed contribution from the orientifold plane. If (1.1) is
correct, this implies that it is not possible to stabilize large numbers of moduli using fluxes.

The tadpole conjecture has been scrutinized extensively in the asymptotics of moduli
space [17–25] and at special points with discrete symmetries [26]. Our work contributes to
a better understanding in the deep interior of moduli space. Related work on the sextic
Calabi-Yau fourfold appears in [27].

The quantities Nflux and nstab appearing in (1.1) are of paramount interest for the physics
of moduli stabilization. The statement however is in principle of purely Hodge theoretic
nature, as pointed out in particular in [8, 22]. The conjecture is therefore amenable to a
completely rigorous analysis. Of course, this depends on a precise definition of the problem,
and in particular of the notion of “stabilization of moduli”. As pointed out in [8], this is
more subtle than one might naively expect. On a first approach, one might be tempted
to simply require that there be no massless fields left in the supersymmetric vacuum. In
mathematical terms, this means that the critical point of the superpotential Wflux induced by
the flux should be non-degenerate. For the purposes of the tadpole conjecture, the quantity
nstab would then be defined as the number of erstwhile moduli that have become massive
after turning on the flux. Mathematically, this corresponds to the rank of the Hessian at the
critical point, and leads to a stronger version of the tadpole conjecture.

nstab := rank
(
∂I∂JWflux

)
⇝ stronger version of tadpole conjecture (1.2)

Note that we are here (and also in (1.3) below) being imprecise in the distinction between AdS
and Minkowski vacua. In fact, for geometric compactifications, there are the well-known GKP
type Minkowski vacua with imaginary self-dual (ISD) fluxes [11] and related AdS vacua with
ISD fluxes that appear in the KKLT construction [28]. For non-geometric compactifications,
fluxes have to be ISD only for Minkowski vacua that we study in this paper. For AdS
vacua fluxes can contribute with either sign to the tadpole conjecture [6, 7, 29]. The tadpole
conjecture therefore seems mute in that case.

1We will discuss the precise definition of this notion momentarily.
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From the physical point of view, massless scalars could be tolerated as long as all flat
directions of the potential are lifted, possibly at higher order in the field expansion. Consider,
for example, a massless scalar field ϕ subject to a pure ϕ4 potential. Such a field will
still mediate long-range forces. However, cosmological solutions in which it rolls at small
constant ϕ̇ are impossible. Perturbation theory around the vacuum is in principle well-defined.
In fact, one expects radiative corrections to render the field massive at very low energies.
Mathematically, this means that one should merely require that the critical point of the
superpotential be isolated, but allow that it is possibly degenerate. For this weaker version of
the tadpole conjecture, one would define nstab as the co-dimension of the critical locus.

nstab := codim
{
∂IWflux = 0

}
⇝ weaker version of tadpole conjecture (1.3)

We understand, of course, that the critical locus need not be a smooth manifold. It can
also consist of several components that intersect at the origin. We will see that this might
very well be true in the case at hand. If so, we define nstab as the minimum co-dimension
of all these components.

The relation between (1.2) and (1.3) follows from the inequality

rank
(
∂I∂JWflux

)
≤ codim

{
∂IWflux = 0

}
. (1.4)

Namely, (1.2) requires less for (1.1) to be true than (1.3). It is hence more difficult to
disprove, and therefore physically stronger in that sense.2 The distinction between the two
versions does not appear in the original literature cited above. This appears to be due, at
least in part, to the absence of any discussion of higher-order terms in the context of moduli
stabilization. In our view, it is only the weaker version (1.3) that, if true, would really
jeopardize “stabilization of complex structure moduli by fluxes in the sense of GKP etc.”
Some initial considerations of higher-order terms in the 19 model can be found in [8]. The
main aim of the present work is to analyze this more systematically, in light of the weaker
version of the tadpole conjecture. We will find that indeed higher-order terms can stabilize
some more massless moduli. For computational reasons, we have not been able to decide
whether the critical points first found in [4] are degenerate or not. The technique that we
develop along the way however is general. It can also be applied in other contexts.

We anticipate some other features and limitations of our analysis. As in previous works,
we will study the superpotential around the Fermat point in moduli space. This allows for
an easy calculation of the periods as complete power series, and hence the higher-order terms
in the superpotential. The analysis around other points in moduli space is possible, but more
complicated. We will also restrict the axio-dilaton to τ = C0 + i e−ϕ = e

2πi
3 . Thus, we are

clearly at strong coupling. We can nevertheless perform exact calculations, if we restrict
to N = 1 supersymmetric Minkowski vacua. This is because string loop corrections only
enter the Kähler potential [4], while the critical point condition remains holomorphic. The
absence of Kähler moduli in the 19 Landau-Ginzburg model entails that if we were able to
stabilize all moduli, we would in fact not only disprove the weaker version of the tadpole
conjecture, but we would immediately produce Minkowksi vacua of string theory without

2In the reverse (mathematical) sense, (1.3) is stronger since it claims more than (1.2).
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any flat directions. It is interesting to remark that by itself this would not disprove the
recently proposed Massless Minkowski conjecture [30]. This conjecture states that any N = 1
supersymmetric vacuum will admit some massless fields. Again, these massless fields do
not have to give rise to true flat directions. If the stronger form of the tadpole conjecture,
based on (1.2) remains true, it would imply the persistence of massless fields that could
nevertheless be stabilized at higher order.

We will also pursue the classification of flux configurations that can stabilize (some of)
the moduli at the Fermat point in the 19 model. This question was also first raised in [4]. It
arises naturally due to the high rank of the supersymmetric flux lattice. A systematic study
was initiated in the recent paper [10]. Specifically, it was explained how to find many linearly
independent integral vectors in the flux lattice that have a small tadpole contribution Nflux.
In particular, this led to a solution of the shortest vector problem for the 19 model. Concretely,
using exhaustive computer searches, it was shown that there are no quantized flux solutions
that contribute less than Nflux = 8 to the tadpole cancellation condition. Furthermore, the
authors presented a large set of flux configurations that give Nflux = 8. In this paper we
now present all flux configuration with such a small contribution to the tadpole. For the
19 orientifold the flux contribution is bounded Nf lux ≤ 12 = NO3/2 [4]. Given that there
are probably no flux configuration with 8 < Nflux < 12 and part of the Nflux = 12 flux
configurations have already been classified in [10], this puts a full classification of all flux
configuration for the 19 model within reach.

The outline of the paper is as follows: in section 2 we review the 19 Landau-Ginzburg
model and the ingredients of moduli stabilization. In section 3 we describe what is known
about the set of supersymmetric 3-form fluxes in the model. In particular, we show that the
recent paper [10] covers almost all flux configurations with 8 non-zero components in the
Ω-basis (defined in section 2) and Nflux = 8. We complete this list. In section 4 we evaluate
order by order higher terms in the superpotential and identify the number of massless fields
that are stabilized through higher order terms. We summarize our findings in section 5.

2 Review of the model

The mirror dual of a rigid Calabi-Yau threefold, i.e., a CY3 manifold with h2,1 = 0, would
have h1,1 = 0 and hence does not admit a Kähler manifold description. Instead, one can
resort to the more general class of orbifoldized Landau-Ginzburg models [31], as first studied
in the context of moduli stabilization in [4]. In general, an N = (2, 2) Landau-Ginzburg
model can be attached to any world-sheet superpotential W({xi}) that is a holomorphic
and (weighted-)homogeneous function of a set of chiral fields {xi}. The worldsheet action
is of the form

S =
∫

d2zd4θK ({xi, x̄i}) +
(∫

d2zd2θW ({xi}) + c.c

)
. (2.1)

Here, K is the (worldsheet) Kähler potential. It is conjectured that W determines K uniquely
at the IR fixed point of the renormalization group flow [32]. K is therefore not required for
the specification of the model. The superpotential itself is invariant along the flow (up to
wavefunction renormalization). The central charge of the IR CFT is given by ĉ =

∑
i(1−wi).
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Here, the wi are the U(1) R-charges of the xi. They are normalized such that W has charge
2. To construct a 4-dimensional string background, one requires ĉ = 3. It is then possible to
orbifold by a subgroup of phase symmetries to project the model onto integral U(1) R-charges.
This ensures a spacetime supersymmetric string background. We will deal exclusively with
the simplest such model in this paper. This is the so-called 19 model. It has 9 chiral fields
x1, . . . , x9, and superpotential

W
(
{xi}

)
=

9∑
i=1

x3
i . (2.2)

The orbifold is by a Z3 group generated by the following action on the chiral fields:

g : xi 7→ ω xi . (2.3)

Here, and throughout this paper, ω ≡ e
2πi
3 .

In general, the rings formed by chiral and anti-chiral fields in the left- and right-moving
sectors of the above N = (2, 2) superconformal field theory are analogous to cohomology
rings of Calabi-Yau manifolds, of dimension equal to the central charge. They correspond
to left/right Ramond ground states by spectral flow. Specifically, the (c, c) ring arises from
the states in the untwisted sector of the Hilbert space of the theory, and is given by the
invariant part of the Jacobi ring. In the case at hand this is

R =
[ C [x1, . . . , x9]

∂xiW (x1, . . . , x9)

]Z3

. (2.4)

As a complex vector space, this ring has dimension 170. It is spanned by monomials of the form

xk = xk1
1 · x

k2
2 · · ·x

k9
9 (2.5)

where k = (k1, . . . , k9) satisfies ki ∈ {0, 1} for all i and
∑

ki = 0 mod 3. The elements with∑
ki = 3 are the 84 monomials xixjxk with i ̸= j ̸= k ̸= i. They form a basis for the allowed

marginal deformations of the superpotential W.

W
(
{xi}

)
=

9∑
i=1

x3
i −→ W

(
{xi}; {tk}

)
=

9∑
i=1

x3
i −

∑
k∑
ki=3

tkxk (2.6)

The deformation parameters tk are analogous to complex structure moduli of a geometric
compactification. Together with the axio-dilaton τ = C0 + i e−ϕ they give rise to massless
spacetime fields that we wish to stabilize. On the other hand, the Kähler moduli are contained
in the (a, c) ring. This ring arises from the twisted sector of the orbifold. The 19 model
orbifolded as in (2.3) has only two non-trivial twisted sectors. Therefore, the (a, c) ring
contains no marginal deformations. In particular, there is no volume modulus. This is one way
to see that the model does not have an interpretation as a geometric compactification manifold.
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2.1 Middle-dimensional (co-)homology

Because the 19 model is non-geometric, it is not possible to study Ramond and Neveu-
Schwarz fluxes in the usual fashion in the supergravity approximation. However, the vertex
operators creating the corresponding spacetime fields still exist in the worldsheet theory. Their
interactions with the moduli induce a superpotential completely analogous to the geometric
formulation. The fluxes are also subject to the same quantization and tadpole cancellation
conditions. We refer to [4] for a rigorous justification of these statements. Here, we only broach
some ideas, and summarize the results. Crucially, to describe the wrapped fluxes, we require
an integral homology basis, and to understand the space-time superpotential and tadpole
cancellation, the pairing with cohomology. Physically, one can think of integral homology
in terms of supersymmetric cycles wrapped by D-branes. In type IIB, the cycles that can
be threaded by fluxes are represented by A-branes. The cycles that support the orientifold
planes and carry (the analogues of) the D3/D7-brane tadpole are represented by B-branes.

The undeformed 19 model is an orbifolded tensor product of N = 2 minimal models
with smallest possible central charge ĉ = 1

3 . This has a Landau-Ginzburg representation
with a single chiral field, and superpotential

W = x3 . (2.7)

The A-branes of this model are represented by contours in the x-plane that asymptote to
regions in which Im(W) = 0 [33]. There are three such contours, (V0, V1, V2), shown in figure 1
below. These are not independent cycles, but satisfy the one relation,

V0 + V1 + V2 = 0 . (2.8)

Under the Z3 action (2.3), they transform as

g : Vn 7→ Vn+1 mod 3 . (2.9)

Somewhat fancily, one can think of the charge lattice Λ of A-branes in the minimal model
as fitting into the exact sequence,

0→ Z→ Z3 → Λ→ 0 (2.10)

where the middle Z3 is generated by the V0, V1, V2, and Z represents the relation (2.8).
The chiral ring of the minimal model is spanned by the elements 1, x ∈ R = C[x]/x2.

These correspond by spectral flow to Ramond-Ramond ground states traditionally labelled
as |l⟩ with l = 1, 2

xk=0,1 spectral flow←−−−−−−−→ |l = 1, 2⟩ . (2.11)

The overlap between these Ramond ground states and the boundary states represented by
the Vn (the disk one-point function) can be calculated (after supersymmetric localization)
as a contour integral [33]. Up to normalization, we have

⟨Vn|l⟩ =
∫

Vn

xl−1e−Wdx = 1
3ωnl(1− ωl)Γ

(
l

3

)
, (2.12)
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Figure 1. The three contours (V0, V1, V2) in the complex x-plane.

where n ∈ {0, 1, 2} and l ∈ {1, 2}. The same integral also calculates the variation of the
overlaps under the deformation W → x3 − tx.( ∂

∂t

)r∣∣∣
t=0
⟨Vn|l⟩ =

∫
Vn

xr+l−1e−x3
dx = 1

3ωn(r+l)(1− ωr+l)Γ
(

r + l

3

)
. (2.13)

This vanishes when r + l = 0 mod 3 because the integrand is exact in this case. The fact that
it does not vanish when r + l > 2 (but not 0 mod 3), when formally xr+l−1 = 0 ∈ R is zero
by the equations of motion, is physically a result of “contact terms” in the operator product
expansion. Mathematically, this amounts to integration by parts. The formula (2.13) will be
the basis for the calculation of the higher-order terms in the superpotential in section 4.

To determine the contribution of the fluxes to the D3-brane tadpole, we require the
intersection form on the charge lattice. Physically, the intersection of Vn′ and Vn can be
defined as the open string Witten index between the respective branes. Mathematically, it
is the geometric intersection between a small counter-clockwise rotation of Vn′ and Vn [33].
In matrix form [34],

(
⟨Vn′ |Vn⟩

)
n′,n=0,1,2 =


1 −1 0
0 1 −1
−1 0 1

 = 1− g (2.14)

where g is the matrix representation of (2.9). The fact that (2.14) is neither symmetric nor
anti-symmetric reflects that a single minimal model is not yet Calabi-Yau.

The calculations are expedited if one uses the Poincaré duals of the Ramond ground
states as basis for the charge lattice. This was emphasized in [4, 10]. Defining for l = 1, 2

Ωl :=
1
3
∑

n

ωnlVn , (2.15)

with inverse relation

Vn =
∑

l

ω−nlΩl , (2.16)
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∑
i li 9 12 15 18

H(p,q) H(3,0) H(2,1) H(1,2) H(0,3)

Table 1. Hodge decomposition of RR ground states in 19 LG model.

we find from (2.14)

⟨Ωl′ |Ωl⟩ = δl′+l,3
1
3(1− ωl) (2.17)

and
⟨Vn|Ωl⟩ =

1
3ωnl(1− ωl) . (2.18)

Thus, by comparison with (2.12),

|l⟩ = Γ
(

l

3

)
|Ωl⟩ . (2.19)

All these relations are compatible with (2.8) and |l⟩ = 0 when l = 3. Eqs. (2.15) and the
reality of the Vn also imply that complex conjugation acts on the Ωl via

Ωl = Ω3−l (2.20)

In combination with (2.17), this produces the tt∗-metric on the RR ground states [35].
The full orbifoldized 19 model can now be worked out straightforwardly. The Ramond

ground states are tensor products labelled as |l⟩ with l = (l1, l2, . . . , l9), li ∈ {1, 2}, and
∑

li
divisible by 3 in order to satisfy the orbifold projection. These correspond to the basis of the
chiral ring (2.4) by spectral flow and can be classified by Hodge type as shown in table 1. An
(over-complete) integral basis of cycles is obtained by taking tensor products of the Vn to
Vn = Vn1 × · · · × Vn9 for n = (n1, n2, . . . , n9), ni ∈ {0, 1, 2}, and summing over Z3 images.

γn := Vn + Vn+1 + Vn+2 (2.21)

where 1 = (1, 1, 1, 1, 1, 1, 1, 1, 1) and 2 = 2 · 1 = (2, 2, 2, 2, 2, 2, 2, 2, 2). On the tensor product
of (2.10),

0→ Z→ 9Z3 → 36(Z3)2 → · · · → (Z3)9 → Λ→ 0 , (2.22)

the Z3 action is free except on the very first term, where it is trivial. This shows that the
rank of the lattice Λ spanned by the γn is ((3− 1)9 + 1)/3− 1 = 170. This is equal to the
dimension of the chiral ring (2.4). The overlap integrals (2.12) become

⟨γn|l⟩ =
1
38 ωn.l

9∏
i=1

(1− ωli)Γ
(

li
3

)
(2.23)

where n.l =
∑9

i=1 ni li, and one factor of 3 is owed to (2.21). The intersection form is obtained
by orbifolding the tensor product (2.14).

⟨γn′ |γn⟩ = ⟨Vn′ |Vn⟩+ ⟨Vn′+1|Vn⟩+ ⟨Vn′+2|Vn⟩ (2.24)

– 8 –
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In the Poincaré dual basis

|Ωl⟩ =
1
39

∑
[n]

ωn.lγn = 1
39

∑
n

ωn.lVn , (2.25)

the intersection form becomes

⟨Ωl′ |Ωl⟩ = δl′+l,3
1
38

∏
i

(1− ωli) . (2.26)

We will refer to this as the “Ω-basis”. Complex conjugation acts on it by

Ωl = Ωl̄ (2.27)

where l̄ = 3 − l, and 3 = 3 · 1 = (3, 3, 3, 3, 3, 3, 3, 3, 3). The form (2.26) is anti-symmetric
following the orbifold projection.

2.2 Supersymmetric fluxes and tadpole cancellation

We are now in a position to describe supersymmetric 3-form fluxes in the 19 model. There
are two ways to do this. The first is to expand the standard combination of Ramond and
Neveu-Schwarz fluxes G3 = F3 − τH3 in terms of the integral cohomology basis given by
the γn. Writing

G3 =
∑

n
(Nn − τMn) γn , (2.28)

the Nn, Mn should be integer. They are not uniquely determined because the γn are not
linearly independent. The spacetime superpotential induced by this flux is given by the
Landau-Ginzburg version of the standard GVW formula [36]

WGVW =
∫

(F3 − τH3) ∧ Ω = ⟨G3|1⟩ (2.29)

Here, we have used table 1 to identify the holomorphic three-form Ω with the ground state |1⟩.
The overlap should be evaluated with the help of (2.23). The first (and higher) derivatives of
the superpotential with respect to the moduli (including the axio-dilation τ) can be evaluated
with the help of (2.13), see subsection 2.3. Setting them to zero will constrain G3 to be of
a certain Hodge type as usual. This gives a set of linear equations on the Nn, Mn, which
have to be solved over the integers. The precise formula also depends on the spacetime
Kähler potential, see section 3.

The alternative approach is to expand G3 in the Ω-basis

G3 =
∑

l
AlΩl (2.30)

This allows to directly constrain its Hodge type by simply setting the undesired Al to 0.
Flux quantization is equivalent to the condition that in∫

γn
G3 = ⟨γn|G3⟩ = Nn − τMn , (2.31)

– 9 –
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which is again to be evaluated with (2.23), the Nn and Mn have to be integer. They
are related to the integers in (2.28) by lowering indices with the help of the symplectic
intersection form (2.24).

The two formulations (2.28) and (2.30) are of course equivalent as far as the parametriza-
tion of the supersymmetric fluxes is concerned. However, the calculation of the higher-order
terms in the superpotential is considerably more efficient in the Ω-basis. We therefore prefer it.

The final ingredients are the orientifold projection and the comparison between the
O-plane charge and flux tadpole. These were determined in [4] using the general formulas
provided in [37]. We will restrict to the orientifold of the 19 model that is generated by
dressing worldsheet parity with the exchange of the first two coordinates. This has to be
accompanied by a phase rotation in order to guarantee invariance of the superpotential term
in (2.1). Namely, we are orientifolding by

σ : (x1, x2, x3, x4, x5, x6, x7, x8, x9) 7→ − (x2, x1, x3, x4, x5, x6, x7, x8, x9) . (2.32)

There are 63 invariant monomials under this orientifold. Including the axio-dilaton, this gives
a total of 64 moduli that we wish to stabilize. The above orientifold projection breaks the
initial permutation group S9 of the 19 model to a Z2 × S7 subgroup. We will later use this
group to connect different flux configurations. The O-plane associated with the orientifold
projection in equation (2.32) is of “O3-plane type”. Its charge is equal to 12 in natural units.
This induces a RR tadpole that must be cancelled by the fluxes that we turn on, as well as
possibly adding ND3 background D3-branes. The precise condition is that

Nflux = 1
τ − τ̄

∫
G3 ∧ Ḡ3 =

∫
F3 ∧H3

!= 12−ND3 . (2.33)

The overlap of fluxes is to be evaluated with the help of (2.26) or (2.27), if working with
the Ω-basis.

2.3 The all-order superpotential

By combining (2.13) with (2.21), we obtain the following explicit formula for an arbitrary
multi-derivative of the space-time superpotential (2.29) in the γ-basis

W =
∑

(Nn − τMn)⟨γn|1⟩ (2.34)

with respect to the deformation parameters in (2.6) labelled by tk, with k having nine entries,
six of which are 0 and three of which are 1.

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr
⟨γn|1⟩

∣∣∣∣
tk=0

= 1
38 ωn.L

9∏
i=1

(1− ωLi)Γ
(

Li

3

)
(2.35)

Here, as always, ω ≡ e
2πi
3 , and we have abbreviated L = (L1, . . . , L9) with

L =
r∑

α=1
kα + 1 . (2.36)

The normalization in (2.35) is the same as in (2.23). Transforming to the Ω-basis

W =
∑

l
Al ⟨Ωl|1⟩ (2.37)
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with the help of (2.25), we find [8]

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr

∫
Ωl ∧ Ω

∣∣∣∣
tk=0

= δl+L
1
39

9∏
i=1

(
1− ωLi

)
Γ
(

Li

3

)
. (2.38)

Here, the Kronecker-δ is understood mod 3 in all 9 components. Taking account of the product
of (1− ωLi)’s, we find that the derivative in equation (2.38) vanishes whenever Li = 0 mod 3
or li +Li ̸= 0 mod 3 for any i ∈ {1, 2, . . . , 9}. Since all li and (Li mod 3) are either 1 or 2, the
second condition is equivalent to l̄ = L mod 3, where l̄ = 3− l, and 3 = (3, 3, 3, 3, 3, 3, 3, 3, 3).
Because l has six entries equal to 1 and 3 entries equal to 2, we can simplify

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr

∫
Ωl ∧ Ω

∣∣∣∣
tk=0

=

−
(√
−3

)−9 ∏9
i=1 Γ

(Li
3
)

for l̄ = L mod 3 ,

0 otherwise .
(2.39)

Moreover, by the functional equation of the Gamma-function, the product is always a rational
multiple of Γ

(2
3
)6Γ

(1
3
)3. The importance of the result (2.39) is computational. It means

that before calculating the derivative explicitly, we can check whether l̄ =
∑

α kα + 1 mod 3.
This substantially speeds up the calculation of higher order terms. We also note that the
derivative does not depend on the individual kα but rather only on their sum.

We now turn to mixed multi-derivatives involving both complex structure moduli and
the axio-dilaton. Since by (2.29), W is linear in τ , we only need to worry about first partial
derivatives with respect to τ . The derivative with respect to τ can be calculated from (2.28)
and the reality of F3, H3 as usual

∂τ W = 1
τ − τ̄

∫ (
G3 −G3

)
∧ Ω (2.40)

In the γ-basis, this reduces a multi-derivative of the type

∂

∂τ

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr
W (2.41)

to (2.35) with the same kα’s, but summed only against Mn’s. In the Ω-basis, we can use (2.27)
to similarly reduce to (2.38). However, we have to be careful to take into account that in
general the coefficients Al will be complex numbers and also have to be complex conjugated
along the way. For a single complex Al with G3 = AlΩl we have

∂

∂τ

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr
W = 1

τ − τ̄

∫
(AlΩl − ĀlΩl̄) ∧

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr
Ω . (2.42)

Using the result (2.39), this becomes

∂

∂τ

∂

∂tk1

∂

∂tk2
. . .

∂

∂tkr
W

∣∣∣∣
tk=0,τ=τ0

=


iAl (

√
−3)−9

2 Im(τ0)
∏9

i=1 Γ
(Li

3
)

for l̄ = L mod 3
iĀl (

√
−3)−9

2 Im(τ0)
∏9

i=1 Γ
(Li

3
)

for l = L mod 3
0 otherwise

, (2.43)

where we defined τ0 to be the vacuum expectation value of the axio-dilaton. Again, this can
be evaluated quite speedily on a computer using only modular arithmetic. Note however
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that the contributions from l = L are proportional to Γ
(1

3
)6Γ

(2
3
)3 and are not rationally

related to those from l̄ = L.
By combining all of the above, the exact superpotential for a generic flux G3 =

∑
l AlΩl

with complex prefactors Al becomes

W = −
(√
−3

)−9 ∑
l

∞∑
r=1

1
r!

 ∑
{tkα} with L=̄l

9∏
i=1

Γ
(

Li

3

)
tk1tk2 . . . tkr Al

(
1− i τ − τ0

2 Im(τ0)

)

−i
∑

{tkα} with L=l

9∏
i=1

Γ
(

Li

3

)
tk1tk2 . . . tkr Āl τ − τ0

2 Im(τ0)

 . (2.44)

For the purposes of moduli stabilization, this function has to be restricted to the orientifold
fixed locus tk = tσ(k). Following [10], we do this in practice by ordering the k’s alphabetically
and dropping orientifold repetitions. We identify

tI = tkI = tσ(kI) (2.45)

with I ∈ {1, . . . , 63} and include the axio-dilaton via

t0 = τ − τ0 . (2.46)

This gives us finally a flux-dependent and highly transcendental function of 64 variables
whose critical behaviour at the origin is the subject of the following sections.

3 The supersymmetric flux lattice

In most studies of moduli stabilization, one begins with a fixed choice of 3-form flux G3
within the tadpole bound. The moduli that give rise to vacua preserving N = 1 spacetime
supersymmetry are then solutions of the F-term equations DIW = 0. Here, the index I runs
over all moduli including the axio-dilaton, τ . The covariant derivative DIW = ∂IW +∂IK W

of the Gukov-Vafa-Witten superpotential (2.29) depends on the Kähler potential K. In
geometric compactifications, with the standard dependence of K ⊃ − log Im(τ), the moduli
have to be adjusted such that G3 is imaginary self-dual (ISD) [11]. This defines a subset
in the product of the complex structure moduli space with the upper half-plane that has
been called “the supersymmetric locus”. The tadpole conjecture [16] is concerned with the
co-dimension of this locus, as explained in the introduction. This is a stringent constraint
because, as emphasized in [38] the tadpole is positive definite for ISD fluxes.

In the setting of the non-geometric 19 Landau-Ginzburg model [4, 7, 8], we describe fluxes
that are supersymmetric at the Fermat point in moduli space. We also fix the axio-dilaton to
a particular value. We call the set of such fluxes the “supersymmetric flux lattice”.3 For any
point on this lattice, the superpotential is critical by definition. We are then interested in
the behaviour of the superpotential around that point, in dependence on the contribution
to the D3-brane tadpole. An important distinction to the geometric situation, emphasized
in [6], is that the Kähler potential needs to be determined by mirror symmetry. Type IIA

3The condition that the flux be invariant under the orientifold will usually be left implicit.
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string theory compactified on a rigid CY3 (h2,1 = 0) leads to the Kähler potential for the
Kähler moduli and axio-dilaton [39]

KIIA = −4 log [τ − τ̄ ]− log [
∫

M
J ∧ J ∧ J ] . (3.1)

Mirror symmetry exchanges the Kähler moduli with complex structure moduli. The Kähler
potential is given by

K = −4 log [τ − τ̄ ]− log
[∫

M
Ω ∧ Ω̄

]
, (3.2)

or rather its Landau-Ginzburg analogue, see section 2. Crucially, this differs by a factor of
4 from geometric type IIB compactifications to 4d [40]. As a consequence, the equations
DIW = 0 do not restrict G3 to be ISD. This was exploited in [5, 6, 8, 29]. In this work, we
will restrict to supersymmetric Minkowski vacua. This imposes the additional constraint
W = 0. Then the equations DIW = ∂IW = 0 become independent of the Kähler potential.
They are not affected by string loop corrections. The candidate instantons that could correct
the superpotential are absent [4, 6, 41]. The solutions are identical to geometric type IIB
compactifications to Minkowski space, G3 ∈ H2,1, except that in non-geometric settings there
are no Kähler moduli and it is in principle possible to stabilize all moduli with fluxes.

3.1 An integral basis of the flux lattice

We will now write out these conditions in terms of the cohomology basis reviewed in section 2.
In order to satisfy flux quantization, the coefficients with respect to the integral basis γn must
be integral periods of the torus with complex structure τ . In order to be supersymmetric,
G3 should be purely of Hodge type (2, 1). In the dual expansions

G3 =
∑

n
(Nn − τMn) γn =

∑
l

AlΩl . (3.3)

the Nn, Mn are integer, and the Al are zero except when
∑

li = 12. The γn and Ωl are
related by (2.25), (2.21). If this relation (the “period matrix” of the Landau-Ginzburg model)
were completely generic, these conditions would have no non-trivial solution at all. In the
situation at hand, in which all period coefficients are integral linear combinations of ω = e

2πi
3

and ω2, there are very many. More precisely, as observed in [4], there are still no solutions
unless the axio-dilaton is of the form

τ = aω + b

cω + d
, (3.4)

with integer a, b, c, d. This is easiest to see by writing the second condition in (3.3) as
⟨G3|Ωl⟩ = 0 unless

∑
li = 15. For simplicity, we will restrict to τ = ω. For this choice,

it follows from (2.23) that one may set all but one Al in (3.3) to zero. Namely, for any
l with

∑
li = 12,

G(l) = 27(ω − ω2)Ωl (3.5)

(but no smaller multiple of Ωl) is an integral flux of type (2, 1). Here, and from now on, we
will replace the subscript ‘3’ on G with labels for various explicit solutions. We will indicate
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their physical characteristics by a superscript as they become available. We observe that G(l)
and ωG(l) are linearly independent over the integers (in fact, the reals). When l1 = l2 = 1
or l1 = l2 = 2, the flux G(l) is invariant under the orientifold (2.32). Its contribution to the
D3-brane tadpole is given by (2.33) in terms of its length (2.26),

1
ω − ω2 ⟨G(l)|G(l)⟩ = 27 . (3.6)

When l1 ̸= l2, we need to add the respective orientifold image. The tadpole contribution
doubles. In total, we obtain 126 linearly independent primitive integral flux vectors

G
[1,27]
(l,1) = 27(ω − ω2)Ωl G

[1,27]
(l,2) = 27(ω2 − 1)Ωl

(
l1 = l2

)
G

[2,54]
(l,1) = 27(ω − ω2)

(
Ωl +Ωσ(l)

)
G

[2,54]
(l,2) = 27(ω2 − 1)

(
Ωl +Ωσ(l)

) (
l1 ̸= l2

) (3.7)

The first entry in the superscript square brackets gives the number of non-zero components
in the Ω-basis, and the second, the tadpole contribution. We also use an additional subscript
to label different flux choices with the same square bracket superscripts. As a result, the
supersymmetric flux lattice in fact has full maximal rank.

All the fluxes in (3.7) have a tadpole in excess of the orientifold charge (equal to 12,
see (2.33)). Fluxes with smaller tadpole can be constructed by taking suitable linear (but
non-integral!) combinations of (3.7). For example, one may verify that the flux

G
[2,18]
(1) = 27

(
Ω1,1,1,1,1,1,2,2,2 − Ω2,2,1,1,1,1,1,1,2

)
= −1

3
(
G

[1,27]
(l1,1) + 2G

[1,27]
(l1,2) + G

[1,27]
(l2,1) + 2G

[1,27]
(l2,2)

) (3.8)

where l1 = (1, 1, 1, 1, 1, 1, 2, 2, 2) and l1 = (2, 2, 1, 1, 1, 1, 1, 1, 2), is integral for τ = ω and
has tadpole 18 as indicated. The flux

G
[4,12]
(1) =9(ω − ω2)

(
−Ω1,1,1,1,1,1,2,2,2+Ω1,1,1,1,2,1,2,2,1+Ω1,1,2,2,1,1,1,1,2−Ω1,1,2,2,2,1,1,1,1

)
(3.9)

has tadpole 12, and

G
[8,8]
(1) = 9

(
−Ω1,1,1,2,1,2,1,2,1 +Ω1,1,1,2,1,2,1,1,2 +Ω1,1,1,2,1,1,2,2,1 − Ω1,1,1,2,1,1,2,1,2

+Ω1,1,1,1,2,2,1,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,1,2,2,1 +Ω1,1,1,1,2,1,2,1,2
) (3.10)

which was first found in [4], has tadpole 8. The latter two fluxes can hence be used to
construct N = 1 supersymmetric Minkowski vacua.

To describe the full set of physical flux configurations (in particular, to enumerate
integral flux vectors of tadpole ≤ 12), it is important to first find an integral basis of the
supersymmetric flux lattice consisting of vectors of smallest length possible.4 This problem
was tackled in [10], and solved in a two-step process. First, a lucky coincidence that we
describe momentarily yields an integral basis containing individual vectors of possibly rather

4An integral basis of a lattice Λ is a basis of the vector space Λ ⊗Q with respect to which any lattice vector
has integral coefficients. Eq. (3.7) are not an integral basis, because (for example) it does not contain (3.8) in
its Z-span. Finding lattice vectors of small(est) length in high-dimensional lattices is famously a very hard
computational problem.
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large length. Second, by some judicious computational efforts, one transforms this into
another integral basis with smaller lengths. We do not know whether the result is optimal.

The number of Ωl’s of Hodge-type (2, 1) is 63, and the corresponding complex coefficients
Al in equation (3.3) parameterize the flux. This amounts to 126 real parameters, which we
assemble in a vector of R126. The flux quantization conditions (2.31), explicitly

⟨γn|G3⟩ =
1
38

∑
l

Alωn.l
9∏

i=1
(1− ωli) = Nn − τMn , (3.11)

are linear, complex constraints between the Al and the 340 integers Nn, Mn. (Actually, only
2 × 128 = 256 of these are independent because of the orientifold.) Separating real and
imaginary parts, and viewing the set ∪n{Nn, Mn} = {Nn : n = 1(1)340} as coordinatizing
integral points Z340 ⊂ R340, we can recast (3.11) in terms of a real linear map5 B ∈ R340×126

from R126 to R340 as ∑
l

BnlA
l = Nn . (3.12)

According to (3.7), this map hits a lattice of rank 126 inside Z340 ⊂ R340. In particular, the
matrix B has full rank 126. (This is true on general grounds.) We can pick 126 R-linearly
independent rows from this system. We term the Nn’s in the corresponding rows independent
flux quantum numbers, and denote them {yi : i = 1(1)126}. One can then solve the system∑

l
BilA

l = yi (3.13)

to obtain the Al as linear functions of yi: Al = Al(y1, . . . , y126). Having done this, it is still a
non-trivial demand that the remaining 340− 126 = 214 flux numbers are integral. Luckily,
this in fact is true, as the linearly dependent equations in (3.12) are Z-linear combinations of
the independent ones. This means that the columns of [Bil]−1 are an integral basis of the
supersymmetric flux lattice [10]. Many of the elements in this basis have large tadpole values.
One would like to swap them for fluxes of smaller length, such as (3.9), (3.10) and those
presented below. In [10], it was shown that this can be done via a convenient SL(126,Z)
transformation. This guarantees that the result is still an integral basis. See appendix B
of [10] for the explicit list.

Having described the rank and an integral basis, we now turn to the problem of finding
the finite set of vectors satisfying the tadpole cancellation condition within the infinite lattice.
For a generic flux G3 =

∑
l AlΩl, the contribution made by each summand to the flux-tadpole

is determined completely by its coefficient Al because of equations (2.26), (2.27). Doing this
in practice, one finds [8, 10] that the contribution to the flux tadpole from each turned-on
Ωl is a homogeneous quadratic in the yi with positive integer coefficients and hence positive
integer-valued. Therefore, to catalogue all physical solutions with Nflux ≤ 12, we only need
to turn on at most 12 of the Ωl’s. This process has been initiated in [10] where the search
for physical solutions was organized by the number of Ωl’s turned on. In the remainder of

5It is to be noted that equation (3.12) are not (real and imaginary parts of) equation (2.31) on the nose,
but a linear transform of it by an invertible 340 × 340 matrix.
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this section, we summarize some of these results of [10] to get a sense of the flux vectors
satisfying the tadpole constraint, and their simplest physical characteristics. We also provide
some additional details on the classification of solutions in this model.

3.2 Taxonomy of massive moduli

By construction, the superpotential (2.44) computed in subsection 2.3

W =
∫

G3 ∧ Ω = W (tI) (3.14)

as a function of the 64 moduli remaining after the orientifold and its first derivatives ∂IW

vanish at the origin tI = 0, for any G3 in the supersymmetric flux lattice described in the
previous subsection. The simplest non-trivial physical invariant is the Hessian,

MIJ = ∂I∂JW . (3.15)

We think of it as the “holomorphic mass matrix”. As shown in [7, 8], its rank gives the
number of moduli that are rendered massive by turning on the flux. This is nstab appearing
in the stronger version (1.2) of the tadpole conjecture. The result is interesting already for
the simplest fluxes listed in (3.7) (which mind you are non-physical because their tadpole is
too large). For the “1-Ω” fluxes with tadpole 27, it turns out that when l has l1 = l2 = 1,
the rank of MIJ is 16. When l1 = l2 = 2, it is 22. For the “2-Ω” fluxes, i.e., l1 ̸= l2 (tadpole
54), it is also 22. For the record, under the S7 symmetry group, the 1-Ω solutions G

[1,27]
(l,1) ,

G
[1,27]
(l,2) organize into 6 distinct orbits, and the 2-Ω solutions, in three.

We then proceed by increasing the number of non-zero coefficients in G3 =
∑

l AlΩl. It
was found in [10] not to be possible to satisfy the tadpole constraint (2.33) with 2- or 3-Ω
fluxes, so we skip the details such as minimum-Nflux solutions of these types and the ranks of
the corresponding mass matrices. The interested reader may consult [10]. With four Ωl’s
one can produce physical fluxes satisfying (2.33). The smallest value of Nflux in this class
is 12, and is attained by precisely 54 distinct S7 orbits of solutions. Representatives from
these orbits are given in equations (3.16), (3.17), (3.18).

G3 = (a1Ω1,1,1,1,1,1,2,2,2 + a2Ω1,1,1,1,1,2,1,2,2 + a3Ω1,1,1,1,2,1,2,1,2 + a4Ω1,1,1,1,2,2,1,1,2) (3.16a)

with (a1, . . . , a4) = 9(ω − ω2)ωp



(−1, 1, 1,−1) ,

(1,−ω,−1, ω) ,

(1,−ω,−ω, ω2) ,

(−1, ω, ω,−ω2) ,

p = 0, 1, 2 (3.16b)

all of which have 16 massive moduli. The solution G
[4,12]
(1) given in equations (4.6) and (4.21)
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in the next section belongs to the S7 orbit of the first of these with p = 0.

G3 = (a1Ω1,1,1,1,1,1,2,2,2 + a2Ω1,1,1,1,1,2,1,2,2 + a3Ω1,1,1,2,2,1,2,1,1 + a4Ω1,1,1,2,2,2,1,1,1) (3.17a)

with (a1, . . . , a4) = 9(ω − ω2)ωp



(−1, 1, 1,−1) ,

(−1, 1, ω,−ω) ,

(−1, ω, 1,−ω) ,

(−1, ω, ω,−ω2) ,

(1,−ω,−ω, ω2) ,

p = 0, 1, 2 (3.17b)

all of which have 22 massive moduli. The solution G
[4,12]
(2) given in (4.19) belongs to the S7

orbit of the first of these with p = 0.

G3 = (a1Ω1,1,1,1,1,1,2,2,2 + a2Ω1,1,1,1,1,2,1,2,2 + a3Ω2,2,1,1,1,1,2,1,1 + a4Ω2,2,1,1,1,2,1,1,1) (3.18a)

with (a1, . . . , a4) = 9(ω − ω2)ωp



(−1, 1, 1,−1) ,

(1,−1,−ω2, ω2) ,

(−1, 1, ω,−ω) ,

(1,−ω,−1, ω) ,

(−1, ω, 1,−ω) ,

(1,−ω,−ω2, 1) ,

(−1, ω, ω2,−1) ,

(−1, ω, ω,−ω2) ,

(1,−ω,−ω, ω2) ,

p = 0, 1, 2 , (3.18b)

all of which have 26 massive moduli. The solution G
[4,12]
(3) given in (4.20) belongs to the S7

orbit of the first of these with p = 0.
Continuing in this way, it is possible to classify all physical solutions in this model given

sufficient CPU-hours. We leave this tedious but straightforward task for future work. In
anticipation, we have generated a large set of fluxes that are small linear combination of the
integral basis vectors, and evaluated their tadpole and mass matrix rank, by the following
process: we generated all linear combinations of up to 4 basis vectors with magnitude one
coefficients and for these we computed the tadpole and the mass matrix rank. This is shown
in figure 2, where we plot only results with Nflux ≤ 50. By construction this gives small
tadpole fluxes but the set of generated fluxes is, of course, only a subset of all possible fluxes
for the displayed range of parameters.

In our data set, the largest mass matrix rank to Nflux ratio is 57/21 ∼ 2.71. This is
intriguingly close to the (strong form of the) tadpole conjecture (1.1). The corresponding flux is

G[19,21,57] = 9
(
−ωΩ1,1,1,1,1,2,1,2,2 − Ω1,1,1,1,1,2,2,2,1 − ω2Ω1,1,1,1,2,1,1,2,2 − ω2Ω1,1,1,2,1,1,1,2,2

+ ωΩ1,1,1,2,2,1,1,2,1 + ω2Ω1,1,2,1,1,1,2,2,1 + ω2Ω1,1,2,1,1,2,1,1,2 − ωΩ1,1,2,1,1,2,1,2,1

+Ω1,1,2,1,1,2,2,1,1 + ωΩ1,1,2,1,2,1,1,1,2 + ω2Ω1,1,2,2,1,1,1,1,2 − ωΩ1,1,2,2,2,1,1,1,1

− ω2Ω1,2,2,1,1,1,2,1,1 + ωΩ1,2,2,1,1,2,1,1,1 − ω2Ω2,1,2,1,1,1,2,1,1 + ωΩ2,1,2,1,1,2,1,1,1

+ ω2Ω2,2,1,1,1,1,2,1,1 − ω2Ω2,2,1,1,1,2,1,1,1 − (ω − ω2)Ω2,2,1,1,2,1,1,1,1
)

(3.19)
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Figure 2. A plot of the mass matrix rank vs. tadpole contribution for various supersymmetric
Minkowski vacua. The red line denotes the bound provided by the strong version of the tadpole
conjecture. The total number of moduli in our orientifold of the 19 model is 64. Most flux configurations
shown are unphysical since the tadpole cancellation requires Nflux ≤ 12. As described in the text the
set of displayed fluxes was generated using particular linear combinations of basis vectors and is only
a subset of all possible fluxes for the displayed range of parameters.

We find the smallest tadpole contribution of a flux that makes all moduli massive is Nflux = 26.
(We do however not know whether this is absolutely the smallest possible.) One such solution
is given explicitly as

G[24,26,64] = 9
(
−ωΩ1,1,1,1,1,1,2,2,2 + ω2Ω1,1,1,1,1,2,1,2,2 − ωΩ1,1,1,1,2,1,2,1,2

− ω2Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,2,1 − Ω1,1,1,1,2,2,2,1,1 + ωΩ1,1,1,2,1,1,2,1,2

+ ωΩ1,1,1,2,2,1,1,1,2 − ωΩ1,1,1,2,2,1,1,2,1 + ωΩ1,1,2,1,1,1,2,1,2 − ω2Ω1,1,2,1,1,1,2,2,1

− ω2Ω1,1,2,1,1,2,1,1,2 + ω2Ω1,1,2,1,1,2,2,1,1 + ωΩ1,1,2,2,1,1,1,2,1 − ωΩ1,1,2,2,1,1,2,1,1

+Ω1,2,1,1,2,2,1,1,1 − ωΩ1,2,1,2,1,1,1,1,2 +Ω2,1,1,1,2,2,1,1,1 − ωΩ2,1,1,2,1,1,1,1,2

+ ωΩ2,2,1,1,1,1,1,1,2 − ω2Ω2,2,1,1,1,2,1,1,1 + ωΩ2,2,1,2,1,1,1,1,1 − Ω2,2,1,1,2,1,1,1,1

− (ω − ω2)Ω2,2,2,1,1,1,1,1,1
)

(3.20)

3.3 Complete classification of the shortest vector solutions

In the recent paper [10], two of the present authors solved the shortest vector problem for
the 19 model. This result was derived using the observation that having exactly n of the
coefficients Al non-zero in G3 =

∑
l AlΩl results in a crude lower bound for the flux tadpole:

Nflux ≥ n [8]. Already in [4] the solution G
[8,8]
(1) , given below in equation (4.15), was found to

have tadpole 8. By turning on up to 7 Ωl’s, an exhaustive search was launched for solutions
with tadpole smaller or equal to 7. None was found, proving that 8 is the smallest value
of Nflux for Minkowski solutions in this model.
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To find more solutions that saturate this bound, an Ansatz was made:

G3 ∝ (−Ωl1 +Ωl2 − Ωl3 +Ωl4 − Ωl5 +Ωl6 − Ωl7 +Ωl8) , (3.21)

where the la vectors are indexed in a certain way (see [10] for more details). The space
of 8-Ω combinations being too large for an exhaustive search, this simplifying Ansatz was
made inspired by the case of 4-Ω solutions where the solutions generating the lowest value
Nflux = 12 belong to families of the form

G3 ∝ (−Ωl1 +Ωl2 − Ωl3 +Ωl4) . (3.22)

The flux quantization condition, combined with the Ansatz above, implies that

(−l1 + l2 − l3 + l4 − l5 + l6 − l7 + l8)i mod 3 = 0, (3.23)

significantly reducing the number of 8-Ω combinations allowed. An exhaustive search then
yielded 14 different 8-Ω solutions with tadpole 8, each having 14 massive moduli. Despite
the success in finding solutions, one finds the lack of proper justification of the Ansatz
somewhat unsatisfactory. Furthermore, this Ansatz was restricted to only non-orientifold
fluxes, meaning la vectors of the kind (1, 1, . . .) and (2, 2, . . .).

Prompted by this, we have now relaxed this Ansatz and made an exhaustive search
through all possible 8-Ω combinations, including cases where one, two, three, or four orientifold
fluxes are turned on. We find that the only choices of 8 distinct Ωl’s that can yield tadpole 8
are the ones presented in [10]. Moreover, all solutions arising from one of these 8-Ω choices
can be mapped to those from the remaining ones via S7 transformations, which explains
why all of the solutions in [10] have the same number of massive moduli. Therefore, it
suffices to look for solutions of the form

G3 = 9 (a1Ω1,1,1,1,1,1,2,2,2 + a2Ω1,1,1,1,1,2,1,2,2 + a3Ω1,1,1,1,2,2,1,1,2 + a4Ω1,1,1,1,2,1,2,1,2+
a5Ω1,1,1,2,1,2,1,2,1 + a6Ω1,1,1,2,1,1,2,2,1 + a7Ω1,1,1,2,2,1,2,1,1 + a8Ω1,1,1,2,2,2,1,1,1) , (3.24)

with ai ∈ C, which belong to the first family presented in section 3.2.3 of [10], such that the
flux is properly quantized and has tadpole 8. One finds a set of 162 solutions, which can
be further modded by the action of the subgroup of S7 that keeps the choice of the above
eight l vectors invariant. There are exactly 21 distinct solutions (all of them have 14 massive
moduli) up to the action of this stability subgroup. These correspond to:

(a1, . . . , a8) = ωp



(−1, 1,−1, 1,−1, 1,−1, 1)
(1,−1, ω,−ω, 1,−1, ω,−ω)
(−1, 1,−ω, ω,−ω, ω,−ω2, ω2)
(−1, ω,−ω, 1,−ω, 1,−1, ω)
(1,−ω, ω2,−ω, ω,−1, ω,−ω2)
(−1, ω,−ω2, ω,−ω2, ω,−ω2, 1)
(1,−ω, ω2,−ω, ω2,−ω, ω2,−1)

, p = 0, 1, 2 . (3.25)

This leads to the conclusion that, up to the symmetries of the model, there are 21 short-
est vectors in this lattice. The solution G

[8,8]
(1) , found originally in [4] and given above in

equation (3.10), is in the S7 orbit of the first solution in (3.25) with p = 0.
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4 Moduli stabilization at higher order

In this section, we study the stabilization of massless fields via the higher-order terms in
the superpotential that we discussed in subsection 2.3. We will use previously studied flux
choices and calculate explicitly the higher-order terms and how they stabilize massless fields.

4.1 The algorithm and its limitations

The main idea, sketched in [8] and discussed in detail in the introduction, is to address the
tadpole conjecture in its weaker form, in which nstab is defined not as the number of massive
moduli, but as the number of fields whose vacuum expectations values are not free parameters,
but determined by the field equations, possibly in terms of other fields that themselves remain
massless to all orders in the expansion. Mathematically, this is the difference between the
Zariski and Krull co-dimension of the critical locus of the superpotential at the origin. To
explain this concretely, consider a superpotential

W = W (tI) ∈ CJt0, . . . , tN K (4.1)

that is known as a (formal or convergent) power series in the erstwhile moduli tI , including
the axio-dilaton as I = 0, and assume that tI = 0 corresponds to a supersymmetric Minkowksi
vacuum. This just means that the first non-vanishing term in the expansion of W is the
holomorphic mass matrix from (3.15), i.e., we have

W = 1
2MIJ tItJ + 1

6CIJKtItJ tK + · · · (4.2)

where CIJK is completely symmetric and · · · denotes higher order terms. In the following,
we will use the shorthand notation Wr for the terms in W that are of order r in the tI . Thus
by definition W =

∑∞
r=2 Wr. There are then two key ideas to study the effect of the Wr for

r > 2 on the vacuum structure for arbitrary numbers of fields.
The first point is to shift the focus from the critical point equations ∂IW = 0 as a

geometric locus to the Jacobi ring of the space-time superpotential,

R = CJt0, . . . , tN K
⟨∂IW ⟩

(4.3)

Mathematically, R is known as the Milnor ring of the function germ defined by W . This ring
is finite-dimensional as a complex vector space precisely if and only if the origin is an isolated
singularity. Physically, (4.3) contains those physical operators that remain non-trivial and
independent after imposing the (static) field equations. This is of course just the space-time
analogue of (2.4). Intuitively, flat directions in {∂IW = 0}, say one parameterized (possibly
non-linearly) by a field ϕ, will be detected by the infinite number of independent operators ϕ,
ϕ2, ϕ3, . . . . In principle, the nature of the critical locus, its decomposition into branches, their
singularities, etc. is all contained in the algebraic properties of the ring R and can be analyzed
with standard computer algebra packages. In practice however, this is computationally very
expensive when the number of moduli N becomes large, and one wishes to obtain exact
statements that depend on terms Wr for arbitrary large r.
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The second idea, then, is to return to a more geometric picture, but proceed order by order
in the field expansion. For example, including terms up to r = 3 gives us equations of the form

MIJ tJ + 1
2CIJKtJ tK = 0 mod ⟨cub.⟩ (4.4)

where ⟨cub.⟩ are elements of R generated by cubic operators. If MIJ has full rank, these
equations have a unique solution in the neighborhood of the origin, which is the origin itself.
Namely, all moduli have become massive. When rankMIJ < N + 1 is less than maximal,
eqs. (4.4) only allow us to eliminate that many linear combinations of operators, in terms of
the remaining ones. This means that the Zariski dimension, intuitively defined as

dimZ({∂IW}) = # ⟨lin.⟩
⟨quadr.⟩ = N + 1− rank(MIJ) (4.5)

where ⟨lin.⟩ and ⟨quadr.⟩ are the elements of R generated by linear and quadratic operators,
respectively, remains non-zero. Eliminating these linear operators corresponds to “solving”
rank(MIJ) of the equations (4.4). Doing this, and neglecting any cubic terms as indicated,
the remaining equations reduce to a set of N + 1 − rank(MIJ) quadratic equations in the
same number of independent variables. Some of these equations might vanish identically
(this happens quite regularly in our examples). Moreover, the number of linearly independent
quadratic equations might be larger than the co-dimension of the subspace they cut out.6

Alternatively, this can be thought of as eliminating this many quadratic operators in favor
of the independent ones. These statements will be modified by the cubic terms in (4.4)
originating from W4. The linear operators that we eliminated in the first step will acquire
cubic terms. The intersection of the non-trivial quadrics will also be deformed. It might go
down in dimension in the process. Finally, some of the equations that vanished identically
before, might become non-trivial. And so on it goes to higher order.

In practice, we begin by picking a subset of fields tIa , a = 1, . . . , rank(MIJ) that we
eliminate by solving the respective linear equations originating from W2. These fields could
appear either quadratically, like (tIa)2 in W2, in which case we solve ∂tIa W2 = 0 by setting
tIa = 0 or they only appear linearly like tIatIb in which case we can solve ∂tIa W2 = 0 for tIb

and ∂tIb W2 = 0 for tIa . If say tIa appears in another such term, like tIatJ , then really tJ is
not on the list of tIa ’s and we solve tIb ∼ −tJ , while tJ remains unstabilized at this order.
It is appealing to think of the variables tIa as “massive fields”. Strictly speaking, we can
not decide which combination actually acquires a physical mass without knowledge of the
Kähler potential. It was shown in [7] that the rank of the physical mass matrix is equal to
rank(MIJ). At the level of counting degrees of freedom, the procedure is completely correct.
Although, there is some arbitrariness in the selection of the tIa .

Solving linear equations for the massive fields does not only work at this order but
actually extends to all orders. Once we have the linear order solutions tIa = tIa

1 + O(t2),
where tIa

1 are linear polynomials in independent, so-far unstabilized fields found by solving
6A most famous example for this phenomenon is the so-called twisted cubic space curve, image of

(s, t) 7→ (x, y, z, w) = (s3, s2t, st2, t3), which is cut out by the three quadrics xw = yz, y2 = xz, z2 = yw, but
no subset of two of these.

– 21 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
9

all the ∂tIa W2 = 0, we can make the Ansatz tIa = tIa
1 + tIa

2 + O(t3) and plug this into
∂tIa (W2 + W3) = 0 + O(t3) to get linear equations for the tIa

2 . We can solve these linear
equations and find quadratic polynomials in unstabilized fields as solutions for the tIa

2 . We
can proceed like this to higher order and solve only linear equations to get tIa =

∑
r=1 tIa

r ,
where each of the tIa

r is a polynomial of r-th power in the t’s that are unstabilized at this
order. The upshot is that the tIa can easily be solved for and thereby we satisfy all the
equations ∂tIa W = 0 to arbitrary order in t for all the massive fields tIa in any given example.

We now focus on the fields that are not massive and their corresponding derivatives of
the superpotential. Concretely, by solving for the massive fields above we have ensured that
∂tJ W2 = 0 + O(t2) for all J when plugging in tIa =

∑
r=1 tIa

r . However, at cubic order we
have to solve ∂J(W2 + W3) = 0 +O(t3). Plugging in tIa =

∑
r=1 tIa

r solves a subset of these
equations, however, generically there remain additional non-trivial quadratic equations that
we need to solve. Here things get a bit more complicated. Generically, solving quadratic and
higher order equations is a non-algebraic operation. It typically involves taking square roots
of other combinations of fields. Luckily, in our examples this never happens. For reasons
that can be traced back to the selection rules in (2.39) and (2.43), the relevant polynomials
always involve a sufficient number of fields that appear only linearly. We can solve for them
by merely inverting some of the remaining, independent variables. Similar statements hold
at higher order in the expansion, at least as far as we have explored. The only remaining
complication is that these solutions might involve different “branches” that need to be studied
independently. For example, equations xy = xz = 0 give rise to two components with different
numbers of stabilized fields: x = 0 or y = z = 0.

For the purposes of notation, we append the variables that we thereby eliminate to the
list of tIa ’s, but include an additional index ra that indicates at which order we have done so.
Thus, ra = 2 for a = 1, . . . , rank(MIJ), corresponding to the massive fields, ra = 3 for those
that we eliminate by solving the independent quadratic equations, etc. Note again that the
number of a’s with given ra cannot be deduced from the number of independent non-trivial
equations that appear at that order alone, and moreover will depend on the branch on
which we are working. We will not introduce explicit notation to distinguish these branches,
although this is of course essential in practice. The number of fields that are stabilized up to
order r will be denoted Ar. Thus, A2 = rank(MIJ), A3 = A2 +#{a | ra = 3}, etc.

An important observation is that we cannot trivially solve the next higher order by
adding quadratic terms to the tIa with ra = 3. For example, we usually find linear solutions
for the quadratic equations: tIa = tIa

1 + O(t2). We can and have to extend those as
tIa = tIa

1 + tIa
2 +O(t3) but when we plug these back into ∂tJ (W2 +W3 +W4) = 0+O(t4) then

not all tIa
2 will actually appear. We can only solve a subset of these equations using the tIa

2
because some quadratic equations have terms like tIatIb = tIa

1 tIb
2 + tIa

2 tIb
1 +O(t4), where both

ra = rb = 3. If both tIa
1 = tIb

1 = 0 then the corresponding tIa
2 , tIb

2 do not appear at all. While
this statement seems contrived, this actually does happen in some examples. So, at this
stage, things become more complicated but we can generically solve some of the higher-order
equations by fixing higher-order terms in already stabilized fields. If there are then still
unsolved equations that involve the so far not stabilized fields only, then we stabilize some
more fields at this order and proceed to the next higher order.
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Given that we start with a finite number of moduli, N + 1, initially, the procedure must
eventually stabilize, in the sense that there exists an rmax such that Ar = A∞ for all r ≥ rmax.
This can happen at different times on different branches, but again there is a maximum
order after which the only effect can be a change of the explicit shape of the branches, but
not their dimension. If A∞ = N + 1 on all branches, this means that all fields have been
stabilized. Otherwise, the minimum A∞ over all branches is what we take as nstab in the
weak form (1.3) of the tadpole conjecture. Mathematically, this corresponds to the Krull
co-dimension of the critical locus at the origin.

The algorithm that we just described in principle allows to decide how many moduli are
stabilized by any given flux. It can also be applied in other background models. Some of the
phenomena that we alluded to however are not easily captured by toy models. So to make the
generic discussion more concrete and accessible, we work through the details of a particular
example up to cubic order in the 19 model in the next subsection. Then we summarize the
results of some further calculations up to order r = 7. There are two important challenges.

1. While the formulas of subsection 2.3 allow us to in principle calculate all higher order
terms, their number grows quickly. At cubic order, we have just from the 63 complex
structure moduli 63 · 64 · 65/6 = 43, 680 terms, which is easy to calculate. At septic order,
there are 1,078,897,248 terms and it becomes problematic to calculate and store them
when using a normal laptop.

2. When analysing the stabilization of higher order terms we have to solve ∂tJ W = 0. When
including cubic terms in W we have to solve generically a large number of coupled quadratic
equations, which is difficult. At higher order, this would then very quickly become an
impossible task. However, we surprisingly find that the higher order polynomials remain
usually relatively simple and we can normally solve them without getting square or higher
roots. This might be due to the large number of symmetries in this model but it would be
important to understand this better.

4.2 A fully worked example

In this subsection we discuss a non-trivial example with massless stabilized fields to cubic
order in the superpotential. The flux, which was first presented in [10] is given by

G
[4,12]
(1) = 9(ω− ω2)

(
−Ω1,1,1,1,1,1,2,2,2 +Ω1,1,1,1,1,2,1,2,2 +Ω1,1,1,1,2,1,2,1,2 −Ω1,1,1,1,2,2,1,1,2

)
(4.6)

It has Nflux = 12 and it was shown in [8] that it has 16 massive complex scalars and that
its cubic terms lead to 10 linearly independent quadratic constraints. Indeed, the quadratic
terms in the superpotential (2.44) being

W2 =At0(t1 − t2 − t6 + t8) + B

(
(t48 − t49)(t52 − t55) + (t47 − t50)(t53 − t54)

+ 1
2(t

33 − t34)(t58 − t61) + 1
2(t

32 − t35)(t59 − t60) + t56(t38 − t40 − t44 + t45)

+ 1
2 t62(t23 − t25 − t29 + t30) + 1

2 t63(t13 − t15 − t19 + t20)
) (4.7)

where
A = ω − ω2

27 Γ
(1
3

)6
Γ
(2
3

)3
, B = 2

9 Γ
(1
3

)3
Γ
(2
3

)6
. (4.8)
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We can easily solve ∂IW2 = 0 in terms of the sixteen “massive” fields

tIa with Ia ∈ {0, 1, 13, 23, 34, 35, 38, 49, 50, 54, 55, 56, 60, 61, 62, 63}. (4.9)

This fixes for example t0 = 0 + O(t2) and t1 = t2 + t6 − t8 + O(t2). The latter equation
shows that there is an ambiguity in which fields we identify as “massive”. However, as
mentioned above, without knowledge of the Kähler potential this cannot be resolved. Note
that we have already been careful in allowing for higher order terms in the massive fields
that will become important once we go to higher order. Concretely for this example the
cubic terms in the super potential are

W3 =C

(
t31t36t37−t31t36t39−t33t38t41+t34t40t41−t31t37t42+t31t39t42−t32t38t43+t32t40t43+t33t41t44

+t35t43t44−t34t41t45−t35t43t45+t22t36t46−t24t36t46+t21t37t46−t27t37t46−t21t39t46+t27t39t46

−t22t42t46+t24t42t46−t28t38t47+t28t40t47−t23t43t47+t25t43t47−t26t38t48−t23t41t48+t29t41t48

+t26t44t48+t26t40t49+t25t41t49−t30t41t49−t26t45t49+t29t43t50−t30t43t50+t28t44t50−t28t45t50

+t12t36t51−t14t36t51+t11t37t51−t17t37t51−t11t39t51+t17t39t51−t12t42t51+t14t42t51+t1t46t51

−t2t46t51−t6t46t51+t8t46t51−t18t38t52+t18t40t52−t13t43t52+t15t43t52−t7t47t52+t9t47t52

−t16t38t53−t13t41t53+t19t41t53+t16t44t53−t4t48t53+t10t48t53+t16t40t54+t15t41t54−t20t41t54

−t16t45t54+t4t49t54−t10t49t54+t19t43t55−t20t43t55+t18t44t55−t18t45t55+t7t50t55−t9t50t55

+1
2 t12t21t57− 1

2 t14t21t57+1
2 t11t22t57− 1

2 t17t22t57− 1
2 t11t24t57+1

2 t17t24t57− 1
2 t12t27t57+1

2 t14t27t57

+1
2 t1t31t57− 1

2 t2t31t57− 1
2 t6t31t57+1

2 t8t31t57− 1
2 t18t23t58+1

2 t18t25t58− 1
2 t13t28t58+1

2 t15t28t58

− 1
2 t7t32t58+1

2 t9t32t58− 1
2 t16t23t59− 1

2 t13t26t59+1
2 t19t26t59+1

2 t16t29t59− 1
2 t4t33t59+1

2 t10t33t59

+1
2 t16t25t60+1

2 t15t26t60− 1
2 t20t26t60− 1

2 t16t30t60+1
2 t4t34t60− 1

2 t10t34t60+1
2 t19t28t61− 1

2 t20t28t61

+1
2 t18t29t61− 1

2 t18t30t61+1
2 t7t35t61− 1

2 t9t35t61

+(ω−ω2)
[
−t0t48t52+t0t49t52−t0t47t53+t0t50t53+t0t47t54−t0t50t54+t0t48t55−t0t49t55

−t0t38t56+t0t40t56+t0t44t56−t0t45t56− 1
2 t0t33t58+1

2 t0t34t58− 1
2 t0t32t59+1

2 t0t35t59

+1
2 t0t32t60− 1

2 t0t35t60+1
2 t0t33t61− 1

2 t0t34t61− 1
2 t0t23t62+1

2 t0t25t62+1
2 t0t29t62

− 1
2 t0t30t62− 1

2 t0t13t63+1
2 t0t15t63+1

2 t0t19t63− 1
2 t0t20t63

])
(4.10)

where C = B/3.
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Solving the 16 equations DIa(W2 + W3) = 0 for the 16 massive fields in equation (4.9),
we find up to this order

t0 = (ω − ω2)
(
Γ
(2
3

)
/Γ

(1
3

))3 (2
3 t46t51 + 1

3 t31t57
)

t1 = t2 + t6 − t8

t13 = t15 + t19 − t20

t23 = t25 + t29 − t30

t34 = t33 − 1
3 t19t28 + 1

3 t20t28 − 1
3 t18t29 + 1

3 t18t30 − 1
3 t7t32 + 1

3 t9t32

t35 = t32 − 1
3 t16t25 − 1

3 t15t26 + 1
3 t20t26 + 1

3 t16t30 − 1
3 t4t33 + 1

3 t10t33

t38 = t40 + t44 − t45

t49 = t48 − 1
3 t19t43 + 1

3 t20t43 − 1
3 t18t44 + 1

3 t18t45 − 1
3 t7t47 + 1

3 t9t47

t50 = t47 − 1
3 t16t40 − 1

3 t15t41 + 1
3 t20t41 + 1

3 t16t45 − 1
3 t4t48 + 1

3 t10t48

t54 = t53 − 1
3 t29t43 + 1

3 t30t43 − 1
3 t28t44 + 1

3 t28t45 − 1
3 t7t52 + 1

3 t9t52

t55 = t52 − 1
3 t26t40 − 1

3 t25t41 + 1
3 t30t41 + 1

3 t26t45 − 1
3 t4t53 + 1

3 t10t53

t56 = 1
3 t33t41 + 1

3 t32t43 + 1
3 t28t47 + 1

3 t26t48 + 1
3 t18t52 + 1

3 t16t53

t60 = t59 − 2
3 t43t44 + 2

3 t43t45 − 1
3 t7t58 + 1

3 t9t58

t61 = t58 − 2
3 t40t41 + 2

3 t41t45 − 1
3 t4t59 + 1

3 t10t59

t62 = 2
3 t43t47 + 2

3 t41t48 + 1
3 t18t58 + 1

3 t16t59

t63 = 2
3 t43t52 + 2

3 t41t53 + 1
3 t28t58 + 1

3 t26t59

(4.11)

However when looking at all 64 equations DI(W2 + W3) = 0 we find the additional ten
linearly independent quadratic relations

(t37 − t39)t51 + 1
2(t

22 − t24)t57 = 0

(t36 − t42)t51 + 1
2(t

21 − t27)t57 = 0

(t37 − t39)t46 + 1
2(t

12 − t14)t57 = 0

(t36 − t42)t46 + 1
2(t

11 − t17)t57 = 0

(t36 − t42)(t37 − t39) = 0
t31(t37 − t39) + (t22 − t24)t46 + (t12 − t14)t51 = 0
t31(t36 − t42) + (t21 − t27)t46 + (t11 − t17)t51 = 0
(t22 − t24)(t36 − t42) + (t21 − t27)(t37 − t39) = 0
(t12 − t14)(t36 − t42) + (t11 − t17)(t37 − t39) = 0

(t12 − t14)(t21 − t27) + (t11 − t17)(t22 − t24) = 0

(4.12)
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One can calculate the Groebner basis for the above set of polynomial equations and finds
the Krull co-dimension of the ideal to be 6. This means that 6 additional massive fields get
stabilized. However, at higher order or in more complicated examples below, it becomes
computationally too expensive to do such an analysis and therefore we quickly review how the
above equations can be solved explicitly. This leads to different branches or components as
briefly mentioned above. Concretely, there are components along which 6 fields are stabilized
and others along which seven fields are fixed: let us look at the fifth equation, solve it, plug
the solution in the other equations and keep solving. For ease of presentation we present
only two of the different branches that arise:

1) t36 = t42 ⇝ t57 = 0 , t37 = t39 ⇝ t46 = 0 , t11 = t17 , t12 = t14 (4.13)
2) t36 = t42 ⇝ t57 = 0 ⇝ t46 = t51 = 0 ⇝ t31 = 0 , t11 = t17 , t21 = t27 (4.14)

The branch 1) fixes only six fields and the branch 2) fixes seven fields. Given that all branches
fix either six or seven fields, one might then be tempted to conclude that there are six
stabilized fields and one could discard the other branches with 7 fixed fields. However, there
are two reasons to keep track of all different components of solutions: firstly, it is possible
that at higher order the branch with less stabilized fields suddenly stabilizes more fields than
another branch. We do not find an explicit example of this below. Secondly, it is possible
that we cannot pursue the branch with the lowest number of stabilized fields to higher order
because it is too complicated. If one is able to pursue another branch to higher order, then
this other branch provides an upper bound on the number of fields that can get stabilized
to higher order. We do find an instance of that were we cannot pursue the branch with the
smallest number of stabilized fields beyond cubic order but we can pursue another branch up
to W6, thereby providing a useful upper bound on the maximal number of stabilized fields.

4.3 More examples and results

Here we will carry out the above-described procedure for many more explicit examples to
higher order and summarize the results. The first example was called G1 in [8] and appeared
already above in equation (3.10) but we repeat it here for convenience

G
[8,8]
(1) = 9 (−Ω1,1,1,2,1,2,1,2,1 +Ω1,1,1,2,1,2,1,1,2 +Ω1,1,1,2,1,1,2,2,1 − Ω1,1,1,2,1,1,2,1,2

+Ω1,1,1,1,2,2,1,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,1,2,2,1 +Ω1,1,1,1,2,1,2,1,2) . (4.15)

The above solution has 14 massive fields and as was observed in [8], there are no further
quadratic constraints. So, even when including W3 there are no further stabilized fields at
this order, although at this order all 63 complex structure moduli and the axio-dilaton do
appear in the superpotential. Surprisingly, we find that the same holds true when including
W4, W5, W6. So, even when including sextic terms in the superpotential we can solve the
64 equations ∂tJ (W2 + W3 + W4 + W5 + W6) = 0 +O(t6) purely in terms of the 14 massive
fields tIa of ra = 2. Given this one might wonder whether one can prove that no further
stabilization is possible at all. Clearly, this cannot result from the unstabilized moduli not
being present in W since they already do all appear in W3 as remarked above. In general,
one can prove that all moduli always appear the latest in W5 (see appendix A). Thus, one
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would have to find a more elaborate proof that shows that (some) flat directions remain
because (some) unstabilized fields appear only in a very particular way combined with the
massive fields so that ∂tkW = 0 to all orders. We did not succeed with this and it is possible
that some higher orders are non-zero. We thus leave this as a challenge for the future to
study this flux choice G

[8,8]
(1) to higher order.

Before discussing flux choices that lead to the stabilization of massless fields via higher
order terms in W , we list more examples (see [8, 10]) that exhibit the same behavior as
G

[8,8]
(1) above. The flux choice

G
[12,12]
(1) = 9

(
−Ω1,1,1,2,2,2,1,1,1 − Ω1,1,1,2,2,1,2,1,1 − Ω1,1,1,2,2,1,1,2,1 +Ω1,1,1,2,1,2,1,1,2

+Ω1,1,1,2,1,1,2,1,2 +Ω1,1,1,2,1,1,1,2,2 − Ω1,1,1,1,2,2,2,1,1 − Ω1,1,1,1,2,2,1,2,1

− Ω1,1,1,1,2,1,2,2,1 +Ω1,1,1,1,1,2,2,1,2 +Ω1,1,1,1,1,2,1,2,2 +Ω1,1,1,1,1,1,2,2,2
)

,

(4.16)

leads to Nflux = 12 and 22 massive fields. The flux choices

G
[12,12]
(2) = 9

(
Ω1,1,1,2,2,1,1,2,1 − Ω1,1,2,1,2,1,1,2,1 − Ω1,1,2,2,1,1,1,2,1 +Ω1,1,2,2,2,1,1,1,1

− Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 +Ω1,2,2,1,1,1,1,2,1 +Ω2,1,2,1,1,1,1,2,1

− Ω2,2,1,1,1,1,1,2,1 +Ω2,2,1,1,2,1,1,1,1 +Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1
)

,

(4.17)

G
[12,12]
(3) = 9ω2(Ω1,1,2,2,2,1,1,1,1 − Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 +Ω2,2,1,1,2,1,1,1,1

+Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1 +Ω1,1,1,2,2,2,1,1,1 − Ω1,1,2,1,2,2,1,1,1

− Ω1,1,2,2,1,2,1,1,1 +Ω1,2,2,1,1,2,1,1,1 +Ω2,1,2,1,1,2,1,1,1 − Ω2,2,1,1,1,2,1,1,1
)

,

(4.18)

have both Nflux = 12 and 26 massive fields [8].
Two new solutions were presented in [10] that are given by

G
[4,12]
(2) = 9i

√
3 (−Ω1,1,1,1,1,1,2,2,2 +Ω1,1,1,1,2,1,2,2,1 +Ω1,1,2,2,1,1,1,1,2 − Ω1,1,2,2,2,1,1,1,1) , (4.19)

G
[4,12]
(3) = 9i

√
3 (−Ω1,1,1,1,1,1,2,2,2 +Ω1,1,2,1,1,1,2,2,1 +Ω2,2,1,1,1,1,1,1,2 − Ω2,2,2,1,1,1,1,1,1) . (4.20)

These solutions G
[4,12]
(2) and G

[4,12]
(3) have both Nflux = 12 and 22 or 26 massive fields, respectively.

For all the solutions G
[8,8]
(1) , G

[12,12]
(1) , G

[12,12]
(2) , G

[12,12]
(3) , G

[4,12]
(2) , G

[4,12]
(3) above we find that

no massless fields are being stabilized even when including up to sextic terms in the su-
perpotential W .

Now let us look at the more interesting and complicated example

G
[4,12]
(1) = 9i

√
3
(
Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,1,2 +Ω1,1,1,1,2,2,1,2,1

)
. (4.21)

This example was discussed in detail in the previous subsection 4.2 up to cubic order in W .
As we have seen there, we have to solve 10 linearly independent quadratic equations and
can do so without generating square roots since none of the variables appear quadratically.
There are different components and they fix either six or seven massless fields. We can now
pursue the different components to higher order, keeping in mind that the total number
of stabilized fields is the smallest number of fixed fields, which is six in this case up to
this order. Since we do not know how many more fields will get stabilized at higher it is
worthwhile to keep track of all components.

– 27 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
9

Model massive 3rd power 4th power 5th power 6th power
G

[8,8]
(1) 14 0 0 0 0

G
[12,12]
(1) 22 0 0 0 0

G
[12,12]
(2) 26 0 0 0 0

G
[12,12]
(3) 26 0 0 0 0

G
[4,12]
(2) 22 0 0 0 0

G
[4,12]
(3) 26 0 0 0 0

G
[4,12]
(1) 16 6 0 0 0

16 6 0 0 ?
16 6 4 0 0
16 7 1 0 0
16 7 4 0 0

G
[12,12]
(4) 20 2 0 4 1

20 2 0 0 0
G

[12,12]
(5) 18 2 ? ? ?

18 4 0 0 0

Table 2. A summary of the different models that we have analyzed. The superscript [n, Nflux] on
the model denotes the number of Ωl components and the tadpole contribution Nflux. The subscript
labels different flux configurations with the same [n, Nflux]. The second column lists the massive fields
and the other columns list the number of fields that get fixed due to terms in the superpotential that
are polynomials of the r-th power in the moduli. For some models we find different components that
either fix the same or different numbers of fields, as indicated in the multiple rows for the same model.

Concretely, there is one component where we have 16 massive fields plus six stabilized
massless fields that allow us to solve the higher order constraints up to ∂tJ (W2 + W3 + W4 +
W5 + W6) = 0 +O(t6). So, for this component, we find no further stabilized fields and have
a total of 22 stabilized fields, 16 of which are massive and 6 of which are massless. There
are other components where in addition to the 16 massive fields there are 6 + 4 + 0 + 0,
7 + 1 + 0 + 0 and 7 + 4 + 0 + 0 fixed massless fields. The smallest number of fixed fields
is the number of stabilized fields which turns out to be 22 up to order t6 in W . We have
summarized this in table 2, where a question mark means that we have not been able to
solve the corresponding polynomial equations.

There are two previously discussed solutions [8] for which we calculated the higher order
terms and for which we also find that there are stabilized but massless fields. For

G
[12,12]
(4) = 9

[
−Ω1,1,1,1,2,1,2,1,2 +Ω1,1,1,1,2,1,2,2,1 +Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,2,1,1,1,1,2,1,2 +Ω1,2,1,1,1,1,2,2,1 +Ω1,2,1,1,1,2,1,1,2 − Ω1,2,1,1,1,2,1,2,1

− Ω2,1,1,1,1,1,2,1,2 +Ω2,1,1,1,1,1,2,2,1 +Ω2,1,1,1,1,2,1,1,2 − Ω2,1,1,1,1,2,1,2,1)
]
,

(4.22)
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which has 20 massive fields, we encounter an interesting feature that has not appeared before.
While usually, whenever we found no further fixed massless fields at a particular order, then
this persisted up until sextic terms in W . However, for this solution G

[12,12]
(4) , we encounter

2 stabilized fields at cubic order and then for a particular component 0 stabilized fields at
quartic order, followed again by 4 fixed fields at quintic order and 1 fixed field at sextic
order in W . It shows explicitly that even if we encounter at a certain low order no further
stabilization this could change again at higher order.

The solution G
[12,12]
(5) below has 18 massive fields

G
[12,12]
(5) = 9

[
−Ω1,1,1,1,2,1,2,1,2 +Ω1,1,1,1,2,1,2,2,1 +Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,1,1,2,1,1,2,1,2 +Ω1,1,1,2,1,1,2,2,1 +Ω1,1,1,2,1,2,1,1,2 − Ω1,1,1,2,1,2,1,2,1

− Ω1,1,2,1,1,1,2,1,2 +Ω1,1,2,1,1,1,2,2,1 +Ω1,1,2,1,1,2,1,1,2 − Ω1,1,2,1,1,2,1,2,1)
]
.

(4.23)

We find that the quadratic equations resulting from cubic terms in W give rise to two
components. For one component we have four fixed fields and all higher order equations up
to sextic terms in W are then automatically solved in terms of the higher order terms in
the 18 massive and 4 fixed fields. Another component has only 2 stabilized fields but this
component is so complicated that we have not been able to solve higher order constraints,
leading to the question marks in the table. This example exemplifies an interesting point.
We would say that we have 18 massive and 2 stabilized massive fields at cubic order in
W . It is in principle possible that more fields get stabilized if we were able to pursue the
first component to quartic or quintic order. However, from the last row in the table we
know that even when going to sextic power in the superpotential we cannot stabilized more
than 4 massless fields in this model.

We have also calculated cubic, quartic and quintic terms for the solution above that has
the largest mass matrix rank to tadpole contribution Nflux and that is given above in (3.19).
Note this is not a physical solution since Nflux > 12. We find that there are no further
stabilized fields up to quintic order in the superpotential. This is in line with the empirical
observation from table 2 that models with the largest mass matrix rank do not have fields
that get stabilized at higher order in this 19 model.

5 Conclusion

In this paper we have continued the study of an orientifold of the 19 Landau-Ginzburg model.
The shortest vector problem in this model was solved in [10]. Specifically, it was shown
that any (non-zero) quantized G3-flux in H2,1 contributes at least Nflux = 8 to the tadpole
cancellation condition: Nflux = 12 − ND3 . In a convenient basis one can write the flux
as G3 =

∑
l AlΩl and each non-zero flux component Al will contribute at least 1 to Nflux.

Thus, any quantized flux configuration in this model can have at most 12 non-zero flux
components [8]. An exhaustive search in [10] proved that quantized flux solutions only exist
for 4, 8 or more non-zero flux components. Furthermore, all solutions with 4 components
were classified and a large class of 8 flux component solutions was presented. In this paper
we have proven that this large class actually contains all 8 flux component solutions. These
solutions are all related by an S7 symmetry that is preserved after the orientifold projection
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so that there is essentially only one such solution with 8 flux components. There are no
known solutions with 9, 10 and 11 flux components but several different ones with 12 flux
components. It remains an important challenge for the future to fully classify the flux
configurations with 12 flux components and to prove the absence of solutions with 9, 10 or
11 components or to find such solutions. However, the full classification of all possible flux
configurations in this model seems now to be within reach.

Given the importance of moduli stabilization in trying to connect string theory to the
real world, 4d N = 1 Minkowski vacua in this model were studied in [8]. It was found
that all known solutions and some newly constructed ones have a large number of massless
moduli. Out of the 64 complex scalar fields only between 14 and 26 were massive due
to the presence of the fluxes [8]. In this paper we have generated a large number of flux
configuration with relatively small tadpole and calculated the number of massive fields. The
scatter plot above in figure 2 shows the tadpole contribution vs the number of massive fields.
We find no violation of the tadpole conjecture even for flux configuration whose tadpole
is larger than the allowed Nflux ≤ 12.

Lastly, we developed a procedure for systematically calculating higher order terms in
the superpotential and checking whether there are massless fields that are stabilized in these
Minkowski vacua. In addition to the eight different solutions discussed in [8], we performed
such a study of higher order stabilization for two more solutions from [10]. In the latter
paper it was found that the flux configuration with only four flux components come in
three families with either 16, 22 or 26 massive fields. We have included one representative
from all three of those, a representative from the single family with eight flux components
discussed above and several solutions with twelve flux components. Thereby making this
a relatively complete set of examples.

Our findings are summarized in table 2 above and are interesting in many aspects. First,
we actually find that some flux configurations do not stabilize massless fields via higher
terms in the superpotential, even when including cubic, quartic, quintic and sextic terms.
This might be due to the large symmetry group of this model and it would be interesting
to understand better [42]. For setups where higher order constraints appear, we are faced
with solving polynomial equations in many variables and one might have expected that this
is an insurmountable task. However, we actually found that these constraint equations are
often solvable and they lead to the stabilization of several massless fields. We have found
three examples where massless fields get stabilized when including up to sextic terms in the
superpotential. The total number of stabilized fields is still below the maximum number
allowed by the (weaker version of the) tadpole conjecture. However, given that there is an
infinite number of higher order terms in the superpotential it is not clear whether and how
many more moduli will be stabilized at even higher order. We are currently at the limit of
what can be calculated with a normal computer and it would be interesting to use more
powerful computers or to develop more sophisticated techniques to extend our result to higher
order. We leave this as an exciting challenge for the future.
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A Proof that all tk appear in W

Given that it is difficult to stabilize all fields, one might ask whether one can show that flat
directions arise due to the simple fact that some fields do not appear in the superpotential at
all. This is however not the case and in this appendix, we prove that the dilaton and all 63
complex structure moduli do appear (at higher order) in W for any non-zero flux choice.

Let us assume that we turn on some flux and generate thereby a mass term for some
fields, i.e., we assume that ∂tk1 ∂tk2 W ̸= 0 for some k1, k2. This is true for any non-zero flux
choice and implies from equation (2.36) above that

l̄ = (k1 + k2 + 1) mod 3 . (A.1)

Now we ask whether a tk exists that does not appear in W . The answer is no as can be seen
as follows: since k contains only 0’s and 1’s we have that 3 · k = 0 mod 3. So at quintic
order in the superpotential, there is a term proportional to tk1tk2(tk)3 since we have

l̄ = (k1 + k2 + 3 · k + 1) mod 3 = (k1 + k2 + 1) mod 3 . (A.2)

Thus at quintic order, every tk will appear for sure. However, it will do so in a rather
simple way multiplied by terms that already appeared at quadratic order and thus these
terms cannot really stabilize tk. In concrete examples, we usually find that all fields already
appear when including quartic terms in W .

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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