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a b s t r a c t

One formulation of the Erdős-Szekeres monotone subsequence
theorem states that for any red/blue coloring of the edge set of
the complete graph on {1, 2, . . . ,N}, there exists a monochro-
matic red s-clique or a monochromatic blue increasing path Pn
with n vertices, provided N > (s − 1)(n − 1). Here, we prove
a similar statement as above in the off-diagonal case for triple
systems, with the quasipolynomial bound N > 2c(log n)s−1

. For
the tth power P t

n of the ordered increasing graph path with
n vertices, we prove a near linear bound c n(log n)s−2 which
improves the previous bound that applied to a more general class
of graphs than P t

n due to Conlon-Fox-Lee-Sudakov.
© 2024 Published by Elsevier Ltd.

1. Introduction

A well-known theorem of Erdős and Szekeres [9] states that any sequence of (n − 1)2 + 1
istinct real numbers contains a monotone subsequence of length at least n. This is a classical
esult in combinatorics and its generalizations and extensions have many important consequences
n geometry, probability, and computer science. See Steele [15] for 7 different proofs along with
everal applications. Here, we study its extension in the ordered hypergraph setting.
An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered

1, 2, . . . , n}. Given two ordered k-uniform hypergraphs G and H , the Ramsey numbers rk(G,H) is
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he minimum N such that for every red/blue coloring of the k-tuples of {1, 2, . . . ,N}, there is either
red copy of G or a blue copy of H . When G = H , we simply write rk(H) = rk(H,H). We let rk(H; q)
o be the minimum integer N such that for every q-coloring of the k-tuples of [N] = {1, 2, . . . ,N},
here is a monochromatic copy of H . We write K (k)

n for the complete k-uniform hypergraph on n
ertices. A monotone path of size n, denoted by P (k)

n , is an ordered k-uniform hypergraph whose
ertex set is {1, 2, . . . , n}, and n−k+1 edges of the form (i, i+1, . . . , i+k−1), for i = 1, . . . , n−k+1.
n order to avoid the excessive use of superscripts, we remove them when the uniformity is clear.
or example, we write rk(Ks, Pn) = rk(K

(k)
s , P (k)

n ).
The proof of the Erdős and Szekeres monotone subsequence theorem, and also Dilworth’s

heorem on partially ordered sets [4], implies that

r2(Ks, Pn) = (s− 1)(n− 1)+ 1.

owever for k-uniform hypergraphs, when k ≥ 3, rk(Ks, Pn) is much less understood. In [12],
he authors showed a surprising connection between rk(Ks, Pn) and the classical Ramsey number
k−1(Ks; q). More precisely, they showed that for q ≥ 2

rk−1(K⌊s/q⌋; q) ≤ rk(Ks, Pq+k−1) ≤ rk−1(Ks; q). (1)

ence, for q = 2, k = O(1), and s tending to infinity, determining the tower growth rate of
k(Ks, Pk+1) is equivalent to determining the tower growth rate of the classical Ramsey number
k−1(Ks). Classical results of Erdős [5] and Erdős and Szekeres [9] imply that r2(Ks) = 2Θ(s) (see
lso [2,13,14]). Unfortunately for k-uniform hypergraphs, when k ≥ 3, there is an exponential gap
etween the best known lower and upper bounds for rk(Ks). More precisely,

twrk−1(Ω(s2)) < rk(Ks) < twrk(O(s)),

here the tower function twrk(x) is defined recursivly by twr1(x) = x and twri+1(x) = 2twri(x)

see [6–8]). A notoriously difficult conjecture of Erdős, Hajnal, and Rado states that the upper bound
s the correct tower growth rate.

Unfortunately, (1) does not shed much light on rk(Ks, Pn) when s is fixed and n tends to infinity.
n this direction, the first author [11] showed that r3(K4, Pn) = O(n21) and made the following
onjecture.

onjecture 1.1. We have r3(Ks, Pn) = O(nc), where c = c(s).

ur first result establishes a quasi-polynomial bound for r3(Ks, Pn), when s is fixed. Throughout this
aper, all logarithms are in base 2.

heorem 1.2. We have r3(Ks, Pn) < 2cs(log n)s−1
, where cs = 5ss!.

ogether with the well-known neighborhood chasing argument of Erdős and Rado [8], we have the
ollowing.

heorem 1.3. For k ≥ 3, we have rk(Ks, Pn) = twrk−2

(
2c(log n)s−1

)
, where c = c(s).

In the other direction, we have the trivial inequality rk(Ks, Pn) ≥ rk(Ps, Pn). The famous cups-caps
heorem of Erdős and Szekeres [9] states that r3(Ps, Pn) =

(s+n−4
s−2

)
+ 1, and the stepping-up lemma

stablished in [10] (see Theorem 4.3) implies that rk(Ps, Pn) ≥ twrk−2(nc), where c = c(s). Thus, we
ssentially determine the tower growth rate of rk(Ks, Pn) for s fixed and n tending to infinity.
For the diagonal case r3(Kn, Pn), these observations and a result of the authors [8] yield

2n <

(
2n− 4
n− 2

)
= r3(Pn, Pn) ≤ r3(Kn, Pn) < r2(n; n) < 2n2 log n.
t would be interesting to improve either bound for r3(Kn, Pn).
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.1. Cliques versus power paths in graphs

A key lemma in the first author’s [11] proof of r3(K4, Pn) = O(n21) is based on the following
eneralization of monotone paths in ordered graphs. Given positive integers t, n, the tth power
f the path of Pn, denoted by P t

n, is an ordered graph with vertex set {1, 2, . . . , n}, and (i, j) is an
dge if and only if |j− i| ≤ t . Hence, P1

n = Pn. In [1], Balko, Cibulka, Král, and Kynčl showed that
2(P t

n) = O(n129t ) (see also [11]). Our next result establishes a near linear bound in the off-diagonal
etting. Moreover, our proof generalizes to the clique versus power-path setting.

heorem 1.4. For positive integers s, t, n such that t ≤ s, we have

r2(P t
s , P

t
n) ≤ r2(Ks, P t

n) < t4sn(log n)s−2.

For large s, e.g., s = n, we also have the following bound.

Theorem 1.5. For positive integers s, t, n, we have

r2(Ks, P t
n) < (2s)t(t+1) log n.

Hence in the diagonal setting, for fixed t > 0, we have r2(Kn, P t
n) ≤ 2O(log2 n). This coincides with

a more general result established by Conlon, Fox, Lee and Sudakov [3] on ordered graphs with
bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all s, t > 1 there exists c = cs,t such that r2(Ks, P t
n) < c n.

2. Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing
sets. Let χ be a q-coloring of the pairs of [N], with colors {κ1, . . . , κq} ⊂ Z such that κ1 < · · · < κq.
Then we say that a triple u, v, w ∈ [N], where u < v < w, is non-increasing if

1. χ (u, v) = χ (u, w) ≥ χ (v, w), or
2. χ (u, v) ≥ χ (u, w) = χ (v, w).

We say that a set S ⊂ [N] is non-increasing with respect to χ if every triple in S is non-increasing.
Given subsets S, T ⊂ [N] such that S = {v1, . . . , vs} and T = {u1, . . . , us}, we say that S and T have
the same color pattern with respect to χ if χ (vi, vj) = χ (ui, uj) for all i, j.

We will need the following lemma about non-increasing sets.

Lemma 2.1. Let S = {v1, . . . , vs} be a non-increasing set with respect to χ , where v1 < · · · < vs. Fix
vertex vj ∈ S. Then for any vi, vℓ ∈ S such that vi < vj < vℓ, we have

1. χ (vi, vj) ≥ χ (vj, vℓ), and
2. χ (vj−1, vj) ≤ χ (vi, vj), and
3. χ (vj, vj+1) ≥ χ (vj, vℓ).

Proof. The first property follows from the fact that S is non-increasing. For the second property,
let vi < vj−1. Since {vi, vj−1, vj} is non-increasing, either χ (vi, vj−1) = χ (vi, vj) or χ (vj−1, vj) =

χ (vi, vj). In both cases, the second property holds. A similar argument shows that the third property
follows. □

Let f (s; q) be the minimum integer N , such that if the pairs of [N] are colored with at most q
colors κ1 < · · · < κq, then there is a set S ⊂ [N] of size s such that every triple in S is non-increasing.

Theorem 2.2. We have r (K , P ) ≤ f (s; n− 2).
3 s n
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roof. Let N = f (s; n − 2) and let φ be a red-blue coloring of the triples of [N]. If φ produces a
blue monotone path of size n, then we are done. Otherwise, we define χ :

(
[N]
2

)
→ {2, 3, . . . , n−1}

such that for u, v ∈ [N], χ (u, v) is the size of the longest blue monotone path ending at (u, v) with
respect to φ. Note that if there are no blue edges ending at (u, v), then χ (u, v) = 2. By definition
of f (s; n− 2), there is a set S ⊂ [N] of s vertices such that every triple in S is non-increasing with
respect to χ . Notice that if a triple u, v, w ∈ S, where u < v < w, is colored blue with respect to
φ, then the longest monotone path ending at (u, v) could be extended to a longer monotone path
ending at (v, w), contradicting the fact that S is non-increasing. Hence, φ must color every triple in
S red, which yields a red Ks with respect φ. □

We now prove the following upper bound for f (s; n). Together with Theorem 2.2, Theorem 1.2
quickly follows.

Theorem 2.3. For s ≥ 3 and n ≥ 2, we have f (s; n) ≤ 25ss!(log n)s−1
.

Proof. We proceed by double induction on s and n. For the base case n = 2 and s ≥ 3, we have

f (s; 2) ≤ r2(Ks) < 4s < 25ss!.

Therefore, let us assume that the statement holds for n′ < n. For the other base case s = 3 and
n ≥ 2, let N = 253·6 log2 n and χ be an n-coloring of the pairs (edges) of [N] with colors {1, . . . , n}.

e can assume at least half of the edges have color i ≤ n/2, since otherwise a symmetric argument
ould follow. Let E ⊂

(
[N]
2

)
be the set of edges with color at most n/2, and for v ∈ [N], let

N−

E (v) = {u ∈ [N] : u < v, (u, v) ∈ E},

and d−E (v) = |N−

E (v)|. Hence,
∑

v d
−

E (v) = |E| ≥ (1/2)
(N
2

)
.

By averaging, there is a vertex v ∈ [N] such that d−E (v) ≥ (N−1)/4. By the pigeonhole principle,
here is a subset S ⊂ N−

E (v) of size |N−

E (v)|/(n/2) such that every edge between S and v has the
ame color. If there is a pair in S with color j > n/2, then we have a non-increasing triple and we
re done. On the other hand, if no such pair has color j > n/2, since we have

|S| ≥
|N−

E (v)|
n/2

≥
N − 1
2n

> 253·6 log2(n/2),

e can apply induction in S to find a non-increasing triple and we are done.
For the inductive step, let us assume that the statement holds for s′ < s and n′ < n. Let
= 25ss!(log n)s−1

. Let χ be an n-coloring of the pairs of [N] with colors {1, . . . , n}. By a standard
upersaturation argument, we have at least( N

f (s−1;n)

)( N−(s−1)
f (s−1;n)−(s−1)

) ≥
(N − s)s−1

f (s− 1; n)s−1 ≥
N s−1

2f (s− 1; n)s−1

opies of a non-increasing set on s − 1 vertices. By the pigeonhole principle, there are at least
s−1/(2ns2 f (s − 1; n)s−1) non-increasing sets on s − 1 vertices with the same color pattern. Let
s fix one such non-increasing set S = {v1, . . . , vs−1} for reference, and let χ (vi, vi+1) = κi. For
onvenience, set κ0 = n and κs−1 = 1, which implies

n = κ0 ≥ κ1 ≥ · · · ≥ κs−2 ≥ κs−1 = 1.

y the pigeonhole principle, there is an i such that 1 ≤ i ≤ s−1 such that κi−1−κi ≥ n/s. Since we
ave N s−1/(2ns2 f (s− 1; n)s−1) non-increasing sets on s− 1 vertices with the same color pattern as
, there is a subset B ⊂ [N] and s− 2 vertices u1, . . . , ui−1, ui+1, . . . , us−1 ∈ [N] such that for each
∈ B, we have

1. u1 < · · · < ui−1 < b < ui+1 < · · · < us−1,
2. |B| ≥ N/(2ns2 f (s− 1; n)s−1), and
3. S ′ = {u , . . . , u , b, u , . . . , u } is non-increasing with the same color pattern as S.
1 i−1 i+1 s−1
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Let us remark that if i = 1, then we have b < u2 < · · · < us−1 for all b ∈ B, and
′
= {b, u2, . . . , us−1}. Likewise, if i = s − 1, then we have u1 < · · · < us−2 < b for all b ∈ B,

nd S ′ = {u1, . . . , us−2, b}.
If there is a pair b, b′ ∈ B such that κi−1 ≥ χ (b, b′) ≥ κi, then the set

T = {u1, . . . , ui−1, b, b′, ui+1, . . . , us−1}

s a nonincreasing set of size s. Indeed, it suffices to check that triples of the form {uj, b, b′} for
≤ i− 1, and {b, b′, uj} where j ≥ i+ 1, are non-increasing. Assume j ≤ i− 1. By construction, we
ave χ (uj, b) = χ (uj, b′). By Lemma 2.1 and the assumption above, we have

χ (uj, b) = χ (uj, b′) ≥ κi−1 ≥ χ (b, b′).

Hence, {uj, b, b′} is non-increasing. For j ≥ i + 1, a similar argument shows that {b, b′, uj} is
non-increasing.

Therefore, we can assume that χ uses at most n−n/s = n(s−1)/s distinct colors on B. However,
this implies

|B| ≥
N

2ns2 f (s− 1; n)s−1

≥
25ss!(log n)s−1

2ns22(s−1)5s−1(s−1)!(log n)s−2

≥ 25ss!(log n)s−1
−2(s−1)5s−1(s−1)!(log n)s−2

≥ 25ss!(log n−log(s/(s−1)))s−1

≥ 25ss!(log((s−1)n/s))s−1

≥ f (s; (s− 1)n/s).

y the induction hypothesis, we can find a non-increasing set inside of B. □

. Ordered graphs

roof of Theorem 1.4. We proceed by double induction on s and n. The base cases when s = 2 or
hen n = 2 is trivial. For the inductive step, assume that the statement holds for s′ < s or n′ < n. Let
= t4sn(log n)s−2, and V = [N]. For sake of contradiction, suppose there is χ :

(
[N]
2

)
→ {red,blue},

uch that χ does not produce a red Ks nor a blue P t
n. Then we define

• U = {⌊N/2⌋ + 1, ⌊N/2⌋ + 2, . . . , ⌊N/2⌋ +
(s+t

t

)
},

• V1 = {1, 2, . . . , ⌊N/2⌋},
• V2 = {⌊N/2⌋ +

(s+t
t

)
+ 1, ⌊N/2⌋ +

(s+t
t

)
+ 2, . . . ,N}

By Ramsey’s theorem, we know that r2(Ks, Kt ) <
(s+t

t

)
. Hence, since |U | =

(s+t
t

)
, we can conclude

hat U contains a blue Kt on vertices u1, . . . , ut ∈ U . For ui ∈ U , let

Nr (ui) = {v ∈ V : χ (ui, v) = red}.

hen we have |Nr (ui)| < r2(Ks−1, P t
n). Let

V ′

1 = V1 \ (Nr (u1) ∪ · · · ∪ Nr (ut )),

V ′

2 = V2 \ (Nr (u1) ∪ · · · ∪ Nr (ut )).

hen notice that we must have either |V ′

1| < r2(Ks, P t
⌊n/2⌋) or |V

′

2| < r2(Ks, P t
⌊n/2⌋). Indeed, otherwise

oth V ′

1 and V ′

2 contain a blue P t
⌊n/2⌋. Since χ colors all edges between ui and V ′

1 ∪ V ′

2 blue, we
an combine both blue copies of P t

⌊n/2⌋ with vertices u1, . . . , ut and obtain a blue P2⌊n/2⌋+t , which
t
ontains a copy of a blue Pn since 2⌊n/2⌋ + t > n.

5
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Therefore, without loss of generality, we can assume that |V ′

1| < r2(Ks, P t
⌊n/2⌋). On the other hand,

e have

|V ′

1| ≥ ⌊N/2⌋ −
(
s+ t
t

)
− t · r2(Ks−1, P t

n).

ence

N ≤ 2r2(Ks, P t
⌊n/2⌋)+ 2

(
s+ t
t

)
+ 2t · r2(Ks−1, P t

n).

y the induction hypothesis, we have

N ≤ t4sn(log n− 1)s−2
+ 2 · 4s

+ 2t · t4s−4n(log n)s−3.

≤ t4sn(log n)s−2
− (s− 2)t4sn(log n)s−3

+ (s− 2)2t4sn(log n)s−4
+ 2 · 4s

+ 2t4s−3n(log n)s−3

≤ t4sn(log n)s−2. □

The proof of Theorem 1.5 is very similar to the argument above.

roof of Theorem 1.5. We proceed by induction on n. The base case n = 2 is trivial. Now
ssume that the statement holds for all n′ < n. Set N = (2s)t(t+1) log n. We start with a standard
upersaturation argument. For sake of contradiction, suppose there is a red/blue coloring χ :

(
[N]
2

)
→

red,blue} of the pairs of [N] such that χ does not produce a red Ks nor a blue P t
n. Let r = r(Ks, Kt+1).

hen we must have at least(N
r

)(N−(t+1)
r−(t+1)

) =
N!
r!

(r − (t + 1))!
(N − (t + 1))!

≥
(N − t)t+1

r t+1 ≥
N t+1

(2r)t+1

opies of Kt+1. For each blue copy of Kt+1 with vertex set x0 < x1 < · · · < xt , we associate the middle
t − 1 vertices {x1, . . . , xt−1}. By the pigeonhole principle, there is a set Y = {x1, x2, . . . , xt−1} with
x1 < x2 < · · · < xt−1, such that Y is the middle set for at least

N t+1

(2r)t+1

1
N t−1 ≥

N2

(2r)t+1

lue copies of Kt+1. Let V1 ⊂ {1, 2, . . . , x1−1} such that x ∈ V1 if there is a blue Kt+1 whose middle
et is Y and x is the first vertex of the blue Kt+1. Likewise, let V2 ⊂ {xt−1 + 1, . . . ,N} such that
∈ V1 if there is a blue Kt+1 whose middle set is Y and x is the last vertex of the blue Kt+1. Hence,
e have

|V1 ∥ V2| ≥
N2

(2r)t+1 .

Moreover, χ colors all edges between V1 and Y blue, and all edges between V2 and Y blue. Since
V1|, |V2| < N , we must have |V1|, |V2| ≥

N
(2r)t+1 . Since the Erdős-Szekeres theorem implies that

r2(Ks, Kt+1) ≤
(s+t−1

t

)
≤ st , we have

min{|V1|, |V2|} ≥
N

(2s)t(t+1) =
(2s)t(t+1) log n

(2s)t(t+1) ≥ (2s)t(t+1) log⌊n/2⌋.

y the inductive hypothesis, both V1 and V2 contain a blue P t
⌊n/2⌋. Together with the vertices in Y ,

we obtain a blue copy of P t
2⌊n/2⌋+t−1. Since 2⌊n/2⌋ + t − 1 ≥ n, this completes the proof. □
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