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1. Introduction

A well-known theorem of Erdés and Szekeres [9] states that any sequence of (n — 1)? + 1
distinct real numbers contains a monotone subsequence of length at least n. This is a classical
result in combinatorics and its generalizations and extensions have many important consequences
in geometry, probability, and computer science. See Steele [15] for 7 different proofs along with
several applications. Here, we study its extension in the ordered hypergraph setting.

An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered
{1,2,...,n}. Given two ordered k-uniform hypergraphs G and H, the Ramsey numbers (G, H) is
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the minimum N such that for every red/blue coloring of the k-tuples of {1, 2, ..., N}, there is either
a red copy of G or a blue copy of H. When G = H, we simply write ry(H) = r(H, H). We let r,(H; q)
to be the minimum integer N such that for every g-coloring of the k-tuples of [N] = {1,2,...,N},
there is a monochromatic copy of H. We write K,(,k) for the complete k-uniform hypergraph on n
vertices. A monotone path of size n, denoted by P,Sk), is an ordered k-uniform hypergraph whose
vertex setis {1, 2, ..., n},and n—k+1 edges of the form (i, i+1, ...,i+k—1),fori=1,...,n—k+1.
In order to avoid the excessive use of superscripts, we remove them when the uniformity is clear.
For example, we write r(Ks, Po) = re(K™, P).

The proof of the Erdés and Szekeres monotone subsequence theorem, and also Dilworth’s
theorem on partially ordered sets [4], implies that

(K, Pr)=(s—1)(n— 1)+ 1.

However for k-uniform hypergraphs, when k > 3, r(Ks, P,) is much less understood. In [12],
the authors showed a surprising connection between r(Ks, P,) and the classical Ramsey number
r—1(Ks; q). More precisely, they showed that for g > 2

Tk=1(Kis/q); @) < 1(Ks, Pgyr—1) < 1e—1(Ks; q). (1)

Hence, for ¢ = 2, k = 0O(1), and s tending to infinity, determining the tower growth rate of
r(Ks, Prr1) is equivalent to determining the tower growth rate of the classical Ramsey number
re—1(Ks). Classical results of Erdds [5] and Erdés and Szekeres [9] imply that ry(K;) = 2°¢) (see
also [2,13,14]). Unfortunately for k-uniform hypergraphs, when k > 3, there is an exponential gap
between the best known lower and upper bounds for r(K;). More precisely,

w1 (£2(s%)) < r(Ks) < twr(O(s)),

where the tower function twry(x) is defined recursivly by twri(x) = x and twrjq(x) = 2
(see [6-8]). A notoriously difficult conjecture of Erdés, Hajnal, and Rado states that the upper bound
is the correct tower growth rate.

Unfortunately, (1) does not shed much light on r(K;, P,) when s is fixed and n tends to infinity.
In this direction, the first author [11] showed that r3(K4, P,) = O(n?!) and made the following
conjecture.

Conjecture 1.1. We have r3(Ks, P;) = O(n®), where ¢ = c(s).

Our first result establishes a quasi-polynomial bound for r3(K;, P,), when s is fixed. Throughout this
paper, all logarithms are in base 2.

Theorem 1.2. We have r3(K;, P,) < 25008 ™" where ¢, = 55!,

Together with the well-known neighborhood chasing argument of Erdés and Rado [8], we have the
following.

Theorem 1.3. For k > 3, we have ri(Ks, Py) = twry_ (25(1"g ”)H>, where ¢ = c(s).

In the other direction, we have the trivial inequality r(Ks, P,,) > r(Ps, P,). The famous cups-caps
theorem of Erdés and Szekeres [9] states that r3(Ps, P,) = ( Jsr 4) + 1, and the stepping-up lemma
established in [10] (see Theorem 4.3) implies that r¢(Ps, P,;,) > twry_»(n¢), where ¢ = c(s). Thus, we
essentially determine the tower growth rate of ry(K;s, P,) for s fixed and n tending to infinity.

For the diagonal case r53(K;, P,), these observations and a result of the authors [8] yield

2n—4
on < 2) =13(Py, Py) < 13(Ky, P;) < 13(n; n) < znzlogn.
n—

It would be interesting to improve either bound for r3(K,, P,).
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1.1. Cliques versus power paths in graphs

A key lemma in the first author’s [11] proof of r3(K4, P,) = O(n®!) is based on the following
generalization of monotone paths in ordered graphs. Given positive integers t, n, the tth power
of the path of P,, denoted by P!, is an ordered graph with vertex set {1,2,...,n}, and (i, j) is an
edge if and only if |j — i| < t. Hence, P! = P,. In [1], Balko, Cibulka, Kral, and Kyn¢l showed that
ry(Pt) = 0(n'?%) (see also [11]). Our next result establishes a near linear bound in the off-diagonal
setting. Moreover, our proof generalizes to the clique versus power-path setting.

Theorem 1.4. For positive integers s, t, n such that t <s, we have

ra(PL, PL) < ry(Ks, PE) < t*n(logn)* 2.

s’°n

For large s, e.g., s = n, we also have the following bound.

Theorem 1.5. For positive integers s, t, n, we have

(I(g,P[) (25)[(t+1)10gn'

Hence in the diagonal setting, for fixed t > 0, we have r,(Ky, Pt) < 2000’ This coincides with
a more general result established by Conlon, Fox, Lee and Sudakov [3] on ordered graphs with
bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all s, t > 1 there exists ¢ = c; such that r,(Ks, P) < cn.
2. Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing
sets. Let x be a g-coloring of the pairs of [N], with colors {«1, ..., kq} C Z such thatky < --- < kq.
Then we say that a triple u, v, w € [N], where u < v < w, is non-increasing if

(v, w), or

1ox(u,v) = x(u, w) >
= x(v, w).

X
2. x(u,v) = x(u, w) = x

We say that a set S C [N] is non-increasing with respect to y if every triple in S is non-increasing.
Given subsets S, T C [N] such that S = {vy,..., v} and T = {uy, ..., us}, we say that S and T have
the same color pattern with respect to yx if x(vi, vj) = x(u;, u;) for all i, j.

We will need the following lemma about non-increasing sets.

Lemma 2.1. LetS = {vy, ..., vs} be a non-increasing set with respect to x, where v; < --- < vs. Fix
vertex vj € S. Then for any v;, v, € S such that v; < v; < v, we have

L x(vi, vj) = x(vj, ve), and
2. x(vj-1, vj) < x(v;, vj), and
3. x(vj, vig1) = x(vj, ve).

Proof. The first property follows from the fact that S is non-increasing. For the second property,
let v; < wj_1. Since {v;, vj_1, vj} is non-increasing, either x(vi, vi—1) = x(vi, vj) or x(vj_1,v;) =
x(vi, vj). In both cases, the second property holds. A similar argument shows that the third property
follows. O

Let f(s; q) be the minimum integer N, such that if the pairs of [N] are colored with at most ¢
colors k1 < - < kg, then there is a set S C [N] of size s such that every triple in S is non-increasing.

Theorem 2.2. We have r3(K;, P,) < f(s;n — 2).
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Proof. Let N = f(s;n — 2) and let ¢ be a red-blue coloring of the triples of [N]. If ¢ produces a
blue monotone path of size n, then we are done. Otherwise, we define x : (') — {2,3,...,n—1}
such that for u, v € [N], x(u, v) is the size of the longest blue monotone path ending at (u, v) with
respect to ¢. Note that if there are no blue edges ending at (u, v), then x(u, v) = 2. By definition
of f(s; n — 2), there is a set S C [N] of s vertices such that every triple in S is non-increasing with
respect to . Notice that if a triple u, v, w € S, where u < v < w, is colored blue with respect to
¢, then the longest monotone path ending at (u, v) could be extended to a longer monotone path
ending at (v, w), contradicting the fact that S is non-increasing. Hence, ¢ must color every triple in
S red, which yields a red K; with respect ¢. O

We now prove the following upper bound for f(s; n). Together with Theorem 2.2, Theorem 1.2
quickly follows.

Theorem 2.3. Fors > 3 and n > 2, we have f(s; n) < 25logn’™",

Proof. We proceed by double induction on s and n. For the base case n = 2 and s > 3, we have
£(5:2) < ra(K;) < 4° < 25,

Therefore, let us assume that the statement holds for " < n. For the other base case s = 3 and
n>2letN= 2576log”n apd x be an n-coloring of the pairs (edges) of [N] with colors {1, ..., n}.
We can assume at least half of the edges have color i < n/2, since otherwise a symmetric argument
would follow. Let E C (”;]) be the set of edges with color at most n/2, and for v € [N], let

Ny (v)={ue[N]:u<v,(u,v)ecE},

and d; (v) = [N; (v)|. Hence, Y, d; (v) = |E| = (1/2)(5).

By averaging, there is a vertex v € [N] such that d; (v) > (N — 1)/4. By the pigeonhole principle,
there is a subset S C N (v) of size |N; (v)|/(n/2) such that every edge between S and v has the
same color. If there is a pair in S with color j > n/2, then we have a non-increasing triple and we
are done. On the other hand, if no such pair has color j > n/2, since we have

IS| > INg (v)] > N-1 - 253~610g2(n/2),
n/2 2n
we can apply induction in S to find a non-increasing triple and we are done.

For the inductive step, let us assume that the statement holds for s < s and ' < n. Let
N = 25°500en®™" ot ¥ be an n-coloring of the pairs of [N] with colors {1, ..., n}. By a standard
supersaturation argument, we have at least

N
(f(s—l;n)) - (N —sy~1! - N1

(oD ) T s = Linpt T 2f(s — Ty

copies of a non-increasing set on s — 1 vertices. By the pigeonhole principle, there are at least
N1 /(2nSZ f(s — 1;ny*"1) non-increasing sets on s — 1 vertices with the same color pattern. Let
us fix one such non-increasing set S = {vy, ..., vs_1} for reference, and let y(v;, viz1) = «;. For
convenience, set kg = n and «;_; = 1, which implies

N=Ky>K4 > >Ks_2>Ks1=1

By the pigeonhole principle, there is an i such that 1 <i < s— 1 such that x;_; — «; > n/s. Since we
have N‘*‘/(Znszf(s — 1; n)*"') non-increasing sets on s — 1 vertices with the same color pattern as
S, there is a subset B C [N] and s — 2 vertices uq, ..., Uj_1, Uiy1, ..., Us—1 € [N] such that for each
b € B, we have

lLu<--- <u2,-_1 <b<ujj < <ug_y,
2. |B| = N/(2n* f(s — 1; n)*"1), and
3.8 ={uy,...,ui_1,b, uiyq, ..., us_1} is non-increasing with the same color pattern as S.

4
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Let us remark that if i = 1, then we have b < u, < --- < us_q forall b € B, and
S" = {b,uy, ..., us_1}. Likewise, if i = s — 1, then we have u; < --- < u;_, < b forall b € B,
and S’ = {uq, ..., us_», b}.

If there is a pair b, b’ € B such that «;_; > x(b, b’) > «;, then the set

T={uy,...,ui_1,b, b, uiy1, ..., us_1}
is a nonincreasing set of size s. Indeed, it suffices to check that triples of the form {u;, b, b’} for

j<i—1,and {b, b, u;} where j > i+ 1, are non-increasing. Assume j < i — 1. By construction, we
have x(uj, b) = x(u;, b'). By Lemma 2.1 and the assumption above, we have

x(uj, b) = x(u;, b') = ki1 = x(b, b").

Hence, {uj, b, b’} is non-increasing. For j > i + 1, a similar argument shows that {b,b’, u;} is
non-increasing.

Therefore, we can assume that x uses at most n—n/s = n(s— 1)/s distinct colors on B. However,
this implies

N
Bl > ————
2n5°f(s — 1; n)s—!

2555!(10g ny—1

>
— st 2(s—1)55"1(s—1)!(logn)—2
- 25551(1ogn)5—1—2(5—1)55-1(5—1)1(1ogn)5-2

> 2555!(10g11flog(s/(sfl)))s’1

> 2555!(10g((5—1)n/5))s’]
> f(s; (s — 1n/s).

By the induction hypothesis, we can find a non-increasing set inside of B. O
3. Ordered graphs

Proof of Theorem 1.4. We proceed by double induction on s and n. The base cases when s = 2 or
when n = 2 is trivial. For the inductive step, assume that the statement holds fors’ < sorn’ < n. Let
N = t*n(logn)*~2, and V = [N]. For sake of contradiction, suppose there is x : ([’;’]) — {red,blue},
such that x does not produce a red K; nor a blue P.. Then we define

e U={[N/2] +1,[N/2] +2,....[N/2] + (*[)}.

o Vi=1{1,2,...,[N/2]},

o Vo= {IN/2]+ (7)) + LIN2I+ () +2,... N}

By Ramsey’s theorem, we know that ry(K;, K;) < (*1*). Hence, since |U| = (*}"), we can conclude
that U contains a blue K; on vertices uq, ..., u; € U. For u; € U, let

Ni(u;) = {v € V : x(u4, v) = red}.
Then we have |Ny(u;)] < ra(Ks—1, P). Let
Vi=Vi\(N(u1)U- - UN(ur)),

Vs = Vo \ (Ni(ur) U - - - U N (ur).

Then notice that we must have either |V]| < ry(K;, P[n/ZJ) or [V| < ry(Ks, an/zj ). Indeed, otherwise
both V; and V] contain a blue an/zy Since x colors all edges between u; and V] U V] blue, we
can combine both blue copies of an/ZJ with vertices uy, ..., u; and obtain a blue Pn/2)4¢, Which
contains a copy of a blue P! since 2|n/2] +t > n.

5
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Therefore, without loss of generality, we can assume that |V]| < ry(K, an/Zj ). On the other hand,
we have

, S+t
Vil > IN/2] — ( ; > —t-1p(Ks—1, Py).

Hence
s+t
t

By the induction hypothesis, we have

N < t¥n(logn — 124245+ 2t - t* “*n(logn)* 3.

N < 2ry(K;, Ply/5)) + 2( ) + 2t - 1y(Ks_1, PL).

< t*n(logn) 2 — (s — 2)t*n(logn)* 3 + (s — 2)*t*n(logn)~* + 2 - 4° + 2t*3n(logn)* >

< t®n(logn)2. O

The proof of Theorem 1.5 is very similar to the argument above.

Proof of Theorem 1.5. We proceed by induction on n. The base case n = 2 is trivial. Now
assume that the statement holds for all n’ < n. Set N = (2s)(t+D1o8n We start with a standard
supersaturation argument. For sake of contradiction, suppose there is a red/blue coloring yx : ([';]) —
{red,blue} of the pairs of [N] such that x does not produce a red K; nor a blue P{. Let r = r(K, Ki41).

Then we must have at least
() N+ _(N—oft N

N—(t+1) F1(N — ) = t+1 = t+1

(rf(t+1)) r! (N —(t+ 1)) r (2r)
copies of K, 1. For each blue copy of K; ;; with vertex set xg < x; < --- < X;, we associate the middle
t — 1 vertices {x1, ..., x_1}. By the pigeonhole principle, there is a set Y = {xq, X2, ..., X;_1} with
X1 < Xy < --- < X¢_1, such that Y is the middle set for at least

NH—] 1 NZ

>
(2r)+1 Nt=1 = (2r)H

blue copies of K; ;. Let Vi C {1, 2, ..., x; — 1} such that x € V; if there is a blue K;,; whose middle
set is Y and x is the first vertex of the blue K;,;. Likewise, let V, C {x;—1 + 1, ..., N} such that
x € Vq if there is a blue K;,; whose middle set is Y and x is the last vertex of the blue K;, . Hence,
we have

2

Moreover, x colors all edges between V; and Y blue, and all edges between V, and Y blue. Since
[Vil, |[Va] < N, we must have |Vq], |Vo] > (ZHLH] Since the Erdds-Szekeres theorem implies that

ra(Ks, K1) < (*F17") < sf, we have

V1|l V2| >

N (zs)t([ﬂ)logn t(t+1)lo:
. _ gln/2]
min{Vil, [Val) = &y = gy 2 ) :
By the inductive hypothesis, both V; and V, contain a blue an 20 Together with the vertices in Y,
we obtain a blue copy of Pztm/zHrq- Since 2|n/2] +t — 1 > n, this completes the proof. O
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