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Abstract

We show that every complete n-vertex simple topological graph contains a topological
subgraph on at least (log n) /4~ vertices that is weakly isomorphic to the complete
convex geometric graph or the complete twisted graph. This is the first improvement
on the bound 2 (log!/ 1) obtained in 2003 by Pach, Solymosi, and Téth. We also
show that every complete n-vertex simple topological graph contains a plane path of
length at least (logn)!—°M.
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1 Introduction

A topological graph is a graph drawn in the plane or, equivalently, on the sphere,
such that its vertices are represented by points and its edges are represented by non-
self-intersecting arcs connecting the corresponding points. The arcs are not allowed to
pass through vertices different from their endpoints, and if two edges share an interior
point, then they must properly (i.e. transversally) cross at that point in common. A
topological graph is simple if every pair of its edges intersect at most once, either at a
common endpoint or at a proper crossing point. If the edges are drawn as straight-line
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segments, then the graph is said to be geometric. If the vertices of a geometric graph
are in convex position, then it is called convex.

Simple topological graphs have been extensively studied [11, 13, 16, 18, 22], and
are sometimes referred to as good drawings [1, 2], or simply as topological graphs
[14]. In this paper, we are interested in finding large unavoidable patterns in complete
simple topological graphs. Two simple topological graphs G and H are isomorphic
if there is a homeomorphism of the sphere that transforms G to H. We say that G
and H are weakly isomorphic if there is an incidence preserving bijection between G
and H such that two edges of G cross if and only if the corresponding edges in H
cross as well. Clearly, any two complete convex geometric graphs on m vertices are
weakly isomorphic. Hence, let C,,, denote any complete convex geometric graph with
m vertices.

By the famous Erdds-Szekeres convex polygon theorem [6] (see also [21]), every
complete n-vertex geometric graph contains a geometric subgraph on m = Q(logn)
vertices that is weakly isomorphic to C,,. (Note that no three vertices in a complete
geometric graph are collinear.) Interestingly, the same is not true for simple topological
graphs. The complete twisted graph T,, is a complete simple topological graph on
m vertices with the property that there is an ordering on the vertex set V(T,,) =
{v1, v2, ..., vy} such that edges v;v; and vrve crossifand only if i < k < £ < j or
k <i < j < {£.SeeFig. 1. It was first observed by Harborth and Mengerson [10] that
T, does not contain a topological subgraph that is weakly isomorphic to Cs. However,
in 2003, Pach, Solymosi, and Téth [14] showed that it is impossible to avoid both C,,
and T, in a sufficiently large complete simple topological graph.

Theorem 1.1 (Pach—Solymosi—T6th) Every complete n-vertex simple topological
graph contains a topological subgraph on m > Q(log'/8 n) vertices that is weakly
isomorphic to Cp, or Ty,.

The main result of this paper is the following improvement.

Theorem 1.2 Every complete n-vertex simple topological graph has a topological
subgraph on m > (logn)'/4=°W) vertices that is weakly isomorphic to Cp, or Ty,.

In the other direction, let us consider the following construction. Let V = {1, 2, ..., n}
be n vertices placed on the x-axis, and for each pair {i, j} C V, draw a half-circle
connecting i and j, with this half-circle either in the upper or lower half of the plane
uniformly at random. By applying the standard probabilistic method [3], one can

Fig.1 C5 and T5
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show that there is a complete n-vertex simple topological graph that does not contain
a topological subgraph on m = [8logn] vertices that is weakly isomorphic to C,, or
T . Another construction, observed by Scheucher [19], is to take n points in the plane
without m = 2[log n] members that are in convex position, and then draw straight-line
segments between all pairs of points.

It is not hard to see that both C,, and T,, contain a plane (i.e. crossing-free) sub-
graph isomorphic to any given tree T with at most m vertices (see, e.g., [9]). Hence,
Theorem 1.1 implies that every complete n-vertex simple topological graph contains a
plane subgraph isomorphic to any given tree T with at most 2 (log!/® n) vertices. (Due
to an inaccuracy in the original proof, the paper [14] claimed a slightly stronger bound
Q(log!/% n), see also [15].) As a corollary of Theorem 1.2, we obtain the following
improvement accordingly.

Corollary 1.3 Every complete n-vertex simple topological graph contains a plane
subgraph isomorphic to any given tree T with at most (log n)'/4=°() vertices.

In the case when T is a path, we improve this bound with the following result, which
is also recently obtained in [2] independently.

Theorem 1.4 Every complete n-vertex simple topological graph contains a plane path
of length at least (logn)'—°W).

In order to avoid confusion between topological and combinatorial edges, we write
uv when referring to a topological edge in the plane, and write {u, v} when referring
to an edge (pair) in a graph. Likewise, we write {uy, ..., ux} when referring to an
edge (k-tuple) in a k-uniform hypergraph. We systematically omit floors and ceilings
whenever they are not crucial for the sake of clarity in our presentation. All logarithms
are in base 2.

2 Monotone Paths and Online Ramsey Numbers

Before we prove Theorem 1.2, let us recall the following lemmas. Let H be a k-
uniform hypergraph with vertex set [n] = {1, 2, ..., n}. We say that H contains a
monotone k-path of length m if there are m vertices vi < vy < --- < vy such
that {v;, vit1,...,Vitk—1} € E(H) for 1 < i < m — k + 1. We say that the
edge set E(H) is transitive if for any vy < vy < --- < vg41 in [n], the condi-
tion {v1, va, ..., vk}, {v2, v3,..., k1) € E(H) implies all k-element subsets of
{vi,..., vk+1} are in E(H). We will need the following lemma due to Fox, Pach,
Sudakov, and Suk.

Lemma 2.1 [7,Lem. 6.2] Letn > k, and let H be a k-uniform hypergraph with vertex
set [n], which contains a monotone path of length n, thatis, {i,i+1,...,i+k—1} €
E(H)foralll <i <n—k+1.If E(H) is transitive, then H is the complete k-uniform
hypergraph on [n].

Next, we need a lemma from Online Ramsey Theory. The vertex online Ramsey
game is a game played by two players, builder and painter. Let t > 1 and suppose
vertices v, v2, ..., U;—1 are present. At the beginning of stage ¢, a new vertex v; is
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added. Then for each v; € {vy, ..., v,_1}, builder decides (in any order) whether to
create the edge {v;, v;}. If builder creates the edge, then painter has to immediately
color it red or blue. When builder decides not to create any more edges, stage ¢
ends and stage ¢ + 1 begins by adding a new vertex. Moreover, builder must create
at least one edge at every stage except for the first one. The vertex online Ramsey
number r(m) is the minimum number of edges builder has to create to guarantee a
monochromatic monotone path of length m in a vertex online Ramsey game. Clearly,
we have r(m) < O(m*), which is obtained by having builder create all possible edges
at each stage and applying Dilworth’s theorem [5] on the m? vertices. Fox, Pach,
Sudakov, and Suk proved the following.

Lemma 2.2 [7, Thm. 1.5] We have r(m) = (1 + 0(1))m2 log, m.

3 Convex Geometric Graph Versus Twisted Graph

In this section, we prove the following theorem, from which Theorem 1.2 quickly
follows.

Theorem 3.1 Let my, my, n be positive integers such that
9(m1m2)? log(my) log(m) < logn.

Then every complete n-vertex simple topological graph contains a topological
subgraph that is weakly isomorphic to Cp,, or T,y,.

Proof Let G = (V, E) be a complete n-vertex simple topological graph. Notice that
the edges of G divide the plane into several cells (regions), one of which is unbounded.
We can assume that there is a vertex vg € V such that vy lies on the boundary of the
unbounded cell. Indeed, otherwise we can project G onto a sphere, then choose an
arbitrary vertex vp, and then project G back to the plane such that vp lies on the
boundary of the unbounded cell, moreover, the new drawing is isomorphic to the
original one as topological graphs.

Consider the topological edges emanating out from v, and label their endpoints
V1, ..., Vy—1 in clockwise order. For convenience, we write v; < v; if i < j. Given
subsets U, W C {vy, ..., v,—1}, wewrite U < Wifu < wforallu € Uandw € W.
Following the notation used in [14], we color the triples of {vy, ..., v,—_1} as follows.
For v; < vj < v, let x (v, vj, vx) = xyz, where x, y, z € {0, 1} such that

1. x = 1if edges v;vx and vov; cross, and x = 0 otherwise;
2. y = lif edges v; v and vov; cross, and y = 0 otherwise;
3. z = lif edges v;v; and vovy cross, and z = 0 otherwise.

Pach, Solymosi, and Té6th observed the following.

Observation 3.2 [14] The only colors that appear with respect to x are 000, 001, 010,
and 100.

See Fig. 2 for an illustration. We now make another observation.
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Fig.2 Configurations for the colors 000, 010, 001, 100, respectively

Fig.3 The closed region bounded by edges v vk, v; v, and vgvg in Lemma 3.3

Lemma 3.3 Colors 001 and 100 are transitive. That is, for v; < vj < vx < vy,

Loif x (i, vj, vp) = x (v), vk, v¢) = 001, then x (v;, vj, ve) = x (vi, vy, vg) = 001;
2. if x (i, vj, ve) = x(v), v, ve) = 100, then x (v;, vj, ve) = x (i, vk, ve) = 100.

Proof Suppose x (vi, vj, vi) = x (v, vk, v¢) = 001. Since the edges v;v; and vouvy
cross, the three edges v; vk, v;v;j, and vovy enclose a bounded region A. Since vovy
and v v cross, the vertex vy must lie in this region A. See Fig. 3. Since A is contained
in the region bounded by the edges vgv;, v; vk, and vovy, we conclude that vove, must
cross v;vg. Similarly, we can argue that vove must cross v;v;, hence we conclude
x Wi, vj,ve) = x (v, vk, vg) = 001 as wanted. If x (v;, vj, vi) = x(vj, vk, vg) =
100, a similar proof shows that x (v;, vj, v¢) = x (v;, vk, v¢) = 100. O

Based on the coloring y, we define a coloring ¢ of the pairs of {vy, va, ..., v,—1}
as follows. For v; < vj, let ¢(v;, v;) = (a, b) where a is the length of the longest
monotone 3-path ending at {v;, v;} in color 100, and b is the length of the longest
monotone 3-path ending at {v;, v;} in color 001. We can assume that a, b < mo.
Otherwise, by Lemma 3.3 and Lemma 2.1, we would have a subset U C V of size
my all of whose triples receive the same color, 100 or 001. And it is not hard to
argue by induction that such a U corresponds to a topological subgraph that is weakly
isomorphic to 7,, as wanted.

Before we continue, let us give a rough outline of the rest of the proof. In what
follows, we will construct disjoint vertex subsets yab < {vi,...,vy—1}, where 1 <
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a,b < my, such that ¢ colors every pair in Vab with color (a, b). For each yab,
we will play the vertex online Ramsey game by letting the builder create an edge set
E%" and designing a painter’s strategy, which gives rise to a coloring ¥ on E%”. We
then apply Lemma 2.2 to show that if n is sufficiently large, some vertex set V47 will
contain a monochromatic monotone 2-path of length m| with respect to 1. Finally, we
will show that this monochromatic monotone 2-path will correspond to a topological
subgraph that is weakly isomorphic to C,,,. The detailed argument follows.

For integers t+ > 0 and 1 < a,b < mj, we construct a vertex subset V,a’b C
{v1,...,vy—1)}, an edge set Ef’b of pairs in Vta’b, and a subset S; C {v{,...,v,_1}
such that the following holds.

1. Wehave Y V& =1

l<a,b<m)
2. Forall 1 < a, b < m», we have Vta’b < S;.
3. Foru; € Vla’h,we have ¢ (uy, uz) = (a, b) forevery us € Vta’bUS, with u1 < us.
4. For each edge {uy,us} € Et‘”b, where u; < up, we have x(up, uz,u3) =
x(uy, uz, uq) for all uz, ug € V,a’b such that u; < up < uz < ug.

We start by setting Vg”b =@forall <a,b <my,and Sy = {vy, ..., v,—1}. After
stage ¢, we have V,a’b, E;”b, for 1 < a,b < my, and S; as described above.

At the beginning of stage ¢ + 1, let w41 be the smallest element in S; with respect
to <. By the pigeonhole principle, there exist integers 1 < «, 8 < m and a subset

Si.0 C St \ {wr41} of size at least (|S;| — 1)/m§, such that ¢ (w11, u) = (a, B)

for all u € S; 0. Then we set Vt‘i’f = Vla’ﬂ U{w41}. Forall 1 < a,b < my with

(a,b) # (a, B), we set Vt‘f]’ =V’ and Efjrb] := E“". We shall define Ef‘fl and

S;41 after the following claim.

Claim3.4 Forallu € V,a’ﬂ and v € S; 0, we have x (u, wi+1, v) € {000, 010}.

Proof For the sake of contradiction, suppose x (u, w41, v) = 100, where u € VIO‘”3
and v € ;. Since ¢ (u, wr4+1) = (@, B), the longest monotone 3-path in color 100
ending at {u, w41} has length «. Hence, the longest monotone 3-path in color 100
ending at {w;41, v} haslength atleast « + 1. This contradicts the fact that ¢ (w41, v) =
(o, B). A similar argument follows if x (u, wy41, v) = 001. m]

2} by adding w4 to V®P we play the vertex
online Ramsey game so that builder chooses and creates edges of the form {u, w;11},

Now that we have constructed V*?

whereu € Vto[”S , according to his strategy. After each edge {u, w1} is created, painter
immediately colors it ¥ (4, w;+1) € {000, 010} as follows. In painter’s strategy, after
the j-th edge {u;, w41} is created and colored, a set S; ; C S;,0 will be constructed
such that all triples {u ;, w; 1, v} withv € §; ; are colored by x with the same color in
{000, 010}. After the (j +1)-thedge {u 11, wy41} is created, painter looks at all triples
of the form {u 41, w41, v} with v € S; ;. Since x (uj11, w41, v) € {000, 010} by
Claim 3.4, the pigeonhole principle implies that there exists asubset S; j+1 C §; ; with
size at least |S;, ;|/2 such that all triples {11, w41, v} withv € §; ;41 are colored
by x with the same color xyz € {000, 010}. Then painter sets ¥ (11, w;y1) = xyZ.
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If builder decides to stop creating edges from w;1 to Vf"’3 after j edges are created

and colored, then the stage ends and we set S;11 = §; ; and let Efﬁ be the union of

E; # and all edges built during this stage. Let ;| denote the total number of edges
builder creates in stage ¢ + 1. Recall that ;11 > 1 unless V,a’ﬂ = (. As long as
[St+1] > 0, we continue this construction process by starting the next stage. Clearly,
Vﬁ;ﬁ’, E fjrbl, forall 1 < a, b < my, and S;11 have the four properties described above.
For example, let uy, uz, us, us be as in the fourth property. There exists some stage
t' <t when uy = wy and the edge {1, us} is created by builder. Since u3, uq € Sy,
we have y (uy, uz, uz) = x(uy, uo, ug) as wanted.

Claim 3.5 Fort > 1, we have

t

n—1 1
|S:] > - ; .
' m%’ LYk ; mi(”l*l) oY

Proof We proceed by induction on z. For the base case + = 1, there is no edge for
the builder to build in the first stage, so |S1| = [So0] > (n — 1) /m% as desired. For
the inductive step, assume the statement holds for + > 1. When we start stage ¢ + 1
and introduce vertex w; 41, the set S; shrinks to S; o whose size is guaranteed to be at
least (]S;| — 1) /m%, and each time builder creates an edge from w;4| to V,a’ﬂ , our set
decreases by a factor of two. Since builder creates e;41 edges during stage ¢ + 1, we
have

t

> > _ _
t+ mgzem mg(m) X e p m%((z+l)+l—i) . 22;.1‘,. ¢j mgzem

t+1

B m20+D X p m%((r+l)+17i) it

which is what we want. O

After t stages, builder has created a total of Z;Zl e; edges, such that each edge has
color 000 or 010 with respect to . If there is no monochromatic 2-path of length m
with respect to ¥ on any (V?, E*?), then Lemma 2.2 implies that

t
Ze,- < m%r(ml) < 2(m1m2)210gm1.
i=1
Also, since ¢; > 1 for all but m% many indices 1 <i < t, we have
t
t < m% + Zei < 3(m1m2)210gm1.
i=1
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Fig.4 A figure illustrating Claim 3.6

Then it follows from the assumption logn > 9(mlm2)2 log(m1) log(m>) that

t

n—1 1
[S:] = - .
! m3 Y ; mg(’“—l) oXj=ie
1

n—1 1
= 28(m1m2)? log(my) log(ma) - Z t—i+l1 > 1.

Hence, we can continue to the next stage and introduce a new vertex w;. There-
fore, when this process stops, say at stage s, we must have a monochromatic monotone
2-path of length m with respect to ¥ on some (V*?, E&?).

Now let W* = {w],..., w:‘nl }, where wi < -+ < w;‘nl, be the vertex set
that induces a monochromatic monotone 2-path of length m; with respect to ¥ on
(Vsa’b, Ef’b). Since ¢ colors every pair in W* with the color (a, b), by following the
proof of Claim 3.4, we have x (w7, w;f, w,f) € {000, 010} forevery i < j < k. Hence,
the following argument due to Pach, Solymosi, and Té6th [14] shows that W* induces a
topological subgraph that is weakly isomorphic to Cy,, . For the sake of completeness,

we include the proof.

Claim3.6 Ler W* = {w], ...,w,’f“} be as described above. Then W* induces a
topological subgraph that is weakly isomorphic to Cp,, .

Proof Suppose ¥ (w;', w, ;) = 000 for alli. It suffices to show that every triple in W*
has color 000 with respect to . For the sake of contradiction, suppose we have w <
w;’f < wj such that X(w;", w;f, wy) = 010, and let us assume that j — i is minimized

among all such examples. Since {w}, w;, |} € E?’b, we have x (w}, w , wy) =
¥ (w], wi, ;) = 000. This implies that j > i + 1 and the edge w;, | w; crosses vowf'f
(see Fig. 4), which contradicts the minimality condition. A similar argument follows
if ¥ (wf, wi, ) = 010 for all i. O

This completes the proof of Theorem 3.1. O
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Vi

Vo

Fig.5 An example with 6(v1) = (vg, v3, V2, Vs)

4 Plane Path

In this section, we prove Theorem 1.4. We will need the following lemma, which was
observed by Fulek and Ruiz-Vargas in [8].

Lemma 4.1 Ifa complete simple topological graph G contains a topological subgraph
that is isomorphic to a plane K 2, then G contains a plane path of length 2 (m).

Let us briefly explain how to establish this lemma, as it is not explicitly stated in [8].
In [23], T6th proved that every n-vertex geometric graph with more than 2°k2n edges
contains k pairwise disjoint edges. His proof easily generalizes to simple topological
graphs whose edges are drawn as x-monotone curves, and, in fact, establishes the
existence of a plane path of length 2k.

Given a plane topological subgraph K, ,» inside a complete simple topological
graph G, Fulek and Ruiz-Vargas [8] showed that there exists a topological subgraph
G' C G, with m? vertices and Q(m®) edges, that is weakly-isomorphic to an x-
monotone simple topological graph G”. Hence, we can conclude Lemma 4.1 by
applying Téth’s result stated above with k = Q (m).

Proof of Theorem 1.4 First, we keep the following notations from the proof of The-
orem 1.2. Let G = (V, E) be a complete n-vertex simple topological graph. We
can assume that there is a vertex vop € V such that vy lies on the boundary of the
unbounded cell. We label the other vertices by vy, ..., v,— such that the edges vov;,
for 1 <i < n, emanate out from vy in clockwise order. We write v; < v; if i < j,
and color every triple v; < v; < v by x (v, vj, v) € {000, 010, 100, 001}.

For each v;, we arrange the vertices {vit1, ..., vy—1} into a sequence 0(v;) =
(vj,...,vj,_,_;) such that the topological edges v;vo, v;vj,, ViVj,, ..., ViVj,_,_;
emanate out from v; in counterclockwise order. See Fig. 5. We call a sequence of
vertices S = (vj,, ..., v;,) increasing (or decreasing) if v;; < v;; < --- < v;, (or
Vjy > Vjy >+ > U,‘k).

Lemma 4.2 [fthere exists avertex u such that 6 (u) contains an increasing subsequence
(U1, ..., u,2), thenthe edges vou; and uu;, forall1 <i < m?, form a plane subgraph
K2 m2.
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Vo

Fig.6 An increasing subsequence of 0 (u) induce a plane K, , »

Proof It suffices to show that vou; and uu j do not cross each other forevery 1 <i,j <
k. When i = j, this follows from G being simple. Wheni < j, wehaveu < u; < u;
by the increasing subsequence assumption. Observe that this condition forces u; to
be outside the region A,,,, bounded by the topological edges vou, uu;, and u;vy.
Otherwise, we have x (u, u;, u ;) = 001 and the edges uvo, uu;, uu ; will not emanate
out from u in counterclockwise order. Now the Jordan arc uu ; starting at u, initially
outside Ay, , cannot enter Ay, then leave again to end at u ;. In particular, uu ;
does not cross vou;. See Fig. 6 for an illustration. A similar argument follows if j < i.

O

2loglogn
canassumem > 1,otherwise there is nothing to prove. If some sequence 6 (v; ) contains
an increasing subsequence of length m?, then by Lemma 4.2 and Lemma 4.1, we are
done. Therefore, we assume that 6 (v;) does not contain an increasing subsequence of
length m? for every i.

Wesetm = Lk’ij and prove that G contains a plane path of length Q2 (m). We

For integer ¢t > 1, we inductively construct subsets U,, S; C {vy, ..., v,—1} with
Ui ={uy,...,us}, where u; < --- < uz, and Uy < ;. Initially, we set Uy = {u; :=
v1} and S = {vy, ..., vy—1}. Suppose that for some ¢, we have already constructed

U; and S;. If | S| < m2, we stop this construction process, otherwise we continue to
construct U, 41 and ;11 as follows: Let 6" be the subsequence of 8 (u,) that contains
exactly those vertices in S;. Note that the length of 6’ equals to |S;|. According to our
assumption, the length of the longest increasing subsequence in 6’ is less than m?.
Hence, by Dilworth’s theorem [5], 8’ contains a decreasing subsequence of length at
least | S;|/m?. Let Sy 1 be the set of vertices that appear in this decreasing subsequence
of 6’. Next, we take u;41 to be the smallest element of S/ 41 With respect to < and
let Usy1 := Uy U {us41}. Consider the region Ay, bounded by the topological
edges vouy, usuy+1, and u; 41 vo. Each vertex in S;H \ {u;41} is either inside or outside
Avuyu,, - SO, by the pigeonhole principle, there exists a subset S; 11 C St’+1 \ {ur41}
with |S;41] > ISI’+1 \ {#s+1}]/2 such that the whole set Sy is either inside or outside
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Avygusu, 4, - Clearly, we have Uy < Sy and

S/ —1 2 _
| t+l| > |S¢|/m 1 < S|

S > .
| l+1| - ) - ) - (2m)2

Using the inequality above and the fact that |S;| = n — 2, we can inductively prove
|S;| > err;j When t = m — 1, this gives us

n n 2 n 2
> . =
[Sm—11 = (zm)Z(m—l) = (zm)logn/loglogn—Z = m (logn)logn/loglogn

Hence, the construction process ends at a certain t > m — 1, and we will always
construct Uy, = {uy, ..., unm}.

Now we show that u1, us, .. ., u,, form a plane path. Our argument is based on the
following two claims.

Claim 4.3 For any vertices u; < uj11 < uj < uy, we have that u;j and uy are either

both inside or both outside the region Ayyy;u; ;-

It can be checked that Claim 4.3 is guaranteed by the construction process of U,,.

Claim 4.4 For any vertices u; < u;j < uy, the topological edges vou; and u juy do not
cross each other.

Proof Consider the region Ay, i bounded by the topological edges vou;, u;u j, and
ujvo, then uy is either inside or outside AUOM,,,J.. If uy is inside Avouiuj, then vouy
must cross u;u ;. By Observation 3.2, we have x (u;, u, ux) = 001, which implies
vou; and u juy do not cross. See the third configuration in Fig. 2.

Suppose uj is outside Ay, - By the construction process of Uy, uj and ug
belong to a decreasing subsequence of 6 (u;), hence the edges u;vo, u;ux and u;u
must emanate from u; in counterclockwise order, which implies that u;u; crosses
vou j. Then, by Observation 3.2, y (u;, uj, ux) = 010 and u ju; does not cross vou;.
See the second configuration in Fig. 2. O

Finally, we argue that the edges u;u; 1 and uju;y; do not cross for any i < j.
When j =i+ 1, this follows from G being simple. When j > i + 1, by Claim 4.3, the
vertices uj and u ;1 are either both inside or both outside the region Ayyy;u;,,. So,
the edge uju j1 crosses the boundary of Aygy,y;,, an even number of times. On the
other hand, by Claim 4.4, u ju j 1 does not cross vou; or vou;+1. S0 uju j11 does not
cross u;u;+1. See Fig. 7 for an illustration. This concludes the proof of Theorem 1.4.

O

5 Concluding Remarks

Answering a question of Pach and Té6th [16], Suk showed that every complete n-
vertex simple topological graph contains 2(n'/3) pairwise disjoint edges [20] (see
also [8]). This bound was later improved to pl/2—o() by Ruiz-Vargas in [17]. Hence,
we conjecture a similar bound for plane paths.
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u; i+l u] u]+1 u; i+1 7/’_1 uj+]

Vo Vo

Fig.7 Foru;u;4) anduju ;i) withi + 1 < j to cross each other, either u j and u j | are not both inside
or both outside Aygu;u, . (left graph), or the topological edge u ju ;1| crosses one edge in {vou;, vou;+1}
(right graph)

Conjecture 5.1 There is an absolute constant ¢ > 0, such that every complete n-vertex
simple topological graph contains a plane path of length n®.

Let & = h(n) be the smallest integer such that every complete n-vertex simple
topological graph contains an edge crossing at most /4 other edges. A construction
due to Valtr (see page 398 in [4]) shows that h(n) > Q(#13/?). In the other direction,
Kyn¢l and Valtr [12] used an asymmetric version of Theorem 1.1 to show that h(n) =
O (n?/1og!/*n). By using Theorem 3.1 instead, their arguments show that h(n) <
n?/(logn)'/2=° We conjecture the following.

Conjecture 5.2 There is an absolute constant € > 0 such that h(n) < n2-e.
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