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Abstract
We show that every complete n-vertex simple topological graph contains a topological
subgraph on at least (log n)1/4−o(1) vertices that is weakly isomorphic to the complete
convex geometric graph or the complete twisted graph. This is the first improvement
on the bound �(log1/8 n) obtained in 2003 by Pach, Solymosi, and Tóth. We also
show that every complete n-vertex simple topological graph contains a plane path of
length at least (log n)1−o(1).
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1 Introduction

A topological graph is a graph drawn in the plane or, equivalently, on the sphere,
such that its vertices are represented by points and its edges are represented by non-
self-intersecting arcs connecting the corresponding points. The arcs are not allowed to
pass through vertices different from their endpoints, and if two edges share an interior
point, then they must properly (i.e. transversally) cross at that point in common. A
topological graph is simple if every pair of its edges intersect at most once, either at a
common endpoint or at a proper crossing point. If the edges are drawn as straight-line

Editor in Charge: János Pach

A. Suk: Supported by NSF CAREER award DMS-1800746 and NSF award DMS-1952786.
J. Zeng: Supported by NSF grant DMS-1800746.

Andrew Suk
asuk@ucsd.edu

Ji Zeng
jzeng@ucsd.edu

1 Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-024-00658-6&domain=pdf


Discrete & Computational Geometry

segments, then the graph is said to be geometric. If the vertices of a geometric graph
are in convex position, then it is called convex.

Simple topological graphs have been extensively studied [11, 13, 16, 18, 22], and
are sometimes referred to as good drawings [1, 2], or simply as topological graphs
[14]. In this paper, we are interested in finding large unavoidable patterns in complete
simple topological graphs. Two simple topological graphs G and H are isomorphic
if there is a homeomorphism of the sphere that transforms G to H . We say that G
and H are weakly isomorphic if there is an incidence preserving bijection between G
and H such that two edges of G cross if and only if the corresponding edges in H
cross as well. Clearly, any two complete convex geometric graphs on m vertices are
weakly isomorphic. Hence, let Cm denote any complete convex geometric graph with
m vertices.

By the famous Erdős-Szekeres convex polygon theorem [6] (see also [21]), every
complete n-vertex geometric graph contains a geometric subgraph on m = �(log n)

vertices that is weakly isomorphic to Cm . (Note that no three vertices in a complete
geometric graph are collinear.) Interestingly, the same is not true for simple topological
graphs. The complete twisted graph Tm is a complete simple topological graph on
m vertices with the property that there is an ordering on the vertex set V (Tm) =
{v1, v2, . . . , vm} such that edges viv j and vkv� cross if and only if i < k < � < j or
k < i < j < �. See Fig. 1. It was first observed by Harborth and Mengerson [10] that
Tm does not contain a topological subgraph that is weakly isomorphic toC5. However,
in 2003, Pach, Solymosi, and Tóth [14] showed that it is impossible to avoid both Cm

and Tm in a sufficiently large complete simple topological graph.

Theorem 1.1 (Pach–Solymosi–Tóth) Every complete n-vertex simple topological
graph contains a topological subgraph on m ≥ �(log1/8 n) vertices that is weakly
isomorphic to Cm or Tm.

The main result of this paper is the following improvement.

Theorem 1.2 Every complete n-vertex simple topological graph has a topological
subgraph on m ≥ (log n)1/4−o(1) vertices that is weakly isomorphic to Cm or Tm.

In the other direction, let us consider the following construction. Let V = {1, 2, . . . , n}
be n vertices placed on the x-axis, and for each pair {i, j} ⊂ V , draw a half-circle
connecting i and j , with this half-circle either in the upper or lower half of the plane
uniformly at random. By applying the standard probabilistic method [3], one can

Fig. 1 C5 and T5
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show that there is a complete n-vertex simple topological graph that does not contain
a topological subgraph on m = �8 log n� vertices that is weakly isomorphic to Cm or
Tm . Another construction, observed by Scheucher [19], is to take n points in the plane
withoutm = 2�log n�members that are in convex position, and then draw straight-line
segments between all pairs of points.

It is not hard to see that both Cm and Tm contain a plane (i.e. crossing-free) sub-
graph isomorphic to any given tree T with at most m vertices (see, e.g., [9]). Hence,
Theorem 1.1 implies that every complete n-vertex simple topological graph contains a
plane subgraph isomorphic to any given tree T with at most�(log1/8 n) vertices. (Due
to an inaccuracy in the original proof, the paper [14] claimed a slightly stronger bound
�(log1/6 n), see also [15].) As a corollary of Theorem 1.2, we obtain the following
improvement accordingly.

Corollary 1.3 Every complete n-vertex simple topological graph contains a plane
subgraph isomorphic to any given tree T with at most (log n)1/4−o(1) vertices.

In the case when T is a path, we improve this bound with the following result, which
is also recently obtained in [2] independently.

Theorem 1.4 Every complete n-vertex simple topological graph contains a plane path
of length at least (log n)1−o(1).

In order to avoid confusion between topological and combinatorial edges, we write
uv when referring to a topological edge in the plane, and write {u, v} when referring
to an edge (pair) in a graph. Likewise, we write {u1, . . . , uk} when referring to an
edge (k-tuple) in a k-uniform hypergraph. We systematically omit floors and ceilings
whenever they are not crucial for the sake of clarity in our presentation. All logarithms
are in base 2.

2 Monotone Paths and Online Ramsey Numbers

Before we prove Theorem 1.2, let us recall the following lemmas. Let H be a k-
uniform hypergraph with vertex set [n] = {1, 2, . . . , n}. We say that H contains a
monotone k-path of length m if there are m vertices v1 < v2 < · · · < vm such
that {vi , vi+1, . . . , vi+k−1} ∈ E(H) for 1 ≤ i ≤ m − k + 1. We say that the
edge set E(H) is transitive if for any v1 < v2 < · · · < vk+1 in [n], the condi-
tion {v1, v2, . . . , vk}, {v2, v3, . . . , vk+1} ∈ E(H) implies all k-element subsets of
{v1, . . . , vk+1} are in E(H). We will need the following lemma due to Fox, Pach,
Sudakov, and Suk.

Lemma 2.1 [7, Lem. 6.2] Let n > k, and let H be a k-uniform hypergraph with vertex
set [n], which contains a monotone path of length n, that is, {i, i +1, . . . , i + k−1} ∈
E(H) for all 1 ≤ i ≤ n−k+1. If E(H) is transitive, then H is the complete k-uniform
hypergraph on [n].

Next, we need a lemma from Online Ramsey Theory. The vertex online Ramsey
game is a game played by two players, builder and painter. Let t ≥ 1 and suppose
vertices v1, v2, . . . , vt−1 are present. At the beginning of stage t , a new vertex vt is
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added. Then for each vi ∈ {v1, . . . , vt−1}, builder decides (in any order) whether to
create the edge {vi , vt }. If builder creates the edge, then painter has to immediately
color it red or blue. When builder decides not to create any more edges, stage t
ends and stage t + 1 begins by adding a new vertex. Moreover, builder must create
at least one edge at every stage except for the first one. The vertex online Ramsey
number r(m) is the minimum number of edges builder has to create to guarantee a
monochromatic monotone path of length m in a vertex online Ramsey game. Clearly,
we have r(m) ≤ O(m4), which is obtained by having builder create all possible edges
at each stage and applying Dilworth’s theorem [5] on the m2 vertices. Fox, Pach,
Sudakov, and Suk proved the following.

Lemma 2.2 [7, Thm. 1.5] We have r(m) = (1 + o(1))m2 log2 m.

3 Convex Geometric Graph Versus Twisted Graph

In this section, we prove the following theorem, from which Theorem 1.2 quickly
follows.

Theorem 3.1 Let m1,m2, n be positive integers such that

9(m1m2)
2 log(m1) log(m2) < log n.

Then every complete n-vertex simple topological graph contains a topological
subgraph that is weakly isomorphic to Cm1 or Tm2 .

Proof Let G = (V , E) be a complete n-vertex simple topological graph. Notice that
the edges ofG divide the plane into several cells (regions), one of which is unbounded.
We can assume that there is a vertex v0 ∈ V such that v0 lies on the boundary of the
unbounded cell. Indeed, otherwise we can project G onto a sphere, then choose an
arbitrary vertex v0, and then project G back to the plane such that v0 lies on the
boundary of the unbounded cell, moreover, the new drawing is isomorphic to the
original one as topological graphs.

Consider the topological edges emanating out from v0, and label their endpoints
v1, . . . , vn−1 in clockwise order. For convenience, we write vi ≺ v j if i < j . Given
subsetsU ,W ⊂ {v1, . . . , vn−1}, we writeU ≺ W if u ≺ w for all u ∈ U andw ∈ W .
Following the notation used in [14], we color the triples of {v1, . . . , vn−1} as follows.
For vi ≺ v j ≺ vk , let χ(vi , v j , vk) = xyz, where x, y, z ∈ {0, 1} such that

1. x = 1 if edges v jvk and v0vi cross, and x = 0 otherwise;
2. y = 1 if edges vivk and v0v j cross, and y = 0 otherwise;
3. z = 1 if edges viv j and v0vk cross, and z = 0 otherwise.

Pach, Solymosi, and Tóth observed the following.

Observation 3.2 [14] The only colors that appear with respect to χ are 000, 001, 010,
and 100.

See Fig. 2 for an illustration. We now make another observation.
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vi vj vk vi vj vk vi vj vkvi vj vk

v0 v0v0v0
Fig. 2 Configurations for the colors 000, 010, 001, 100, respectively

iv

jv
vk

v0

vl

Fig. 3 The closed region bounded by edges v j vk , viv j , and v0vk in Lemma 3.3

Lemma 3.3 Colors 001 and 100 are transitive. That is, for vi ≺ v j ≺ vk ≺ v�,

1. if χ(vi , v j , vk) = χ(v j , vk, v�) = 001, then χ(vi , v j , v�) = χ(vi , vk, v�) = 001;
2. if χ(vi , v j , vk) = χ(v j , vk, v�) = 100, then χ(vi , v j , v�) = χ(vi , vk, v�) = 100.

Proof Suppose χ(vi , v j , vk) = χ(v j , vk, v�) = 001. Since the edges viv j and v0vk
cross, the three edges v jvk , viv j , and v0vk enclose a bounded region A. Since v0v�

and v jvk cross, the vertex v� must lie in this region A. See Fig. 3. Since A is contained
in the region bounded by the edges v0vi , vivk , and v0vk , we conclude that v0v� must
cross vivk . Similarly, we can argue that v0v� must cross viv j , hence we conclude
χ(vi , v j , v�) = χ(vi , vk, v�) = 001 as wanted. If χ(vi , v j , vk) = χ(v j , vk, v�) =
100, a similar proof shows that χ(vi , v j , v�) = χ(vi , vk, v�) = 100. 	


Based on the coloring χ , we define a coloring φ of the pairs of {v1, v2, . . . , vn−1}
as follows. For vi ≺ v j , let φ(vi , v j ) = (a, b) where a is the length of the longest
monotone 3-path ending at {vi , v j } in color 100, and b is the length of the longest
monotone 3-path ending at {vi , v j } in color 001. We can assume that a, b < m2.
Otherwise, by Lemma 3.3 and Lemma 2.1, we would have a subset U ⊂ V of size
m2 all of whose triples receive the same color, 100 or 001. And it is not hard to
argue by induction that such aU corresponds to a topological subgraph that is weakly
isomorphic to Tm2 as wanted.

Before we continue, let us give a rough outline of the rest of the proof. In what
follows, we will construct disjoint vertex subsets V a,b ⊂ {v1, . . . , vn−1}, where 1 <
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a, b < m2, such that φ colors every pair in Va,b with color (a, b). For each V a,b,
we will play the vertex online Ramsey game by letting the builder create an edge set
Ea,b and designing a painter’s strategy, which gives rise to a coloring ψ on Ea,b. We
then apply Lemma 2.2 to show that if n is sufficiently large, some vertex set V a,b will
contain a monochromatic monotone 2-path of lengthm1 with respect toψ . Finally, we
will show that this monochromatic monotone 2-path will correspond to a topological
subgraph that is weakly isomorphic to Cm1 . The detailed argument follows.

For integers t ≥ 0 and 1 < a, b < m2, we construct a vertex subset Va,b
t ⊂

{v1, . . . , vn−1}, an edge set Ea,b
t of pairs in V a,b

t , and a subset St ⊂ {v1, . . . , vn−1}
such that the following holds.

1. We have
∑

1<a,b<m2

|V a,b
t | = t .

2. For all 1 < a, b < m2, we have V
a,b
t ≺ St .

3. For u1 ∈ V a,b
t , we have φ(u1, u2) = (a, b) for every u2 ∈ V a,b

t ∪ St with u1 ≺ u2.
4. For each edge {u1, u2} ∈ Ea,b

t , where u1 ≺ u2, we have χ(u1, u2, u3) =
χ(u1, u2, u4) for all u3, u4 ∈ V a,b

t such that u1 ≺ u2 ≺ u3 ≺ u4.

We start by setting V a,b
0 = ∅ for all 1 < a, b < m2, and S0 = {v1, . . . , vn−1}. After

stage t , we have Va,b
t , Ea,b

t , for 1 < a, b < m2, and St as described above.
At the beginning of stage t + 1, let wt+1 be the smallest element in St with respect

to ≺. By the pigeonhole principle, there exist integers 1 < α, β < m2 and a subset
St,0 ⊂ St \ {wt+1} of size at least (|St | − 1)/m2

2, such that φ(wt+1, u) = (α, β)

for all u ∈ St,0. Then we set V α,β
t+1 := V α,β

t ∪ {wt+1}. For all 1 < a, b < m2 with

(a, b) 
= (α, β), we set Va,b
t+1 := V a,b

t and Ea,b
t+1 := Ea,b

t . We shall define Eα,β
t+1 and

St+1 after the following claim.

Claim 3.4 For all u ∈ V α,β
t and v ∈ St,0, we have χ(u, wt+1, v) ∈ {000, 010}.

Proof For the sake of contradiction, suppose χ(u, wt+1, v) = 100, where u ∈ V α,β
t

and v ∈ St,0. Since φ(u, wt+1) = (α, β), the longest monotone 3-path in color 100
ending at {u, wt+1} has length α. Hence, the longest monotone 3-path in color 100
ending at {wt+1, v} has length at leastα+1. This contradicts the fact thatφ(wt+1, v) =
(α, β). A similar argument follows if χ(u, wt+1, v) = 001. 	


Now that we have constructed V α,β
t+1 by adding wt+1 to V α,β

t , we play the vertex
online Ramsey game so that builder chooses and creates edges of the form {u, wt+1},
where u ∈ V α,β

t , according to his strategy. After each edge {u, wt+1} is created, painter
immediately colors it ψ(u, wt+1) ∈ {000, 010} as follows. In painter’s strategy, after
the j-th edge {u j , wt+1} is created and colored, a set St, j ⊂ St,0 will be constructed
such that all triples {u j , wt+1, v}with v ∈ St, j are colored by χ with the same color in
{000, 010}. After the ( j+1)-th edge {u j+1, wt+1} is created, painter looks at all triples
of the form {u j+1, wt+1, v} with v ∈ St, j . Since χ(u j+1, wt+1, v) ∈ {000, 010} by
Claim3.4, the pigeonhole principle implies that there exists a subset St, j+1 ⊂ St, j with
size at least |St, j |/2 such that all triples {u j+1, wt+1, v} with v ∈ St, j+1 are colored
by χ with the same color xyz ∈ {000, 010}. Then painter sets ψ(u j+1, wt+1) = xyz.
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If builder decides to stop creating edges fromwt+1 to V
α,β
t after j edges are created

and colored, then the stage ends and we set St+1 = St, j and let Eα,β
t+1 be the union of

Eα,β
t and all edges built during this stage. Let et+1 denote the total number of edges

builder creates in stage t + 1. Recall that et+1 ≥ 1 unless V α,β
t = ∅. As long as

|St+1| > 0, we continue this construction process by starting the next stage. Clearly,
V a,b
t+1, E

a,b
t+1, for all 1 < a, b < m2, and St+1 have the four properties described above.

For example, let u1, u2, u3, u4 be as in the fourth property. There exists some stage
t ′ < t when u2 = wt ′ and the edge {u1, u2} is created by builder. Since u3, u4 ∈ St ′ ,
we have χ(u1, u2, u3) = χ(u1, u2, u4) as wanted.

Claim 3.5 For t ≥ 1, we have

|St | ≥ n − 1

m2t
2 · 2∑t

i=2 ei
−

t∑

i=2

1

m2(t+1−i)
2 · 2

∑t
j=i e j

.

Proof We proceed by induction on t . For the base case t = 1, there is no edge for
the builder to build in the first stage, so |S1| = |S0,0| ≥ (n − 1)/m2

2 as desired. For
the inductive step, assume the statement holds for t ≥ 1. When we start stage t + 1
and introduce vertex wt+1, the set St shrinks to St,0 whose size is guaranteed to be at
least (|St | − 1)/m2

2, and each time builder creates an edge from wt+1 to V α,β
t , our set

decreases by a factor of two. Since builder creates et+1 edges during stage t + 1, we
have

|St+1| ≥ |St | − 1

m2
22

et+1
≥ n − 1

m2(t+1)
2 · 2

∑t+1
i=2 ei

−
t∑

i=2

1

m2((t+1)+1−i)
2 · 2

∑t+1
j=i e j

− 1

m2
22

et+1

= n − 1

m2(t+1)
2 · 2

∑t+1
i=2 ei

−
t+1∑

i=2

1

m2((t+1)+1−i)
2 · 2

∑t+1
j=i e j

,

which is what we want. 	

After t stages, builder has created a total of

∑t
i=1 ei edges, such that each edge has

color 000 or 010 with respect to ψ . If there is no monochromatic 2-path of length m1

with respect to ψ on any (V a,b
t , Ea,b

t ), then Lemma 2.2 implies that

t∑

i=1

ei < m2
2r(m1) ≤ 2(m1m2)

2 logm1.

Also, since ei ≥ 1 for all but m2
2 many indices 1 ≤ i ≤ t , we have

t ≤ m2
2 +

t∑

i=1

ei < 3(m1m2)
2 logm1.
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w*j

iw* w*k
w*i+1

v0
Fig. 4 A figure illustrating Claim 3.6

Then it follows from the assumption log n > 9(m1m2)
2 log(m1) log(m2) that

|St | ≥ n − 1

m2t
2 · 2∑t

i=2 ei
−

t∑

i=2

1

m2(t+1−i)
2 · 2

∑t
j=i e j

≥ n − 1

28(m1m2)2 log(m1) log(m2)
−

t∑

i=2

1

2t−i+1 > 1.

Hence, we can continue to the next stage and introduce a new vertex wt+1. There-
fore, when this process stops, say at stage s, wemust have a monochromatic monotone
2-path of length m1 with respect to ψ on some (V a,b

s , Ea,b
s ).

Now let W ∗ = {w∗
1, . . . , w

∗
m1

}, where w∗
1 ≺ · · · ≺ w∗

m1
, be the vertex set

that induces a monochromatic monotone 2-path of length m1 with respect to ψ on
(Va,b

s , Ea,b
s ). Since φ colors every pair in W ∗ with the color (a, b), by following the

proof of Claim 3.4, we have χ(w∗
i , w

∗
j , w

∗
k ) ∈ {000, 010} for every i < j < k. Hence,

the following argument due to Pach, Solymosi, and Tóth [14] shows thatW ∗ induces a
topological subgraph that is weakly isomorphic to Cm1 . For the sake of completeness,
we include the proof.

Claim 3.6 Let W ∗ = {w∗
1, . . . , w

∗
m1

} be as described above. Then W ∗ induces a
topological subgraph that is weakly isomorphic to Cm1 .

Proof Supposeψ(w∗
i , w

∗
i+1) = 000 for all i . It suffices to show that every triple inW ∗

has color 000 with respect to χ . For the sake of contradiction, suppose we have w∗
i ≺

w∗
j ≺ w∗

k such that χ(w∗
i , w

∗
j , w

∗
k ) = 010, and let us assume that j − i is minimized

among all such examples. Since {w∗
i , w

∗
i+1} ∈ Ea,b

s , we have χ(w∗
i , w

∗
i+1, w

∗
k ) =

ψ(w∗
i , w

∗
i+1) = 000. This implies that j > i + 1 and the edge w∗

i+1w
∗
k crosses v0w

∗
j

(see Fig. 4), which contradicts the minimality condition. A similar argument follows
if ψ(w∗

i , w
∗
i+1) = 010 for all i . 	


This completes the proof of Theorem 3.1. 	
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0v

1v 4v
5v

2v 3v

Fig. 5 An example with θ(v1) = (v4, v3, v2, v5)

4 Plane Path

In this section, we prove Theorem 1.4. We will need the following lemma, which was
observed by Fulek and Ruiz-Vargas in [8].

Lemma 4.1 If a complete simple topological graph G contains a topological subgraph
that is isomorphic to a plane K2,m2 , then G contains a plane path of length �(m).

Let us briefly explain how to establish this lemma, as it is not explicitly stated in [8].
In [23], Tóth proved that every n-vertex geometric graph with more than 29k2n edges
contains k pairwise disjoint edges. His proof easily generalizes to simple topological
graphs whose edges are drawn as x-monotone curves, and, in fact, establishes the
existence of a plane path of length 2k.

Given a plane topological subgraph K2,m2 inside a complete simple topological
graph G, Fulek and Ruiz-Vargas [8] showed that there exists a topological subgraph
G ′ ⊂ G, with m2 vertices and �(m4) edges, that is weakly-isomorphic to an x-
monotone simple topological graph G ′′. Hence, we can conclude Lemma 4.1 by
applying Tóth’s result stated above with k = �(m).

Proof of Theorem 1.4 First, we keep the following notations from the proof of The-
orem 1.2. Let G = (V , E) be a complete n-vertex simple topological graph. We
can assume that there is a vertex v0 ∈ V such that v0 lies on the boundary of the
unbounded cell. We label the other vertices by v1, . . . , vn−1 such that the edges v0vi ,
for 1 ≤ i < n, emanate out from v0 in clockwise order. We write vi ≺ v j if i < j ,
and color every triple vi ≺ v j ≺ vk by χ(vi , v j , vk) ∈ {000, 010, 100, 001}.

For each vi , we arrange the vertices {vi+1, . . . , vn−1} into a sequence θ(vi ) =
(v j1, . . . , v jn−1−i ) such that the topological edges viv0, viv j1 , viv j2 , . . . , viv jn−1−i

emanate out from vi in counterclockwise order. See Fig. 5. We call a sequence of
vertices S = (vi1, . . . , vik ) increasing (or decreasing) if vi1 ≺ vi2 ≺ · · · ≺ vik (or
vi1 � vi2 � · · · � vik ).

Lemma 4.2 If there exists a vertex u such that θ(u) contains an increasing subsequence
(u1, . . . , um2), then the edges v0ui and uui , for all 1 ≤ i ≤ m2, form a plane subgraph
K2,m2 .
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0v

ui uj

u

Fig. 6 An increasing subsequence of θ(u) induce a plane K2,m2

Proof It suffices to show that v0ui and uu j do not cross each other for every 1 ≤ i, j ≤
k. When i = j , this follows from G being simple. When i < j , we have u ≺ ui ≺ u j

by the increasing subsequence assumption. Observe that this condition forces u j to
be outside the region 
v0uui bounded by the topological edges v0u, uui , and uiv0.
Otherwise, we have χ(u, ui , u j ) = 001 and the edges uv0, uui , uu j will not emanate
out from u in counterclockwise order. Now the Jordan arc uu j starting at u, initially
outside 
v0uui , cannot enter 
v0uui then leave again to end at u j . In particular, uu j

does not cross v0ui . See Fig. 6 for an illustration. A similar argument follows if j < i .
	


We setm =
⌊

log n
2 log log n

⌋
and prove that G contains a plane path of length�(m). We

can assumem > 1, otherwise there is nothing to prove. If some sequence θ(vi ) contains
an increasing subsequence of length m2, then by Lemma 4.2 and Lemma 4.1, we are
done. Therefore, we assume that θ(vi ) does not contain an increasing subsequence of
length m2 for every i .

For integer t ≥ 1, we inductively construct subsets Ut , St ⊂ {v1, . . . , vn−1} with
Ut = {u1, . . . , ut }, where u1 ≺ · · · ≺ ut , and Ut ≺ St . Initially, we set U1 = {u1 :=
v1} and S1 = {v2, . . . , vn−1}. Suppose that for some t , we have already constructed
Ut and St . If |St | ≤ m2, we stop this construction process, otherwise we continue to
construct Ut+1 and St+1 as follows: Let θ ′ be the subsequence of θ(ut ) that contains
exactly those vertices in St . Note that the length of θ ′ equals to |St |. According to our
assumption, the length of the longest increasing subsequence in θ ′ is less than m2.
Hence, by Dilworth’s theorem [5], θ ′ contains a decreasing subsequence of length at
least |St |/m2. Let S′

t+1 be the set of vertices that appear in this decreasing subsequence
of θ ′. Next, we take ut+1 to be the smallest element of S′

t+1 with respect to ≺ and
let Ut+1 := Ut ∪ {ut+1}. Consider the region 
v0ut ut+1 bounded by the topological
edges v0ut , utut+1, and ut+1v0. Each vertex in S′

t+1 \{ut+1} is either inside or outside

v0ut ut+1 . So, by the pigeonhole principle, there exists a subset St+1 ⊂ S′

t+1 \ {ut+1}
with |St+1| ≥ |S′

t+1 \ {ut+1}|/2 such that the whole set St+1 is either inside or outside
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v0ut ut+1 . Clearly, we have Ut+1 ≺ St+1 and

|St+1| ≥ |S′
t+1| − 1

2
≥ |St |/m2 − 1

2
≥ |St |

(2m)2
.

Using the inequality above and the fact that |S1| = n− 2, we can inductively prove
|St | ≥ n

(2m)2t
. When t = m − 1, this gives us

|Sm−1| ≥ n

(2m)2(m−1)
>

n

(2m)log n/ log log n−2 > m2 · n

(log n)log n/ log log n = m2.

Hence, the construction process ends at a certain t > m − 1, and we will always
construct Um = {u1, . . . , um}.

Now we show that u1, u2, . . . , um form a plane path. Our argument is based on the
following two claims.

Claim 4.3 For any vertices ui ≺ ui+1 ≺ u j ≺ uk, we have that u j and uk are either
both inside or both outside the region 
v0ui ui+1 .

It can be checked that Claim 4.3 is guaranteed by the construction process of Um .

Claim 4.4 For any vertices ui ≺ u j ≺ uk, the topological edges v0ui and u juk do not
cross each other.

Proof Consider the region 
v0ui u j bounded by the topological edges v0ui , uiu j , and
u jv0, then uk is either inside or outside 
v0ui u j . If uk is inside 
v0ui u j , then v0uk
must cross uiu j . By Observation 3.2, we have χ(ui , u j , uk) = 001, which implies
v0ui and u juk do not cross. See the third configuration in Fig. 2.

Suppose uk is outside 
v0ui u j . By the construction process of Um , u j and uk
belong to a decreasing subsequence of θ(ui ), hence the edges uiv0, uiuk and uiu j

must emanate from ui in counterclockwise order, which implies that uiuk crosses
v0u j . Then, by Observation 3.2, χ(ui , u j , uk) = 010 and u juk does not cross v0ui .
See the second configuration in Fig. 2. 	


Finally, we argue that the edges uiui+1 and u ju j+1 do not cross for any i < j .
When j = i +1, this follows from G being simple. When j > i +1, by Claim 4.3, the
vertices u j and u j+1 are either both inside or both outside the region 
v0ui ui+1 . So,
the edge u ju j+1 crosses the boundary of 
v0ui ui+1 an even number of times. On the
other hand, by Claim 4.4, u ju j+1 does not cross v0ui or v0ui+1. So u ju j+1 does not
cross uiui+1. See Fig. 7 for an illustration. This concludes the proof of Theorem 1.4.

	


5 Concluding Remarks

Answering a question of Pach and Tóth [16], Suk showed that every complete n-
vertex simple topological graph contains �(n1/3) pairwise disjoint edges [20] (see
also [8]). This bound was later improved to n1/2−o(1) by Ruiz-Vargas in [17]. Hence,
we conjecture a similar bound for plane paths.
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0v

ujui+1ui j+1u

0v

ujui+1ui j+1u

Fig. 7 For ui ui+1 and u j u j+1 with i + 1 < j to cross each other, either u j and u j+1 are not both inside
or both outside 
v0ui ui+1 (left graph), or the topological edge u j u j+1 crosses one edge in {v0ui , v0ui+1}
(right graph)

Conjecture 5.1 There is an absolute constant ε > 0, such that every complete n-vertex
simple topological graph contains a plane path of length nε.

Let h = h(n) be the smallest integer such that every complete n-vertex simple
topological graph contains an edge crossing at most h other edges. A construction
due to Valtr (see page 398 in [4]) shows that h(n) ≥ �(n3/2). In the other direction,
Kynčl and Valtr [12] used an asymmetric version of Theorem 1.1 to show that h(n) =
O(n2/ log1/4 n). By using Theorem 3.1 instead, their arguments show that h(n) ≤
n2/(log n)1/2−o(1). We conjecture the following.

Conjecture 5.2 There is an absolute constant ε > 0 such that h(n) ≤ n2−ε.
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