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—— Abstract
We prove a far-reaching strengthening of Szemerédi’s regularity lemma for intersection graphs of
pseudo-segments. It shows that the vertex set of such graphs can be partitioned into a bounded
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topological graphs, showing that every n-vertex simple topological graph with no k pairwise disjoint
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edges has at most n(logn) edges.
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1 Introduction

Given a set of curves C in the plane, we say that C is a collection of pseudo-segments if any
two members in C have at most one point in common, and no three members in C have a
point in common. The intersection graph of a collection C of sets has vertex set C and two
sets in C are adjacent if and only if they a have nonempty intersection.

A partition of a set is an equipartition if each pair of parts in the partition differ in size
by at most one. Szemerédi’s celebrated regularity lemma roughly says that the vertex set
of any graph has an equipartition such that the bipartite graph between almost all pairs of
parts is random-like. Our main result is a strengthening of Szemerédi’s regularity lemma for
intersection graphs of pseudo-segments. It replaces the condition that the bipartite graphs
between almost all pairs of parts is random-like to being complete or empty.

» Theorem 1. For each € > 0 there is K = K(g) such that for every finite collection C of
pseudo-segments in the plane, there is an equipartition of C into K parts C1,...,Cx such
that for all but at most eK? pairs C;, C; of parts, either every curve in C; crosses every curve
in C;, or every curve in C; is disjoint from every curve in C;.

Pach and Solymosi [18] proved the special case of Theorem 1 where C is a collection of
segments in the plane, and this result was later extended to semi-algebraic graphs [2] and
hypergraphs [6] of bounded description complexity. However, the techniques used to prove
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these results heavily rely on the algebraic structure. In fact, while it follows from the Milnor-
Thom theorem that there are only 2°("1°87) graphs on n vertices which are semialgebraic
of bounded description complexity (see [19, 2, 21]) there are many more (namely 29("4/3))
graphs on n vertices which are intersection graphs of pseudo-segments [7].

Next, we discuss an application of Theorem 1 in graph drawing.

Disjoint edges in simple topological graphs. A topological graph is a graph drawn in
the plane such that its vertices are represented by points and its edges are represented by
nonself-intersecting arcs connecting the corresponding points. The edges are allowed to
intersect, but they may not intersect vertices apart from their endpoints. Furthermore, no
two edges are tangent, i.e., if two edges share an interior point, then they must properly cross
at that point in common. A topological graph is simple if every pair of its edges intersect at
most once. Two edges of a topological graph cross if their interiors share a point, and are
disjoint if they neither share a common vertex nor cross.

Determining the maximum number of edges in a simple topological graph with no &
pairwise disjoint edges seems to be a difficult task. When k = 2, a linear upper bound
is known [17, 3, 11, 12]. When k& > 3, Pach and Téth [20] showed that every n-vertex
simple topological graph with no k pairwise disjoint edges has O(n logth—8 n) edges. They
conjectured that for every fixed k, the number of edges in such graphs is at most Ox(n). Our
next result substantially improves the upper bound for large k.

» Theorem 2. If G = (V, E) is an n-vertex simple topological graph with no k pairwise
disjoint edges, then |E(G)| < n(logn)@togk),

The proof of Theorem 2 follows the arguments in [20, 22], and is by double induction
on n and k. We consider the cases when there are many or few disjoint pairs of edges in
G. In the former case, it was used in [20] that there is an edge which is disjoint from many
other edges (so, among these edges, no k — 1 are pairwise disjoint), and the argument was
completed by induction on k. Instead, we can apply a variant of Theorem 1 to get two large
subsets of edges that are disjoint from each other (so, at least one of these subsets has no
k/2 pairwise disjoint edges), and again use induction on k. In the second case, where there
are few disjoint pairs of edges in GG, we apply a bisection width result due to Pach and Téth
[20] and induction on n. See [8] for more details. In [10], Fox and Sudakov showed that
every dense n-vertex simple topological graph contains Q(logl+5 n) pairwise disjoint edges,
where § = 1/40. As an immediate corollary to Theorem 2, we improve this bound to nearly
polynomial under a much weaker assumption.

» Corollary 3. Let e > 0, and let G = (V, E) be an n-vertex simple topological graph with at
least 2n' %< edges. Then G has n2(e/1°81087) pairpise disjoint edges.

For complete n-vertex simple topological graphs, Aichholzer et al. [1] showed that one can
always find Q(n'/?) pairwise disjoint edges.

The proofs of the above theorems heavily rely on the following bipartite Ramsey-type
result for intersection graphs of pseudo-segments. As shown in [8], the main result in this
paper, Theorem 1, is equivalent to the following.

» Theorem 4. Let R be a set of n red curves, and B be a set of n blue curves in the plane
such that R U B is a collection of pseudo-segments. Then there are subsets R' C R and
B’ C B, where |R'|,|B'| = Q(n), such that either every curve in R’ crosses every curves in
B, or every curve in R’ is disjoint from every curve in B’.
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The rest of this paper is devoted to proving Theorem 4. In the next section, we recall that
any finite collection of pseudo-segments in the plane contains a linear-sized subset with the
property that only a small fraction of pairs in the subset are crossing, or nearly all of them
cross. In Section 3, we prove Theorem 4 in the special case where one of the families is double
grounded. Building on these results, in Section 4, we establish our bipartite Ramsey-type
theorem (Theorem 4) for any two families of pseudo-segments with the property that for
each family, only a small fraction of pairs are crossing, or nearly all of them cross. Finally, in
Section 5, we prove Theorem 4 in its full generality.

2 Tools

We say that a graph G is e-homogeneous if the edge density in G is less than € or greater
than 1 — e. For the proof of Theorem 4, we need the following result from [5].

» Theorem 5 ([5]). There is an constant ¢ > 0 such that the following holds. Let C be a
collection of n pseudo-segments in the plane with at least en? crossing pairs. Then there are
subsets C1,Co C C, each of size c'en, such that every curve in C1 crosses every curve in Ca.

Given a collection C of curves in the plane, let G(C) denote the intersection graph of
C. In [9], Fox, Pach, and Téth showed that pseudo-segments has the strong Erdés-Hajnal
property, which implies the following.

» Corollary 6 ([9]). The family of intersection graphs of pseudo-segments has the polynomial
Rodl property. That is, there is an absolute constant c1 > 0 such that the following holds.
Let € > 0 and C be a collection of n pseudo-segments in the plane. Then there is a subset
C' C C of size e*n whose intersection graph G(C') is e-homogeneous.

We will frequently use the following simple lemma in this paper. See [8] for the proof.

» Lemma 7. Let G = (V, E) be a graph on n vertices. If the edge density of G is at most ¢,
then any induced subgraph on én vertices has edge density at most 2¢/62. Likewise, if the
edge density of G is at least 1 — e, then any induced subgraph on dn vertices has edge density
at least 1 — 2¢/52.

3 Proof of Theorem 4 — for double grounded red curves

Given a collection of curves C in the plane, we say that C is double grounded if there are two
distinct curves 73 and ~, such that for each curve a € C, o has one endpoint on y; and the
other on =5, and the interior of « is disjoint from 7; and 7. Throughout this paper, for
simplicity, we will always assume that both endpoints of each of our curves have distinct
z-coordinates. We refer to the endpoint of a curve with the smaller (larger) z-coordinate as
its left (right) endpoint. The aim of this section is to prove Theorem 4 in the special case
where one of the color classes (the red one, say) consists of double grounded curves.

A curve in the plane is called x-monotone if every vertical line intersects it in at most one
point. We start by considering double grounded z-monotone curves, and at the end of this
section, we will remove the z-monotone condition. We will need the following result, known
as the cutting-lemma for z-monotone curves. See, for example, Proposition 2.11 in [15].

» Lemma 8 (The Cutting Lemma). Let C be a collection of n double grounded x-monotone
curves, whose grounds are disjoint vertical segments v1 and 2, and let v > 1 be a parameter.
Then R?\ (71 U ¥2) can be subdivided into t connected regions A1, ..., s, such that the
interior of each A; is intersected by at most n/r curves from C, and we have t = O(r?).
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(a) Case l.a. (b) Case 1.b.

Figure 1 Case 1, ap and « are disjoint.

Throughout the paper, we will implicitly use the Jordan curve theorem.

» Lemma 9. Let R be a set of n red double grounded x-monotone curves, whose grounds
are disjoint vertical segments v1 and 2. Let B be a set of n blue curves (not necessarily
x-monotone) such that every blue curve in B is disjoint from grounds v1 and 72, and suppose
that R U B is a collection of pseudo-segments. Then there are subsets R’ C R and B’ C B
such that |R'|,|B'| = Q(n), and either every curve in R’ crosses every curve in B, or every
curve in R’ is disjoint from every curve in B'.

Proof. Let P be the set of left-endpoints of the curves in B. We apply Lemma 8 to R with
parameter r = 4 to obtain a subdivision R?\ (v; U72) = A; U---U Ay, such that for each
A;, the interior of A; intersects at most n/4 members in R, and ¢t < ¢p4? where ¢ is an
absolute constant from Lemma 8. By the pigeonhole principle, there is a region A; such that
A; contains at least n/co4? points from P. Let By C B be the set of blue curves whose left
endpoints are in A;. Hence |By| = Q(n).

Let @ be the right endpoints of the curves in By. Using the same subdivision described
above, there is a region A; such that A; contains at least |Q|/(co4?) > n/(co4?)? points from
Q. Let By C By be the set of blue curves with their left endpoint in A; and right endpoint
in Aj. Let R1 C R consists of all red curves that do not intersect the interior of A; and A;.
Lemma 8 implies that [R1| > n — 2% = 2 and |Bi| = Q(n). Recall that each blue curve in
By does not intersect the grounds 1 nor . Fix an arbitrary curve ag € R1. The proof now
falls into the following cases.

Case 1. Suppose at least |R1|/2 curves in R; are disjoint from «g. Let Ro C Rq be the
set of red curves disjoint from . For each o € R, R?\ (71 U2 U U @), consists of two
connected components, one bounded and the other unbounded.

Case l.a. Suppose for at least |R2|/2 red curves a € Rg, both A; and A; lie in the same
connected component of R?\ (73 U2 UagUa). See Figure la. Let R3 C Rz be the collection
of such red curves. Then for each o € R3, each blue curve 8 € B; crosses « if and only if
B crosses ag. Hence, there is a subset By C By of size at least 2(n), such that either every
blue curve in By crosses every red curve in Rg, or every blue curve in By is disjoint from
every red curve in R3. Moreover, |R3| = 2(n) and we are done.

Case 1.b. Suppose for at least |R2|/2 red curves a € Ry, regions A; and A; lie in different
connected component of R?\ (71 Uy2 UagUa). See Figure 1b. Similar to above, let R3 C Ra
be the collection of such red curves. By the pseudo-segment condition, for each a € Rg3, each
blue curve S € B; crosses « if and only if § is disjoint from ag. Hence, there is a subset
By C By of size ,.(n), such that either every blue curve in Bs crosses every red curve in Rs,
or every blue curve in Bs is disjoint from every red curve in R3. Moreover, |R3| = Q(n) and
we are done.
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(b) Case 2.c.

(a) Case 2.a.

Figure 2 Case 2, ap and « cross.

Case 2. Suppose at least |R|/2 curves in Ry cross ag. Let Ry C Ry be the set of red
curves that crosses ag. For each a € Ra \ {ap}, R? \ (71 U2 U U ) consists of three
connected components, two of which are bounded and the other unbounded.

Case 2.a. Suppose for at least |R2|/3 red curves o € Ro, Both A; and A; lie in the same
connected component of R?\ (y; Uvya UagUa). See Figure 2a. Let R3 C Ry be the collection
of such red curves. By the pseudo-segment condition, for each a € R3, each blue curve
B € By crosses « if and only if 3 crosses «g. Hence, there is a subset B C By of size at least
Q(n), such that either every blue curve in By crosses every red curve in Rs, or every blue
curve in By is disjoint from every red curve in R3. Moreover, |R3| = Q(n).

Case 2.b. Suppose for at least |Ra|/3 red curves a € Rg, regions A; and A; lie in different
bounded connected components of R? \ (y; U, UagUa). Let Rz C Ra be the collection of
such red curves. Then for each a € R, every blue curve 8 € By crosses a.. Since |R3| = Q(n),
we have |By| = Q(n).

Case 2.c. Suppose for at least |R2|/3 red curves o € Ry, regions A; and A; lie in different
connected components of R? \ (71 Uv2 U ag U a), one of which is bounded and the other
unbounded. See Figure 2b. Let R3 C Ro be the collection of such red curves. By the
pseudo-segment condition, for each a € Rg3, each blue curve § € B; crosses « if and only if
B is disjoint from «p. Hence, there is a subset By C By of size Q(n), such that either every
blue curve in By crosses every red curve in Rg3, or every blue curve in Bs is disjoint from
every red curve in R3. Moreover, |[R3| = Q(n), and we are done. <

Recall that a pseudoline is an unbounded arc in R?, whose complement is disconnected.
An arrangement of pseudolines is a set of pseudolines such that every pair meets exactly
once, and no three members have a point in common. A classic result of Goodman [13] states
that every arrangement of pseudolines is isomorphic to an arrangement of wiring diagram
(bi-infinite z-monotone curves). Moreover, Goodman and Pollack showed the following.

» Theorem 10 ([14]). Every arrangement of pseudolines can be continuously deformed
(through isomorphic arrangements) to a wiring diagram.

We also need the following simple lemma.

» Lemma 11. Given a finite linearly ordered set whose elements are colored red or blue, we
can select half of the red elements and half of the blue elements such that all of the selected
elements of one color come before all of the selected elements of the other color.

We are now ready to establish the main result of this section.
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» Theorem 12. Let R be a set of n red double grounded curves with grounds v and vy,
where vy, and 2 cross each other. Let B be a set of n blue curves such that R UBU {v1,72}
is a collection of pseudo-segments. Then there are subsets R' C R and B’ C B such that
|R'|, |B'| = Q(n), and either every curve in R’ crosses every curve in B', or every curve in
R’ is disjoint from every curve in B'.

Proof. By passing to linear-sized subsets of R and B and subcurves of ; and 7,, we will
reduce the problem to the setting of Lemma 9. Let us assume that v; and 72 cross at point
p. Hence, (71 \ 72) U (72 \ 71) consists of four connected components. By the pigeonhole
principle, there is a subset R1 C R of size n/4 such that every curve in R has an endpoint
on one of the connected components of -, \ 72, and all of the other endpoints lie on one of the
connected components of vy \ 71. Let 4} C 7, for i = 1,2, be these connected components so
that they have a common endpoint at p and their interiors are disjoint.

For each o € Ry, the sequence of curves (71,74, @) appear either in clockwise or counter-
clockwise order along the unique simple closed curve that lies in ; U~ U o. Without loss of
generality, we can assume that there is a subset Ry C Ry, where |Ra| = £2(n), such that for
every curve « € Rq, the sequence (7], 7%, ) appears in clockwise order, since a symmetric
argument would follow otherwise.

We define the orientation of each curve o € Ro as the sequence of turns, either left-
left, left-right, right-left, or right-right, made by starting at p and moving along ] in the
arrangement 1 U 74 U «, until we return back to p. More precisely, starting at p we move
along -1 until we reach the endpoint of &. We then turn either left or right to move along «
towards 5. Once we’ve reached v, we either turn left or right in order to move along ~4
and reach p again. By the pigeonhole principle, there is a subset Rg C R of size at least
Q(n) such that all curves in R3 have the same orientation. Without loss of generality, we can
assume that the orientation is left-left, since a symmetric argument would follow otherwise.

Starting at p and moving along 7} towards its other endpoint, let us consider the sequence
of curves from R3 U B intersecting ;. Then, by Lemma 11, there are subsets Ry C R3
and By C B, where |R4| > |R3|/2 and |B1| > |B|/2, such that either all of the curves in Ry
appear before all of the curves in B; that intersect 41 in this sequence, or all of the curves in
R4 appear after all of the curves in B; in this sequence. Note that By consists of the blue
curves in B that are disjoint to 74 and at least half of the curves in B that intersect v{ found
by the application of Lemma 11. Hence, there is a subcurve 4{ C v} such that ~{' is one of
the grounds for R4, and is disjoint from every curve in B;. We apply the same argument to
R4 U B and ~4, and obtain subsets Rs C R4, B2 C By, and a subcurve 74 C ~4, such that
|R5|, B2 = Q(n), and R is double grounded with disjoint grounds ;' and ~4, and every
curve in By is disjoint from ~{ and ~4.

For i € {1,2}, let p; be the endpoint of ] that lies closest to p along ;. Starting at p;
and moving along ~/’, let m; be the sequence of curves in R5 that appear on ~}'. Since every
curve in Rs has the same left-left orientation, and appears clockwise order with respect to
v1 and 75, two curves o, o’ € Ry cross if and only if the order in which they appear in m
and 7y changes. Let 4 be a curve very close to v4 such that +4 has the same endpoints as
~4, and is disjoint from all curves in Rs U Bs. Hence, 4 U~% makes an empty lens in the
arrangement Ry U By. We slightly extend each curve o € R through this lens to 74 so that
the resulting curve, o/ properly crosses 74 and has its new endpoint on 4. Moreover, the
extension will be made in such a way that the sequence 73 of curves in R5 appearing along
~4 starting from p, will appear in the opposite order of m;. Let Ry = {o/ : @ € R5}. Thus,
every pair of curves in Rf will cross exactly once.
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Figure 3 The resulting extension Rs.

For each curve o’ € Rf, we further extend o by moving both endpoints towards p along
~1 and 72, so that we do not create any additional crossings within Rf. Let & be the resulting
extension, where both endpoints of & lie arbitrarily close to p. Set Rs = {@ : o/ € RL}. See
Figure 3. Furthermore, we can assume that p lies in the unbounded face of the arrangement
R, since otherwise we could project the arrangement R onto a sphere, and then project it
back to the plane so that p lies in the unbounded face, without creating or removing any
crossing. Therefore, R can be extended to a family of pseudolines. By Theorem 10, we can
apply a continuous deformation of the plane so that 7%5 becomes a collection of unbounded
z-monotone curves. Hence, after the deformation, the original set R5 becomes a collection
of double grounded xz-monotone curves, with grounds ~,~4, such that every curve in By is
disjoint from the grounds +{" and 4%, the crossing pattern in the arrangement R5 U By is the
same as before. Moreover, ¥4 and 4 will be disjoint vertical segments. We apply Lemma 9
to R and By and obtain subsets Rg C Rs and B3 C Ba, each of size (n), such that either
every curve in Rg crosses every curve in Bz, or every curve in Rg is disjoint from every curve
in B3. This completes the proof. |

By combining Theorem 12 with a variant of Szemerédi’s regularity lemma due to Kom-
16s [16], we have the following (see [8] for more details).

» Theorem 13. There is a constant ¢ > 0 such that the following holds. Let R be a collection
of n red double grounded curves with grounds v1 and 2, such that v1 and o cross. Let B be
a collection of n blue curves such that RUBU {v1,72} is a collection of pseudo-segments. If
there are at least en® crossing pairs in R x B, then there are subsets R' C R, B’ C B, where
IR\, |B'| > &n, such that every curve in R’ crosses every curve in B'.

An analogous theorem holds in the case there are at least en? disjoint pairs.

4 Proof of Theorem 4 — for e-homogeneous families

The aim of this section is to prove Theorem 4, the main result of this paper, in the special
case where the edge density of the intersection graph of the red curves is nearly 0 or nearly
1, and the same is true for the intersection graph of the blue curves. This will easily imply
Theorem 4 in its full generality, as shown in the next section.

4.1 Low versus low density

By Corollary 6, we can reduce to the case that the intersection graphs G(R) and G(B) are
both e-homogeneous, where € > 0 is a small absolute constant. Below, we first consider the
cases when both G(R), G(B) have edge density less than e.

59:7
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Figure 4 Partitioning of the red curve a@ = o, U ay.

» Theorem 14. There is an absolute constant €1 > 0 such that the following holds. Let R
be a set of n red curves and B be a set of n blue curves in the plane such that RUB is a
collection of pseudo-segments. If the edge densities of the intersection graphs G(R) and G(B)
are both less than &1, then there are subsets R’ C R and B’ C B, each of size Q(n), such that
every red curve in R’ crosses every blue curve in B, or every red curve in R’ is disjoint
from every blue curve in B'.

The proof of Theorem 14 is a simple application of a separator theorem from [4] (see [8]).

4.2 High versus low edge density

In this subsection, we consider the case when the intersection graph G(R) has edge density at
least 1 — &, and G(B) has edge density less than e. Since the edge density in the intersection
graph G(R) is at least 1 — ¢, we can further reduce to the case when there is a red curve ~;
that crosses every member in R exactly once.

» Lemma 15. For each integer t > 1, there is a constant €} > 0 such that the following holds.
Let R be a set of n red curves in the plane, all crossed by a curve 1 exactly once, and B be
a set of n blue curves in the plane such that RUBU {v1} is a collection of pseudo-segments.
Suppose that the intersection graph G(B) has edge density less than €;, and G(R) has edge
density at least 1 — €},. Then there are subsets R C R, B C B, each of size Q. (n), such that
either every red curve in R crosses every blue curve in B, or every red curve in R is disjoint
from every blue curve in B, or each curve a € R has a partition into two connected parts
a = &, U dy, such that for

Z:lz{du:aeﬁ,azduuézg} and ﬁ:{&g:aeﬁ,a:duudg},
every curve in L is disjoint to every curve in B, and the edge density of G(Z]) is less than 27¢.

Proof. Each curve a € R is partitioned into two connected parts by 1, say an upper and
lower part. More precisely, we have the partition a = «,, U gy, where the parts «, and ay
are defined, as follows. We start at the left endpoint of 3 and move along v; until we reach
aN~y;. At this point, we turn left along « to obtain «, and right to obtain ay. See Figure 4.
Let U (L) be the upper (lower) part of each curve in R, that is,

U={a,:aeR,a=ayUa,} and L={a:a€R,a=aUay}.

In what follows, for every integer t > 1, we will obtain subsets R®) ¢ R, B® c B, each
of size €/ (n), such that either every red curve in R® crosses every blue curve in B®)| or
every red curve in R® is disjoint from every blue curve in B®) or each curve & € R™® has a
new partition into upper and lower parts o = ), U o}, such that the following holds.
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1. We have !, C «,,, that is, the upper part !, is a subcurve of the previous upper part c,.

2. The lower part a of each curve in R® is disjoint from each blue curve in B®).

3. There is an equipartition R(*) = RY)U- . -UR;) into 2! parts such that for 1 <4 < j < 2¢=1

)

the upper part o, of each curve a € Rl(-t is disjoint from the upper part 3!, of each curve

(t)
BER;".

Hence, the lemma follows from the statement above by setting B = B®, R = R®).

We proceed by induction on ¢. The bulk of the argument below is actually for the base
case t = 1, since we will just repeat the entire argument for the inductive step with parameter
e}. Let €] be a small positive constant that will be determined later such that €] < e, where
g1 is from Theorem 14. Thus, G(R) has edge density at least 1 — ¢} and G(B) has edge
density less than &f.

Let 6 > 0 also be a sufficiently small constant determined later, such that €] < § < &;.
We apply Corollary 6 to £ with parameter é and obtain a subset £ C L such that £; is
d-homogeneous and |£1]| = Qs(n). Let Ry C R be the red curves in R corresponding to the
curves in L1, and let U; C U be the curves in U that corresponds to the red curves in R.

Without loss of generality, we can assume that the intersection graph G(£;) has edge
density less than ¢. Indeed, otherwise if G(L£;) has edge density greater than 1 — §, by the
pseudo-segment condition, the intersection graph G(U;) must have edge density less than ¢
and a symmetric argument would follow. In order to apply Theorem 14, we need two subsets
of equal size. By averaging, there is a subset B’ C B with |B’| = |£1] such that the edge
density of G(B') is at most that of G(B). Since G(£1) has edge density less than ¢ and G(B’)
has edge density less than ¢/, by setting €] < § < 1, we can apply Theorem 14 to £; and
B’ and obtain subsets Lo C £1 and By C B, each of size Q5(n), such that every curve in
Lo crosses every blue curve in By, or every curve in Lo is disjoint from every blue curve in
Bi. If we are in the former case, then we are done. Hence, we can assume that we are in
the latter case. Let Ro C R4 be the red curves that corresponds to Lo, and let Us C U, be
the curves in U; that corresponds to Ro. We apply Corollary 6 to Us with parameter  and
obtain a subset Us C Us such that Us is d-homogeneous and |[Us| = Qs(n). Let R3 be the
red curves in R corresponding to Us, and let L3 be the curves in Lo that corresponds to R3.

Suppose that the intersection graph G(U3) has edge density less than J. Since |By| = don,
where 69 = dp(d,e1), by Lemma 7, the intersection graph G(B;) has edge density at most
2¢) /62. Thus, we set § and ¢} sufficiently small so that § < e and 2¢) /63 < £1. By averaging,
we can find subsets of U3 and By, each of size min(|Us|, |B1|) and with densities less than e,
and apply Theorem 14 to these subsets and obtain subsets Uy C Uz and By C By, each of
size Q5(n), such that every curve in Uy crosses every blue curve in Bs, or every curve in Uy
is disjoint from every blue curve in Bs. In both cases, we are done since every curve in L3
is disjoint from every curve in By. Therefore, we can assume that G(Us3) has edge density
greater than 1 — 0.

For each curve a € Us, let N(«) denote the set of curves in U3 that intersects «, and let
d(a) = |N(«)|. We label the curves 8 € N(«) with integers 0 to d(«) — 1 according to their
closest intersection point to the ground v; along «, that is, the label f,(8) of 8 € N(«) is
the number of curves in U3 that intersects the portion of « strictly between ~; and a N 3.
Since Y d(a)—12>2(1— 5)(|Z’§|) — |[Us], by Jensen’s inequality, we have

acUs

D crsy @) ,
3,5 o= 5 () (R )= 5
a€Us ﬂeN(a) acls
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Let the weight w(3) of a curve S € Us be the sum of its labels, that is, w(8) = >,  fa(B).
a:fEN (o

Hence, the weight w() is the total number of crossing points along curves « strictl}f b)etween
~v1 and B, where «a crosses both 7; and 5. By averaging, there is a curve o € U3 whose
weight is at least [Us|? /4.

Using 72, we partition each curve o € Us \ {72} that crosses 7, into two connected parts,
a = ay U ayy,, where ay, is the connected subcurve with endpoints on v; and 2, and a, is
the other connected part. Set

Wi ={ay,:aels\{nhanNy #0} and Msz={a,:acls\{yr},any #0}.

Since 7o has weight at least |U43]?/4, by the pigeonhole principle, there are at least [U3|?/8
intersecting pairs in Mz x M3, or at least [U3|?/8 intersecting pairs in Mz x Ws.

Case 1. Suppose there are at least [U3|?/8 pairs in M3 x Wj that cross. The set M3
is double grounded with grounds v; and 7» that cross exactly once, and every curve in
Wi is disjoint from v, and 2. As |Ms], |Ws| < [Us|, the density of edges in the bipartite
intersection graph of M3 and Wj is at least 1/8. By averaging, we can find subsets of M3 and
Wj each of size min(|M3], [Wj3|) such that the density of edges in the bipartite intersection
graph of these subsets is at least 1/8. By setting § > 0 sufficiently small, we can apply
Theorem 13 to these subsets of M3 and W5 and obtain subsets My C M3 and W) C W,
each of size Q5(n), such that each curve in My crosses each curve in W). Moreover, by
the pseudo-segment condition, each curve in My U W) corresponds to a unique curve in
Us. Let Uy C Us be the curves that corresponds to My and let Uj C Us be the curves that
corresponds to Wj. Hence, we set

Wiy={am:a€lUy,a=a,Ua,} and M)={a,:acl,a=a,Ua,}.

See Figure ba. We apply Theorem 12 to arbitrary subsets of M, and Bs, each of size
min(|Ma|, |B2]), and obtain subsets Ms C My and Bs C Ba, each of size £25(n), such that
either every red curve in My crosses every blue curve in Bs, or every red curve in Mj is
disjoint from every blue curve in Bs. In the former case, we are done. Hence, we can assume
that we are in the latter case.

We again apply Theorem 12 to arbitrary subsets of M) and Bs, each of size
min(|M}]|, |Bs|), to obtain subsets M{ C M) and By C Bs, each of size Qs(n), such
that either every red curve in Mj crosses every blue curve in By, or every red curve in M}
is disjoint from every blue curve in By. Again, if we are in the former case, we are done.
Hence, we can assume that we are in the latter case. Let

Ws ={ay:a=a,Uanp,an € Ms}  and WL ={ay,:a=a,Uan,a, € M5},

and recall that every element in M crosses every element in W;. By the pseudo-segment
condition, every element in Ws is disjoint from every element in WX.

Let R5 be the red curves in R that corresponds to W5, and let Rf be the red curves in
R that corresponds to Wi. We have |Rs|, |R5| = Qs(n), and moreover, we can assume that
|Rs5| = |RE|. For each curve oo € Rs URE, and its original partition o = a,, U ay defined by
71, we have a new partition o = ), U o, defined by -2, where o), = v, and o) = o, U ay.
By setting R = R5 URS, and B = By, where each curve o € R is equipped with the
partition a = o], U o, we satisfy the base case of the statement.
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(a) Case 1. (b) Case 2.

Figure 5 In both cases, W; is disjoint to Wj.

Case 2. The argument is essentially the same as Case 1. Suppose we have at least |U3]?/8
crossing pairs in M3 x Mj3. Then by Theorem 5, there are subsets My, M), C M3, each
of size Q5(n), such that every curve in My crosses every curve in M. Let Uy C U be the
curves that corresponds to My and let U; C U be the curves that corresponds to M. Set

Wy={aw:a€Uy,a=ay,Uay,} and W= {a,:acl,a=qa,Ua,}.

See Figure 5b. Hence, by the pseudo-segment condition, every curve in W; is disjoint from
every curve in Wj. By taking arbitrary subsets of My and By of size min(|] My, |Ba|), we
can apply Theorem 12 to these subsets and obtain subsets M5 C My and Bs C Bs, each of
size Q5(n), such that either every red curve in Mj crosses every blue curve in Bs, or every
red curve in Mj is disjoint from every blue curve in Bs. In the former case, we are done.
Hence, we can assume that we are in the latter case.

Again, we take an arbitrary subset of M/ and Bs of size min(|M}],|Bs|) and apply
Theorem 12 to M/, and Bs, to obtain subsets M{ C M/, and By C B3, each of size Q5(n),
such that either every red curve in Mj crosses every blue curve in By, or every red curve in

L is disjoint from every blue curve in By. Again, if we are in the former case, we are done.
Hence, we can assume that we are in the latter case. Set R5 be the red curves in R that
corresponds to Ms, and let R% be the red curves in R that corresponds to M.

We have |Rs|, |R5| = Q5(n), and moreover, we can assume that |Rs| = |R%|. For each
curve a € Rs U Ry, and its original partition o = a,, U oy defined by 1, we have a new
partition & = o), U o defined by -, where o, = a,, and a;, = a;, U ay. By setting
RO =R5U R, and BW = B,, where each curve a € R is equipped with the partition
a = o, U o), we satsify the base case of the statement.

For the inductive step, suppose we have obtained constants €} _; < --- < &} such that
the statement follows. Let ¢} be a small constant that will be determined later such that
g} < ¢gj_1. Let R be a set of n red curves in the plane, all crossed by a curve v; exactly
once, and B be a set of n blue curves in the plane such that R UB U {v,} is a collection of
pseudo-segments. Moreover, G(R) has edge density at least 1 — &} and G(B) has edge density
less than ,. We set ¢’ < 0 to be a small constant such that £} < ¢’ < ;—1. We repeat the
entire argument above, replacing ¢} with €} and ¢ with §’, to obtain subsets Rs, Ry C R
and By C B, each of size Q5(n), such that each o € Rs U R} is equipped with the partition
a = o), Uay, and o) is disjoint to every blue curve in B4. Moreover, for o« € R5 and § € R,
where a = o), U o) and = ], U f;, ), is disjoint to /3.

Since |Rsl,|Bs| > d1n, where d; depends only on §’, by Theorem 7, G(R35) has edge
density at least 1 — 2¢}/67 and G(B,) has edge density less than 2¢,/6?. By setting &}
sufficiently small, G(R5) has edge density at least 1 — &}_;, and G(B,) has edge density less
than e}_;. By averaging, we can find subsets of R and By, each of size min(|Rs|, |Bs|) and
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with densities at least 1 —&}_; and less than &;_; respectively, and apply induction to these
subsets with parameter ¢ =t — 1, and obtain subsets R*=Y ¢ Rs5, B*~1 C By, each of size
Qer | (n), with the desired properties. If every red curve in R*=1) is disjoint from every blue

curve in B4~1 | or if every red curve in R(*~1 crosses every blue curve in B*~1 | then we
are done. Hence, we can assume that each curve a € R~ has a partition a = o U ay
such that o/ is a subcurve of o/, o is disjoint from every blue curve in B#~1 and there is
an equipartition R(~1 = R(lt_l) U---u R(Qttj), such that for 1 <i < j < 2!~1, the upper
part o/ of each curve a € Rgt_l) is disjoint the upper part 3./ of each curve § € Rgt_l).
Finally, since |Rj|,|B*~Y| > d,n, where d5 depends only on ¢’, by Theorem 7, G(R%)
has edge density at least 1 — 2¢}/62 and G(B®~1) has edge density less than 2¢,/63. By
setting ¢} sufficiently small, G(RS) has edge density at least 1 —¢}_,, and G(B*~Y) has
edge density less than €, ;. By averaging, we can find subsets of RS and B~V each of
size min(|R|,[BY~Y)|) and with densities at least 1 —¢}_; and less than &,_; respectively,
and apply induction to these subsets parameter ¢’ =t — 1, and obtain subsets S¢~1) C RE,

B® < B*1  each of size Q. (n), with the desired properties. If every red curve in St=1

is disjoint from every blue curve in B®, or if every red curve in S~V crosses every blue

curve in B® | then we are done. Hence, we can assume that each curve a € S®1 has

/
u?

curve in B®~1 | and there is an equipartition S¢~1 = S{t_l) U---u Séffll), such that for

1 <i<j <21 the upper part o of each curve o € Si(t_l) is disjoint the upper part 8./ of

a partition o = a, U oy such that o is a subcurve of «;,, o is disjoint from every blue

each curve f§ € SJ(»t_l). We then (arbitrarily) remove curves from each part in Rgt_l) and

SJ(-Fl) such that the resulting parts all have the same size and for

RO =Ry uRETVusE VU uslTD,

ot—1
we have |[R()| = Q. (n). Then R® and B® has the desired properties. <
We now prove the following.

» Theorem 16. There is an absolute constant €5 > 0 such that the following holds. Let R
be a set of n red curves in the plane and B be a set of n blue curves in the plane such that
R UB is a collection of pseudo-segments, and the intersection graph G(B) has edge density
less than €3, and G(R) has edge density at least 1 — e3. Then there are subsets R' C R,
B' C B, each of size Q(n), such that either every red curve in R crosses every blue curve in
B, or every red curve in R is disjoint from every blue curve in B.

Proof. Let t be a fixed large integer such that 27¢ < e, where £ is defined in Theorem 14.
Let €5 be a small constant determined later such that e3 < ¢}, where €} is defined in Lemma
15. Recall that ¢} < e1. Since G(R) has edge density at least 1 — €3, there is a curve y; € R
such that v, crosses at least n/2 red curves in R. Let Rg C R be the red curves that crosses
~v1. By Lemma 7, G(Ro) has edge density at least 1 — 8¢3. By averaging, we can find a
subset B’ C B of size |Ro| whose edge density is less than 3. By setting e3 sufficiently small
so that 8e3 < €}, we can apply Lemma 15 to Ry and B’ with parameter ¢, and obtain subsets
R C Ro, Bc B, each of size Qe (n), with the desired properties. If every red curve in R
crosses every blue curve in l’;’, or every red curve in R is disjoint from every blue curve in B,
then we are done. Therefore, we can assume that each curve a € R has a partition into two
parts o = o, U oy with the properties described in Lemma 15. Set

U={d aeRa=ad,Ua,} and L={a):acR,a=a,Ud,}.
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Hence, every curve in L is disjoint from every curve in B, and G(U) has edge density at
most 2% < ;. Since |B| > dn, where ¢ depends only on ¢}, by Lemma 7, G(B) has edge
density at most 2e5/62. By setting e3 sufficiently small so that 2e3/62 < e1, G(B) has edge
density at most 1. By averaging, we can find subsets of U and B, each of size min (||, |B|)
and with densities at most €1, and apply Theorem 14 to these subsets to obtain subsets
U' CU and B' C B, each of size ., (n), such that every curve in U’ is disjoint from every
curve in B’, or every curve in U’ crosses every curve in B’. By setting R’ to be the red curves
in R corresponding to U’, every red curve in R’ is disjoint from every blue curve in B’, or
every red curve in R’ crosses every blue curve in ', and each subset has size Q.,(n). <

4.3 High versus high edge density

Finally, we consider the case when the intersection graphs G(R) and G(B) both have edge
densities at least 1 — . By copying the proof of Theorem 16, except using Theorem 16 (high
versus low density) instead of Theorem 14 (low versus low density), we obtain the following.

» Theorem 17. There is an absolute constant €4 > 0 such that the following holds. Let R
be a set of n red curves in the plane and B be a set of n blue curves in the plane such that
RUB is a collection of pseudo-segments, and the intersection graphs G(B) and G(R) both
have edge density at least 1 — e4. Then there are subsets R' C R, B’ C B, each of size Q(n),
such that either every red curve in R crosses every blue curve in B, or every red curve in R
1s disjoint from every blue curve in B.

5 Proof of Theorem 4

Let R be a set of n red curves in the plane, and B be a set of n blue curves in the plane
such that R U B is a collection of pseudo-segments. Let € be a sufficiently small constant
such that € < g4 < €3 < €1, where ¢1 is from Theorem 14, e3 is from Theorem 16, and &4
is from Theorem 17. We apply Corollary 6 to both R and B and obtain subsets R; C R
and By C B such that both G(R1) and G(B;) are e-homogeneous. Moreover, we can assume
that |R1| = |B1]. If both G(R1) and G(B;) have edge densities less than e, then, since ¢ is
sufficiently small, we can apply Theorem 14 to obtain subsets Ro C R1 and By C By, each
of size Qc(n), such that either every red curve in R is disjoint from every blue curve in Bs,
or every red curve in Rq crosses every blue curve in By. If one of the graphs G(R1) and
G(By) has edge density less than e, and the other has edge density greater than 1 — &, then
we apply Theorem 16 to R, and B; to obtain subsets Ro C R and By C By, each of size
Qc(n), such that either every red curve in Ry is disjoint from every blue curve in Bs, or every
red curve in Ro crosses every blue curve in By. Finally, if both G(R1) and G(B;) have edge
densities at least 1 — ¢, then, since ¢ is sufficiently small, we can apply Theorem 17 to obtain
subsets Ro C R1 and By C By, each of size .(n), such that either every red curve in Ry is

disjoint from every blue curve in By, or every red curve in Ry crosses every blue curve in Bs.
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