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Abstract

Energy decomposition analysis (EDA) is a useful method to unravel an intermolecular inter-

action energy into chemically meaningful components such as geometric distortion, frozen

interactions, polarization, and charge transfer. A further decomposition of the polarization

(POL) and charge transfer (CT) energy into fragment-wise contributions would be useful to

understand the significance of each fragment during these two processes. To complement the

existing exact pairwise decomposition of the CT term, this work describes formulation and

implementation of a non-perturbative polarization analysis that decomposes the POL energy

into an exactly fragment-wise additive sum based on the absolutely localized molecular or-

bital energy decomposition analysis (ALMO-EDA). These fragment-wise contributions can

be further decomposed into chemically intuitive molecular orbital pairs using complementary

occupied-virtual pairs (COVP) analysis. A very useful phase convention is established for
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each COVP such that constructive interference of occupied and virtual corresponds to elec-

tron flow into that region, whilst destructive interference corresponds to electron outflow. A

range of model problems are used to demonstrate that the polarization process is typically

a collective behavior of the electrons that is quite di↵erent from the charge transfer process.

This provides another reason in addition to their di↵erent distance-dependence on fragment

separation for separating these two processes in EDA.

1 Introduction

Quantum mechanically based electronic structure calculations of interaction energies are like

numerical experiments: they can yield precise values for observable energy di↵erences, but

do not explain why those di↵erences are small or large. To fill the gap, energy decomposition

analysis (EDA) methods1–6 aim to provide chemical insights about intermolecular interac-

tions by breaking the interaction energies into physically meaningful terms such as elec-

trostatics, dispersion interaction, Pauli repulsions, induced electron polarization and charge

transfer.7–10 These partitions provide a link between the quantum mechanical calculations

and chemical interpretation by revealing the dominant contributions to intermolecular in-

teractions, or, chemical bonds. Not only can one better understand the interacting system,

but this can also facilitate rational materials design, by guiding modifications such as chem-

ical substitutions to get desired functional outcomes. Though the EDA components are not

uniquely defined, they can nevertheless be designed to satisfy suitable properties such as

being basis function independent, demonstrating correct asymptotic behavior, and corre-

sponding to Fermionic quantum mechanical energies.11 These considerations are discussed

in detail in a recent overview of EDA.6

The charge transfer (CT) term corresponds to the energy decrease of the interacting

system due to inter-fragment electron delocalizations. When several fragments are placed

close to each other, the electrons of one fragment can delocalize to other fragments to de-
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crease the energy of the system.12 This is a key step in the formation of chemical bonds with

partial ionic character13 and the dative (or donor-acceptor) contribution to non-bonded in-

teractions.12,14 By contrast, the polarization (POL) process describes charge rearrangements

within each fragment in response to the local electric fields and filled orbital interactions

associated with the presence of other fragments.11 It is quite common to combine POL

and CT within an EDA, as exemplified by the orbital rearrangment (ORB) term of the ex-

tended transition state1 - natural orbitals for chemical valence (ETS-NOCV) approach,9 or

the localized MO (LMO)-EDA method.10 The induction (IND) terms of symmetry-adapted

perturbation theory (SAPT)15–17 also naturally contain both POL and CT.

If one wishes to separate POL from CT, one quite natural approach is to apply a Hilbert-

space constraint in which the orbitals of a given fragment can only mix with virtual orbitals

associated with the same fragment. This selective mixing retains fragment block-diagonal

structure of the molecular orbital (MO) coe�cient matrix.18–22 One example is using just

the atomic orbitals (AOs) of each fragment to provide its virtuals. However, a problem with

using the whole virtual spaces of fragments is its unsatisfactory behavior in large atomic or-

bital (AO) basis sets, where the fragment subspaces become linearly dependent.11,12,23,24 This

problem was solved by keeping only the fragment electric-field response functions (FERF)11

in the virtual spaces, which eliminates the subspace linear dependence issue while maintain-

ing the ability to describe fragments’ orbital response to the external multi-poles. Either

type of fragment-specific relaxation can be accommodated with the self-consistent field for

intermolecular interactions (SCFMI) method18–22 or generalizations of SCF-MI.14 Within

variational EDA, performed within either Hartree-Fock or Kohn-Sham density functional

theory (DFT), SCFMI was first used in the block-localized wavefunction (BLW) EDA25–27

to separate POL and CT. The same approach is used in the absolutely localized MO EDA

(ALMO-EDA),8,28,29 where the ALMOs refer to the fragment localized orbitals.

There are also other methods that have been proposed to separate POL from CT. The

pioneering Kitaura-Morokuma (KM) EDA7,30 defined the polarized state as the product of
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the polarized fragment wavefunctions. However, this does not correspond to a valid antisym-

metric wavefunction, and thus violates Pauli’s exclusion principle. The constrained density

functional theory (CDFT) approach constructs the polarized state by minimizing the system

energy while requiring the real-space population on a certain fragment to be a specified inte-

ger.31,32 Within SAPT, there have been suggestions to manipulate the atomic or molecular

basis sets to suppress excitations that are of charge transfer type,33,34 or by regularizing the

nuclear potential to suppress tunneling induced charge transfer.35,36 CDFT has also been

used within SAPT to separate POL and CT.12,24 The natural energy decomposition analysis

(NEDA) treats the polarization together with the electrostatic component as the potential

energy contribution.37 A variational scheme that has been recently developed is the valence

bond EDA (VB-EDA) scheme, where the polarization component is described as orbital

relaxations from monomers’ orbitals to supermolecule’s orbitals.38

With a well-defined separation of POL and CT, it is natural to further analyze these

terms to characterize their separate contributions to intermolecular interactions. Within the

ALMO-EDA, a perturbative CT analysis (CTA) was proposed39 in terms of complementary

occupied-virtual orbital pairs (COVPs). This analysis has proved quite useful, and, more

recently, the perturbative restriction was removed leading to an exact COVP analysis for

CT.40 Alternatively, the ETS-NOCV scheme9 is widely used to analyze the union of CT and

POL, leading to the chemically insightful NOCVs and their contribution to ORB. It is also

possible to use the NOCVs to connect any pair of states41 and for CT, this yields results

that are closely related to the non-perturbative ALMO-CTA.40

The purpose of this paper is to present a polarization analysis within the ALMO-EDA

framework. The objective of this analysis is to decompose the polarization energy, �EPOL,

exactly into a sum of contributions from each fragment, X, of a molecular complex or

supersystem:

�EPOL =
X

x

�E
x
POL (1)

The charge rearrangement associated with the polarization process can likewise be exactly
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decomposed into a sum of fragment contributions:

�QPOL =
X

x

�Q
x
POL (2)

Of course polarization is a many-body process,42 so the sum of one-body contributions from

individual fragments is an e↵ective description that allows a simple overall view of the coupled

many-body POL process. The many-body expansion itself can be condensed into e↵ective

contributions in much the same way.43

The POL process connects a starting state, which corresponds to the frozen orbitals of

each isolated fragment,44 to the final polarized state, in which the fragment orbitals relax

in the presence of each other through SCFMI. The FRZ ! POL path mixes occupied (i)

and virtual (a) orbitals on fragment x by a matrix with elements X
x
ia. Xx contains the

generators of the unitary transformation matrix connecting the end-points. There is no

explicit mixing of orbitals on di↵erent fragments to ensure that CT is separated from POL:

the many-body e↵ects arise by coupling between degrees of freedom on di↵erent fragments to

minimize the POL energy via SCF-MI. By singular value decomposing the fragment-blocked

matrices Xx, we obtain POL-specific complementary occupied virtual orbital pairs (COVPs)

belonging to each fragment. These COVPs give the most compact possible description of

the POL-induced energy lowering and charge rearrangments.

The remainder of the paper is organized as follows. The theory necessary to define the

contributions discussed above is presented in Sec. 2. To explore the character of the POL

process and illustrate the usefulness of our ALMO-PA, we then analyze a series of examples

of increasing chemical complexity. First, we examine the toy model of a hydrogen atom in a

uniform electric field, which is largely an analytical example. Then we consider the polariza-

tion of a helium atom by a lithium cation, as a function of inter-atomic distance. Followed

by the above is the Ne-Ar+ cluster at various inter-atomic distance. Two hydrogen bonded

systems are then examined: water-chloride, and the water dimer. Finally the interaction
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between a sodium cation and a polycyclic aromatic hydrocarbon radical is studied.

2 Theory

2.1 Notation

In this section, we will introduce the notation used in the following derivations. We use Latin

letters x, y, z, w, v to denote fragments, letters i, j, k, l,m, n to label occupied molecular or-

bitals, letters a, b to label virtual molecular orbitals, letters p, q, r, s to label general molecular

orbitals, and Greek letters ↵, �, � to label atomic orbitals. We denote molecular orbitals as

| i and atomic orbitals as |!i. o and v are the total number of occupied and virtual MOs,

while n and N are the total number of MOs and AOs. Nf denotes the number of fragments.

The AO overlap matrix is defined as S↵� = h!↵|!�i, the MO overlap matrix is defined as

�rs = h r| si, and the occupied MO overlap matrix is defined as (�o)xi,yj = h xi| yji. Since

the ALMOs from one fragment are not guaranteed to be orthogonal to those from another

fragment, we also need the biorthogonal ALMO basis functions,45 which are denoted with

superscripts

| xri =
nX

ys

(��1)ys,xr| ysi, (3)

It can be easily shown that h xr| ysi = �xy�rs. We used real orbitals in this paper, although

the generalization to complex orbitals can be similarly derived.

2.2 Summary of results

This ALMO polarization analysis is able to naturally separate the energy transfer and elec-

tron rearrangements of the POL process into fragment-wise additive terms. This is achieved

by connecting each fragment’s density matrix from the FRZ state to the POL state with a

unitary transformation U(x), such that P(x)
POL = U(x)P(x)

FRZU
(x)T expressed in each fragment’s
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orthonormal MO basis. The unitary transformation is parameterized as

U(x) = exp
⇣
X(x)

POL

⌘
= exp

0

B@
0

⇣
X(x)

POL

⌘

ov

�
⇣
X(x)

POL

⌘T

ov
0

1

CA , (4)

where the rectangular matrix X(x)
ov is of dimension o⇥ v, which are the number of occupied

and virtual orbitals of fragment x. The amount of charge transferred during polarization is

defined as39

�Q = Tr
n
P̂POL

o
� Tr

n
P̂POLP̂FRZ

o
= Tr

n
P̂POLQ̂FRZ

o
, (5)

where P̂FRZ and P̂POL are the density operators of the FRZ and POL states, while Q̂FRZ is

the virtual space projector of the FRZ state. Through a parameterization of the energy and

charge, we can decompose the charge transfer�Q and the energy transfer�E = EPOL�EFRZ

as

�Q =
X

x

Tr
n
P̂

e↵(x)
vo

⇣
X̂

(x)
POL

⌘

ov

o
=

X

x

�Q
(x) (6)

�E =
X

x

Tr
n
F̂

e↵(x)
vo

⇣
X̂

(x)
POL

⌘

ov

o
=

X

x

�E
(x)
, (7)

where P̂ e↵(x)
vo and F̂

e↵(x)
vo are the e↵ective density operator and e↵ective fock operator of each

fragment, whose exact expressions will be shown later.

2.3 Non-perturbative energy transfer analysis

The total energy along a linear path beteween the frozen state (� = 0) and the polarized

state (� = 1) can be parameterized as

E [�] = E
⇥
X(x)(�),X(y)(�),X(z)(�), ...

⇤
= E

h
�X(x)

POL,�X
(y)
POL,�X

(z)
POL, ...

i
. (8)
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This parametrization of the energy in terms of X(x) is justified since unitary transforma-

tions within the fragments’ occupied space do not change the total density, thus, once each

fragment’s density is specified, the total density is determined, so is the energy. Using the

fundamental theorem of line integrals, the polarization energy can therefore be decomposed

as (see also ref. 46)

�E =

Z 1

0

@E[�]

@�
d� =

Z 1

0

X

x,a,i

@E[X]

@X
(x)
ia

⇣
X

(x)
POL

⌘

ia
d� (9)

=
X

x

X

a,i

"Z 1

0

@E[X]

@X
(x)
ia

d�

#⇣
X

(x)
POL

⌘

ia
(10)

=
X

x

Tr
n
F̂

e↵(x)
vo

⇣
X̂

(x)
POL

⌘

ov

o
, (11)

In the orthonormal MO basis of fragment x, an e↵ective Fock operator is defined as:

F
e↵(x)
ai =

Z 1

0

@E[X]

@X
(x)
ia

d� =

Z 1

0

F
e↵(x)
ai (�) d�. (12)

Using the chain rule, we obtain

F
e↵(x)
ai (�) =

@E

@X
(x)
ia

=
@E

@P↵�

@P↵�

@X
(x)
ia

= F↵�
@P↵�

@X
(x)
ia

, (13)

where P = P(X) denotes the total density matrix after we rotate each fragment’s MOs by

the corresponding X(x), and F = F(X) is the Fock matrix of the rotated system. The matrix

elements of P(X) are

P (X)↵� = h!↵|P̂ (X)|!�i = h!↵| (y)
yl (X)i�oo(X)�1

yl,zkh 
(z)
zk (X)|!�i (14)

= C(X)↵,yl�oo(X)�1
yl,zkC(X)�,zk, (15)
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where C(X) is the MO coe�cient matrix after rotation, and �oo(X) is the overlap matrix of

the rotated occupied MOs. Thus,

@P (X)↵�

@X
(x)
ia

=
@C(X)↵,yl

@X
(x)
ia

�oo(X)�1
yl,zkC(X)�,zk (16)

+ C(X)↵,yl
@�oo(X)�1

yl,zk

@X
(x)
ia

C(X)�,zk (17)

+ C(X)↵,yl�oo(X)�1
yl,zk

@C(X)�,zk

@X
(x)
ia

(18)

Using the equality47 @U(X)rs
@Xia

= U(X)ri�as � U(X)ra�is, we have

@C(X)↵,yl

@X
(x)
ia

=
@

@X
(x)
ia

h
C(0)↵,ypU

(y)
yp,yl

i
= ��xy�liC(X)↵,ya, (19)

where C(0) is the MO coe�cient matrix of the FRZ state (with no rotation). Similarly,

@C(X)�,zk

@X
(x)
ia

= ��xz�kiC(X)�,za. (20)

To evaluate Eqn.(17), we take partial derivative on both sides of �oo(X)�oo(X)�1 = I, which

gives
@�oo(X)�1

yl,zk

@X
(x)
ia

= ��oo(X)�1
yl,wm

@�oo(X)wm,vn

@X
(x)
ia

�oo(X)�1
vn,zk (21)

The matrix element of �oo(X) is

�oo(X)wm,vn = h (w)
m (X)| (v)

n (X)i = U
(w)
wp,wmh (w)

p (0)|U (v)
vq,vn| (v)

q (0)i = U
(w)
wp,wm�(0)wp,vqU

(v)
vq,vn

(22)
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Notice if w = v, the occupied MO overlap matrix is identity and its derivative is 0. To get

non-zero derivative, we must have w = x, v 6= x or w 6= x, v = x, so

@�oo(X)wm,vn

@X
(x)
ia

= �wx(1� �vx)
@U

(x)
xp,xm

@X
(x)
xi,xa

�(0)xp,vqU
(v)
vq,vn + (1� �wx)�vxU

(w)
wp,wm�(0)wp,xq

@U
(x)
xq,xn

@X
(x)
xi,xa

(23)

= ��wx�miU
(x)
xp,xa�(0)xp,vqU

(v)
vq,vn + �wx�vx�miU

(x)
xp,xa�(0)xp,vqU

(v)
vq,vn (24)

� �vx�niU
(w)
wp,wm�(0)wp,xqU

(x)
xq,xa + �wx�vx�niU

(w)
wp,wm�(0)wp,xqU

(x)
xq,xa (25)

After simplification, we get

@P (X)↵�

@X
(x)
ia

= �C(X)↵,xa
⇥
�oo(X)�1

C
(o)(X)T

⇤
xi,�

�
⇥
C

(o)(X)�oo(X)�1
⇤
↵,xi

C(X)�,xa (26)

+
⇥
C

(o)(X)�oo(X)�1
⇤
↵,xi

⇥
U

(x)T
�(0)(x�)

U(X)(�o)
�oo(X)�1

C
(o)(X)T

⇤
xa,�

(27)

+
⇥
C

(o)(X)�oo(X)�1
U(X)(�o)T

�(0)(�x)
U

(x)
⇤
↵,xa

⇥
�oo(X)�1

C
(o)(X)T

⇤
xi,�

, (28)

where C
(o)(X) is the MO coe�cient matrix of the rotated occupied MOs, �(0)(x�) is the

FRZ state overlap matrix between MOs of fragment x and all MOs, and U(X)(�o) is a block

diagonal matrix whose blocks are the first occupied number of columns of U(X)(x) of each

fragment, and its structure is shown below

U(X)(�o) =

0

BBBBBBB@

o1 o2 · · · oNf

o1 + v1 U
(1) 0 0 0

o2 + v2 0 U
(2) 0 0

· · · 0 0 · · · 0

oNf
+ vNf

0 0 0 U
(Nf )

1

CCCCCCCA

. (29)
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After the contraction with the Fock matrix, we get

F
e↵(x)
ai (�) = F (X)↵�

@P (X)↵�

@X
(x)
ia

(30)

= 2
⇥
U

(x)T
�(0)(x�)

U(X)(�o)
�oo(X)�1

C
(o)(X)TF (X)C(o)(X)�oo(X)�1 (31)

�C(X)TF (X)C(o)(X)�oo(X)�1
⇤
xa,xi

. (32)

Finally, the e↵ective fock matrix is obtained from a numerical integral using a 5-point Gauss-

Lobatto quadrature.40

2.4 Non-perturbative charge decomposition analysis

By definition, the polarization charge transfer is �Q = Tr
n
P̂POLQ̂FRZ

o
. Define Q[X(�)] =

Tr
n
P̂ (X)Q̂FRZ

o
= Q[X(x)(�), X(y)(�), X(z)(�), ...] = Q

h
�X

(x)
POL,�X

(y)
POL,�X

(z)
POL, ...

i
, and

similar to the energy di↵erence, we have

�Q =

Z 1

0

@Q[�]

@�
d� =

Z 1

0

X

x,a,i

@Q[X]

@X
(x)
ia

⇣
X

(x)
POL

⌘

ia
d� (33)

=
X

x

X

a,i

"Z 1

0

@Q[X]

@X
(x)
ia

d�

#⇣
X

(x)
POL

⌘

ia
(34)

=
X

x

Tr
n
P̂

e↵(x)
vo

⇣
X̂

(x)
POL

⌘

ov

o
, (35)

where in the orthonormal basis of fragment x,

P
e↵(x)
ai =

Z 1

0

@Q[X]

@X
(x)
ia

d� =

Z 1

0

P
e↵(x)
ai (�) d�. (36)

Expand Q[X] in AO basis, we get

P
e↵(x)
ai (�) =

@Q[X]

@X
(x)
ia

=
@

@X
(x)
ia

[P (X)SQFRZS]↵↵ =
@P (X)↵�

@X
(x)
ia

(SQFRZS)↵� . (37)
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This looks exactly the same as the expression for the e↵ective fock matrix, and we just need

to replace F (X) with SQFRZS to get

P
e↵(x)
ai (�) = 2

⇥
U

(x)T
�(0)(x�)

U(X)(�o)
�oo(X)�1

C
(o)(X)TSQFRZSC

(o)(X)�oo(X)�1 (38)

�C(X)TSQFRZSC
(o)(X)�oo(X)�1

⇤
xa,xi

. (39)

Finally, the e↵ective density matrix is obtained using the same numerical integration proce-

dure.

2.5 Fragment-wise complementary occupied-virtual pairs (COVPs)

analysis

From Eqs. 7, one can see that the polarization energy and charge flow of each fragment

have contributions from ox occupied orbitals coupling to vx virtual orbitals, and generally no

occupied-virtual pairs can be omitted. However, it is obvious that the rotations of occupied

space and virtual space of each fragment will not change the fragment polarization energy or

electron flow. This invariance can be utilized to optimally compress the orbital representation

of the polarization process by singular value decomposition. Define a set of rotated occupied

and virtual orbitals

| 0
xii =

oxX

xj

U
(x)
xj,xi| xji (40)

| 0
xai =

vxX

xb

V
(x)
xb,xa| xbi. (41)

Since this does not change the fragment polarization energy and charge transfer, we have

�E
(x) =

X

ia

h 0
xa|F̂ e↵

vo | 0
xiih 0

xi|
⇣
X̂

(x)
POL

⌘

ov
| 0

xai (42)

�Q
(x) =

X

ia

h 0
xa|P̂ e↵

vo | 0
xiih 0

xi|
⇣
X̂

(x)
POL

⌘

ov
| 0

xai. (43)

12



Notice that under the new basis, the matrix element of X̂(x)
POL is

h 0
xi|

⇣
X̂

(x)
POL

⌘

ov
| 0

xai =
X

jb

U
(x)T
xi,xjh xj|

⇣
X̂

(x)
POL

⌘

ov
| xbiV (x)

xb,xa =
⇥
U

(x)T
X

(x)
ov V

(x)
⇤
xi,xa

(44)

If we rotate the occupied space and virtual space using the left and right orthonormal

matrices in the singular value decomposition (SVD) of h xj|
⇣
X̂

(x)
POL

⌘

ov
| xbi,

⇣
X̂

(x)
POL

⌘

ov
will

be represented by a rectangular diagonal matrix with at most min{ox, vx} non-zero entries.

The min{ox, vx} pairs of the corresponding occupied and projected virtual orbitals ob-

tained in this way are called the complementary occupied-virtual pairs (COVPs), and they

give the most compact description of the polarization energy and charge transfer of fragment

x during the polarization process. It is worth noticing that both the occupied and virtual

COVPs thus constructed for the POL analysis are still localized on each fragment, and are

non-orthogonal to the polarization COVPs on other fragments (just as the ALMOs are).

This is in contrast with the COVPs of the CT analysis,39,40 which can delocalize to other

fragments due to their orthogonalization tails.

The interpretation of the COVPs is that electrons move from the occupied orbital to the

virtual orbital, and electron density decreases in regions where the COVPs are out of phase,

while the electron density increases in regions where the COVPs are in phase. To achieve

the above convention of interpretation, in practice, we multiply all the operators of Eq. (42)

and (43) by -1 and construct the COVPs by doing the SVD of �
⇣
X̂

(x)
POL

⌘

ov
. It is obvious

the expressions of the energy transfer and charge transfer associated with each COVP are

unchanged, but this practice allows us to interpret the COVPs as described before, and the

reasoning is shown in the next subsection.

2.6 Analysis of the COVP phase and electron flow on a toy model

To understand the relationship between the COVP phase and the direction of electron flow

during polarization (the same reasoning can be applied to the CT process40 as well), we
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analyze a simple toy model of the polarization of a hydrogen atom in a uniform electric field,

as shown in Fig. 1. Let us assume the electric field is weak and oriented along the z axis,

~E = Eẑ and that the H atom is located at the origin of the coordinate system. Therefore,

the total Hamiltonian is

Ĥ = Ĥ0 � ~̂µ · ~E, (45)

where Ĥ0 is the non-relativistic H atom Hamiltonian. The field-induced perturbation is

Ĥ1 = �~̂µ · ~E = �
⇣
�e~̂r

⌘
· Eẑ = eEz, (46)

where e is the magnitude of electron charge, and ~r is its position.

Figure 1: H atom in uniform electric field.

It is su�cient to allow a single virtual orbital to describe polarization, and by symmetry,

referring to Fig. 1, a |2pzi orbital is suitable to polarize a |1si ground state H atom. Our

model Hilbert space will therefore be 2-dimensional: {|1si, |2pzi} The frozen wavefunction

corresponding to the isolated H atom fragment is simply:

| FRZi = | (0)
0 i = |1si, (47)

We assume the phases of |1si and |2pzi are as indicated in Fig. 1.

The first order correction to the wavefunction under the perturbation is

| (1)
0 i =

X

k 6=1s

h k|Ĥ1|1si
E1s � Ek

| ki = eE
h2pz|z|1si
E1s � E2pz

|2pzi. (48)
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With positive numerator and negative denominator, the coe�cient of |2pzi is negative.

Therefore our normalized perturbed wavefunction (which is the POL state) is of the form

| POLi = cos ✓|1si � sin ✓|2pzi, (49)

where ✓ 2 (0, ⇡/2). This suggests the polarized state shifts in the �ẑ direction, which is

expected since the electron is attracted towards the positive field direction.

The density operators of these two states, P̂FRZ = | FRZih FRZ| and P̂POL = | POLih POL|

have the following matrix representations:

PFRZ =

|1si |2pzi
0

@

1

A|1si 1 0

|2pzi 0 0

(50)

PPOL =

|1si |2pzi
0

@

1

A|1si cos2 ✓ � sin ✓ cos ✓

|2pzi � sin ✓ cos ✓ sin2
✓

(51)

By the relationship PPOL = U(X)PFRZU(X)T , it’s easy to see that

U(X) =

0

B@
cos ✓ sin ✓

� sin ✓ cos ✓

1

CA (52)

From the definition, U(X) = exp(X), so we have

X =

0

B@
0 ✓

�✓ 0

1

CA (53)

Thus the ov block of X is simply Xov = ✓. Its trivial SVD gives the occupied COVP as
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|1si and the virtual COVP as |2pzi (no compression is possible). However the phases are

significant. Comparing the COVPs (or the original orbitals), we can see electrons move from

the region where COVPs are in phase to the region where COVPs are out of phase.

Since this is not an intuitive convention, we instead construct the COVPs using �Xov.

As the singular values are by definition always positive, the overall minus sign will be incor-

porated in either the occupied or the virtual COVPs, which will change their relative phases.

With this phase convention for the COVPs, electrons move from the region where COVPs

are out of phase to the region where COVPs are in phase. This convention will facilitate

chemical interpretation.

3 Computational details

Isolated fragment SCF calculations were first performed, after which the block diagonal MO

coe�cient matrix and the density matrix PFRZ of the frozen state were constructed using

the occupied orbitals and DQ-FERFs of each fragment.11 We then ran SCF-MI calculations

to obtain the polarized state and the density matrix PPOL. The generator X of the unitary

transformation connecting FRZ and POL states was obtained by minimizing the cost function

C =
��PPOL � U(X)PFRZU(X)T

��2

F
as in reference 40. For UHF calculations, the above

procedures were performed for the ↵ and � spin separately, since the density matrices do

not couple orbitals with di↵erent spins.

The polarization analysis algorithm was implemented in a development version of the Q-

Chem quantum chemistry program.48 The !B97X-D functional49 with the def2-TZVPD basis

set50,51 were used for geometry optimization and vibrational mode analysis. !B97X-D/aug-

cc-pVTZ52–54 single point calculations were used for the energy decomposition analysis unless

otherwise specified. Geometries of all molecules were confirmed to be local minima on the

potential energy surface by confirming that the Hessian matrix has no negative eigenvalues.

All the COVPs were plotted with isosurface value of ±0.07 a.u., and all the molecular figures
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were plotted using IQmol. The occupied and virtual COVPs were plotted in transparent solid

and wire-frame style respectively. All plots were generated using Matplotlib.55

4 Results and discussion

4.1 He� Li+

We first consider the interaction between a He atom and a Li+ cation, which has an equi-

librium distance of 1.92 Å. At large distances, this inter-molecular interaction is expected to

be polarization dominated due to the large di↵erence between the first ionization energies

(IE) of He (24.6 eV)56 and Li (5.4 eV),57 which makes the electron transfer from He to

Li+ unfavorable. We performed a series of EDA calculations with the inter-atomic distance

rHe�Li+ increasing from 1.8 Å to 6.0 Åwith increment of 0.3 Å. From Figure 2(a) and 2(b),

it is obvious that the total energy decreases of the POL and CT processes obtained from

ALMO EDA agree very well with those obtained by direct subtraction, which confirms that

the 5-point quadrature used to construct the e↵ective Fock matrices is satisfactory. Both

POL and CT energies approach 0 as rHe�Li+ increases, and the magnitude of �EPOL re-

mains dominant over �ECT (Figure 2(c)), indicating the polarization dominant nature of

this inter-molecular interaction. The polarization energy is all due to the polarization of He,

as one would expect, and Figure 2(d) shows the slope of the log-log plot of the polarization

energy with respect to distance plot is very close to �4, which is the correct asymptotic

behavior of a charge-induced dipole interaction.
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(a) POL �E (b) CT �E

(c) Percentage of �E (d) Log-log plot of �EPOL

Figure 2: (a) Energy decrease in the POL process obtained from EPOL � EFRZ (�E
exact
POL

in red line) and ALMO EDA (�E
ALMO
POL in blue dots) as a function of rHe�Li+ . (b) Energy

decrease in the CT process obtained from ECT�EPOL (�E
exact
CT in red line) and ALMO EDA

(�E
ALMO
CT in blue dots) as a function of rHe�Li+ . (c) Percentage of �EPOL and �ECT out of

�EPOL +�ECT in the relaxation from FRZ to CT as a function of rHe�Li+ . (d) log-log plot
of the magnitude of the polarization energy with respect to distance.

The POL energy at all distances can be described by a single COVP with 100% energy

contribution, such as the one at rHe�Li+ = 3.9 Å system shown in Figure 3. It is clear that

this COVP describes the local charge flow from the He 1s orbital to its virtual 2pz orbital

that is oriented towards the Li+. Moreover, the relative phases of the 1s orbital and the

2pz orbital indicates the electrons flow from left to right due to the electrostatic attraction

exerted by the positively charged Li+. The compact description of the polarization of He
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by only one COVP is due to the fact that there is only one occupied molecular orbital (for

restricted SCF calculation) in He.

Figure 3: The COVP of the POL process of the He� Li+ system at rHe�Li+ = 3.9 Å.

4.2 Ne�Ar+

We consider the interaction between a Ne atom and an Ar+ cation, which has an equilibrium

distance of 2.9 Å at the level of HF/aug-cc-pVTZ. The reason for choosing HF as the

electronic structure method is that this problem is expected to be self-interaction sensitive

due to the presence of an odd hole (on Ar). Due to the larger IE of Ne (21.6 eV)57 than Ar

(15.8 eV),58 we expect this inter-molecular interaction to be CT dominated at short distances,

and POL dominated at large distances. From Figure 4(a) and 4(b), it is obvious that the

total energy contributions of the POL and CT processes obtained from ALMO EDA agree

very well with those obtained by direct subtraction, which again confirms the e↵ectiveness

of our POL and CT decomposition methods. Figure 4(c) shows that CT contributes more

than POL at short distances, while at larger distances POL dominates the binding process,

as expected.
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(a) POL �E (b) CT �E

(c) Percentage of �E (d) Log-log plot of �EPOL

(e) Log-log plot of �ENe
POL (f) Log-log plot of �EAr+

POL

Figure 4: (a) POL energy decrease, EPOL � EFRZ (�E
exact
POL : red line) and ALMO EDA

(�E
ALMO
POL : blue dots) as a function of rNe�Ar+ . (b) CT energy decrease obtained from

ECT � EPOL (�E
exact
CT : red line) and ALMO EDA (�E

ALMO
CT : blue dots) as a function of

rNe�Ar+ . (c) Percentage of �EPOL and �ECT out of �EPOL +�ECT in the relaxation from
FRZ to CT as a function of rNe�Ar+ . (d) log-log plot of EPOL vs r (e) log-log plot of EPOL

of Ne vs r (f) log-log plot of EPOL of Ar+ vs r; the red dashed line is the best linear fit in
panels (d)-(f). 20



The di↵erent distance dependence (polynomial versus approximately exponential) of POL

and CT is visually evident (examined in more detail for the H2O· · ·Cl– interaction below).

Figure 4 (d) shows the polarization energy roughly agrees with the r�4 distance dependence

of charge - induced dipole interaction, as is the polarization energy of Ne in Figure 4 (e).

The fact that the slope is larger in magnitude than -4 indicates additional short-range con-

tributions that decay more rapidly – for instance due to overlap e↵ects. Likewise, Figure

4(f) shows the very rapid decay of weak polarization e↵ects on Ar+ due to interaction with

the (polarized) Ne atom.

To illustrate the details of the binding process of this cluster, we show the EDA and

COVP analysis results at the distance of 2.8 Å. EDA results of Table 1a shows that POL

energy is the dominant contribution to binding energy, and table 1b shows two significant

COVPs that contribute 60% of the POL energy. Figure 5 indicates the polarization is

achieved by electrons moving from the 2pz orbital of Ne into its empty 3dz2 orbital, and the

phase convention shows the result of polarization of Ne is an increased electron density at the

end closer to Ar+ and a decreased electron density at the opposite end due to the electron

static attraction of the positively charged Ar+. Relatively weak polarization despite the

strong perturbation of an unscreened charge reflects the high cost of changing the principal

quantum number in the POL process. Table 1c shows two significant COVPs in the CT

process that contributes 80% of the CT energy, and figure 5 shows the dominant COVP

demonstrates donation of electrons from the 2pz orbital of Ne into the empty 3pz orbital of

Ar+, while the smaller COVP shows donation of electrons from the 2pz orbital of Ne into

the empty 3dz2 orbital of Ar+, which is lower in energy.

21



Table 1: (a) Energies (in kJ/mol) and amounts of transferred charge (in me
�) calculated

using ALMO EDA.�Eele+Pauli corresponds to the sum of energy decreases due to electrostatic
interaction and Pauli repulsion, �Edisp corresponds to the dispersion energy, and�Eint is the
total interaction energy. �EPOL and �ECT are calculated using the non-perturbative EDA
method. (b, c) Significant COVPs of the POL and CT process, as well as their associated
energy decrease (in kJ/mol), amounts of transferred charge (in me

�) and their contributions
in percentage.

�Eele+Pauli �Edisp �EPOL �QPOL �ECT �QCT �Eint

3.02 -1.53 -4.88 1.37 -1.86 1.30 -5.25

(a) EDA results

Pair Donor Acceptor �E �E/�EPOL(%) �Q �Q/�QPOL(%)

↵1 Ne Ne -1.33 27.22 0.41 29.54
�1 Ne Ne -1.64 33.56 0.57 41.25

(b) Significant COVPs of POL process

Pair Donor Acceptor �E �E/�ECT(%) �Q �Q/�QCT(%)

↵2 Ne Ar+ -0.26 14.22 0.08 6.51
�2 Ne Ar+ -1.21 65.32 1.18 90.44

(c) Significant COVPs of CT process

Figure 5: Plots of significant COVPs of Ne-Ar+ in the POL and CT process.
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4.3 H2O�Cl�

We next consider the interaction between a H2O molecule and a Cl� anion. The structure

was optimized at the RIMP2/cc-pVDZ level and frequency analysis was performed at the

same level of theory to confirm that a minimum was found. EDA calculations at HF/aug-

cc-pVTZ was then performed on di↵erent structures obtained by increasing the distance

between the O atom and Cl�, where the minimal distance at about 3.1 Å corresponds to

the equilibrium geometry. Figure 6 (a) shows agreement between the POL energy obtained

from our EDA method and direct energy subtraction. Subplot (b) shows a roughly 1/r4

distance dependence of the POL energy, which is the correct asymptotic behavior of the

charge-induced dipole interaction (i.e. polarization of water by Cl�).
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(a) (b)

(c) (d)

Figure 6: (a) Energy decrease in the POL process obtained from EPOL � EFRZ (�E
exact
POL in

red line) and ALMO EDA (�E
ALMO
POL in blue dots) as a function of r, the distance between

O and Cl. (b) log-log plot of the polarization energy and r, the red dashed line is the best
linear fit. (c) log-log plot of the polarization energy of Cl� and r, the red dashed line is the
best linear fit. (d) log-log plot of the polarization energy of H2O and r, the red dashed line
is the best linear fit.

By contrast, subplot (c) shows that the distance dependence of the POL energy con-

tribution from Cl� is about 1/r6.9. This is expected since the polarization of Cl� is due

to the external dipole moment generated by the H2O molecule, and the leading dipole-

induced dipole interaction has an asymptotic behavior of 1/r6. Subplot (d) indicates that

the polarization energy of the H2O molecule is asymptotically 1/r4, which is correct for the

charge-induced dipole interaction and is the main contribution to the POL energy of this sys-
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tem. Therefore, this example demonstrates that our polarization analysis gives the correct

asymptotic distance dependence of not only the total POL energy, but also the contributions

from each fragment.

4.4 H2O dimer

It is well known that the hydrogen-bonding in the water dimer weakens the OH bond of

the proton donor and thus causes an elongation of its bond length and a red shift in the

stretch frequency.59–62 We use a water dimer in vacuum as an example to understand the

weakened OH bond using the POL and CT analysis of ALMO EDA. Our calculations show

that a free water molecule has an OH bond length of 0.958 Å. In the water dimer, the proton

donor OH bond lengths by ⇠ 1% to 0.967 Å, while the other three OH bonds remain almost

unchanged. The main EDA results are summarized in Table 2, showing that POL is almost

as important as CT in terms of energetic contributions, and a similar number of electrons

are rearranged.

Table 2: Energies (in kJ/mol) and amounts of transferred charge (in me
�) calculated using

ALMO EDA. �Eele+Pauli corresponds to the sum of energy decreases due to electrostatic
interaction and Pauli repulsion, �Edisp corresponds to the dispersion energy, and �Eint is
the total interaction energy. �EPOL and �ECT are calculated using the non-perturbative
EDA method.

�Eele+Pauli �Edisp �EPOL �QPOL �ECT �QCT �Eint

-2.59 -5.49 -5.36 2.73 -7.77 2.95 -21.20

Fragment-wise EDA was then performed to reveal the directions of the energy and charge

transfer. To distinguish the two water molecules, we denote the proton donor as “HD”

and the proton acceptor as “HA”. Table 3a summarizes the POL analysis and Table 3b

summarizes the CT analysis. The fragment-wise energy and charge decomposition indicates

that the polarization of the proton acceptor accounts for 75% of the energy decrease during

the POL process. In the CT process, nearly all the energy decrease is due to the electron

flow from the proton acceptor to the proton donor, in the opposite direction of the proton
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transfer.

Table 3: Fragment-wise energy decrease (in kJ/mol) and the amount of transferred charge
(in me

�), and their contributions in percentage in the POL and CT process.

Fragment �E �E/�EPOL(%) �Q �Q/�QPOL(%)

HD -1.47 27.43 0.96 35.16
HA -3.89 72.57 1.77 64.84

(a) Fragment-wise energy and charge decomposition for the POL process.

Donor Acceptor �E �E/�ECT(%) �Q �Q/�QCT(%)

HD HD -0.08 1.03 0.01 0.34
HD HA -0.50 6.44 0.19 6.44
HA HD -7.17 92.28 3.48 117.97
HA HA -0.02 0.26 -0.73 -24.75

(b) Fragment-wise energy and charge decomposition for the CT process.

To obtain additional insight, we must perform COVP analysis as summarized in Tables

4a and 4b. Figure 7 illustrates the details of the electron rearrangement. There are two

significant COVPs for the POL process, one pair for each of the two water molecules. For

the more polarizable water (HA), COVP 1 describes the polarization of the oxygen lone

pair electrons towards the donor proton, as a result of electrostatic attraction towards the

partially positively charged hydrogen. We can thus clearly identify COVP 1 as achieving

energy lowering by electrical polarization.

COVP 2 is only 1/3 the strength, but its character is at least equally interesting. It

describes the polarization of the OH � bond of the proton donor, which is a hybridization

of the oxygen 2p orbital and hydrogen 1s orbital. The relative phases of the occupied and

virtual orbitals indicates that electrons move away from the proton acceptor along the OH

bond. There are two synergistic reasons that we can identify for this behavior. First, is

increasing the polarity of the O�HD bond to increase the electrostatic induction. Second, is

relief of the Pauli repulsion exerted by the adjacent oxygen lone pair of the proton acceptor.
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Table 4: Significant COVPs of the POL and CT process, as well as their associated energy
decrease (in kJ/mol), amounts of transferred charge (in me

�) and their contributions in
percentage.

Pair Donor Acceptor �E �E/�EPOL(%) �Q �Q/�QPOL(%)

1 HA HA -3.24 60.50 1.47 53.97
2 HD HD -1.07 19.89 0.71 26.18

(a) Significant COVPs of POL process

Pair Donor Acceptor �E �E/�ECT(%) �Q �Q/�QCT(%)

3 HA HD -6.90 88.84 3.41 115.73

(b) Significant COVPs of CT process

Figure 7: Plots of significant COVPs of water dimer in the POL and CT process.

The charge transfer process is compactly described by one COVP, which shows electron

transfer from the proton acceptor to the proton donor (Table 4b). Consistent with previous

analysis,39 COVP 3 of Figure (7) clearly shows electron transfer from the oxygen lone pair

of the proton acceptor to the O�HD �
⇤ anti-bonding orbital of the proton donor. This is

the main origin of the weakened OH bond, as indicated by its much larger energy decrease

(than associated with POL on the proton donor water, which is the only other candidate).

The dominance of CT in O�HD bond weakening has also been clearly identified using the

adiabatic EDA.12,62
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4.5 Complex of the 9-fluorenyl radical with Na+

Polycyclic aromatic hydrocarbons (PAHs) in their neutral, ionized, hydrogenated and de-

hydrogenated forms have been proposed as potential sources for the unidentified infrared

(UIR) emission bands of some carbon-rich interstellar sources as well as the di↵use interstel-

lar visible absorption bands (DIBs).63–67 With a delocalized ⇡ electron framework, they are

also far more polarizable than non-conjugated organic molecules, and therefore are also of

interest for their non-linear optical properties and singlet fission.68,69 From the standpoint

of intermolecular interactions, this means that the POL process can be quite important in

stabilizing complexes. With this in mind, we studied the interaction of a 9-fluorenyl radical

(FR) with a sodium cation on top of its five-membered ring. Since the isolated PAH has

no significant electrical moments, this will serve as an example of polarization-dominant

inter-molecular interaction.

ALMO-EDA results (Table 5) indicate that the POL process is indeed the dominant

factor in relaxing the two fragments, while the CT energy is of negligible importance. This

is expected based on the innocent character of the Na+ cation, in contrast to the Li+ ion,70

and we shall not consider CT further here. Relative to the water dimer, we see that the

polarization energy lowering is⇠ 15 times larger than the water dimer, and more than 4 times

larger than in the chloride-water complex. The COVP analysis of the polarization process

(Table 7) clearly demonstrates that the polarization of FR cannot be compactly described

by only a few of the COVPs, and the energy decrease as well as the amount of transferred

charge are distributed among the six COVPs listed in Table.6, which only accounts for about

sixty percent of the total energy and transferred charge of the POL process.
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Table 5: Energies (in kJ/mol) and amounts of transferred charge (in me
�) calculated using

ALMO EDA. �Eele+Pauli corresponds to the sum of energy decreases due to electrostatic
interaction and Pauli repulsion, �Edisp corresponds to the dispersion energy, and �Eint is
the total interaction energy. �EPOL and �ECT are calculated using the non-perturbative
EDA method.

�Eele+Pauli �Edisp �EPOL �QPOL �ECT �QCT �Eint

-25.12 -14.15 -79.98 44.20 -2.09 0.54 -121.34

The fragment-wise energy and charge decomposition (Table 6) shows that the polarization

process is solely due to the polarization of FR. This is unsurprising given that Na+ is not

polarizable. More surprisingly, FR exhibits nearly equal contributions from the ↵ and �

spins. This is quite interesting as one might have expected significantly larger polarization

in one spin sector over the other due to the presence of an odd electron (or hole). Conversely

the lack of such a di↵erence is consistent with FR being a relatively stable organic radical.

Table 6: Fragment-wise energy decrease (in kJ/mol) and the amounts of transferred charge
(in me

�), and their precentage contributions in the POL process. The subscripts ↵ and �
denote the ↵ and � electronic space, respectively.

Fragment �E↵
�E↵

�EPOL

�E�
�E�

�EPOL

�Q↵
�Q↵

�QPOL

�Q�
�Q�

�QPOL

FR -39.49 49.37 -40.43 50.55 20.72 46.88 23.45 53.05
Na+ -0.03 0.04 -0.04 0.05 0.01 0.02 0.01 0.02

Turning to the COVP analysis summarized in Table 7, it is evident that the polarization

of FR cannot be compactly described by only a few COVPs. The energy decrease as well

as the amount of transferred charge are distributed among the six COVPs listed in Table 7,

which only accounts for about 60% of the total energy and transferred charge of the POL

process. POL is clearly a collective property of the ⇡ system, rather than belonging to one

or two more polarizable orbitals.
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Table 7: Significant COVPs of the POL process, as well as their associated energy decrease
(in kJ/mol), amounts of transferred charge (in me

�) and their contributions in percentage.
↵ and � denote the COVPs of ↵ and � electronic space, respectively.

Pair Donor Acceptor �E �E/�EPOL(%) �Q �Q/�QPOL(%)

↵1 FR FR -9.46 11.82 5.62 12.71
↵2 FR FR -7.77 9.71 4.72 10.68
↵3 FR FR -5.81 7.26 3.51 7.95
�1 FR FR -9.20 11.51 7.73 17.49
�2 FR FR -8.61 10.76 5.11 11.57
�3 FR FR -7.60 9.50 4.53 10.24

Figure 8: Isosurface plots of the 6 most significant COVPs of 9-fluorenyl radical and Na+ in
the POL process.

Figure 8 shows the significant COVPs of the POL process. The COVPs are mostly

localized around the five-membered ring, above which the Na+ is located. This behavior is

expected since the five-membered ring is closer to Na+ compared to other atoms of FR, so

that the electrons in this region feel a stronger electric field exerted by Na+ and are easier

to polarize. Another interesting observation is that all the COVP virtuals are located above

their paired occupied orbitals, closer to the Na+. Together with the paired phases, this

clearly describes the electrons moving closer to the Na+ during the POL process due to the
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electrostatic attraction from Na+.

4.6 H3O
+ � (H2O)5 cluster

To demonstrate the capability of our polarization decomposition method to deal with clusters

with more than two fragments, we show results for a H3O
+�(H2O)5 cluster, which is a simple

model for solvated proton. We used the optimized structure from a previous publication71

where the geometry is optimized at the !B97X-V/def2-SVPD level. The EDA calculation

was performed at the !B97X-D/def2-TZVP evel.

Figure 9: Structure of the H3O
+�(H2O)5 cluster with labels for each fragment (fragment 0 is

the hydronium cation while the other 5 fragments are water molecules) and the polarization
energy decomposed to each fragment. The blue dashed lines depicts the hydrogen bonding.

The H3O
+ � (H2O)5 cluster shown in Figure 9 is symmetric about the plane defined

by the fragments 0, 4 and 5. Each of the water molecules 1, 2 and 3 is coordinated to

a hydrogen atom of the hydronium cation to form a hydrogen bond. Together they form

the so-called Eigen cation, H3O
+(H2O)3 which is the first solvation shell of the solvated

hydronium cation. Water 4 forms two hydrogen bonds with water 1 and 3, while water 5

forms two hydrogen bonds with water 2 and 4, and they are part of the second solvation
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shell of the solvated hydronium cation. The polarization of the hydronium cation is largely

due to the Pauli repulsion from the lone pairs of water molecules 1, 2 and 3, and its energy

contribution is not very large since water molecules do not have permanent charge. The

polarization energy of water molecules 1, 2 and 3 are roughly equal and quite large (⇠ 24

kJ/mol), since they are closest to the positively charged hydronium cation and have very

similar chemical environments. Though both water molecules 4 and 5 are part of the second

solvation shell, their contributions to the polarization energy are di↵erent and water molecule

4 polarizes more than water molecule 5. This is because water molecule 4 feels the induction

from the solvated proton from two short paths 0 � 1 � 4 and 0 � 3 � 4, and one long path

0 � 2 � 5 � 4; while for the water molecule 5, the induction e↵ect is transmitted from one

short path 0 � 2 � 5 and two long paths 0 � 1 � 4 � 5 and 0 � 3 � 4 � 5. As induction

decreases strongly with distance, it is reasonable that water molecule 5 should polarize less

than water molecule 4.

Figure 10: Two most significant COVPs for the polarization of water molecule 1.

Figure 10 shows the two most significant COVPs for the polarization of water molecule

1. It is clear that the most important COVP 1 describes the polarization of the oxygen

lone pair while COVP 2 describes the polarization of the mixture of oxygen 2p orbital and

hydrogen 1s orbitals of water. Remembering the significance of phase, we see that both of
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these orbitals are polarizing towards the positively charged hydronium cation. The COVPs

of other water molecules look similar to those of water molecule 1, with di↵erent directions

depending on the direction of the hydrogen bond. This example shows how the POL analysis

provides quantitative information about the chemical environment of each water molecule

in a many-fragment complex.

5 Conclusion

In this paper, we presented a non-perturbative energy decomposition analysis based on

absolutely localized MOs (ALMOs) that can exactly unravel the energy decrease and charge

rearrangements during the polarization (POL) process11 into additive contributions from

each molecule (or fragment) in a complex. The energy lowering, �EPOL, is the energy

change associated with on-fragment relaxation from isolated fragment orbital (the frozen

state;44 FRZ) subject to a fragment block-diagonal MO coe�cient matrix via the SCF-MI

procedure.18,21 In order to ensure a polarized state with a valid complete basis set limit,

fragment electric response functions (FERFs)11 are used as the polarizing virtual orbitals of

the frozen state for each fragment.

The computational cost of the polarization analysis is fairly small compared to the e↵ort

required to optimize the absolutely localized MOs (ALMOs) that define the polarized state.

The additional work is associated with 3 additional Fock matrix constructions to perform the

5-point quadrature in Eq.30 (the end-points are already available), as well as some relatively

inexpensive linear algebra steps that scale cubically with the size of each fragment. Therefore

the POL analysis can be routinely performed as part of an ALMO-EDA calculation, similarly

to the corresponding charge-transfer analysis.40

The resulting polarization analysis yields individual relaxation energies for each fragment

that sum exactly to �EPOL. Given that polarization is well-understood to be a many-body

process,42 how is this possible? The answer is that our polarization analysis yields an exact
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e↵ective one-body picture of the true many-body (polarization) process. One way to see

how this is possible is to consider a rearrangement of the many-body expansion (MBE):

Etot =
NX

i

Ei +
NX

i<j

�Eij +
NX

i<j<k

�Eijk +
NX

i<j<k<l

�Eijkl + · · · (54)

=
NX

i

�
Ei +�E

e↵
i

�
(55)

This rearrangement can be viewed as a further condensation of the e↵ective two-body inter-

actions,43 �E
e↵
ij . We are implicitly resumming many-body contributions (captured through

SCF-MI) to allow us to evaluate the e↵ective changes in 1-body energies due to polarization:

�E
e↵
i =

1

2

X

j 6=i

�Eij +
1

3

X

j<k 6=i

�Eijk +
1

4

X

j<k<l 6=i

�Eijkl + · · · (56)

=
1

2

X

j 6=i

�E
e↵
ij (57)

The one-body viewpoint is natural here because orbital relaxations corresponding to polar-

ization occur on a single fragment. Other exact fragment-wise decompositions also exist.72

In addition, we implemented a complementary occupied virtual orbital pair (COVP) anal-

ysis that can further disentangle the energy decrease and charge transfer of the polarization

process on a given fragment into contributions from important occupied-virtual pairs. In

addition we established a very useful and general phase convention for COVPs. This phase

convention allows intuitive connection between occupied and virtual orbital pairs: a region

with constructive interference (same sign) corresponds to electron flow into that region, while

regions with destructive interference (opposite sign) correspond to electron outflow.

A set of model examples, including the chloride water dimer, the water dimer, and

one PAH complexes revealed interesting aspects of the polarization process that appear

to be quite general. Specifically, we found that the polarization process cannot usually

be compactly described by only one or two COVPs as in CT interactions. We presented
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examples where POL involves more than six COVPs with comparable contributions. These

results demonstrate the polarization process as a complex and rather collective behavior

of the electrons of each fragment in response to the fields and overlaps generated by other

fragments. The most important COVPs typically correspond to the expected electrical

induction, where electron pairs on one fragment are attracted to local sources of positive

charge, or orient away from local sources of negative charge. We also found evidence for

COVPs that correspond to relief of Pauli repulsions that may be present when forming a

supersystem wavefunction from the frozen orbitals of the fragment. In repulsive regions of

a potential energy surface these contributions can contribute to �EPOL. While we have

concentrated on analyzing the distance dependence of the polarization contributions from

entire fragments, it is also possible to examine the behavior of the individual COVPs as long

as they can be followed. In principle, di↵erent COVPs could exhibit di↵erent decay behavior

if they correspond to di↵erent mechanisms, such as electrical induction versus relief of Pauli

repulsions.

In terms of limitations, the POL analysis reported here works well to provide insight

into the relative contributions of each fragments to �EPOL, and the key polarizing orbitals.

However, its success depends on the ability to separate a given complex into chemically

meaningful fragments: this dependence on reference state is important to bear in mind for

this analysis, as well as for EDA in general. As examples, the framework described here is

not natural for intramolecular polarization, or for a system such as F� · · ·H+ · · ·F� where

the most appropriate fragments change with geometry.
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