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We present a general kernel-based framework for learning operators between Banach spaces 
along with a priori error analysis and comprehensive numerical comparisons with popular neural 
net (NN) approaches such as Deep Operator Networks (DeepONet) [46] and Fourier Neural 
Operator (FNO) [45]. We consider the setting where the input/output spaces of target operator 
† ∶  →  are reproducing kernel Hilbert spaces (RKHS), the data comes in the form of partial 
observations 𝜙(𝑢𝑖), 𝜑(𝑣𝑖) of input/output functions 𝑣𝑖 = †(𝑢𝑖) (𝑖 = 1, … , 𝑁), and the measurement 
operators 𝜙 ∶  → ℝ𝑛 and 𝜑 ∶  → ℝ𝑚 are linear. Writing 𝜓 ∶ ℝ𝑛 →  and 𝜒 ∶ ℝ𝑚 → 
for the optimal recovery maps associated with 𝜙 and 𝜑, we approximate † with ̄ = 𝜒◦𝑓◦𝜙
where 𝑓 is an optimal recovery approximation of 𝑓 † ∶= 𝜑◦†◦𝜓 ∶ ℝ𝑛 → ℝ𝑚. We show that, 
even when using vanilla kernels (e.g., linear or Matérn), our approach is competitive in terms 
of cost-accuracy trade-off and either matches or beats the performance of NN methods on a 
majority of benchmarks. Additionally, our framework offers several advantages inherited from 
kernel methods: simplicity, interpretability, convergence guarantees, a priori error estimates, and 
Bayesian uncertainty quantification. As such, it can serve as a natural benchmark for operator 
learning.

1. Introduction

Operator learning is a well-established field going back at least to the 1970s with the articles [1,56] who introduced the reduced 
basis method as a way speeding up expensive model evaluations. In the most broad sense operator learning arises in the solution 
of stochastic PDEs [28], emulation of computer codes [37], reduced order modeling (ROM) [48], and numerical homogenization 
[61]. In recent years, and with the rise of machine learning, operator learning has become the focus of extensive research with 
the development of neural net (NN) methods such as Deep Operator Nets [46] and Fourier Neural Nets [45] among many others. 
While these NN methods are often benchmarked against each other [47], they are rarely compared with the aforementioned classical 
approaches. Furthermore, the theoretical analysis of NN methods is often limited to density/universal approximation results; showing 
the existence of a network of a requisite size achieving a certain error rate, without guarantees whether this network is computable 
in practice (see for example [20,41]).

In order to alleviate the aforementioned shortcomings we present a mathematical framework for approximation of mappings 
between Banach spaces using the theory of operator valued reproducing Kernel Hilbert spaces (RKHS) and Gaussian Processes (GPs). 
Our abstract framework is: (1) mathematically simple and interpretable, (2) convenient to implement, (3) encompasses some of the 
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Fig. 1. Commutative diagram of our operator learning setup.

classical approaches such as linear methods; and (4) comes with a priori error analysis and convergence theory. We further present 
extensive benchmarking of our kernel method with the DeepONet and FNO approaches and show that the kernel approach either 
matches or outperforms NN methods in most benchmark examples.

In the remainder of this section we give a summary of our methodology and results: We pose the operator learning problem 
in Subsection 1.1 before presenting a running example in Subsection 1.2 which is used to outline our proposed framework and 
main theoretical results in Subsections 1.3 and 1.4 as well as brief numerical results in Subsection 1.5. Our main contributions are 
summarized in Subsection 1.6 followed by a literature review in Subsection 1.7.

1.1. The operator learning problem

Let  and  be two (possibly infinite-dimensional) separable Banach spaces and suppose that

† ∶ →  (1.1)

is an arbitrary (possibly nonlinear) operator. Then, broadly speaking, the goal of operator learning is to approximate † from a finite 
number 𝑁 of input/output data on †. For our framework, we consider the setting where the input/output data are only partially 
observed through a finite collection of linear measurements which we formalize as follows:

Problem 1. Let {𝑢𝑖, 𝑣𝑖}𝑁𝑖=1 be 𝑁 elements of  ×  such that

†(𝑢𝑖) = 𝑣𝑖, for 𝑖 = 1,… ,𝑁 . (1.2)

Let 𝜙 ∶ →ℝ𝑛 and 𝜑 ∶  →ℝ𝑚 be bounded linear operators. Given the data {𝜙(𝑢𝑖), 𝜑(𝑣𝑖)}𝑁𝑖=1 approximate †.
1.2. Running example

To give context to the above problem and our solution method we briefly outline a running example to which the reader can 
refer to throughout the rest of this section. Consider the following elliptic PDE, which is of broad interest in geosciences and material 
science:{

−div 𝑒𝑢 ∇𝑣 =𝑤, in Ω,

𝑣 = 0, on 𝜕Ω ,
(1.3)

where Ω = (0, 1)2, 𝑢 ∈𝐻3(Ω), 𝑤 ∈𝐻1(Ω) and 𝑣 ∈𝐻3(Ω) ∩𝐻1
0 (Ω). For a fixed forcing term 𝑤, we wish to approximate the nonlinear 

operator mapping the diffusion coefficient 𝑢 to the solution 𝑣, i.e., † ∶ 𝑢 ↦ 𝑣. In this case we may take  ≡𝐻3(Ω) and  ≡𝐻3(Ω) ∩
𝐻1

0 (Ω). We further assume that a training data set is available in the form of limited observations of input-out pairs. As a canonical 
example, consider the evaluation bounded and linear operators

𝜙 ∶ 𝑢↦
(
𝑢(𝑋1), 𝑢(𝑋2),… , 𝑢(𝑋𝑛)

)𝑇
and 𝜑 ∶ 𝑣↦

(
𝑣(𝑌1), 𝑣(𝑌2),… , 𝑣(𝑌𝑚)

)𝑇
, (1.4)

where the {𝑋𝑗}𝑛𝑗=1 and {𝑌𝑗}𝑚𝑗=1 are distinct collocation points in the domain Ω as well as pairs {𝑢𝑖, 𝑣𝑖}𝑁𝑖=1 that satisfy the PDE (1.3). 
Then our goal is to approximate † from the training data set {𝜙(𝑢𝑖), 𝜑(𝑣𝑖)}𝑁𝑖=1.

1

1.3. The proposed solution

Our setup naturally gives rise to a commutative diagram depicted in Fig. 1. Here the map 𝑓 † ∶ℝ𝑛 →ℝ𝑚 explicitely defined as

𝑓 † ∶= 𝜑◦†◦𝜓 (1.5)

is a mapping between finite-dimensional Euclidean spaces, and is therefore amenable to numerical approximation. However, in order 
to approximate † we also need the reconstruction maps 𝜓 ∶ℝ𝑛 → and 𝜒 ∶ℝ𝑚 →  .

Our proposed solution is to endow  and  with an RKHS structure and use kernel/GP regression to identify the maps 𝜓 and 𝜒 . 
As a prototypical example we consider the situation where  is an RKHS of functions 𝑢 ∶ Ω →ℝ defined by a kernel 𝑄 ∶ Ω ×Ω →ℝ

1 Choosing 𝜙, 𝜑 as pointwise evaluation functionals is common to many applications, although our abstract framework readily accommodates other choices such 
2

as integral operators and basis projections.
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and  is an RKHS of functions 𝑢 ∶ 𝐷→ℝ defined by a kernel 𝐾 ∶ 𝐷 ×𝐷→ℝ. For our running example, we have 𝐷 =Ω, and we can 
take 𝑄 and 𝐾 to be Matérn like kernels, e.g., the Green’s function of elliptic PDEs (possibly on Ω or restricted to Ω) with appropriate 
regularity. One can also choose 𝑄, 𝐾 to be smoother kernels such that their RKHSs are embedded in  and  .

We then define 𝜓 and 𝜒 as the following optimal recovery maps2:

𝜓(𝑈 ) ∶= argmin
𝑤∈

‖𝑤‖𝑄 s.t. 𝜙(𝑤) =𝑈,

𝜒(𝑉 ) ∶= argmin
𝑤∈

‖𝑤‖𝐾 s.t. 𝜑(𝑤) = 𝑉 ,
(1.6)

where ‖ ⋅ ‖𝑄 and ‖ ⋅ ‖𝐾 are the RKHS norms arising from their pertinent kernels.

In the case where 𝜙 and 𝜑 are pointwise evaluation maps (𝜙(𝑢) = (𝑢(𝑋1), … , 𝑢(𝑋𝑛)) and 𝜑(𝑣) = (𝑣(𝑌1), … , 𝑣(𝑌𝑚)) where the 𝑋𝑖 and 
𝑌𝑗 are pairwise distinct collocation points in Ω and 𝐷), our optimal recovery maps can be expressed in closed form using standard 
representer theorems for kernel interpolation [71]:

𝜓(𝑈 )(𝑥) =𝑄(𝑥,𝑋)𝑄(𝑋,𝑋)−1𝑈, 𝜒(𝑉 )(𝑦) =𝐾(𝑦, 𝑌 )𝐾(𝑌 ,𝑌 )−1𝑉 , (1.7)

where 𝑄(𝑋, 𝑋) and 𝐾(𝑌 , 𝑌 ) are kernel matrices with entries 𝑄(𝑋, 𝑋)𝑖𝑗 =𝑄(𝑋𝑖, 𝑋𝑗 ) and 𝐾(𝑌 , 𝑌 )𝑖𝑗 =𝐾(𝑌𝑖, 𝑌𝑗 ) respectively, while 𝑄(𝑥, 𝑋)
and 𝐾(𝑦, 𝑌 ) denote row-vector fields with entries 𝑄(𝑥, 𝑋)𝑖 =𝑄(𝑥, 𝑋𝑖) and 𝐾(𝑦, 𝑌 )𝑖 =𝐾(𝑦, 𝑌𝑖).

We further propose to approximate 𝑓 † by optimal recovery in a vector-valued RKHS. Let Γ ∶ ℝ𝑛 ×ℝ𝑛 → (ℝ𝑚) be a matrix valued 
kernel [3]; here (ℝ𝑚) is the space of 𝑚 ×𝑚 matrices) with RKHS Γ equipped with the norm ‖ ⋅ ‖Γ3 and proceed to approximate 𝑓 †

by the map 𝑓 defined as

𝑓 ∶= argmin
𝑓∈Γ

‖𝑓‖Γ s.t. 𝑓 (𝜙(𝑢𝑖)) = 𝜑(𝑣𝑖) for 𝑖 = 1,… ,𝑁.

A simple and practical choice for Γ is the diagonal kernel

Γ(𝑈,𝑈 ′) = 𝑆(𝑈,𝑈 ′)𝐼 (1.8)

where 𝑆 ∶ ℝ𝑛 × ℝ𝑛 → ℝ is an arbitrary scalar-valued kernel, such as RBF, Laplace, or Matérn, and 𝐼 is the 𝑚 × 𝑚 identity matrix. 
More complicated choices, such as sums of kernels or replacing the identity matrix for a fixed positive definite matrix, implying 
correlations between various input or output correlations, are also possible. However, these may lead to greater computational 
cost and we observe empirically that the simple choice of the identity matrix already provides good performance. Then we can 
approximate the components of 𝑓 via the independent optimal recovery problems

𝑓𝑗 ∶= argmin
𝑔∈𝑆

‖𝑔‖𝑆 s.t. 𝑔(𝜙(𝑢𝑖)) = 𝜑𝑗 (𝑣𝑖), for 𝑖 = 1,… ,𝑁 (1.9)

for 𝑗 = 1, … , 𝑚. Here we wrote 𝜑𝑗(𝑣𝑖) for the entry 𝑗 of the vector 𝜑(𝑣𝑖) and, as our notation suggests, 𝑆 is the RKHS of 𝑆 equipped 
with the norm ‖ ⋅ ‖𝑆 . Since (1.9) is a standard optimal recovery problem, each 𝑓𝑗 can be identified by the usual representer formula:

𝑓𝑗 (𝑈 ) = 𝑆(𝑈,𝐔)𝑆(𝐔,𝐔)−1𝐕⋅,𝑗 , (1.10)

where 𝐔 ∶= (𝜙(𝑢1), … , 𝜙(𝑢𝑁 )) and 𝐕⋅,𝑗 ∶= (𝜑𝑗 (𝑣1), … , 𝜑𝑗 (𝑣𝑁 ))𝑇 and 𝑆(𝑈, 𝐔) is a block-vector and 𝑆(𝐔, 𝐔) is a block-matrix defined in 
an analogous manner to those in (1.7). By combining equations (1.7) and (1.10) we obtain the operator

̄ ∶= 𝜒◦𝑓◦𝜙 (1.11)

as an approximation to †. We provide further details and generalize the proposed framework in Section 2 to the setting where 𝜙
and 𝜑 are obtained from arbitrary linear measurements (e.g., integral operators as in tomography) and  and  may not be spaces 
of continuous functions.

1.4. Convergence guarantee

Under suitable regularity assumptions on †, our method comes with worst-case convergence guarantees as the number of data 
points 𝑁 , i.e., input-output pairs and the number of collocations points 𝑛 and 𝑚 go to infinity. We present here a condensed version 
of this result and defer the proof to Section 3. Below we write 𝐵𝑅() for the ball of radius 𝑅 > 0 in a normed space .

Theorem 1.1 (Condensed version of Theorem 3.4). Suppose it holds that:

(1.1.1) (Regularity of the domains Ω and 𝐷) Ω and 𝐷 are compact sets of finite dimensions 𝑑Ω and 𝑑𝐷 and with Lipschitz boundary.

2 It is possible to define the optimal recovery maps 𝜓, 𝜒 in the setting where 𝜙 and 𝜓 are nonlinear, following the general framework of [14,59,60]. However, in 
this setting the closed form formulae (1.7) no longer hold.
3

3 See Appendix A for a review of operator-valued kernels or the reference [36].
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Fig. 2. Example of training data and test prediction and pointwise errors for the Darcy flow problem (1.3). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

(1.1.2) Regularity of the kernels 𝑄 and 𝐾 . Assume that 𝑄 ⊂𝐻
𝑠(Ω) and 𝐾 ⊂𝐻

𝑡(𝐷) for some 𝑠 > 𝑑Ω∕2 and some 𝑡 > 𝑑𝐷∕2 with inclusions 
indicating continuous embeddings.

(1.1.3) (Space filling property of collocation points)The fill distance between the collocation points {𝑋𝑖}𝑛𝑖=1 ⊂ Ω and the {𝑌𝑗}𝑚𝑗=1 ⊂ 𝐷 goes 
to zero as 𝑛 →∞ and 𝑚 →∞.

(1.1.4) (Regularity of the operator †) The operator † is continuous from 𝐻𝑠′ (Ω) to 𝐾 for some 𝑠′ ∈ (0, 𝑠) as well as from  to  and 
all its Fréchet derivatives are bounded on 𝐵𝑅(𝑄) for any 𝑅 > 0.

(1.1.5) (Regularity of the kernels 𝑆𝑛) Assume that for any 𝑛 ≥ 1 and any compact subset Υ of ℝ𝑛, the RKHS of 𝑆𝑛 restricted to Υ is 
contained in 𝐻𝑟(Υ) for some 𝑟 > 𝑛∕2 and contains 𝐻𝑟′ (Υ) for some 𝑟′ > 0 that may depend on 𝑛.

(1.1.6) (Resolution and space-filling property of the data) Assume that for 𝑛 sufficiently large, the data points (𝑢𝑖)𝑁𝑖=1 ⊂ 𝐵𝑅(𝑄) belong to 
the range of 𝜓𝑛 and are space filling in the sense that they become dense in 𝜙𝑛(𝐵𝑅(𝑄)) as 𝑁 →∞.

Then, for all 𝑡′ ∈ (0, 𝑡),

lim
𝑛,𝑚→∞

lim
𝑁→∞

sup
𝑢∈𝐵𝑅(𝑄)

‖†(𝑢) − 𝜒𝑚◦𝑓𝑚,𝑛
𝑁

◦𝜙𝑛(𝑢)‖𝐻𝑡′ (𝐷) → 0 , (1.12)

where our notation makes the dependence of 𝜓, 𝜙, 𝜒, 𝑆 and 𝑓 on 𝑛, 𝑚 and 𝑁 explicit.

We note that Assumptions (1.1.1)–(1.1.3) are standard, and concern the accuracy of the optimal recovery maps 𝜙𝑛 and 𝜒𝑚
as 𝑛, 𝑚 → ∞. Assumptions (1.1.4)–(1.1.5) are less standard and amount to regularity assumptions on the map † while Assump-

tion (1.1.6) concerns the acquisition and regularity of the training data set.

In Section 3 we also present Theorem 3.3 as the quantitative analogue of the above result which characterizes how the speed 
of convergence depends on the regularity of the operator † and the choice of 𝜙 and 𝜑 in the setting of pointwise measurement 
operators. We also comment on how this analysis could be extended to other linear measurements.

1.5. Numerical framework

Returning to our running example, we implement the proposed framework for learning the non-linear operator mapping 𝑢 to 𝑣 in 
(1.3). We consider 1000 inputs and outputs of 𝑢 and 𝑣. The data is taken from [47] and the experimental setup is discussed further 
in Subsection 4.3.2. We take 𝜑 to be of the form (1.4) with 𝑚 = 841 while we define 𝜙 through a PCA pre-processing step. More 
precisely, let 𝜙pointwise be of the form (1.4) with 𝑛 = 841. Choose 𝑛PCA = 202 (this value captures 95% of the empirical variance of our 
training data) and define

𝜙(𝑢) = ΠPCA◦𝜙pointwise(𝑢) ∈ℝ202. (1.13)

In other words, we take our 𝜙 map to be the linear map that computes the first 202 PCA coefficients of the input functions 𝑢 given 
on a uniform grid; observe that we do not use PCA pre-processing on the output data here although we do this for some of our other 
examples in Section 4 for better performance.

With 𝜙 and 𝜑 identified (recall Fig. 1) we proceed to implement our kernel method using the simple choice of a diagonal kernel 
𝑆(𝑈, 𝑈 ′)𝐼 where 𝑆 is a rational quadratic (RQ) kernel (see Appendix C). This choice transforms the problem into 841 independent 
kernel regression problems, each corresponding to one component of 𝑓 † (i.e., the 𝑓 †

𝑗
’s).

We used the PCA and kernel regression modules of the scikit-learn Python library [65] to implement our algorithm. This 
implementation automatically selects the best kernel parameters by maximizing the marginal likelihood function [67] jointly for all 
problems. Our proposed method can therefore be implemented conveniently using off-the-shelf software. Fig. 2 illustrates examples 
of the inputs and outputs of our operator learning problem. Despite the simple implementation of our method, we are able to obtain 
competitive accuracy as shown in Table 1 where the relative testing 𝐿2 loss of our method is compared to other popular algorithms. 
Moreover, our approach is amenable to well-known numerical analysis techniques, such as sparse or low-rank approximation of 
kernel matrices, to reduce its complexity. For the present example (and those in Section 4) we only consider “vanilla” kernel methods 
4

which compute (1.10) by computing the full Cholesky factors of the matrix 𝑆(𝐔, 𝐔).
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Table 1

The 𝐿2 relative test error of the Darcy flow problem 
in our running example. The kernel approach is com-

pared with variations of DeepONet and FNO. Results 
of our kernel method are presented below the dashed 
line with the pertinent choice of the kernel 𝑆.

Method Accuracy

DeepONet 2.91%

FNO 2.41%

POD-DeepONet 2.32%

Linear 6.74%

Rational quadratic 2.87%

1.6. Summary of contributions

The main results of the article concern the properties, performance, and error analysis of the map ̄ defined in (1.11). Our 
contributions can be summarized under four categories:

1. An abstract kernel framework for operator learning: In Section 2, we propose a framework for operator learning using kernel 
methods with several desirable properties. A family of methods of increasing complexity is proposed that includes linear models 
and diagonal kernels as well as non-diagonal kernels which capture output correlations. These properties make our approach 
ideal for benchmarking purposes. Furthermore, the methodology is: (i) applicable to any choice of the linear functionals 𝜑 and 
𝜙; (ii) minimax optimal with respect to an implicitly defined operator-valued kernel; and (iii) is mesh-invariant. We emphasize 
in Remark 2.1 that our optimal recovery maps can be applied to any operator learning after training to obtain a mesh-invariant 
pipeline.

2. Error analysis and convergence rates for ̄: In Section 3, we develop rigorous worst-case a priori error bounds and conver-

gence guarantees for our method: Theorem 3.3 provides quantitative error bounds while Theorem 3.4 (the detailed version of 
Theorem 3.3) shows the convergence of ̄→  under appropriate conditions.

3. A simple to use vanilla kernel method: While our abstract kernel method is quite general, our numerical implementation in 
Section 4 focuses on a simple, easy-to-implement version using diagonal kernels of the form (1.8). Off-the-shelf software, such as 
the kernel regression modules of scikit-learn, can be employed for this task. We empirically observe low training times and 
robust choice of hyperparameters. These properties further suggest that kernel methods are a good baseline for benchmarking of 
more complex methods.

4. Competitive performance. In Section 4 we present a series of numerical experiments on benchmark PDE problems from the 
literature and observe that our simple implementation of the kernel approach is competitive in terms of complexity-accuracy 
tradeoffs in comparison to several NN-based methods. Since kernel methods can be interpreted as an infinite-width, one-layer 
NN, the results raise the question of how much of a role the depth of a deep NN plays in the performance of algorithms for the 
purposes of operator learning.

1.7. Review of relevant literature

In the most broad sense, operator learning is the problem of approximating a mapping between two infinite-dimensional function 
spaces [9,19]. In recent years, this problem has become an area of intense research in the scientific machine learning community 
with a particular focus on parametric or stochastic PDEs. However, the approximation of such parameter to solution maps has been 
an area of intense research in the computational mathematics and engineering communities, going back at least to the reduced 
basis method introduced in the 1970s [1,56] as a way of speeding up the solution of families of parametric PDEs in applications 
that require many PDE solves such as design [21,52,8,10], uncertainty quantification (UQ) [72,51,35], and multi-scale modeling 
[76,27,26,42]. In what follows we give a brief summary of the various areas and methodologies that overlap with operator learning; 
we cannot provide an exhaustive list of references due to space, but refer the reader to key contributions and surveys where further 
references can be found.

Deep learning techniques The use of NNs for operator learning goes back at least to the 90s and the seminal works of Chen and Chen 
[13,12] who proved a universal approximation theorem for NN approximations to operators. The use and design of NNs for operator 
learning has become popular in the last five years as a consequence of growing interest in NNs for scientific computing starting with 
the article [81] which used autoencoders to build surrogates for UQ of subsurface flow models. Since then many different approaches 
have been proposed some of which use specific architectures or target particular families of PDEs [33,39,45,38,46,29,11,44,40]. The 
most relevant of among these methods to our proposed framework are the DeepONet family [46,74,47,75], FNO [45], and PCA-Net 
[33,9] where the main novelty appears to be the use of novel, flexible, and expressive NN architectures that allow the algorithm to 
learn and adapt the bases that are selected for the input and outputs of the solution map as well as possible nonlinear dependencies 
between the basis coefficients. Although not part of our comparisons, we note that [22–24] obtained competitive accuracy by using 
5

deep neural networks with architectures inspired by conventional fast solvers.
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Classical numerical approximation methods Operator learning has been the subject of intense research in the computational mathe-

matics literature in the context of stochastic Galerkin methods [28,80], polynomial chaos [78,79], reduced basis methods [56,49]

and numerical homogenization [63,57,61,2]. In the setting of stochastic and parametric PDEs, the goal is often to approximate the 
solution of a PDE as a function of a random or uncertain parameter. The well-established approach to such problems is to pick or con-

struct appropriate bases for the input parameter and the solution of the PDE and then construct a parametric, high-dimensional map, 
that transforms the input basis coefficients to the output coefficients. Well-established methods such as polynomial chaos, stochastic 
finite element methods, reduced basis methods [28,78,18,34,48] fall within this category. A vast amount of literature in applied 
mathematics exists on this subject, and the theoretical analysis of these methods is extensive; see for example [7,16,17,55,54,30]

and references therein.

Operator compression For solving PDEs, the objectives of operator learning are also similar to those of operator compression [25,44]

as formulated in numerical homogenization [61,2] and reduced order modeling (ROM) [4,48], i.e., the approximation of the solution 
operator from pairs of solutions and source/forcing terms. While both ROM and numerical homogenization seek operator compression 
through the identification of reduced basis functions that are as accurate as possible (this translates into low-rank approximations 
with SVD and its variants [11]), numerical homogenization also requires those functions to be as localized as possible [50] and in 
turn leverages both low rank and sparse approximations. These localized reduced basis functions are known as Wannier functions in 
the physics literature [53], and can be interpreted as linear combinations of eigenfunctions that are localized in both frequency space 
and the physical domain, akin to wavelets. The hierarchical generalization of numerical homogenization [58] (gamblets) has led to 
the current state-of-the-art for operator compression of linear elliptic [68,70] and parabolic/hyperbolic PDEs [64]. In particular, for 
arbitrary (and possibly unknown) elliptic PDEs [69] shows that the solution operator (i.e., the Green’s function) can be approximated 
in near-linear complexity to accuracy 𝜖 from only (log𝑑+1( 1

𝜖
)) solutions of the PDE.

GP emulators In the case where the range of the operator of interest is finite dimensional, then operator learning coincides with 
surrogate modeling techniques that were developed in the UQ literature, such as GP surrogate modeling/emulation [37,6]. When 
the kernels of the underlying GPs are also learned from data [62,15], GP surrogate modeling has been shown to offer a simple, 
low-cost, and accurate solution to learning dynamical systems [32], geophysical forecasting [31], and radiative transfer emulation 
[73], and the inference of the structure of convective storms from passive microwave observations [66]. Indeed, our proposed kernel 
framework for operator learning can be interpreted as an extension of these well-established GP surrogates to the setting where the 
range of the operator is a function space.

1.8. Outline of the article

The remainder of the article is organized as follows: We present our operator learning framework in Section 2 for the generalized 
setting where 𝜙, 𝜑 can be any collection of bounded and linear operators along with an interpretation of our method from the GP 
perspective. Our convergence analysis and quantitative error bounds are presented in Section 3 where we present the full version 
of Theorem 3.4. Our numerical experiments, implementation details, and benchmarks against FNO and DeepONet are collected in 
Section 4. We discuss future directions and open problems in Section 5. The appendix collects a review of operator valued kernels 
and GPs along with other auxiliary details.

2. The RKHS/GP framework for operator learning

We now present our general kernel framework for operator learning, i.e., the proposed solution to Problem 1. We emphasize that 
here we do not require the spaces  and  to be spaces of continuous functions and in particular, we do not require the maps 𝜙 and 
𝜑 to be obtained from pointwise measurements. To describe this, we will introduce the dual spaces of  and  to define optimal 
recovery with respect to kernel operators rather than just kernel functions.

Write  ∗ and ∗ for the duals of  and  , and write [⋅, ⋅] for the pertinent duality pairings. Assume that  is endowed with a 
quadratic norm ‖ ⋅‖𝑄, i.e., there exists a linear bijection 𝑄 ∶ ∗ → that is symmetric ([𝜙𝑎, 𝑄𝜙𝑏] = [𝜙𝑏, 𝑄𝜙𝑎]), positive ([𝜙𝑎, 𝑄𝜙𝑎] > 0
for 𝜙𝑎 ≠ 0), and such that ‖𝑢‖2

𝑄
= [𝑄−1𝑢, 𝑢], ∀𝑢 ∈ .

As in [61, Ch. 11], although  , and  ∗ are also Hilbert spaces under ‖ ⋅ ‖𝑄 and its dual norm ‖ ⋅ ‖∗
𝑄

(with inner products ⟨
𝑢, 𝑣

⟩
𝑄
= [𝑄−1𝑢, 𝑣] and 

⟨
𝜙𝑎, 𝜙𝑏

⟩∗
𝑄
= [𝜙𝑎, 𝑄𝜙𝑏]), we will keep using the Banach space terminology to emphasize the fact that our dual 

pairings will not be based on the inner product through the Riesz representation theorem, but on a different realization of the dual 
space, as this setting is more practical.

If  is a space of continuous functions on a subset Ω ⊂ℝ𝑑Ω then  ∗ contains delta Dirac functions and, to simplify notations, we 
also write 𝑄(𝑥, 𝑦) ∶= [δ𝑥, 𝑄δ𝑦] for 𝑥, 𝑦 ∈ℝ𝑑Ω to denote the kernel induced by the operator 𝑄. Note that in that case,  is a RKHS with 
norm ‖ ⋅ ‖𝑄 induced by the kernel 𝑄. Since 𝜙 is bounded and linear, its entries 𝜙𝑖 (write 𝜙 ∶= (𝜙1, … , 𝜙𝑛)) must be elements of  ∗. 
We assume those elements to be linearly independent. Write 𝜓 ∶ ℝ𝑛 → for the linear operator defined by
6

𝜓(𝑌 ) ∶= (𝑄𝜙)𝑄(𝜙,𝜙)−1𝑌 for 𝑌 ∈ℝ𝑛, (2.1)
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where we write 𝑄(𝜙, 𝜙) for the 𝑛 × 𝑛 symmetric positive definite (SPD) matrix with entries 𝑄(𝜙𝑖, 𝜙𝑗 ) ∶= [𝜙𝑖, 𝑄𝜙𝑗 ]4 and 𝑄𝜙 for 
(𝑄𝜙1, … , 𝑄𝜙𝑛) ∈  𝑛. As described in [61, Chap. 11], for 𝑢 ∈  , given 𝜙(𝑢) = 𝑌 , 𝜓(𝑌 ) is the minmax optimal recovery of 𝑢 when 
using the relative error in ‖ ⋅ ‖𝑄-norm as a loss.

Similarly, assume that  is endowed with a quadratic norm ‖ ⋅ ‖𝐾 , defined by the symmetric positive linear bijection 𝐾 ∶ ∗ →  . 
Write 𝜑 ∶= (𝜑1, … , 𝜑𝑚) and assume the entries of 𝜑 to be linearly independent elements of ∗. Using the same notations as in (2.1)

write 𝜒 ∶ ℝ𝑚 →  for the linear operator defined by

𝜒(𝑍) ∶= (𝐾𝜑)𝐾(𝜑,𝜑)−1𝑍 for 𝑍 ∈ℝ𝑚 . (2.2)

Then, as above, for 𝑣 ∈  , given 𝜑(𝑣) =𝑍, 𝜒(𝑍) is the minmax optimal recovery of 𝑣 when using the relative error in ‖ ⋅ ‖𝐾 -norm as 
a loss.

Write (ℝ𝑚) for the space of bounded linear operators mapping ℝ𝑚 to itself, i.e., 𝑚 × 𝑚 matrices. Let Γ ∶ ℝ𝑛 × ℝ𝑛 → (ℝ𝑚) be 
a matrix-valued kernel [3] defining an RKHS Γ of continuous functions 𝑓 ∶ ℝ𝑛 → ℝ𝑚 equipped with an RKHS norm ‖ ⋅ ‖Γ. For 
𝑖 ∈ {1, … , 𝑁}, write 𝑈𝑖 ∶= 𝜙(𝑢𝑖) and 𝑉𝑖 ∶= 𝜑(𝑣𝑖). Write 𝐔 and 𝐕 for the block-vectors with entries 𝑈𝑖 and 𝑉𝑖. Write Γ(𝐔, 𝐔) for the 
𝑁 ×𝑁 block-matrix with entries Γ(𝑈𝑖, 𝑈𝑗 ) and assume Γ(𝑈, 𝑈 ) to be invertible (which is satisfied if Γ is non-degenerate and 𝑈𝑖 ≠ 𝑈𝑗
for 𝑖 ≠ 𝑗). Let 𝑓 † be an element of Γ and write 𝑓 †(𝐔) for the block vector with entries 𝑓 †(𝑈𝑖). Then given 𝑓 †(𝐔) =𝐕 it follows that

𝑓 (𝑈 ) ∶= Γ(𝑈,𝐔)Γ(𝐔,𝐔)−1𝐕 , (2.3)

is the minimax optimal recovery of 𝑓 † , where Γ(⋅, 𝐔) is the block-vector with entries Γ(⋅, 𝑈𝑖).
To this end, we propose to approximate the ground truth operator † with

̄ ∶= 𝜒◦𝑓◦𝜙 , (2.4)

also recall Fig. 1. Combining (2.2) and (2.3) we further infer that ̄ admits the following explicit representer formula

̄(𝑢) = (𝐾𝜑)𝐾(𝜑,𝜑)−1Γ(𝜙(𝑢),𝐔)Γ(𝐔,𝐔)−1𝐕. (2.5)

In the remainder of this section we will provide more details and observations regarding our approximate operator ̄ that is useful 
later in Section 3 and of independent interest.

2.1. The kernel and RKHS associated with ̄
The explicit formula (2.5) suggests that the operator ̄ is an element of an RKHS defined by an operator-valued kernel, which we 

now characterize. For 𝑢1, 𝑢2 ∈ and 𝑣 ∈  write

𝐺(𝑢1, 𝑢2)𝑣 ∶= (𝐾𝜑) (𝐾(𝜑,𝜑))−1Γ(𝜙(𝑢1), 𝜙(𝑢2))(𝐾(𝜑,𝜑))−1𝜑(𝑣). (2.6)

It turns out that 𝐺 ∶ × →() is a well-defined operator-valued kernel whose RKHS contains operators of the form ̄.

Proposition 2.1. The kernel 𝐺 in (2.6) is an operator-valued kernel. Write 𝐺 for its RKHS and ‖ ⋅ ‖𝐺 for the associated norm. Then it 
holds that  ∈𝐺 if and only if  = 𝜒◦𝑓◦𝜙 for 𝑓 = 𝜑◦◦𝜓 ∈Γ and ‖‖𝐺 = ‖𝑓‖Γ.

Proof. Since 𝐺 is Hermitian and positive, we deduce that 𝐺 is an operator-valued kernel. Indeed for 𝑢̃1, … , ̃𝑢𝑚 ∈ and 𝑣̃1, … , ̃𝑣𝑚 ∈  , 
using 

⟨
𝑣̃𝑖, 𝐾𝜑𝑠

⟩
𝐾
= 𝜑𝑠(𝑣̃𝑖) and the fact that Γ is a matrix-valued kernel we have⟨

𝑣̃𝑖,𝐺(𝑢̃𝑖, 𝑢̃𝑗 )𝑣̃𝑗
⟩
𝐾
= 𝜑(𝑣̃𝑖)𝑇 (𝐾𝜑) (𝐾(𝜑,𝜑))−1Γ(𝜙(𝑢̃𝑖), 𝜙(𝑢̃𝑗 ))(𝐾(𝜑,𝜑))−1𝜑(𝑣̃𝑗 )

=
⟨
𝐺(𝑢̃𝑗 , 𝑢̃𝑖)𝑣̃𝑖, 𝑣̃𝑗

⟩
𝐾
,

(2.7)

where we used 
⟨
𝑣̃𝑖, 𝐾𝜑𝑠

⟩
𝐾
= 𝜑𝑠(𝑣̃𝑖) and the fact that Γ is a matrix-valued kernel. Furthermore, summing (2.7), we deduce that ∑𝑚

𝑖,𝑗=1
⟨
𝑣̃𝑖, 𝐺(𝑢̃𝑖, ̃𝑢𝑗 )𝑣̃𝑗

⟩
𝐾
≥ 0. From (2.6) we infer

𝑚∑
𝑗=1

𝐺(𝑢, 𝑢̃𝑗 )𝑣̃𝑗 = 𝜒◦𝑓◦𝜙(𝑢) (2.8)

with the function

𝑓 (𝑈 ) =
𝑚∑
𝑗=1

Γ(𝑈,𝜙(𝑢̃𝑗 ))(𝐾(𝜑,𝜑))−1𝜑(𝑣𝑗 ) . (2.9)

4 For linear measurements involving derivatives the computation of these kernel matrices requires the computation of derivatives of the kernels; see [14] for 
7

practical examples and considerations.
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Furthermore using the reproducing property of 𝐺 and (2.7) we have ‖‖‖∑𝑚
𝑗=1𝐺(𝑢, 𝑢̃𝑗 )𝑣̃𝑗

‖‖‖2𝐺 = ‖𝑓‖2Γ. Therefore the closure of the space of 
operators of the form (2.8) with respect to the RKHS norm induced by 𝐺 is the space of functions of the form 𝜒◦𝑓◦𝜙 where 𝑓 lives 
in the closure of functions of the form (2.9) with respect to the RKHS norm induced by Γ. We deduce that 𝐺 = {𝜒◦𝑓◦𝜙 ∣ 𝑓 ∈Γ}. 
The uniqueness of 𝑓 in the representation  = 𝜒◦𝑓◦𝜙 for 𝑓 ∈ 𝐺 follows from 𝑓 = 𝜑◦◦𝜓 following the identities 𝜑◦𝜒 = 𝐼𝑑 and 
𝜙◦𝜓 = 𝐼𝑑 . ■

Using the above result we can further characterize ̄ and 𝑓 via optimal recovery problems in 𝐺 and Γ respectively. In what 
follows we will write 𝐮 for the 𝑁 vector whose entries are the 𝑢𝑖, and (𝐮) for the 𝑁 vector whose entries are †(𝑢𝑖).

Proposition 2.2. The operator ̄ is the minimizer of{
Minimize ‖‖2

𝐺

Over  ∈𝐺 such that 𝜑◦(𝐮) = 𝜑◦†(𝐮) , (2.10)

while the map 𝑓 is the minimizer of{
Minimize ‖𝑓‖2Γ
Over 𝑓 ∈Γ such that 𝑓◦𝜙(𝐮) = 𝜑◦†(𝐮) . (2.11)

Proof. By Proposition 2.1 𝐺̄ is completely identified by 𝑓 and ‖𝐺̄‖𝐺 = ‖𝑓‖Γ. Then solving (2.10) is equivalent to solving (2.11). The 
statement regarding 𝑓 follows directly from representer formulae for optimal recovery with matrix-valued kernels. ■

2.2. Regularizing 𝐺̄ by operator regression

As is often the case with optimal recovery/kernel regression the estimator for 𝑓 in (2.3) is susceptible to numerical error due 
to ill-conditioning of the kernel matrix Γ(𝐔, 𝐔). To overcome this issue we regularize our estimator by adding a small diagonal 
perturbation to this matrix. More precisely, let 𝛾 > 0 and write 𝐼 for the identity matrix. We then define the regularized map

𝑓𝛾 (𝑈 ) ∶= Γ(𝑈,𝐔)
(
Γ(𝐔,𝐔) + 𝛾𝐼

)−1𝐕 . (2.12)

This regularized map gives rise to the regularized approximate operator

̄𝛾 ∶= 𝜒◦𝑓𝛾◦𝜙 ,
which admits the following representer formula

̄𝛾 (𝑢) = (𝐾𝜑)𝐾(𝜑,𝜑)−1Γ(𝜙(𝑢),𝐔)
(
Γ(𝐔,𝐔) + 𝛾𝐼

)−1𝐕 . (2.13)

We can further characterize this operator as the solution to an operator regression problem.

Proposition 2.3. ̄𝛾 is the solution to

Minimize ∈𝐺‖‖2
𝐺
+ 𝛾−1|𝜑◦(𝐮) −𝜑◦†(𝐮)|2. (2.14)

Proof. By Proposition 2.1,  = 𝜒◦𝑓◦𝜙 solves (2.14) if and if 𝑓 solves

Minimize 𝑓∈Γ
‖𝑓‖2Γ + 𝛾−1|𝑓 (𝐔) −𝐕|2 . (2.15)

It then follows, by standard representer theorems for matrix-valued kernel regression (see Section A.5) that 𝑓𝛾 is the minimizer of 
(2.15). ■

2.3. Interpretation as conditioned operator valued GPs

Our kernel approach to operator learning has a natural GP regression interpretation that is compatible with Bayesian inference 
and UQ pipelines. We present some facts and observations in this direction.

Write 𝜉 ∼ (0, 𝐺) for the centered operator-valued GP with covariance kernel 𝐺5 and 𝜁 ∼ (0, Γ) for a centered vector valued GP 
with covariance kernel Γ. Then it is straightforward to show that the law of 𝜉 is equivalent to that of 𝜒◦𝜁◦𝜙. Let 𝑍 = (𝑍1, … , 𝑍𝑁 ) be 
a random block-vector, independent from 𝜉, with i.i.d. entries 𝑍𝑗 ∼ (0, 𝛾𝐼𝑚) for 𝑗 = 1, … , 𝑁 ; here 𝛾 ≥ 0 and 𝐼𝑚 is the 𝑚 ×𝑚 identity 
matrix.
8

5 See Appendix A.6 for a review of operator valued GPs.
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Fig. 3. Generalization of Fig. 1 to the mesh invariant setting where the measurement functionals are different at test time.

Then 𝜉 conditioned on 𝜑◦𝜉(𝐮) = 𝜑(𝐯) +𝑍 is an operator-valued GP with mean ̄𝛾 , as in (2.13), and conditional covariance kernel

𝐺⟂(𝑢, 𝑢′)𝑣 = (𝐾𝜑) (𝐾(𝜑,𝜑))−1Γ(𝜙(𝑢1), 𝜙(𝑢2))(
Γ(𝜙(𝑢), 𝜙(𝑢′)) − Γ(𝜙(𝑢),𝐔)(Γ(𝐔,𝐔) + 𝛾𝐼)−1Γ(𝐔, 𝜙(𝑢′))

)
(𝐾(𝜑,𝜑))−1𝜑(𝑣)

Furthermore, the law of 𝜉 conditioned on 𝜑◦𝜉(𝐮) = 𝜑(𝐯) + 𝑍 is equivalent to that of 𝜒◦𝜁⟂◦𝜙 where 𝜁⟂ ∼  (𝑓𝛾 , Γ⟂) is the GP 𝜁
conditioned on 𝜁 (𝐔) =𝐕 +𝑍′, whose mean is 𝑓𝛾 as in (2.12) and conditional covariance kernel is

Γ⟂(𝑈,𝑈 ′) = Γ(𝑈,𝑈 ′) − Γ(𝑈,𝐔)(Γ(𝐔,𝐔) + 𝛾𝐼)−1Γ(𝐔,𝑈 ′).

We also use the GP approach to derive an alternative regularization of (2.14) in Appendix B.

2.4. Measurement and mesh invariance

As argued in [45], mesh invariance is a key property for operator learning methods, i.e., the learned operator should be gen-

eralizable at test time beyond the specific discretization that was used during training. In our framework, this translates to being 
able to predict the output of a test input function 𝑢̃ given only a linear measurement 𝜙̃(𝑢̃), where 𝜙̃ was unknown at training time. 
For example 𝜙̃ could be of the same form as 𝜙 (say (1.4)) but on a finer or coarser grid. Similarly, we may choose to output with 
an operator 𝜑̃ which is a coarse/fine version of 𝜑. Our proposed framework can easily provide mesh invariance using additional 
optimal recovery and measurement operators at the input and outputs of the operator ̄ as depicted in Fig. 3. In fact, we can not 
only accommodate modification of the grid but completely different measurement operators at testing time. For example, while 𝜙, 𝜑
may be of the form (1.4) we may take 𝜙̃ and 𝜑̃ to be integral operators such as Fourier or Radon transforms.

Let us describe our approach to mesh invariance in detail. Given bounded and linear operators 𝜙̃ ∶ →ℝ𝑛̃ and 𝜑̃ ∶  →ℝ𝑚̃ we can 
approximate 𝜑̃(†(𝑢̃)) using the map 𝑓 obtained from (2.3) defined in terms of our training. To achieve mesh invariance we simply 
need a consistent approach to interpolate/extend the testing measurement operators to those used for training and we achieve this 
using the optimal recovery map 𝜓̃ that is defined from 𝜙̃ analogously to 𝜓 in (2.1). This setup gives rise to a natural approximation 
of † in terms of the function ℎ† ∶ ℝ𝑛̃ →ℝ𝑚̃ depicted in Fig. 3 which in turn can be approximated with ℎ̄ ∶= 𝜑̃◦𝜒◦𝑓◦𝜙◦𝜓̃ ≡ 𝜑̃◦̄◦𝜓̃ . 
This expression further gives rise to another approximation to † given by the operator ̃ = 𝜒◦ℎ̄◦𝜙̃.

Remark 2.1. Observe that the definition of ℎ̄ (and consequently ̄) is independent of the fact that 𝑓 is constructed using the kernel 
approach. Thus, the optimal recovery maps 𝜒 and 𝜓̃ can be used to retrofit any fixed-mesh operator learning algorithm, to become 
mesh-invariant and able to use arbitrary linear measurements of the function 𝑢̃ at test time.

3. Convergence and error analysis

In this section, we present convergence guarantees and rigorous a priori error bounds for our proposed kernel method for operator 
learning and give a detailed statement and proof of Theorem 3.3. We assume that 𝑄 is a space of continuous functions from Ω ⊂ℝ𝑑Ω
and that 𝐾 is a space of continuous functions from 𝐷⊂ℝ𝑑𝐷 . Abusing notations we write 𝑄 ∶ Ω ×Ω →ℝ𝑑Ω and 𝐾 ∶𝐷 ×𝐷→ℝ𝑑𝐷 for 
the kernels induced by the operators 𝑄 and 𝐾 . Let 𝑋 = (𝑋1, … , 𝑋𝑛) ⊂Ω and 𝑌 = (𝑌1, … , 𝑌𝑚) ⊂𝐷 be distinct collections of points and 
define their fill-distances

ℎ𝑋 ∶= max
𝑥′∈Ω

min
𝑥∈𝑋

|𝑥− 𝑥′|, ℎ𝑌 ∶= max
𝑦′∈𝐷

min
𝑦∈𝑌

|𝑦− 𝑦′|.
This section focuses on operators 𝜙 and 𝜑 that are linear combinations of pointwise measurements in 𝑋 and 𝑌 . The presented results 
can be extended by using analogs of the sampling inequalities for other linear measurements, see [61, Theorem 4.11, Lemma 14.34]

for a general framework that allows one to obtain such inequalities.

Let 𝐿𝑄 and 𝐿𝐾 be invertible 𝑛 ×𝑛 and 𝑚 ×𝑚matrices. For 𝑢 ∈𝑄 write 𝑢(𝑋) for the 𝑛-vector with entries 𝑢(𝑋𝑖) and let 𝜙 ∶ 𝑄 →ℝ𝑛
be the bounded linear map defined by

𝜙(𝑢) =𝐿𝑄𝑢(𝑋) . (3.1)
9

For 𝑣 ∈𝐾 write 𝑣(𝑌 ) for the 𝑚-vector with entries 𝑣(𝑌𝑗 ) and let 𝜑 ∶ 𝐾 →ℝ𝑚 be the bounded linear map defined by
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𝜑(𝑣) =𝐿𝐾𝑣(𝑌 ) . (3.2)

Write ‖𝜙‖ ∶= sup𝑢∈𝑄 |𝜙(𝑢)|∕‖𝑢‖𝑄 and ‖𝜓‖ ∶= sup𝑈 ′∈ℝ𝑛 ‖𝜓(𝑈 ′)‖𝑄∕|𝑈 ′|, and similarly ‖𝜑‖ ∶= sup𝑣∈𝐾 |𝜑(𝑣)|∕‖𝑣‖𝐾 and ‖𝜒‖ ∶=
sup𝑉 ′∈ℝ𝑚 ‖𝜒(𝑉 ′)‖𝐾∕|𝑉 ′|. We will also assume the following regularity conditions on the domains Ω, 𝐷, the kernels 𝑄, 𝐾 , and the 
operator †.
Condition 3.1. Assume that the following conditions hold. )

(3.1.1) Ω and 𝐷 are compact sets with Lipschitz boundary.

(3.1.2) There exist indices 𝑠 > 𝑑Ω∕2 and 𝑡 > 𝑑𝐷∕2 so that 𝑄 ⊂ 𝐻
𝑠(Ω) and 𝐾 ⊂ 𝐻

𝑡(𝐷), with inclusions indicating continuous 
embeddings.

(3.1.3) † is a (possibly) nonlinear operator from 𝐻𝑠′ (Ω) to 𝐾 with 𝑠′ < 𝑠 that satisfies,

‖†(𝑢) − †(𝑣)‖𝐾 ≤ 𝜔(‖𝑢− 𝑣‖𝐻𝑠′ (Ω)

)
, (3.3)

where 𝜔 ∶ℝ →ℝ+ is the modulus of continuity of †.
Note that conditions (3.1.2) and 3.3 imply

‖†‖𝐵𝑅(𝑄)→𝐾 ∶= sup
𝑢∈𝐵𝑅(𝑄)

‖†(𝑢)‖𝐾 < +∞ .

Proposition 3.1. Suppose that Condition 3.1 holds. Let 0 < 𝑡′ < 𝑡. Then there exist constants ℎΩ, ℎ𝐷, 𝐶Ω, 𝐶𝐷 > 0 such that if ℎ𝑋 < ℎΩ and 
ℎ𝑌 < ℎ𝐷 , then

‖†(𝑢) − 𝜒◦𝑓 †◦𝜙(𝑢)‖𝐻𝑡′ (𝐷) ≤ 𝐶𝐷 𝜔
(
𝐶Ωℎ

𝑠−𝑠′
𝑋

𝑅
)
+𝐶𝐷 ℎ𝑡−𝑡

′
𝑌

(‖†(0)‖𝐾 +𝜔(𝐶Ω𝑅)
)
,

for any 𝑢 ∈ 𝐵𝑅(𝑄), where 𝑓 † is defined as in (1.5).

Proof. By the definition of 𝑓 † and the triangle inequality we have

‖†(𝑢) − 𝜒◦𝜑◦†◦𝜓†◦𝜙(𝑢)‖𝐻𝑡′ (Γ) ≤‖†(𝑢) − †◦𝜓◦𝜙(𝑢)‖𝐻𝑡′ (Γ)

+ ‖†◦𝜓◦𝜙(𝑢) − 𝜒◦𝜑◦†◦𝜓◦𝜙(𝑢)‖𝐻𝑡′ (Γ)

=∶ 𝑇1 + 𝑇2.

Let us first bound 𝑇1: By conditions (3.1.2) and 3.3, we have

𝑇1 ≤ 𝐶𝐷‖†(𝑢) − †◦𝜓◦𝜙(𝑢)‖𝐾 ≤ 𝐶𝐷𝜔
(‖𝑢−𝜓◦𝜙(𝑢)‖𝐻𝑠′ (Ω)

)
.

At the same time, since (𝑢 − 𝜓◦𝜙(𝑢))(𝑋) = 0, condition (3.1.1) and the sampling inequality for interpolation in Sobolev spaces [5, 
Thm. 4.1], and condition (3.1.2) imply that there exists a constant ℎΩ > 0 so that if ℎ𝑋 < ℎΩ then

‖𝑢−𝜓◦𝜙(𝑢)‖𝐻𝑠′ (Ω) ≤ 𝐶 ′
Ωℎ

𝑠−𝑠′
𝑋

‖𝑢−𝜓◦𝜙(𝑢)‖𝐻𝑠(Ω) ≤ 𝐶Ωℎ
𝑠−𝑠′
𝑋

‖𝑢−𝜓◦𝜙(𝑢)‖𝑄 , (3.4)

where 𝐶 ′
Ω, 𝐶Ω > 0 are constants that are independent of 𝑢. Using ‖𝑢 −𝜓◦𝜙(𝑢)‖𝑄 ≤ ‖𝑢‖𝑄 [61, Thm. 12.3] we deduce the desired bound

𝑇1 ≤ 𝐶𝐷𝜔
(
𝐶Ωℎ

𝑠−𝑠′
Ω ‖𝑢‖𝑄)

. (3.5)

Let us now bound 𝑇2: Once again, by the continuous embedding of condition (3.1.2) and the sampling inequality for interpolation in 
Sobolev spaces, we have that, there exists ℎ𝐷 > 0 so that if ℎ𝑌 < ℎ𝐷 , then for any 𝑣 ∈𝐻𝑡(𝐷) it holds that

‖𝑣− 𝜒◦𝜑(𝑣)‖𝐻𝑡′ (𝐷) ≤ 𝐶 ′
𝐷
ℎ𝑡−𝑡

′
𝑌

‖𝑣− 𝜒◦𝜑(𝑣)‖𝐻𝑡(𝐷) ≤ 𝐶𝐷ℎ𝑡−𝑡′𝑌
‖𝑣− 𝜒◦𝜑(𝑣)‖𝐾 ≤ 𝐶𝐷ℎ𝑡−𝑡′𝑌

‖𝑣‖𝐾 .
Taking 𝑣 ≡ †◦𝜓◦𝜙(𝑢), we deduce that

𝑇2 ≤ 𝐶𝐷ℎ𝑡−𝑡′𝑌
‖†◦𝜓◦𝜙(𝑢)‖𝐾,

≤ 𝐶𝐷ℎ𝑡−𝑡′𝑌

(‖†(0)‖𝐾 +𝜔(‖𝜓◦𝜙(𝑢)‖𝐻𝑠′ (Ω))
)
.

Using ‖𝜓◦𝜙(𝑢)‖𝐻𝑠′ (Ω) ≤ 𝐶Ω‖𝜓◦𝜙(𝑢)‖𝑄 ≤ 𝐶Ω‖𝑢‖𝑄 concludes the proof. ■

While Proposition 3.1 gives an error bound for the distance between the maps † and 𝜑◦𝑓 †◦𝜙, we can never compute this map 
when 𝑁 <∞ and so we have to approximate this map as well. Given the kernel Γ, our optimal recovery approximant for the map 𝑓 †
10

is 𝑓 as in (2.3), which we recall is the minimizer of (2.11).
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To proceed, we need to consider another intermediary problem that defines an approximation 𝑓 to the map 𝑓 †:

𝑓 ∶=

{
Minimize ‖𝑓‖2Γ
Over 𝑓 ∈Γ such that 𝑓◦𝜙(𝐮) = 𝑓 †◦𝜙(𝐮) .

(3.6)

We emphasize that the difference between the problems (2.11) and (3.6) is simply in the training data that is injected in the equality 
constraints, and this difference is quite subtle:

In practical applications, observations may be taken from †(𝑢𝑖), which is different from 𝑓 †◦𝜙(𝑢𝑖) ≡ 𝜑◦†◦𝜓◦𝜙(𝑢𝑖). To make our 
analysis simple, henceforth we assume the following condition on our input data.

Condition 3.2. The input data points 𝑢𝑖 satisfy

𝑢𝑖 = 𝜓◦𝜙(𝑢𝑖) for 𝑖 = 1,… ,𝑁 ,

We observe that this condition implies †(𝑢𝑖) = 𝑓 †◦𝜙(𝑢𝑖) and 𝑓 = 𝑓 . Removing this assumption requires bounding some norm of 
the error 𝑓 † − 𝑓 , and we postpone that analysis to a sequel paper as this step can become very technical.

The next step in our convergence analysis is then to control the error between the maps 𝑓 and 𝑓 † which we will achieve using 
similar arguments as in the proof of Proposition 3.1. For our analysis, we take Γ to be a diagonal, matrix-valued kernel, of the form 
(1.8) which we recall for reference

Γ(𝑈,𝑈 ′) = 𝑆(𝑈,𝑈 ′)𝐼 (3.7)

where 𝐼 is the 𝑚 ×𝑚 identity matrix and 𝑆 ∶ℝ𝑛 ×ℝ𝑛 →ℝ is a real valued kernel.

Proposition 3.2. Suppose that Condition 3.2 holds. Let Υ ⊂ℝ𝑛 be a compact set with Lipschitz boundary and consider 𝑈 = (𝑈1, … , 𝑈𝑁 ) ⊂Υ
with fill distance

ℎΥ ∶= max
𝑈 ′∈Υ

min
1≤𝑖≤𝑁 |𝑈𝑖 −𝑈 ′|.

Let Γ be of the form (3.7), with 𝑆 restricted to the set Υ, and suppose 𝑆 ⊂𝐻
𝑟(Υ) for 𝑟 > 𝑛∕2 and that 𝑓 †

𝑗 ∈𝑆 for 𝑗 = 1, … , 𝑚. Then there 
exist constants ℎ′Υ, 𝐶Υ > 0 so that whenever ℎΥ < ℎ′Υ then for any 𝑟′ < 𝑟 it holds that

‖𝑓 †
𝑗 − 𝑓𝑗‖𝐻𝑟′ (Υ) ≤ 𝐶Υℎ

𝑟−𝑟′
Υ ‖𝑓 †

𝑗 ‖𝑆 .
Proof. The proof is a direct consequence of the fact that the components of 𝑓 are given by the optimal recovery problems (3.6)

and the sampling inequality for interpolation in Sobolev spaces [5, Thm. 4.1] following the same arguments used in the proof of 
Theorem 3.1. ■

We can now combine the above results to obtain the following theorem.

Theorem 3.3. Suppose that Conditions 3.1 and 3.2 hold in addition to those of Proposition 3.2 with a set of inputs (𝑢𝑖)𝑁𝑖=1 ⊂ 𝐵𝑅(𝑄), the 
set Υ = 𝜙 

(
𝐵𝑅(𝑄)

)
, and index 𝑛∕2 < 𝑟′ < 𝑟. Then for any 𝑢 ∈𝐵𝑅(𝑄), it holds that

‖†(𝑢) − 𝜒◦𝑓◦𝜙(𝑢)‖𝐻𝑡′ (𝐷) ≤𝐶𝐷 𝜔
(
𝐶Ωℎ

𝑠−𝑠′
𝑋

𝑅
)
+𝐶𝐷 ℎ𝑡−𝑡

′
𝑌

(‖†(0)‖𝐾 +𝜔(𝐶Ω𝑅)
)

+
√
𝑚𝐶𝐷𝐶Υ‖𝜒‖ℎ(𝑟−𝑟′)Υ max

1≤𝑗≤𝑚‖𝑓 †
𝑗
‖𝑆 (3.8)

Proof. An application of the triangle inequality yields

‖†(𝑢) − 𝜒◦𝑓◦𝜙(𝑢)‖𝐻𝑡′ (𝐷) ≤‖†(𝑢) − 𝜒◦𝑓 †◦𝜙(𝑢)‖𝐻𝑡′ (𝐷)

+ ‖𝜒◦𝑓 †◦𝜙(𝑢) − 𝜒◦𝑓◦𝜙(𝑢)‖𝐻𝑡′ (𝐷)

+ ‖𝜒◦𝑓◦𝜙(𝑢) − 𝜒◦𝑓◦𝜙(𝑢)‖𝐻𝑡′ (𝐷) =∶ 𝐼1 + 𝐼2 + 𝐼3.

We can bound 𝐼1 immediately using Proposition 3.1. Furthermore, by Condition 3.2 we have that 𝐼3 = 0. So it remains for us to 
bound 𝐼2: By the continuous embedding of 𝐾 into 𝐻𝑡′ (𝐷) we can write

𝐼2 ≤ 𝐶𝐷‖𝜒◦𝑓 †◦𝜙(𝑢) − 𝜒◦𝑓◦𝜙(𝑢)‖𝐾 ≤ 𝐶𝐷‖𝜒‖|𝑓 †◦𝜙(𝑢) − 𝑓◦𝜙(𝑢)|
≤ 𝐶 ‖𝜒‖√√√√ 𝑚∑‖𝑓 † − 𝑓 ‖2 ,
11

𝐷
𝑗=1

𝑗 𝑗
𝐻𝑟′ (Υ)
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where the last line follows from the Sobolev embedding theorem and the assumption that 𝑟′ > 𝑛∕2. Then an application of Proposi-

tion 3.2 yields,

𝐼2 ≤√
𝑚𝐶𝐷𝐶Υ‖𝜒‖ℎ(𝑟−𝑟′)Υ max

1≤𝑗≤𝑚‖𝑓 †
𝑗 ‖𝑆 . ■

3.1. Convergence theorem

Our next step will be to consider the limits 𝑁, 𝑛, 𝑚 →∞ and show the convergence of ̄ to †. To obtain this result we first need 
to make assumptions on the regularity of the true operator † .

For 𝑘 ≥ 1 write 𝐷𝑘† for the functional derivative of † of order 𝑘. Recall that for 𝑢 ∈ 𝑄, 𝐷𝑘†(𝑢) is a multilinear operator 
mapping ⊗𝑘

𝑖=1𝑄 to 𝐾 . For 𝑤1, … , 𝑤𝑘 ∈𝑄 write [𝐷𝑘†(𝑢), ⊗𝑘
𝑖=1𝑤𝑖] for the (multilinear) action of 𝐷𝑘†(𝑢) on ⊗𝑘

𝑖=1𝑤𝑖 and write ‖𝐷𝑘†(𝑢)‖ for the smallest constant such that for 𝑤1, … , 𝑤𝑘 ∈𝑄,

‖‖‖[𝐷𝑘†(𝑢),⊗𝑘
𝑖=1𝑤𝑖]

‖‖‖𝐾 ≤ ‖𝐷𝑘†(𝑢)‖ 𝑘∏
𝑖=1

‖𝑤𝑖‖𝑄 (3.9)

Similarly, for 𝑘 ≥ 1 write 𝐷𝑘𝑓 † for the derivation tensor of 𝑓 † of order 𝑘 (the gradient for 𝑘 = 1 and the Hessian for 𝑘 = 2, etc). 
Recall that for 𝑈 ∈ ℝ𝑛, 𝐷𝑘𝑓 †(𝑈 ) is a multilinear operator mapping ⊗𝑘

𝑖=1ℝ
𝑛 to ℝ𝑚. For 𝑊1, … , 𝑊𝑘 ∈ ℝ𝑛 write [𝐷𝑘𝑓 †(𝑈 ), ⊗𝑘

𝑖=1𝑊𝑖] for 
the (multilinear) action of 𝐷𝑘𝑓 †(𝑈 ) on ⊗𝑘

𝑖=1𝑊𝑖 and write ‖𝐷𝑘𝑓 †(𝑈 )‖ for the smallest constant such that for 𝑊1, … , 𝑊𝑘 ∈ℝ𝑛,

|||[𝐷𝑘𝑓 †(𝑈 ),⊗𝑘
𝑖=1𝑊𝑖]

||| ≤ ‖𝐷𝑘𝑓 †(𝑈 )‖ 𝑘∏
𝑖=1

|𝑊𝑖| (3.10)

where | ⋅ | is the Euclidean norm.

Lemma 3.3. It holds true that ‖𝐷𝑘𝑓 †(𝑈 )‖ ≤ ‖𝜑‖‖𝜓‖𝑘‖𝐷𝑘†◦𝜓(𝑈 )‖, ∀𝑈 ∈ℝ𝑛.

Proof. The chain rule and the linearity of 𝜑 and 𝜓 imply that

[𝐷𝑘𝑓 †(𝑈 ),⊗𝑘
𝑖=1𝑊𝑖] = 𝜑[𝐷𝑘†◦𝜓(𝑈 ),⊗𝑘

𝑖=1𝜓(𝑊𝑖)] .

We then conclude the proof by writing

|||[𝐷𝑘𝑓 †(𝑈 ),⊗𝑘
𝑖=1𝑊𝑖]

||| ≤ ‖𝜑‖‖𝐷𝑘†◦𝜓(𝑈 )‖ 𝑘∏
𝑖=1

‖𝜓(𝑊𝑖)‖𝑄
≤ ‖𝜑‖‖𝜓‖𝑘‖𝐷𝑘†◦𝜓(𝑈 )‖ 𝑘∏

𝑖=1
|𝑊𝑖| . ■

Let us now consider an infinite and dense sequence of points 𝑋1, 𝑋2, 𝑋3, … of Ω, such that the closure of ∪∞
𝑖=1{𝑋𝑖} is the closure 

of Ω. Write 𝑋𝑛 for the 𝑛-vector formed by the first 𝑛 points, i.e.,

𝑋𝑛 ∶= (𝑋1,… ,𝑋𝑛) (3.11)

and let 𝐿𝑛
𝑄

be an arbitrary invertible 𝑛 × 𝑛 matrix. Further let 𝜙𝑛 ∶ 𝑄 →ℝ𝑛 be defined by

𝜙𝑛(𝑢) =𝐿𝑛
𝑄
𝑢(𝑋𝑛) . (3.12)

Write 𝜓𝑛 for the corresponding optimal recovery 𝜓 -map. Similarly, we assume that we are given an infinite and dense sequence of 
points 𝑌1, 𝑌2, 𝑌3, … of 𝐷, such that the closure of ∪∞

𝑖=1{𝑌𝑖} is the closure of 𝐷. Write 𝑌 𝑚 for the 𝑚-vector formed by the first 𝑚 points, 
i.e.,

𝑌 𝑚 ∶= (𝑌1,… , 𝑌𝑚) . (3.13)

Let 𝐿𝑚
𝐾

be an arbitrary invertible 𝑚 ×𝑚 matrix and let 𝜑𝑚 ∶ 𝐾 →ℝ𝑚 be defined by

𝜑𝑚(𝑣) =𝐿𝑚
𝐾
𝑢(𝑌 𝑚) . (3.14)

Write 𝜒𝑚 for the corresponding optimal recovery 𝜒 -map. We also assume that we are given a sequence of diagonal matrix-valued 
kernels Γ𝑚,𝑛 ∶ ℝ𝑛 ×ℝ𝑛 → (ℝ𝑚) with scalar-valued kernels 𝑆𝑛 ∶ ℝ𝑛 ×ℝ𝑛 → ℝ as diagonal entries. Write 𝑓𝑚,𝑛

𝑁
for the corresponding 

minimizer of (2.11) (also identified by the formula (2.3)) for the above setup.

Theorem 3.4. Let 𝑚, 𝑛 be the dimensionality of the input and output observations 𝜙 ∶ →ℝ𝑛 and 𝜑 ∶  →ℝ𝑚. Suppose that the closure of 
lim𝑛↑∞ ∪𝑛

𝑖=1{𝑋𝑖} is equal to the closure of Ω and that the closure of lim𝑚↑∞ ∪𝑚
𝑖=1{𝑌𝑖} is equal to the closure of 𝐷. Suppose Condition 3.1 is 
12

satisfied and that
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sup
𝑢∈𝐵𝑅(𝑄)

‖‖‖[𝐷𝑘†(𝑢)‖ <∞ for all 𝑘 ≥ 1 , (3.15)

for an arbitrary 𝑅 > 0. Assume that for any 𝑛 ≥ 1 and any compact set Υ of ℝ𝑛, the RKHS of 𝑆𝑛 restricted to Υ (which we write 𝑆𝑛 (Υ)) is 
contained in 𝐻𝑟(Υ) for some 𝑟 > 𝑛∕2 and contains 𝐻𝑟′ (Υ) for some 𝑟′ > 0 that may depend on 𝑛. Let (𝑢𝑖)𝑁𝑖=1 be a sequence of inputs in 𝐵𝑅(𝑄). 
Assume that there exists an integer 𝑛0 such that for 𝑛 ≥ 𝑛0, the data points (𝑢𝑖)𝑁𝑖=1 satisfy Condition 3.2, i.e., they satisfy 𝑢𝑖 = 𝜓𝑛◦𝜙𝑛(𝑢𝑖) for 
all 𝑖 ≥ 1. Further assume that the (𝜙𝑛(𝑢𝑖))1≤𝑖≤𝑁 are space filling in the sense that for any 𝑛 ≥ 𝑛0 we have

lim
𝑁→∞

sup
𝑢∈𝐵𝑅(𝑄)

min
1≤𝑖≤𝑁

|||𝑢𝑖(𝑋𝑛) − 𝑢(𝑋𝑛)| = 0 . (3.16)

Then for any 𝑡′ ∈ (0, 𝑡), it holds that

lim
𝑛,𝑚→∞

lim
𝑁→∞

sup
𝑢∈𝐵𝑅(𝑄)

‖†(𝑢) − 𝜒𝑚◦𝑓𝑚,𝑛
𝑁

◦𝜙𝑛(𝑢)‖𝐻𝑡′ (𝐷) = 0 (3.17)

Proof. Following [61, Chap. 12.1] define the projection 𝑃
𝑛 = 𝜓𝑛◦𝜙𝑛 onto the range of 𝜓𝑛. Since the points 𝑋𝑖 and 𝑌𝑗 are dense in 

Ω and 𝐷 we have ℎ𝑋𝑛 ↓ 0 as 𝑛 →∞ and ℎ𝑌 𝑚 ↓ 0 as 𝑚 →∞. Given 𝑛, take Υ = 𝜙𝑛
(
𝐵𝑅(𝑄)

)
. Then Lemma 3.3 and (3.15) imply that 

𝑓𝑚,𝑛
𝑗

∈𝐻𝑟′ (Υ) for all 𝑟′ ≥ 0. Therefore 𝑓𝑚,𝑛
𝑗

∈𝑆𝑛 (Υ). Now (3.16) implies that for any 𝑛, the fill distance, in 𝜙𝑛
(
𝐵𝑅(𝑄)

)
, between 

the points (𝜙𝑛(𝑢𝑖))1≤𝑖≤𝑁 goes to zero as 𝑁 →∞. Since the conditions of Proposition 3.2 are satisfied, we conclude by taking the limit 
𝑁 →∞ in (3.8) before taking the limit 𝑚, 𝑛 →∞. ■

3.2. The effect of the 𝐿𝑄 and 𝐿𝐾 preconditioners

We conclude this section and our discussion of convergence results, by highlighting the importance of the choice of the matrices 
𝐿𝑛
𝑄

and 𝐿𝑚
𝐾

in (3.12) and (3.14). It is clear from the bounds (3.8) and (3.10) that our error estimates depend on the norms of the 
linear operators 𝜑𝑚, 𝜓𝑛 and 𝜒𝑚. To ensure that those norms do not blow up as 𝑛, 𝑚 →∞ we can select the matrices 𝐿𝑛

𝑄
and 𝐿𝑚

𝐾
to be 

the Cholesky factors of the precision matrices obtained from pointwise measurements of the kernels 𝑄 and 𝐾 , i.e.,

𝐿𝑛
𝑄
(𝐿𝑛
𝑄
)𝑇 =𝑄(𝑋𝑛,𝑋𝑛)−1 and 𝐿𝑚

𝐾
(𝐿𝑚
𝐾
)𝑇 =𝐾(𝑌 𝑚,𝑌 𝑚)−1. (3.18)

We now obtain the following proposition.

Proposition 3.4. If 𝜙𝑛 is as in (3.12) and 𝐿𝑛
𝑄

as in (3.18), then ‖𝜙𝑛‖ = 1 and ‖𝜓𝑛‖ = 1. If 𝜑𝑚 is as in (3.2) and 𝐿𝑚
𝐾

as in (3.18), then ‖𝜑𝑚‖ = 1 and ‖𝜒𝑚‖ = 1.

Proof. For 𝑢 ∈𝑄, |𝜙𝑛(𝑢)|2 = 𝑢(𝑋𝑛)𝑇 𝑄(𝑋𝑛, 𝑋𝑛)−1𝑢(𝑋𝑛) = ‖𝜓𝑛◦𝜙𝑛(𝑢)‖2
𝑄

. Since 𝜓𝑛◦𝜙𝑛 is a projection [61, Chap. 12.1] we deduce that ‖𝜙𝑛‖ = 1. Using 𝜓𝑛(𝑈 ′) =𝑄(⋅, 𝑋𝑛)𝐿𝑛
𝑄
𝑈 ′ leads to ‖𝜓𝑛(𝑈 ′)‖2

𝑄
= |𝑈 ′|2 and ‖𝜓𝑛‖ = 1. The proof of ‖𝜑𝑛‖ = 1 and ‖𝜒𝑛‖ = 1 is similar. ■

We note that although useful for obtaining tighter approximation errors, this particular choice for the matrices 𝐿𝑛
𝑄

and 𝐿𝑚
𝐾

is not 
required for convergence if one first takes the limit 𝑁 →∞ as in Theorem 3.4, which does not put any requirements on the matrices 
𝐿𝑛
𝑄

and 𝐿𝑚
𝐾

beyond invertibility.

4. Numerics

In this section, we present numerical experiments and benchmarks that compare a straightforward implementation of our kernel 
operator learning framework to state-of-the-art NN-based techniques. We discuss some implementation details of our method in 
Subsection 4.1 followed by the setup of experiments and test problems in Subsections 4.2 and 4.3. A detailed discussion of our 
findings is presented in Subsection 4.4.

4.1. Implementation considerations

Below we summarize some of the key details in the implementation of our kernel approach for operator learning for benchmark 
examples. Our code to reproduce the experiments can be found in a public repository.6

4.1.1. Choice of the kernel Γ
Following our theoretical discussions in Sections 2 and 3, we primarily take Γ to be a diagonal kernel of the form (3.7). This 

implies that our estimation of 𝑓 can be split into independent problems for each of its components 𝑓𝑗 in the RKHS of the scalar kernel 
𝑆. In our experiments, we investigate different choices of 𝑆 belonging to the families of the linear kernel, rational quadratic, and 
Matérn; see Appendix C for detailed expressions of these kernels. The rational quadratic kernel has two parameters, the lengthscale 
13

6 https://github .com /MatthieuDarcy /KernelsOperatorLearning/.

https://github.com/MatthieuDarcy/KernelsOperatorLearning/
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Table 2

Summary of datasets used for benchmarking. The first three examples were considered in [47], and the 
last four were taken from [19].

Equation Input Output Input Distribution 𝜇

Burger’s Initial condition Solution at time 𝑇 Gaussian field (GF)

Darcy problem Coefficient Solution Binary function of GF

Advection I Initial condition Solution at time 𝑇 Random square waves

Advection II Initial condition Solution at time 𝑇 Binary function of GF

Helmholtz Coefficient Solution Function of Gaussian field

Structural mechanics Initial force Stress field Gaussian field

Navier Stokes Forcing term Solution at time 𝑇 Gaussian field

𝑙 and the exponent 𝛼. We tuned these parameters using standard cross validation or log marginal likelihood maximization over 
the training data (see [67, p.112] for a detailed description). The Matérn kernel is parameterized by two positive parameters: a 
smoothness parameter 𝜈 and the length scale 𝑙. The smoothness parameter 𝜈 controls the regularity of the RKHS and we considered 
𝜈 ∈

{ 1
2 , 

3
2 , 

5
2 , 

7
2 , ∞

}
. In practice we found that 𝜈 = 5

2 almost always had the best performance. For a fixed choice of 𝜈 we tuned the 
length scale 𝑙 similarly to the rational quadratic kernel. We implemented the kernel regressions of the 𝑓𝑗 and parameter tuning 
algorithms in scikit-learn for low-dimensional examples and manually in JAX for high-dimensional examples.

4.1.2. Preconditioning and dimensionality reduction

Following (3.1) and (3.2) and the discussion in Subsection 3.2, we consider two preconditioning strategies for our pointwise 
measurements, i.e., choices of the matrices 𝐿𝑄 and 𝐿𝐾 : (1) we consider the Cholesky factors of the underlying covariance matrices 
as in (3.18); (2) we use PCA projection matrices of the input and output functions computed from the training data. We truncated 
the PCA expansions to preserve (0.90, 0.95, 0.99) of the variance. The use of PCA in learning mappings between infinite dimensional 
spaces was proposed in [43] and recently revisited in [9,33].

4.2. Experimental setup

We compare the test performance of our method with different choices of the kernel 𝑆 of increasing complexity using the 
examples in [19] and [47] and their reported test relative 𝐿2 loss (see (4.2) below). We use the data provided by these papers for 
the training set and the test set.7 Both articles provide performance comparisons between different variants of Neural Operators 
(most notably FNO and DeepONet) on a variety of PDE operator learning tasks, where the data is sampled independently from a 
distribution (𝐼𝑑, †)#𝜇 supported on  ×  , where 𝜇 is a specified (input) distribution on  . The example problems are outlined in 
detail in Subsection 4.3; a summary of the specific PDEs, problem type, and distribution 𝜇 for each test is given in Table 2. In some 
instances the train-test split of the data was not clear from the available online repositories in which case we re-sampled them from 
the assumed distribution 𝜇. The datasets from [47] contain 1000 training data-points per problem (which we will refer to as the 
“low-data regime”), whereas the datasets from [19] contain 20000 training data-points (which we will refer to as the “high-data” 
regime). We make this distinction because the complexity of kernel methods, unlike that of neural networks, may depend on the 
number of data-points.

Following the suggestion of [19] we not only compare test errors and training complexity but also the complexity of operator 
learning at the inference/evaluation stage in Subsection 4.2.2. For the examples in [19], we investigate the accuracy-complexity 
trade-off of our method against the reported values of that article.

4.2.1. Measures of accuracy

As our first performance metric we measured the accuracy of models by a relative loss on the output space  :

() = 𝔼𝑢∼𝜇

[ ||†(𝑢) − (𝑢)||||†(𝑢)||
]

(4.1)

where † is true operator and  is a candidate operator. Following previous works, we often took ||𝑢|| = ||𝑢||𝐿2 ∶= (∫ 𝑢(𝑥)2𝑑𝑥) 12 , 
which in turn is discretized using the trapezoidal rule. In practice, we do not have the access to the underlying probability measure 
𝜇 and we compute the empirical loss on a withheld test set:

𝑁 () = 1
𝑁

𝑁∑
𝑛=1

[ ||†(𝑢𝑛) − (𝑢𝑛)||||†(𝑢𝑛)||
]
, 𝑢𝑖 ∼ 𝜇. (4.2)

4.2.2. Measures of complexity

For our second performance metric we considered the complexity of operator learning algorithms at the inference stage (i.e., 
evaluating the learned operator). Complexity at inference time is the main metric used in [19] to compare numerical methods for 
operator learning. The motivation is that training of the methods can be performed in an offline fashion, and therefore the cost 
14

7 See https://github .com /Zhengyu -Huang /Operator -Learning and https://github .com /lu -group /deeponet -fno, respectively, for the data.

https://github.com/Zhengyu-Huang/Operator-Learning
https://github.com/lu-group/deeponet-fno
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Fig. 4. Example of training data and test prediction and pointwise errors for the Burger’s equation (4.3).

per test example dominates in the limit of many test queries. In particular, they compare the online evaluation costs of the neural 
networks by computing the requisite floating point operations (FLOPs) per test example. We adopt this metric as well for the methods 
not based on neural networks that we develop in this work, and we compare, when available, the cost-accuracy tradeoff with the 
numbers reported in [19]. We computed the FLOPs with the same assumptions as in the original work: a matrix-vector product where 
the input vector is in ℝ𝑛 and the output vector is in ℝ𝑚 amounts to 𝑚(2 −1) flops, and non-linear functions with 𝑛-dimensional inputs 
(activation functions for neural networks, kernel computations for kernel methods) are assumed to have cost (𝑛).

Remark 4.1 (Training complexity). While the inference complexity of a model eventually dominates the cost of training during 
applications, the training cost cannot be ignored since the allocated computational resources during this stage may still be limited 
and the resulting errors will have a profound impact on the quality and performance of the learned operators. Therefore numerical 
methods in which the offline data assimilation step is cheaper, faster, and more robust will always be preferred. Computing the exact 
number of FLOPs at training time is difficult to estimate for NN methods, as it depends on the optimization algorithms used, the 
hyperparameters and the optimization over such hyperparameters, among many other factors. Therefore in this work we limit the 
training complexity evaluation to the qualitative observation that kernel methods provided in this work are significantly simpler 
at training time, as they have no NN weights, they do not require the use of stochastic gradient descent, and have few or no 
hyperparameters which can be tuned using standard methods such as grid search or gradient descent in a low-dimensional space.

4.3. Test problems and qualitative results

Below we outline the setup of each of our benchmark problems. In all cases,  and  are spaces of real-valued functions with 
input domains Ω, 𝐷 ⊂ℝ𝑘 for 𝑘 = 1 or 2. Whenever Ω =𝐷, we simply write  for both.

4.3.1. Burger’s equation

Consider the one-dimensional Burger’s equation:

𝜕𝑤

𝜕𝑡
+𝑤𝜕𝑤

𝜕𝑥
= 𝜈 𝜕

2𝑤

𝜕𝑥2
, (𝑥, 𝑡) ∈ (0,1) × (0,1],

𝑤(𝑥,0) = 𝑢(𝑥), 𝑥 ∈ (0,1)
(4.3)

with  = (0, 1), and periodic boundary conditions. The viscosity parameter 𝜈 is set to 0.1. We learn the operator mapping the initial 
condition 𝑢 to 𝑣 =𝑤(⋅, 1), the solution at time 𝑡 = 1, i.e., † ∶𝑤(⋅, 0) ↦𝑤(⋅, 1).

The training data is generated by sampling the initial condition 𝑢 from a GP with a Riesz kernel, denoted by 𝜇 = (0, 625(−Δ +
25𝐼)−2)). As in [47], we used a spatial resolution with 128 grid points to represent the input and output functions, and used 1000 
instances for training and 200 instances for testing. Fig. 4 shows an example of training input and output pairs as well as a test 
example along with its pointwise error.

4.3.2. Darcy flow

Consider the two-dimensional Darcy flow problem (1.3). Recall that in this example, we are interested in learning the mapping 
from the permeability field 𝑢 to the solution 𝑣 and the source term 𝑤 is assumed to be fixed, hence  ≡Ω = (0, 1)2 and † ∶ 𝑢 ↦ 𝑣. The 
coefficient 𝑢 is sampled by setting 𝑢 ∼ log◦ℎ♯𝜇 where 𝜇 = (0, (−Δ + 9𝐼)−2) is a GP and ℎ is binary function mapping positive inputs 
to 12 and negative inputs to 3. The resulting permeability/diffusion coefficient 𝑒𝑢 is therefore piecewise constant. As in [47], we use 
a discretized grid of resolution 29 × 29, with the data generated by the MATLAB PDE Toolbox. We use 1000 points for training and 
200 points for testing. Fig. 2 shows an example of training input and output of the map †, and an example of predictions along with 
pointwise error at the test stage.

4.3.3. Advection equations (I and II)
Consider the one-dimensional advection equation:

𝜕𝑤

𝜕𝑡
+ 𝜕𝑤

𝜕𝑥
= 0 𝑥 ∈ (0,1), 𝑡 ∈ (0,1]

(4.4)
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𝑤(𝑥,0) = 𝑢(𝑥) 𝑥 ∈ (0,1)
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Fig. 5. Example of training data and test prediction and pointwise errors for the Advection problem (4.4)-I.

Fig. 6. Example of training data and test prediction and pointwise errors for the Advection problem (4.4)-II.

Fig. 7. Example of training data and test prediction and pointwise errors for the Helmholtz problem (4.7).

with  = (0, 1) and periodic boundary conditions. Similar to the example for Burgers’ equation, we learn the mapping from the initial 
condition 𝑢 to 𝑣 =𝑤(⋅, 0.5), the solution at 𝑡 = 0.5, i.e., † ∶𝑤(⋅, 0) ↦𝑤(⋅, 0.5).

This problem was considered in [47,19] with different distributions 𝜇 for the initial condition. We will show in the following 
section how these different distributions lead to different performances. In [47], henceforth referred to as Advection I, the initial 
condition is a square wave centered at 𝑥 = 𝑐 of width 𝑏 and height ℎ:

𝑢(𝑥) = ℎ𝟏{𝑐− 𝑏
2 ,𝑐+

𝑏
2 }
, (4.5)

where the parameters (𝑐, 𝑏, ℎ) ∼ ([0.3, 0.7] × [0.3, 06] × [1, 2]). In [19], henceforth referred to as Advection II, the initial condition is

𝑢 = −1 + 2𝟏{𝑢̃0 ≥ 0} (4.6)

where 𝑢̃0 ∼ (0, (−Δ + 32𝐼)−2).
For Advection I, the spatial grid was of resolution 40, and we used 1000 instances for training and 200 instances for testing. For 

Advection II, the resolution was of 200 and we used 20000 training and test instances, following [19].

Figs. 5 and 6 show an example of training input and output for Advection the I and II problems, respectively. Observe that 
the functional samples from the distribution in Advection I will have exactly two discontinuities almost surely, but the samples for 
Advection II can have many more jumps. We observe that prediction is challenging around discontinuities, hence Advection II is a 
significantly harder problem (across all benchmarked methods) than Advection I. Figs. 5 and 6 also show an instance of a test sample, 
along with a prediction and the pointwise errors.

4.3.4. Helmholtz’s equation

For a given frequency 𝜔 and wavespeed field 𝑢 ∶ →ℝ, with  = (0, 1)2, the excitation field 𝑣 ∶ →ℝ solves(
−Δ− 𝜔2

𝑢2(𝑥)

)
𝑣 = 0, 𝑥 ∈ (0,1)2

(4.7)
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𝜕𝑣

𝜕𝑛
= 0, 𝑥 ∈ {0,1} × [0,1] ∪ [0,1] × {0} and

𝜕𝑣

𝜕𝑛
= 𝑣𝑁 , 𝑥 ∈ [0,1] × {1}
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Fig. 8. Example of training data and test prediction and pointwise errors for the Structural Mechanics problem (4.8).

Fig. 9. Example of training data and test prediction and pointwise errors for the Navier-Stokes problem (4.9).

In the results that follow, we take 𝜔 = 103, 𝑣𝑁 = 𝟏{0.35≤𝑥≤0.65}, and we aim to learn the map  ∶ 𝑢 ↦ 𝑣, i.e., the mapping from the 
wavespeed field to the excitation field. The distribution 𝜇 is specified as the law of 𝑢(𝑥) = 20 + tanh(𝑢̃(𝑥)), where 𝑢̃ is drawn from the 
GP, (0, (−Δ + 32𝐼)−2). The training and test data were generated by solving (4.7) with a Finite Element Method on a discretization 
of size 100 × 100 of the unit square. Fig. 7 shows an example of training input and output, a test prediction, and pointwise errors.

4.3.5. Structural mechanics

We let Ω = [0, 1] 𝐷 = [0, 1]2, the equation that governs the displacement vector 𝑤 in an elastic solid undergoing infinitesimal 
deformations is

∇ ⋅ 𝜎 = 0 in (0,1)2, 𝑤 = 𝑤̄, on Γ𝑤, ∇ ⋅ 𝑛 = 𝑢 on Γ𝑢, (4.8)

where the boundary 𝜕𝐷 is split in [0, 1] × 1 = Γ𝑡 (the part of the boundary subject to stress) and its complement Γ𝑢.
The goal is to learn the operator that maps the one-dimensional load 𝑢 on Γ𝑢 to the two-dimensional von Mises stress field 

𝑣 on Ω, i.e.,  ∶ 𝑢 ↦ 𝑣. Here the distribution 𝜇 is (100, 4002(−Δ + 32𝐼)−1), with Δ being the Laplacian subject to homogeneous 
Neumann boundary conditions on the space of zero-mean functions. The function 𝑣 was obtained by a finite element code, see [19]

for implementation details and the constitutive model used. Fig. 8 shows an example of training input and outputs, a test prediction, 
and pointwise errors.

4.3.6. Navier-Stokes equations

Consider the vorticity-stream (𝜔, 𝜓) formulation of the incompressible Navier-Stokes equations:

𝜕𝜔

𝜕𝑡
+ (𝑐 ⋅∇)𝜔− 𝜈Δ𝜔 = 𝑢, 𝜔 = −Δ𝜓, ∫

𝐷

𝜓 = 0, 𝑐 =
(
𝜕𝜓

𝜕𝑥2
,− 𝜕𝜓
𝜕𝑥1

)
(4.9)

where  = [0, 2𝜋]2, periodic boundary conditions are considered and the initial condition 𝑤(⋅, 0) is fixed. Here we are interested in 
the mapping from the forcing term 𝑢 to 𝑣 = 𝜔(⋅, 𝑇 ), the vorticity field at a given time 𝑡 = 𝑇 , i.e., † ∶ 𝑢 ↦ 𝜔(⋅, 𝑇 ).

The distribution 𝜇 is (0, (−Δ + 32𝐼)−4). The viscosity 𝜈 is fixed and equal to 0.025, and the equation is solved on a 64 × 64 grid 
with a pseudo-spectral method and Crank-Nicholson time integration; see [19] for further implementation details. Fig. 9 shows an 
example of input and output in the test set, along with an example of test prediction and pointwise errors.

4.4. Results and discussion

Below we discuss our main findings in benchmarking our kernel method against state-of-the-art NN based techniques

4.4.1. Performance against NNs

Table 3 summarizes the 𝐿2 relative test error of our vanilla implementation of the kernel method along with those of DeepONet, 
FNO, PCA-Net, and PARA-Net. We observed that our vanilla kernel method was reliable in terms of accuracy across all examples. In 
particular, observe that between the Matérn or rational quadratic kernel, we always managed to get close to the other methods, see 
for example the results for the Burgers’ equation or Darcy problem, and even outperform them in several examples such as Navier-
17

Stokes and Helmholtz. Overall we observed that the performance of the kernel method is stable across all examples suggesting 
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Table 3

Summary of numerical results: we report the 𝐿2 relative test error of our numerical experiments and compare the kernel approach with variations of DeepONet, FNO, 
PCA-Net and PARA-Net. We considered two choices of the kernel 𝑆, the rational quadratic and the Matérn, but we observed little difference between the two.

Low-data regime High-data regime

Burger’s Darcy problem Advection I Advection II Hemholtz Structural Mechanics Navier Stokes

DeepONet 2.15% 2.91% 0.66% 15.24% 5.88% 5.20% 3.63%

POD-DeepONet 1.94% 2.32% 0.04% n/a n/a n/a n/a

FNO 1.93% 2.41% 0.22% 13.49% 1.86% 4.76% 0.26%

PCA-Net n/a n/a n/a 12.53% 2.13% 4.67% 2.65%

PARA-Net n/a n/a n/a 16.64% 12.54% 4.55% 4.09%

Linear 36.24% 6.74% 2.15 × 10−13% 11.28% 10.59% 27.11% 5.41%

Best of Matérn/RQ 2.15% 2.75% 2.75 × 10−3% 11.44% 1.00% 5.18% 0.12%

Fig. 10. Accuracy complexity tradeoff achieved in the problems in [19]. Data for NNs was obtained from the aforementioned article. Linear model refers to the linear 
kernel, vanilla GP is our implementation with the nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through PCA both the input 
and the output to reduce complexity.

Table 4

Comparison between Cholesky preconditioning and PCA dimensionality reduction on 
three examples for our vanilla kernel implementation with the Matérn kernel.

Advection II Burger’s Darcy problem

No preprocessing 14.37% 3.04% 4.47%

PCA 14.50% 2.41% 2.89%

Cholesky 11.44% 2.15% 2.75%

that our method is reliable and provides a good baseline for a large class of problems. Moreover, we did not observe a significant 
difference in performance in terms of the choice of the particular kernel family once the hyper-parameters were tuned. This indicates 
that a large class of kernels are effective for these problems. Furthermore, we found the hyper-parameter tuning to be robust, i.e., 
results were consistent in a reasonable range of parameters such as length scales.

In the high data regime, we found the vanilla kernel method to be the most accurate, although this comes with a greater cost, as 
seen in Fig. 10. However, the kernel method appears to provide the highest accuracy for its level of complexity as the accuracy of 
NNs typically stagnates or even decreases after a certain level of complexity; see the Navier-Stokes and Helmholtz panels of Fig. 10

where most of the NN methods seem to plateau after a certain complexity level.

We also observed that the linear model did not provide the best accuracy as it quickly saturated in performance. Nonetheless, it 
provided surprisingly good accuracy at low levels of complexity: for example, in the case of Navier-Stokes, the linear kernel provided 
the best accuracy below 106 FLOPS of complexity. This indicates that while simple, the linear model can be a valuable low-complexity 
model. Another notable example is the Advection equation (both I and II), where the operator † is linear. In this case, the linear 
kernel had the best accuracy and the best complexity-accuracy tradeoff. We note, however, that while the linear model was close 
to machine precision on Advection I (error on the order 10−13%), its performance was significantly worse on Advection II (error on 
the order of 10%). Moreover, the gap between the linear kernel and all other models was significantly smaller for Advection I; we 
conjecture this difference in performance is likely due to the setup of these problems.

Finally, we note that the most challenging problem for our kernel method was the Structural Mechanics example. In this case, the 
vanilla kernel method has higher complexity but did not beat the NNs. In fact, the NNs seem to be able to reduce complexity without 
loss of accuracy compared to our method.

4.4.2. Effect of preconditioners

Table 4 compares the performance of our method with the Matérn kernel family using various preconditioning steps. Overall we 
observed that both PCA and Cholesky preconditioning improved the performance of our vanilla kernel method.

The Cholesky preconditioning generally offers the greatest improvement. However, we observed that getting the best results from 
the Cholesky approach required careful tuning of the parameters of the kernels 𝐾 and 𝑄 which we did using cross-validation. While 
18

tuning the parameters does not increase the inference complexity, it does increase the training complexity.
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On the other hand, the PCA approach was more robust to changes in hyperparameters, i.e., the number of PCA components 
following Subsection 4.1.2. We observed that applying PCA on the input and output reduces complexity and has varying levels of 
effectiveness in providing a better cost-accuracy tradeoff. For example, for Navier-Stokes, it greatly reduced the complexity without 
affecting accuracy. But for the Helmholtz and Advection equations, PCA reduced the accuracy while remaining competitive with NN 
models. For structural mechanics, however, PCA significantly reduced accuracy and was worse than other models. We hypothesize 
that the loss in accuracy can be related to the decay of the eigenvalues of the PCA matrix in that example.

5. Conclusions

In this work we presented a kernel/GP framework for the learning of operators between function spaces. We presented an 
abstract formulation of our kernel framework along with convergence proofs and error bounds in certain asymptotic limits. Numerical 
experiments and benchmarking against popular NN based algorithms revealed that our vanilla implementation of the kernel approach 
is competitive and either matches the performance of NN methods or beats them in several benchmarks. Due to simplicity of 
implementation, flexibility, and the empirical results, we suggest that the proposed kernel methods are a good benchmark for future, 
perhaps more sophisticated, algorithms. Furthermore, these methods can be used to guide practitioners in the design of new and 
challenging benchmarks (e.g., identify problems where vanilla kernel methods do not perform well). Numerous directions of future 
research exist. In the theoretical direction it is interesting to remove the stringent Condition 3.2 and we anticipate this to require a 
particular selection of the kernel employed to obtain the map 𝑓 . Moreover, obtaining error bounds for more general measurement 
functionals beyond pointwise evaluations would be interesting. One could also adapt our framework to non-vanilla kernel methods 
such as random features or inducing point methods to provide a low-complexity alternative to NNs in the large-data regime. Finally, 
since the proposed approach is essentially a generalization of GP Regression to the infinite-dimensional setting, we anticipate that 
some of the hierarchical techniques of [58,68,70] could be extended to this setting and provide a better cost-accuracy trade-off than 
current methods.
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Appendix A. Review of operator valued kernels and GPs

We review the theory of operator valued kernels and GPs [60] as these are utilized throughout the article. Operator-valued kernels 
19

were introduced in [36] as a generalization of vector-valued kernels [3].
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A.1. Operator valued kernels

Let  and  be separable Hilbert spaces endowed with the inner products 
⟨
⋅, ⋅

⟩
 and 

⟨
⋅, ⋅

⟩
 . Write () for the set of bounded 

linear operators mapping  to  .

Definition A.1. We call 𝐺 ∶  × →() an “operator-valued kernel” if

1. 𝐺 is Hermitian, i.e. 𝐺(𝑢, 𝑢′) =𝐺(𝑢′, 𝑢)𝑇 for all 𝑢, 𝑢′ ∈ , writing 𝐴𝑇 for the adjoint of the operator 𝐴 with respect to 
⟨
⋅, ⋅

⟩
 .

2. 𝐺 is non-negative, i.e., for all 𝑚 ∈ℕ and any set of points (𝑢𝑖, 𝑣𝑖)𝑚𝑖=1 ⊂ ×  it holds that ∑𝑚
𝑖,𝑗=1

⟨
𝑣𝑖, 𝐺(𝑢𝑖, 𝑢𝑗 )𝑣𝑗

⟩
 ≥ 0.

We call 𝐺 non-degenerate if ∑𝑚
𝑖,𝑗=1

⟨
𝑣𝑖, 𝐺(𝑢𝑖, 𝑢𝑗 )𝑣𝑗

⟩
 = 0 implies 𝑣𝑖 = 0 for all 𝑖 whenever 𝑢𝑖 ≠ 𝑢𝑗 for 𝑖 ≠ 𝑗.

A.2. RKHSs

Each non-degenerate, locally bounded and separately continuous operator-valued kernel 𝐺 is in one to one correspondence with 
an RKHS  of continuous operators  ∶  →  obtained as the closure of the linear span of the maps 𝑧 ↦ 𝐺(𝑧, 𝑢)𝑣 with respect to 
the inner product identified by the reproducing property⟨

𝑔,𝐺(⋅, 𝑢)𝑣
⟩
 =

⟨
𝑔(𝑢), 𝑣

⟩
 (A.1)

A.3. Feature maps

Let  be a separable Hilbert space (with inner product 
⟨
⋅, ⋅

⟩
 and norm ‖ ⋅ ‖ ) and let 𝜓 ∶  →( ,  ) be a continuous function 

mapping  to the space of bounded linear operators from  to  .

Definition A.2. We say that  and 𝜓 ∶  → ( ,  ) are a feature space and a feature map for the kernel 𝐺 if, for all (𝑢, 𝑢′, 𝑣, 𝑣′) ∈
 2 × 2,⟨

𝑣,𝐺(𝑢, 𝑢′)𝑣′
⟩
=

⟨
𝜓(𝑢)𝑣,𝜓(𝑢′)𝑣′

⟩
 .

Write 𝜓𝑇 (𝑢), for the adjoint of 𝜓(𝑢) defined as the linear function mapping  to  satisfying⟨
𝜓(𝑢)𝑣, 𝛼

⟩
 =

⟨
𝑣,𝜓𝑇 (𝑢)𝛼

⟩


for 𝑢, 𝑣, 𝛼 ∈ × × . Note that 𝜓𝑇 ∶  → ( , ) is therefore a function mapping  to the space of bounded linear functions from 
 to  . Writing 𝛼𝑇 𝛼′ ∶=

⟨
𝛼, 𝛼′

⟩
 for the inner product in  we can ease our notations by writing

𝐺(𝑢, 𝑢′) = 𝜓𝑇 (𝑢)𝜓(𝑢′) (A.2)

which is consistent with the finite-dimensional setting and 𝑣𝑇 𝐺(𝑢, 𝑢′)𝑣′ = (𝜓(𝑢)𝑣)𝑇 (𝜓(𝑢′)𝑣′) (writing 𝑣𝑇 𝑣′ for the inner product in ). 
For 𝛼 ∈  write 𝜓𝑇 𝛼 for the function  →  mapping 𝑢 ∈ to the element 𝑣 ∈  such that⟨

𝑣′, 𝑣
⟩
 =

⟨
𝑣′, 𝜓𝑇 (𝑢)𝛼

⟩
 =

⟨
𝜓(𝑢)𝑣′, 𝛼

⟩
 for all 𝑣′ ∈  .

We can, without loss of generality, restrict  to be the range of (𝑢, 𝑣) → 𝜓(𝑢)𝑣 so that the RKHS  defined by 𝐺 is the closure of the 
pre-Hilbert space spanned by 𝜓𝑇 𝛼 for 𝛼 ∈  . Note that the reproducing property (A.1) implies that for 𝛼 ∈ ⟨

𝜓𝑇 (⋅)𝛼,𝜓𝑇 (⋅)𝜓(𝑢)𝑣
⟩
 =

⟨
𝜓𝑇 (𝑢)𝛼, 𝑣

⟩
 =

⟨
𝛼,𝜓(𝑢)𝑣

⟩


for all 𝑢, 𝑣 ∈ ×  , which leads to the following theorem.

Theorem A.3. The RKHS  defined by the kernel (A.2) is the linear span of 𝜓𝑇 𝛼 over 𝛼 ∈  such that ‖𝛼‖ < ∞. Furthermore, ⟨
𝜓𝑇 (⋅)𝛼, 𝜓𝑇 (⋅)𝛼′

⟩
 =

⟨
𝛼, 𝛼′

⟩
 and

‖𝜓𝑇 (⋅)𝛼‖2 = ‖𝛼‖2 for 𝛼, 𝛼′ ∈  .

A.4. Interpolation
20

Let us consider the interpolation problem in operator valued RKHSs.
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Problem 2. Let † be an unknown continuous operator mapping  to  . Given the information8 †(𝐮) = 𝐯 with the data (𝐮, 𝐯) ∈
𝑁 × 𝑁 , approximate †.

Using the relative error in ‖ ⋅ ‖ -norm as a loss, the minimax optimal recovery solution of Problem 2 is, by [61, Thm. 12.4,12.5], 
given by{

Minimize ‖‖2
subject to (𝐮) = 𝐯

(A.3)

The minimizer is then of the form (⋅) = ∑𝑁
𝑗=1𝐺(⋅, 𝑢𝑗 )𝑤𝑗 , where the coefficients 𝑤𝑗 ∈  are identified by solving the system of linear 

equations ∑𝑁
𝑗=1𝐺(𝑢𝑖, 𝑢𝑗 )𝑤𝑗 = 𝑣𝑖 for all 𝑖 ∈ {1, … , 𝑁}. Using our compressed notation we can rewrite this equation as 𝐺(𝐮, 𝐮)𝐰 = 𝐯

where 𝐰 = (𝑤1, … , 𝑤𝑁 ), 𝐯 = (𝑣1, … , 𝑣𝑁 ) ∈ 𝑁 and 𝐺(𝐮, 𝐮) is the 𝑁 ×𝑁 block-operator matrix9 with entries 𝐺(𝑢𝑖, 𝑢𝑗 ). Therefore, writing 
𝐺(⋅, 𝐮) for the vector (𝐺(⋅, 𝑢1), … , 𝐺(⋅, 𝑢𝑁 )) ∈𝑁 , the optimal recovery interpolant is given by

̄(⋅) =𝐺(⋅,𝐮)𝐺(𝐮,𝐮)−1𝐯 , (A.4)

which implies that the value of (A.3) at the minimum is

‖̄‖2 = 𝐯𝑇 𝐺(𝐮,𝐮)−1𝐯 , (A.5)

where 𝐺(𝐮, 𝐮)−1 is the inverse of 𝐺(𝐮, 𝐮), whose existence is implied by the non-degeneracy of 𝐺 combined with 𝑢𝑖 ≠ 𝑢𝑗 for 𝑖 ≠ 𝑗.
A.5. Ridge regression

Let 𝛾 > 0. A ridge regression (approximate) solution to Problem 2 can be found as the minimizer of

inf∈ 𝜆‖‖2 + 𝛾−1
𝑁∑
𝑖=1

‖𝑣𝑖 − (𝑢𝑖)‖2 . (A.6)

This minimizer is given by the formula

̄(𝑢) =𝐺(𝑢,𝐮)(𝐺(𝐮,𝐮) + 𝛾𝐼)−1𝐯 , (A.7)

writing 𝐼 for the identity matrix. We can further compute directly

‖̄‖2 = 𝐯𝑇
(
𝐺(𝐮,𝐮) + 𝛾𝐼

)−1𝐯 .
A.6. Operator-valued GPs

The following definition of operator-valued Gaussian processes is a natural extension of scalar-valued Gaussian fields [61].

Definition A.4. [60, Def. 5.1] Let 𝐺 ∶  × → () be an operator-valued kernel. Let 𝑚 be a function mapping  to  . We call 
𝜉 ∶  → ( , 𝐇) an operator-valued GP if 𝜉 is a function mapping 𝑢 ∈ to 𝜉(𝑢) ∈ ( , 𝐇) where 𝐇 is a Gaussian space and ( , 𝐇)
is the space of bounded linear operators from  to 𝐇. Abusing notations we write 

⟨
𝜉(𝑢), 𝑣

⟩
 for 𝜉(𝑢)𝑣. We say that 𝜉 has mean 𝑚 and 

covariance kernel 𝐺 and write 𝜉 ∼ (𝑚, 𝐺) if 
⟨
𝜉(𝑢), 𝑣

⟩
 ∼ (

𝑚(𝑢), 𝑣𝑇 𝐺(𝑢, 𝑢)𝑣
)

and

Cov
(⟨
𝜉(𝑢), 𝑣

⟩
 ,

⟨
𝜉(𝑢′), 𝑣′

⟩

)
= 𝑣𝑇 𝐺(𝑢, 𝑢′)𝑣′ . (A.8)

We say that 𝜉 is centered if it is of zero mean.

If 𝐺(𝑢, 𝑢) is trace class (Tr[𝐺(𝑢, 𝑢)] <∞) then 𝜉(𝑢) defines a measure on  , i.e. a  -valued random variable.10

Theorem A.5. [60, Thm. 5.2] The law of an operator-valued GP is uniquely determined by its mean 𝑚 and covariance kernel 𝐺. Conversely 
given 𝑚 and 𝐺 there exists an operator-valued GP having mean 𝑚 and covariance kernel 𝐺. In particular if 𝐺 has feature space  and map 
𝜓 , the 𝑒𝑖 form an orthonormal basis of  , and the 𝑍𝑖 are i.i.d.  (0, 1) random variables, then 𝜉 =𝑚 +∑

𝑖 𝑍𝑖𝜓
𝑇 𝑒𝑖 is an operator-valued GP 

with mean 𝑚 and covariance kernel 𝐺.

8 For a 𝑁 -vector 𝐮 = (𝑢1 , … , 𝑢𝑁 ) ∈𝑁 and a function  ∶  →  , write (𝐮) for the 𝑁 vector with entries ((𝑢1), … , (𝑢𝑁 )).
9 For 𝑁 ≥ 1 let 𝑁 be the N-fold product space endowed with the inner-product ⟨𝐯, 𝐰⟩

𝑁 ∶=
∑𝑁

𝑖,𝑗=1
⟨
𝑣𝑖, 𝑤𝑗

⟩
 for 𝐯 = (𝑣1 , … , 𝑣𝑁 ), 𝐰 = (𝑤1 , … , 𝑤𝑁 ) ∈ 𝑁 . 𝐀 ∈ (𝑁 )

given by 𝐀 =
⎛⎜⎜⎝
𝐴1,1 ⋯ 𝐴1,𝑁
⋮ ⋮

𝐴𝑁,1 ⋯ 𝐴𝑁,𝑁

⎞⎟⎟⎠ where 𝐴𝑖,𝑗 ∈ (), is called a block-operator matrix. Its adjoint 𝐀𝐓 with respect to ⟨⋅, ⋅⟩𝑁 is the block-operator matrix with entries 

(𝐴𝑇 )𝑖,𝑗 = (𝐴𝑗,𝑖)𝑇 .
21

10 Otherwise it only defines a (weak) cylinder-measure in the sense of Gaussian fields.



Journal of Computational Physics 496 (2024) 112549P. Batlle, M. Darcy, B. Hosseini et al.

Theorem A.6. [60, Thm. 5.3] Let 𝜉 be a centered operator-valued GP with covariance kernel 𝐺 ∶  × → (). Let 𝐮, 𝐯 ∈𝑁 ×𝑁 . Let 
𝑍 = (𝑍1, … , 𝑍𝑁 ) be a random Gaussian vector, independent from 𝜉, with i.i.d.  (0, 𝛾𝐼 ) entries (𝛾 ≥ 0 and 𝐼 is the identity map on ). 
Then 𝜉 conditioned on 𝜉(𝐮) +𝑍 is an operator-valued GP with mean

𝔼
[
𝜉(𝑢)|||𝜉(𝐮) +𝑍 = 𝐯

]
=𝐺(𝑢,𝐮)

(
𝐺(𝐮,𝐮) + 𝛾𝐼

)−1𝐯 = (A.7) (A.9)

and conditional covariance operator

𝐺⟂(𝑢, 𝑢′) ∶=𝐺(𝑢, 𝑢′) −𝐺(𝑢,𝐮)
(
𝐺(𝐮,𝐮) + 𝛾𝐼

)−1
𝐺(𝐮, 𝑢′) . (A.10)

In particular, if 𝐺 is trace class, then

𝜎2(𝑢) ∶= 𝔼
[‖‖‖𝜉(𝑢) − 𝔼[𝜉(𝑢)|𝜉(𝐮) +𝑍 = 𝐯]‖‖‖2 ||||𝜉(𝐮) +𝑍 = 𝐯

]
= Tr

[
𝐺⟂(𝑢, 𝑢)

]
. (A.11)

A.7. Deterministic error estimates for operator-valued regression

The following theorem shows that the standard deviation (A.11) provides deterministic a prior error bounds on the accuracy of 
the ridge regressor (A.9) to † in Problem 2. Local error estimates such as (A.12) below are classical in the Kriging literature [77]

where 𝜎2(𝑢) is known as the power function/kriging variance; see also [57][Thm. 5.1] for applications to PDEs.

Theorem A.7. [60, Thm. 5.4] Let † be the unknown function of Problem 2 and let (𝑢) = (A.9) = (A.7) be its ridge regressor. Let  be the 
RKHS associated with 𝐺 and let 𝛾 be the RKHS associated with the kernel 𝐺𝛾 ∶=𝐺 + 𝛾𝐼 . It holds true that

‖‖‖†(𝑢) − (𝑢)‖‖‖ ≤ 𝜎(𝑢)‖†‖ (A.12)

and

‖‖‖†(𝑢) − (𝑢)‖‖‖ ≤√
𝜎2(𝑢) + 𝛾 dim()‖†‖𝛾 , (A.13)

where 𝜎(𝑢) is the standard deviation (A.11).

Appendix B. An alternative regularization of operator regression

For 𝛾 > 0, the regularization implied by (2.14) is equivalent to adding noise on the 𝜑(𝐯) measurements. If one could observe 𝐯 (and 
not just 𝜑(𝐯)), then an alternative approach to regularizing the problem is to add noise to 𝜉(𝐮). To describe this let 𝑍′ = (𝑍′

1, … , 𝑍′
𝑁
)

be a random block-vector, independent from 𝜉, with i.i.d. entries 𝑍′
𝑗
∼ (0, 𝛾𝐼 ) for 𝑗 = 1, … , 𝑁 (where 𝐼 denotes the identity map 

on ). Then the GP 𝜉 conditioned on 𝜉(𝐮) = 𝐯 +𝑍′ is a GP with conditional covariance kernel (A.10) and conditional mean ̃𝛾= (A.7)

that is also the minimizer of (A.6). Observing11 that 𝜑(𝑍′
𝑖
) ∼ (0, 𝛾𝐾(𝜑, 𝜑)), we deduce that ̃𝛾 = 𝜒◦𝑓𝛾◦𝜙 where 𝑓𝛾 minimizes{

Minimize ‖𝑓‖2Γ + 𝛾−1 ∑𝑁
𝑖=1(𝑓 (𝑈𝑖) − 𝑉𝑖)

𝑇 𝐾(𝜑,𝜑)−1(𝑓 (𝑈𝑖) − 𝑉𝑖) .
Over 𝑓 ∈Γ .

(B.1)

Furthermore, the distribution of 𝜉 conditioned on 𝜉(𝐮) = 𝐯 +𝑍′ is that of 𝜒◦𝜁⟂◦𝜙 where 𝜁⟂ ∼ (𝑓𝛾 , ̃Γ⟂) is the GP 𝜁 conditioned on 
𝜁 (𝐔) =𝐕 +𝜑(𝑍′), whose mean is 𝑓𝛾 and conditional covariance kernel is Γ̃⟂(𝑈, 𝑈 ′) = Γ(𝑈, 𝑈 ′) −Γ(𝑈, 𝐔)(Γ(𝐔, 𝐔) + 𝛾𝐴)−1Γ(𝐔, 𝑈 ′) where 
𝐴 is a 𝑁 ×𝑁 block diagonal matrix with 𝐾(𝜑, 𝜑) as diagonal entries.

Appendix C. Expressions for the kernels used in experiments

Below we collect the expressions for the kernels that were referred to in the article or utilized for our numerical experiments. 
These can be found in many standard textbooks on GPs such as [67].

C.1. The linear kernel

The linear kernel has the simple expression 𝐾linear(𝑥, 𝑥′) =
⟨
𝑥, 𝑥′

⟩
and may be defined on any inner product space. It has no 

hyper-parameters.

11 This follows from 𝜑(𝑍′
𝑖
) ∼ (0, 𝛾𝜑𝜑𝑇 ) where 𝜑𝑇 is the adjoint of 𝜑 identified as the linear map from ℝ𝑚 to  satisfying ⟨𝑊 , 𝜑(𝑤)⟩ 𝑚 =

⟨
𝜑⟂𝑊 , 𝑤⟩

for 𝑤 ∈  and 
22

ℝ 
𝑊 ∈ℝ𝑚 (i.e., 𝜑𝑇 (𝑊 ) = (𝐾𝜑)𝑊 ).
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C.2. The rational quadratic kernel

The rational quadratic kernel has the expression 𝐾(𝑥, 𝑥′) = 𝑘RQ(‖𝑥 − 𝑥′‖) where

𝑘RQ(𝑟) =
(
1 + 𝑟2

2𝑙2

)−𝛼
. (C.1)

It has hyper-parameters 𝛼 > 0 and 𝑙.

C.3. The Matérn parametric family

The Matérn kernel family is of the form 𝐾(𝑥, 𝑥′) = 𝑘(‖𝑥 − 𝑥′‖ where

𝑘𝜈 (𝑟) = exp
(
−

√
2𝜈𝑟
𝑙

)
Γ(𝑝+ 1)
Γ(2𝑝+ 1)

𝑝∑
𝑖=0

(𝑝+ 1)!
𝑖!(𝑝− 𝑖)!

(√
8𝜈𝑟
𝑙

)𝑝−𝑖
, (C.2)

for 𝜈 = 𝑝 + 1
2 . This kernel has hyper-parameters 𝑝 ∈ℤ+ and 𝑙 > 0. In the limiting case where 𝜈→∞, the Matérn kernel, we obtain the 

Gaussian or squared exponential kernel:

𝑘∞(𝑟) = exp
(
− 𝑟2

2𝑙2

)
, (C.3)

with hyper-parameter 𝑙 > 0.
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