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We find an exact closed-form expression for the magnetostatic interaction energy between a point 
magnet and a ring magnet in terms of complete elliptic integrals. The exact expression for the energy 
exhibits an equilibrium point close to the axis of symmetry of the ring magnet. Our methodology 
will be useful in investigations concerning magnetic levitation, and in the study of Casimir levitation. 

 

I. INTRODUCTION 

 

Configurations with cylindrical symmetry often admit 
relatively simple solutions on the axis of symmetry, even 
when the general solution off the axis is given in terms 
of special functions or has no exact solution. A classic 
example is that of the magnetic field due to a circular wire 
carrying a uniform current, where the expression for the 
magnetic field on the axis is given in terms of rational 
functions and is usually derived in an introductory level 
physics course [1], while the solution off the axis is given 
in terms of complete elliptic integrals and is typically only 
introduced in a graduate level course [1]. 

We show that the magnetostatic interaction energy be- 
tween a point magnet and a ring magnet also admits ex- 
act solutions in terms of complete elliptic integrals when 
the point magnet is off the axis of symmetry of the ring 
magnet and has a simple solution in terms of rational 
functions when the point dipole is on the axis of the ring 
magnet. The interaction energy in general exhibits an 
equilibrium point close to the axis of symmetry with a 
saddle point instability. The expression for energy pre- 
sented here seems to have not been, to our surprise, re- 
ported before. However, the corresponding expression 
for the magnetic field has been discussed in the litera- 
ture recently [2, 3]. The magnetic dipoles in their work 
are constructed by assuming the existence of magnetic 
monopoles, which in the static case being considered al- 
lows the use of the methodologies developed in electro- 
statics. The methodology presented here is a useful aca- 
demic exercise, even though it presumes infinitely thin 
magnets. 
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We put forward two applications of the investigation 
presented here. First is in the study of Casimir levita- 
tion. The Casimir effect involves interactions between 
materials with no net electric charge and no perma- 
nent polarizations mediated by the electric and magnetic 
fields induced from the quantum vacuum fluctuations. 
Even though repulsion between anisotropically polariz- 
able atoms were well known [4–8], perfectly conducting 
nanoparticles were not expected to show repulsion from 
interactions with the quantum electromagnetic vacuum 
fluctuations. Thus, it was a surprise when in Ref. [9] 
it was shown that the interaction between an anisotropi- 
cally shaped conducting nanoparticle and a perfectly con- 
ducting metal sheet with a circular aperture could lead 
to repulsion. Even though an analytic derivation of the 
result in Ref. [9] remains unsolved [10–12], a partial un- 
derstanding of the repulsion has been made plausible by 
deriving analogous results in the non-retarded van der 
Waals regime [13] and in the retarded Casimir-Polder 
regime [14–18]. A drawback of all of the above investiga- 
tions has been the confinement of the nanoparticle to the 
axis of symmetry in the configuration. Even though it is 
clear that the nanoparticle is unstable in the transverse 
directions to the axis in the above considerations, the lim- 
itation of being on the axis practically does not allow any 
stability analysis. Before we embark on evaluating the 
Casimir-Polder interaction energy between an anisotrop- 
ically polarizable nanoparticle and an anisotropically po- 
larizable circular ring without restricting the nanoparti- 
cle to being on the axis, we here explore the analogous 
configuration of a permanent magnetic dipole moment 
interacting with a circular ring with permanent polar- 
ization. The methodology we use here can be immedi- 
ately used to study the corresponding Casimir interac- 
tion, which will be presented elsewhere. 

 
The second application is in the study of the magnetic 

levitation of a LevitronTM [19]. In particular, we would 
like to investigate if the stability of the LevitronTM re- 
quires the presence of gravity. That is, can a spinning 
point magnet be stabilized above a ring magnet in the ab- 
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→ ∞ → 

− 

B2(R) = 
4π R3 

, r /= r , (2.11) 

sence of gravity? The interaction energy presented here 
serves as the starting point for this stability analysis. 

In the next section we describe our configuration of a 
point magnet and a ring magnet and derive the expres- 
sion for the interaction energy as an integral over the az- 
imuth angle. In Section III we give a brief description of 
complete elliptic integrals. After introducing complete 
elliptic integral of the first kind K(k) and second kind 
E(k) we define elliptic integrals π3(k) and π5(k), which 

an idealized construction with I  and A 0, keep- 
ing the product m = IA fixed. We shall be interested 
in the interaction between a point magnetic dipole m1 
and a ring magnet constructed out of a uniform circular 
distribution of point dipoles m2. 

The magnetic vector potential at position r due to a 
point magnetic dipole moment m2 placed at position r′ 
is 

µ0 m2 × R 
is not the traditional approach. It should be possible 
to express the elliptic integrals π3(k) and π5(k) in terms 
of the traditional elliptic integral of the third kind. In 
Section IV we derive the expression for the interaction 

 

where 

A2(R) = 
4π R3 

, (2.8) 

energy between a point magnet and a ring magnet in 
terms of the elliptic integrals introduced in Section III. 
In the final section we present our outlook concerning the 
investigation of Casimir levitation. 

R = r − r′. (2.9) 

The associated magnetic field due to the point magnet is 
obtained using 

 

 

II. MAGNETOSTATIC ENERGY 

 

Magnetostatics is governed by the Maxwell equations 
 

 
 

B2 = ∇ × A2 (2.10) 

and leads to the expression 

µ0

 
3 R̂  R̂ − 1

 
· m2 ′ 

∇ · B = 0, (2.1) 

and that current densities j(r) are sources for the curl of 
the magnetic field, 

where R̂ = R/R. This expression for the magnetic field 
in Eq. (2.11) is missing a term µ0m2δ(3)(r r′) which 

contributes only at r = r′ and is necessary to satisfy the 
constraint 

∇ × B = µ0j. (2.2) ∇ · B2 = 0. (2.12) 

The conservation of charge in the static scenario requires 
the current densities to be divergence free, 

∇ · j = 0. (2.3) 

The constraint of a divergenceless magnetic field in 
Eq. (2.1) allows the construction 

B = ∇ × A (2.4) 

in terms of the magnetic vector potential A(r). In con- 
junction with the Coulomb gauge, 

∇ · A = 0, (2.5) 

this allows the solution for the vector potential 

The magnetostatic interaction energy between another 
point magnetic dipole m1 and the dipole m2 is given by 

U (r) = −m1 · B2(r), (2.13) 

where r now is the position of the point magnet m1. 

A ring magnet is described by its magnetic moment 
per unit length 

λ = 
dm2 

, (2.14) 
2 adφ 

where a is the radius of the ring and adφ is the differential 
arc length. Let us choose the magnetic moment of the 
ring to be uniform and along the axis of symmetry of the 
ring, say ẑ ,  such that 

µ0 

r 
3 ′ j(r′) λ  = λ ẑ .  (2.15) 

A(r) = 
4π 

d r 
|r − r′| 

. (2.6) 2 2 

The magnetic dipole moment of a given current density 
is defined using the expression 

1 
r 

 

 

We further choose the ring to be in the z = 0 plane 
centered at the origin. Refer Fig. 1. Let us keep the 
orientation of the point magnet arbitrary relative to the 
ring magnet and describe it as 

 

 

For a circular current carrying loop of wire we have 
m = IA, where I is the current in the wire and A is 
the area of the circular loop. A point magnetic dipole is 

where 

n̂ = sin θ1 cos φ 1 x̂  + sin θ1 sin φ 1 ŷ  + cos θ1 ẑ, (2.17) 

stating that the magnetic field B(r) is divergence free, 

2 m1 = m1 n̂ ,  (2.16) 
m = d3r′r′ × j(r′). (2.7) 



3 
 

ρ 

z 
m1 

r 
· − − − 

2 

′ 

r 

r 

U (h, 0, φ − φ1, θ1) = −  0 1 2  

2 
4π R3 

4π R3 

+ 
5 

2 

) 

where 

R = 
J
z2 + a2 + ρ2 − 2aρ cos(φ′ − φ). (2.26) 

We have ( n̂  · ẑ )  using Eq. (2.18), 

R · ̂z  = z, (2.27) 

and 

n̂ R = ρ sin θ1 cos(φ  φ1)  a sin θ1 cos(φ′ φ1)+z cos θ1. 
λ2 (2.28) 

a 
Using these expressions the magnetostatic interaction en- 
ergy between the point magnet and the ring magnet is 
given by 

FIG. 1. A point magnet of magnetic dipole moment µ0 m1(2πλ2) 
r 2π dφ′ 

m1 = m 1 n̂  at height z above a ring magnet of radius a with 
uniform magnetic dipole moment per unit length λ2. The 

U (z, ρ, φ − φ1, θ1) = 
4π a2 

  

 
 

0 2π 

point magnet is a distance ρ away from the axis of symmetry 
of the ring magnet. The dipole moment subtends an angle θ1 

with respect to the axis of symmetry, that is, n̂ · zˆ = cos θ1. 

a3 cos θ1 

× 
R3 

− 
3a3z2 cos θ1 

R5 
− 

3a3zρ sin θ1 cos(φ − φ1) 

R5 

 

such that 

3a4z sin θ1 cos(φ′ − φ1) 

R 
. (2.29) 

 

 

with its position 

n̂ · ̂z  = cos θ1 (2.18) In the special circumstance when the point magnet is 
positioned on the axis of the ring we have ρ = 0. This 

allows the integrals on φ′ in Eq. (2.29) to be completed 

 

Note that 

r = ρ cos φ x̂  + ρ sin φ ŷ  + z ẑ .  (2.19) 
and yields an exact expression for the interaction energy 
for this scenario as 

µ0 m1(2πλ2) a3(a2 − 2z2) 
U (z, 0, φ − φ1, θ1) = 

4π a2 5  
cos θ1, 2 2 

n̂ · r = ρ sin θ1 cos(φ − φ1), (2.20) 

which illustrates that the vectors m1 and λ2 representing 
the orientation of the dipoles and r are not in the same 

 
which has an extremum at 

(a + z ) 2 

(2.30) 

plane. 

Differential contribution to the interaction energy from 
the interaction between the point magnet and a differen- 
tial section of the ring magnet is given by 

dU = −m1 · dB2, (2.21) 

where using Eq. (2.11) 

z = h = ±a

) 
3 

. (2.31) 

When the point magnet is positioned at this extremum 
point z = h on the axis we have 

 

µ m (2πλ ) 8 2 
 

4π a2 25 5 (2.32) 

dB (R) = 
µ0

 
3 R̂  R̂ − 1

 
· dm2 

 

(2.22) In general, for ρ /= 0, the integrals on φ′ can not be com- 

 

with r′ now constrained to be on the ring by z′ = 0 and 

|r | = a such that 

r′ = a cos φ ′ x̂  + a sin φ ′ ŷ  + 0 ẑ.  (2.23) 

Using Eq. (2.14) the differential interaction energy takes 
the form 

dU = 
µ0 m1 ·

 
1 − 3 R̂  R̂

 
· λ2 

adφ′ (2.24) 

from which the total interaction energy can be calculated 
by integrating over angle φ′ and is given by 

can be expressed in terms of complete elliptic integrals. 
In the following section, we shall evaluate the exact and 
approximate form for the elliptic integrals required to 

express Eq. (2.29) for ρ /= 0 off the axis. 

 
III. COMPLETE ELLIPTIC INTEGRALS 

 

can be defined using the integral representations [20, 21] 
π 
2  1  

U = 
µ0 

4π 

 

m1λ2 

2π 

adφ′ 
0 

(n̂ · ̂z) 

R3 

( n̂  · R)(R · ̂z  
, 

R5 

K(k) = dψ J
1 − k2 

π q 
sin2 

2 

, (3.1a) 
ψ 

(2.25) 
E(k) = dψ 

0 
1 − k2 sin ψ, (3.1b) 

pleted in terms of elementary functions. However, they 

Complete elliptic integrals of the first and second kind 

L 

r 
− 

cos θ1. 

0 



4 
 

≤ 

2 

2 

L     

    

∞ 

  

E(k) = 
2 

(3.7c) 
(1 − 2n) 

− 

≤ 

) 

s 

respectively. We will be interested in the domain 0  k < 

1. These integrals can not be completed and expressed 
in terms of elementary functions. However, for special 
values they can be evaluated easily. For example, we can 
verify that 

π 
K(0) = , (3.2a) 

2 
π 

E(0) = . (3.2b) 
2 

Further, we can verify that 

E(1) = 1. (3.3) 

Note that 

 

 

 

 
FIG. 2. Complete elliptic integrals of the first kind K(k) and 
of the second kind E(k), plotted as a function of k. Both the 
functions evaluate to π/2 for k = 0. For k → 1 the ellip- 
tic integral of the second kind approaches 1 and the elliptic 
integral of the first kind grows logarithmically. 

 
K(1) = 

r π 
 dψ  

 
(3.4) 

 
the integral representations, and depend on the series ex- 

0 cos ψ 

is divergent. To see the nature of this divergence we can 
introduce a cutoff parameter δ > 0 and write 

r π −δ  dψ  

pansions occasionally. 

To get some insight for complete elliptic integrals we 
mention three physical situations where one encounters 
these functions. Firstly, if we had sought to evaluate the 
perimeter of an ellipse during our exposure to geometry, 

K(1) = lim 
δ→0  0 cos ψ 

, (3.5) we would have encountered the complete elliptic integral 
of the second kind. The perimeter C of an ellipse, de- 

which when evaluated using the identity d(sec ψ + 
tan ψ) = sec ψ(sec ψ + tan ψ)dψ yields 

scribed by the equation 

x2 y2 

δ2 
4 

K(1) ∼ ln 2 − ln δ − 
12 

+ O(δ) (3.6) 
a2 

+ 
b2 

= 1 (3.9) 

and characterized by the eccentricity 

and reveals that K(1) has a logarithmic divergence. The 
plots of K(k) and E(k) as functions of k for 0  k < 1 
are shown in Fig. 2. The complete elliptic integrals in 
Eqs. (3.1) have the power series expansions 

 
 

b2 

e = 1 − 
a2 

(3.10) 

in terms of the semi-major axis a and semi-minor axis 

b, is given in terms of complete elliptic integral of the 

K(k) = 

∞ 
π 
2 

n=0 

 (2n)!  2 

22n(n!)2 
k2n (3.7a) 

second kind as 
 

C = 4aE(e). (3.11) 

π 
= 1 + 

2 

1 
k2 + 

4 

 9  
k4 + . . . , (3.7b) 

64 

A circle is an ellipse of zero eccentricity (a = b) and has 
the circumference 

π L
 
 (2n)! 

 2 
k2n 

 
 

π 
= 

2  
1 − 

 3  
k2 

4 64 
k4 − . . . . (3.7d) 

using E(0) = π/2. Secondly, the period of oscillations T 
of the simple pendulum as a function of the amplitude of 
oscillations φ0 is given in terms of the complete elliptic 

The leading order contribution in the power series expan- 
sions are from K(0) and E(0). The next-to-leading order 
contributions in the above series expansions are evaluated 
by expanding the radical in Eqs.(3.1) as a series using 

integral of the first kind as 
 

T = 2π 
l 2 

K  sin  
φ0 

g π 2 
. (3.13) 

 1  1 √ For small amplitudes (φ0 ≪ 1) this reproduces the classic 
= 1 + x + . . . , (3.8a) 

1 − x 2 
√

1 − x = 1 − 
1 

x + . . . . (3.8b) 

result s 
l 2 

s 
l 

2 

Either the integral representations or the series expan- 

T → 2π K (0) = 2π 
g π 

(3.14) 
g 

sions are sufficient to investigate the properties of the 
complete elliptic integrals. Here we shall primarily use 

using K(0) = π/2. Thirdly, one encounters elliptic in- 
tegrals while finding the magnetic field due to a circular 

22n(n!)2 

π 

π 
2 

1 

k 

n=0 

C → 4aE(0) = 2πa (3.12) 

1 



5 
 

− 

− 

r 

− 

r 

r 

− 

r 2 

− 2 

2 

sin 

3 
1 +  k 

4 
+ 

64 

= k 
2   sin ψ  d 

dψ    
π 
2 

r 
2 

− 

= − π5(k) + 
− 

wire carrying a steady current, at points away from the allows us to recognize the integrals as 
axis of symmetry of the circular wire [1]. 

Derivatives of the elliptic integrals with respect to their 
arguments are calculated by evaluating the derivatives of 

dE 

dk 
= π3(k) 

(1 k2) 

k 
− 

K(k) 
. (3.24) 

k 

the corresponding integrands and then rewriting the re- 
sultant integrals in terms of elliptic integrals. This pro- 
cess is simplified by introducing new elliptic integrals. 
The derivative of the complete elliptic integral of the sec- 
ond kind leads to the integral 

Thus, we have derived two separate expressions for 
dE/dk in Eqs. (3.17) and (3.24). Equating the right hand 
sides of these equations allows us to find an identity for 
π3(k) in terms of E(k), 

E(k) 
dE 

dk 
= −k 

π 
 

2 

dψ J 
 

 
 

sin2 ψ 

2 2 
, (3.15) 

 
 

π3(k) =  
 

(1 − k2) 
. (3.25) 

which can be rewritten in the form the power series expansion of 1/(1 k2) we obtain the 
power series expansion for π3(k) as     π  2 2   

dE 1 2 − 1 + 1 − k sin  ψ 
= 

dk k 
dψ J

1 − k2 sin2 ψ 
(3.16) π 

π (k) = 
3 2 45 

k4 + . . . . (3.26) 
 

to recognize the identity 

dE K(k) 
= + 

dk k 

 
E(k) 

. (3.17) 
k 

When we follow the steps leading to Eq. (3.17) for π3(k) 
we obtain 

dπ3 3 L 

Following the same steps for K(k) yields  

where 

= 
dk k 

π5(k) − π3(k) , (3.27) 

dK π3(k) 
dk 

= 
k 

− K(k) 
, (3.18) k 

π 
2  1  

 

where we introduced a new elliptic integral 

π5(k) = 
0 

dψ 
(1 − k2 sin2 

5 
. (3.28) 

ψ) 2 

 

π 
2  1  

Starting from the definition of K(k) we have the deriva- 
tive 

π3(k) = 
0 

dψ 
(1 − k2 sin2 

3 
. (3.19) 

ψ) 2 

π 
dK 

= k dψ dk (1 
sin2 ψ 

k2 sin2 ψ) 
3 
. (3.29) 

The new elliptic integral π3(k) can be written in terms 
of K(k) and E(k). To obtain this result, we rewrite the 
integral in Eq. (3.15) in the form 

r π 

0 − 2 

Using the identity sin2 ψdψ = sin ψd cos ψ, like earlier 
in Eq. (3.20), we integrate by parts to obtain 

dk 0 

J
1 − k2 sin2 ψ dψ 

 
 

= dψ 
dk 0 

 

 

(1 − k2 

 

sin2 

 

 
5 

ψ) 2 

. (3.30) 

and integrate by parts to write Again, rewriting the numerator as 

π  L 
dE 2  d   sin ψ cos ψ   

2 2 2 3(1 − k2) 
= k dψ 

dk 0 dψ 
J
1 − k2 sin2 ψ 

cos ψ(1 + 2k sin 
2 

ψ) = − 
k2 

 
π 
2  d 

 
 sin ψ  

L 
+

(5 − 2k )
(1 k2 

k2 sin2 
 2  2 

ψ) − 
k2 

(1 − k sin2 ψ)2 (3.31) 
dψ cos ψ 

0 dψ 
J
1 − k2 sin2 ψ 

. (3.21) 

leads to the identity 

The first integrand is a total derivative and thus con- 
tributes only at the boundary, and yields zero in this 
case at both ends. The second integral, after evaluating 

dK 3(1 − k2) 
  

dk k2 

(5 2k2) 2 

k2 
π3(k) − 

k2 
K(k). 

(3.32) 
the derivative in the integrand, takes the form Using Eqs. (3.18) and (3.32) we have 

π 
dE 2 −k cos ψ 2(2 − k2) K(k) 

= 
dk 0 

dψ 
(1 k2 sin2 ψ) 

3 
. (3.22) π5(k) = 

3(1 − k2) 
π3(k) − 

3(1 − k2) 
. (3.33) 

Rewriting the numerator of the integrand as We can further replace π3(k) Eq. (3.25) to write 

(1 − k2) (1 − k2 sin2 ψ) 2(2 − k2) K(k) 

− k cos φ = 
k 

− 
k 

(3.23) π5(k) = 
3(1 − k2)2 

E(k) − 
3(1 − k2) 

. (3.34) 

k cos2 

ψ 0 

r 

r 

1 − k Using the power series expansion for E(k) together with 

0 
2 

dE 
cos ψ (3.20) dK ψ(1 + 2k 2 sin2 ψ) 

r 

r 

k − 



6 
 

2 2 

  

R 

− 

− 

2 

1 

U = 
4π 

3 

(a2 + z2 + ρ2 + 2aρ cos φ′) 2 

5 
k2 5 3 

2 8 32 1 1 
5 

0 

4π 

1 2 

0 
− 

U (z, ρ, φ − φ1, θ1) = 
4π 2 ρ 

cos θ1k π3(k) − 
8 ρ2 

cos θ1 + 
ρ 

sin θ1 cos(φ − φ1) k π5(k) 

8 ρ ρ 
1 1 5 

k2 5 3 

3 

1 − 1 

a 

The power series expansion for π5(k) yields To prepare the denominator for the elliptic integrals we 

π π (k) = 
5 2 105 

k4 + . . .  . (3.35) 
substitute φ′′ = π − φ′, which amounts to integrating in 
the reverse order. This amounts to replacing cos φ′ → 

5 1 +  k + 
2 4 64 cos(π − φ′) = − cos φ′. That is, 

For the present discussion it is also handy to have the 
 

 
 

µ0 m1(2πλ2) 
r π dφ′

 
2a3 cos θ1 

  

 
 

 

 
π (k) − 

 2  
π (k) − π (k)

tl 
6a3z2 cos θ1 

 

 
 

= 
π 

0 − 
5 

k2 − 
35 

k4 + . . . 
L
. (3.36) 

 
IV.  MAGNETOSTATIC ENERGY IN TERMS 

OF COMPLETE ELLIPTIC INTEGRALS 

6a3z sin θ cos(φ − φ )(ρ + a cos φ′) 

(a2 + z2 + ρ2 + 2aρ cos φ′) 2 

Using the trigonometric identity cos φ′ = 1 − 2 sin2(φ′/2) 
and substituting φ′/2 → φ′ afterwards, we obtain 

µ m (2πλ )
) 

a 
r π 

dψ
 

ak3 cos θ 
To express the magnetostatic interaction energy in U = 

 0 1 2   1 

Eq. (2.29) in terms of elliptic integrals, we start by substi- 
4π a2 ρ 0 2π 2ρ(1 − k2 sin2 ψ) 2 

tuting φ′′ = φ′ − φ, which takes the limit of integrations 
from −φ to 2π − φ. Since the integration is a sum, it does 

3z2k5 cos θ1 − 
8ρ2(1 − k2 sin2 ψ) 

5 

3zak5 sin θ cos(φ φ ) 
− 

8ρ2(1 − k2 sin2 ψ) 
5 

not care for the order as long as it completes a period. 
Thus, we can switch the limits of integration to go from 

−π to +π. This leads to 
× 

ρ 
+ (1 − 2 sin2 ψ)

t L

. (4.4) 

µ0 m1(2πλ2) 
r π dφ′′

 
a3 cos θ1 3a3z2 cos θ1 We can recognize the elliptic integrals π3(k) and π5(k) 

U = 
4π a2 

 
 

−π 2π R3 
− 

R5 
introduced in Eqs. (3.19) and (3.28), respectively, in the 
first two integrals and in the first term of the third inte- 

3a3zρ sin θ1 cos(φ φ1) 
− 

5 

3a4z sin θ1 cos(φ′′ + φ − φ1) 
L 

gral. The elliptic integrals here are written in terms of 
the argument k defined using 

 4aρ  
+ 

R5 
, (4.1) 

k2 = 
z2 + (a + ρ)2 

. (4.5) 

where, now, R2 = z2 + a2 + ρ2 2aρ cos φ′′. The inte- 
gral associated with the fourth term evaluates partly to 
zero, after using cos(φ′′ + φ − φ1) = cos φ′′ cos(φ − φ1) − 

The second term in the third integral can be expressed 
in terms of elliptic integrals as 

sin φ′′ sin(φ−φ1), because the integrand containing sin φ′′ 
π 
2 (1 − 2 sin2 ψ) 

is odd, and the rest being even are twice the value when 
integrating from 0 to π. Thus, 

dψ 
0 (1 − k2 sin2 ψ) 

5 

 2   
 
tl 

µ m (2πλ ) 
r π dφ′′

  
2a3 cos θ 6a3z2 cos θ 

   

    

= π5(k) − 
k2  

π5(k) − π3(k) . (4.6) 

6a3z sin θ1 cos(φ − φ1)(ρ − a cos φ′′) 
L 

 

 

analytic expression for the magnetostatic interaction en- 
 

 

 

µ0 m1(2πλ2)
) 
a 1 2

  
1 a 3 3

  
z2 z 

l 
5 

      

  

3 a z 5

 
 2  tl L 

− sin θ cos(φ − φ )k π (k) − π (k) − π (k) . (4.7) 

 

 

The expression for the interaction energy in Eq. (4.7) is 
valid for arbitrary position and orientation of the point 
magnet. We shall proceed to list some special cases of 

positions and orientations, which are expected to give 
insight into the structure of the interaction energy. 

In the special case when the point magnet is positioned 

ρ 4 π a2 

ergy between the point dipole and the ring magnet as 
R5 

R5 R3 2π a2 

5 

series expansion 

2 

r 

a2 
0 2π 

− 
2 2 2 ′ (a + z + ρ + 2aρ cos φ ) 2 

− . (4.3) 

U = 
1 

Then, in terms of elliptic integrals, we obtain an exact 

− . (4.2) 

L 



7 
 

 
 

 
 

   l 

  

≤ 

U z, ρ, 
2 

, θ1 

z, ρ, φ − φ1, 
2 

= 
4π ρ 32ρ 

cos(φ − φ1) 

3 
2 

π 5 ρ 5 k2 

5 
2 

4a magnet is parallel to the axis of the ring magnet we have 

3a µ0 m1(2πλ2)
  

a 

 
3 

 

2 k3 

U (z, ρ, φ − φ1, 0) = 
4π 

2a 2
  a2 ρ 8 

3z2k2 

× 
π  

π3(k) − 

a 
4aρ 

π5(k) (4.10) 

for arbitrary position of the point magnet. Observe that 
it is independent of the variable φ representing the az- 

z 0 
imuth angle of the position of the point magnet leading to 

axial symmetry, in addition to the trivial independence 
−a in orientation variable φ1 because of θ1 = 0. Further, we 

have 

−2a π 
 

−3a 

 

−4a
4a 3a 2a a 

 
 

 

0 a 2a 3a 4a 

ρ 

k 

The interpretation is that, when the azimuthal plane of 
position of the point dipole is perpendicular to the az- 
imuthal plane of its orientation, the energy is simply a 
scaled version of an axially oriented point magnet. As a 
consequence of Eq. (4.11) we have the interaction energy 
to be zero when the orientation of the point magnet is 

0.0 0.5 1.0 perpendicular to the position vector of the point magnet, 

θ1 = π/2. That is, 

FIG. 3. Contour plot of the parameter k defined in Eq. (4.5) 
as a function of ρ and z. In the figure, k = 0 corresponds 
to the z axis where ρ = 0, and k = 1 corresponds to the 

π π 
U z, ρ,  , 

2 2 

 

= 0. (4.12) 

ring described by ρ = a. The region corresponding to k ≪ 1 
consists of points very close to the z axis. 

Next, if we have θ1 = π/2 with arbitrary φ − φ1 we have 

π µ0 m1(2πλ2)
) 
a 3zk5 

 

on the axis of symmetry of the ring magnet we have 
ρ = 0, which sets k = 0. We keep the orientation of 
the point magnet arbitrary. The parameter 0 k < 1 
spans the complete region around the ring magnet. k = 1 
corresponding to the ring magnet itself, given by ρ = a 

 

× 
2

 

π (k) + 
a

  
π (k) − 

 2   
π5(k) − π3(k)

tl L  
.(4.13) 

and z = 0, which can not be occupied by the point mag- 
net. The region of space around the ring magnet, as 
described by the parameter k in terms of ρ and z is illus- 
trated in Fig. 3. Using the leading order contributions in 
Eqs.(3.26) and (3.35), 

π (k) = 
π 

1 + O(k2)
L
, (4.8a) 

V. CONCLUSION AND OUTLOOK 

 

In Eq. (4.7) we have presented an exact expression 
for the magnetostatic interaction energy between a point 
magnet and a ring magnet in terms of complete elliptic 
integrals. Starting from this energy expression we can an- 
alyze the stability of the point magnet. Our configuration 

π (k) = 
π 

1 + O(k2)
L
, (4.8b) 

 

and Eq.(3.36), 

stability analysis of which has been discussed in Ref. [19]. 
However, the investigation in Ref. [19] is assumed to be 
on the axis of symmetry. Our expression for energy de- 
rived here allows an accurate analytical derivation of the 
stability. This requires us to find the force on the point 

2     tl 
π 2 L dipole, which is given in terms of the derivatives of the 

π5(k) − 
k2  

π5(k) − π3(k) = 
2 

0 + O(k ) , (4.9) 

 
and limρ→0 k2/ρ = 4a/(z2 + a2), in Eq. (4.7), we repro- 
duce the interaction energy in Eq. (2.30) successfully, for 
this particular case. This serves as a partial check for the 
exact expression in Eq. (4.7). 

For the special case when the orientation of the point 

elliptic integrals in the energy. However, to find the sta- 
bility points this would amount to finding the zeros of 
an expression involving elliptic integrals. This will in- 
evitably force us to depend on numerics. However, since 
the stability points are expected to be close to the axis 
we will be able to depend on the series expansions and 
obtain analytic perturbative expressions. This will be 
explored in another discussion elsewhere. 

 
 

 
 

 
 

 
 

 
 

 
 

= cos θ1 U (z, ρ, φ − φ1, 0). (4.11) 

U 
a2 

is essentially that of a massless point-like LevitronTM, the 
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· · · 

32π2 R7 R9 

· 

Our primary long-term goal is to discuss Casimir lev- 
itation, as proposed in and around FIG. 16 of Ref. [18]. 
Here we outline how the methodology presented here 
can be immediately used to derive the corresponding 
Casimir-Polder interaction energy between a polarizable 
atom of polarizability 

where the vector R is given by Eq. (2.9) and the magni- 
tude R is given by Eq. (2.26). In Ref. [18] the atom was 
confined on the symmetry axis and it led to the signifi- 
cantly simplified expression for energy in Eq. (103) there. 
When we do not restrict the atom to be on the axis of 
symmetry we have the expression for energy 

 
α = α 1 n̂ n̂  

 
(5.1) 

 
U (z, ρ, φ − φ1, θ1) = − nc α1σ2a 

r 2π  
dφ′ 

( n̂  ẑ )2  

13 
32π2 

0 R7 

and a polarizable ring of radius a with electric suscepti- 
bility 

−56 
(R · n̂ )(n̂ · ẑ )( ẑ · R) 

+ 63 
R9 

(R · n̂)2 (ẑ · R)2 

R11 
,(5.4) 

 

χ = σ2 ẑ ẑ δ (z ′  − 0)δ(ρ′ − a). (5.2) 

 
Here n̂ is the principal axis of polarization and is chosen 
to be given using Eq. (2.17). Similarly, ẑ  is the direction 
of polarization of the ring. The position of the atom is r 
and chosen to be given using Eq. (2.19), and a point on 

the ring is described by r′ given using Eq. (2.23), Thus, 
the parameters in the problem are equivalent to those of 
the magnetic configuration presented in this article. The 
Casimir-Polder interaction energy between the atom and 
the ring is given using Eq. (41) in Ref. [18], which can 
rewritten in terms of the parameters in this article as 

U = − 
 nc  

r 
d3x

 
13 

tr(α · χ) 
− 56 

(R · α · χ · R) 

where ( n̂  ẑ ) ,  (R ẑ ) ,  and (R n̂ ) ,  are given using 
Eqs. (2.18), (2.27), and (2.28), respectively. The expres- 
sion for energy in Eq. (5.4) is the analog of our expression 
for magnetostatic energy in Eq. (2.29). Using the meth- 
ods used in this article we believe that the three inte- 

grals in φ′ can be completed in terms of elliptic integrals. 
The results will be reported in a separate discussion else- 
where. 
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+63 
(R · α · R)(R · χ · R) 

R11 
, (5.3) 

Cavallo, Ram Narayanan, Matthew Gorban, Dylan Kelly, 
and Zeid Ghalyoun, for valuable feedback. 

 
 

 

[1] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and Wu- 
yang Tsai, Classical Electrodynamics, Advanced book 
program (Perseus Books, 1998). 

[2] R. Ravaud, G. Lemarquand, V. Lemarquand, and C. L. 
Depollier, “Analytical calculation of the magnetic field 
created by permanent-magnet rings,” IEEE Trans. Magn. 

44, 1982 (2008). 
[3] S. Babic and C. Akyel, “Improvement in the analytical 

calculation of the magnetic field produced by permanent 
magnet rings,” Prog. Electromagn. Res. C 5, 71 (2008). 

[4] B. M. Axilrod and E. Teller, “Interaction of the van der 

Waals type between three atoms,” J. Chem. Phys. 11, 
299 (1943). 

[5] Y. Muto, J. Phys. Math. Soc. Japan 17, 629 (1943). 
[6] D. P. Craig and E. A. Power, “The asymptotic 

Casimir-Polder potential for anisotropic molecules,” 
Chem. Phys. Lett. 3, 195 (1969). 

[7] D. P. Craig and E. A. Power, “The asymptotic 
Casimir-Polder potential from second-order perturbation 
theory and its generalization for anisotropic polarizabili- 

ties,” Int. J. Quantum Chem. 3, 903 (1969). 
[8] J. F. Babb, “Long-range atom-surface interactions for 

cold atoms,” J. Phys. Conf. Ser. 19, 1 (2005). 
[9] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. 

Reid, and S. G. Johnson, “Casimir repulsion between 

metallic objects in vacuum,” Phys. Rev. Lett. 105, 
090403 (2010). 

[10] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, 
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