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Cognitive neuroscience seeks generalizable theories explaining the
relationship between behavioral, physiological and mental states. In pursuit

of suchtheories, we propose a theoretical and empirical framework that
centers on understanding task demands and the mutual constraints they
impose on behavior and neural activity. Task demands emerge from the
interaction between an agent’s sensory impressions, goals and behavior,
whichjointly shape the activity and structure of the nervous system on
multiple spatiotemporal scales. Understanding this interaction requires
multitask studies that vary more than one experimental component (for
example, stimuli and instructions) combined with dense behavioral and
neural sampling and explicit testing for generalization across tasks and data
modalities. By centering task demands rather than mental processes that
tasks are assumed to engage, this framework paves the way for the discovery
of new generalizable concepts unconstrained by existing taxonomies, and
moves cognitive neuroscience toward an action-oriented, dynamic and
integrated view of the brain.

Cognitive neuroscience seeks to understand physiological, mental
and behavioral phenomena, articulating theories that jointly explain
these domains. Central to this understanding is a foundational idea
that has long been recognized but is often overlooked in empirical
practice: we are agents, not observers of our environment'. We sample,
move through andinteract with the worldin order to accomplish goals
and satisfy innate drives. Sensory inputs are, therefore, not passively
received by the nervous system, but a direct consequence of actions
and the goalsthat drive them. Reciprocally, our goals, and the actions
required toaccomplishthem, are constrained by the environment. For
example, ananimal may sniff while foraging for food, guided by smell,
but may run in the presence of a predator, prioritizing hearing and
sight to escape. The dynamic and interdependent nature of sensory
impressions, goals and behavior implies that the demandsimposed on
anagentinany given moment are defined by the convergence of all of
these factors, rather than by any single factor (Fig. 1). As the nervous
system affords andis continuously shaped by such agent-environment

interactions, the demands that emerge from this interplay ultimately
determine the behavioral, mental and physiological states that persist.
We argue that parsimonious, generalizable theories of these states can
only be formulated by unpacking the constraints mutuallyimposed on
them by such demands, which, inan experimental context, werefer to
as ‘task demands’.

In pursuit of generalizable theories, we propose a framework for
cognitive neuroscience that centers on elucidating how task demands
influence behavioral and physiological measures. Operationalizing
task demands and determining their influence on empirical datacomes
with a critical challenge: Although task demands drive neural activity
and behavior broadly with measurable effects, they themselves canbe
neither directly controlled nor observed by the experimenter. Rather,
task demands are the product of the requirements and conditions an
agent encounters during an experiment and emerge from the inher-
ent (that is, unavoidable) interaction between experimental compo-
nents (for example, stimuliand instructions). Therefore, they canonly
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Fig.1| Centering task demands in our thinking. Interdependent factors
collectively define agent-environment interactions, physiology and
experimentation. a, Agent-environment interaction. Goals, behavior and
sensory impressions of the environment are interdependent and need to be
understood in terms of their constraints on each other, rather than individually.
For example, the choice of instructions influences which aspects of the
environment are relevant (for example, stimulus color versus motion), how
the environment is sampled (for example, through eye movements) and the
behavioral response given (for example, lever press). These factors jointly
determine the demands on the agent in any given moment. b, Physiology.
The nervous system adapts continuously to meet the demands on the agent.
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Activity drives plasticity, plasticity shapes anatomy, and anatomy constrains
activity. ¢, Experimentation. In the experimental context, we attempt to control
agent-environment interactions by manipulating experimental components
(for example, stimuli, instructions and behavioral responses). Task demands
emerge from the interaction between these components, constituting latent
variables that determine the behavioral, physiological and mental states that
occur during the experiment. Different experiments may have shared and unique
experimental components, affecting their overlap in task demands (for example,
experiments 1and 2 feature button clicks but differ in stimuli and instructions;
experiments 2 and 3 share instructions but differ in stimuli and prompted
behaviors).

BOX1

Outside-in versus inside-out: task demands bridge mental

concepts and neural data

Cognitive neuroscience aims to formulate theories and models

that jointly explain behavior, neural activity and mental states.

The predominant approach relies on preexisting psychological
concepts that guide the collection of physiological or behavioral
evidence through experimentation and modeling, (for example,
finding a mapping between neural activity and working memory).
Although these types of experiments may be well suited to answer
questions about specific putative concepts, they are not well suited
for the empirical discovery of new concepts. This is because the
psychological concepts and the tasks used to probe them are

so tightly linked that any data acquired will necessarily lack the
variability to avoid biases toward that concept. In fact, many tasks are
even named according to the respective process they are assumed
to engage (for example, a ‘recognition task’, ‘working memory task’).
This approach, often referred to as an ‘outside-in approach’, has been
challenged®, especially because psychological concepts do not
provide a satisfying account for a growing body of neuroscientific
data. More fundamentally, mapping preexisting concepts to the brain
can only ever reify rather than redefine the century-old ‘divisionist’
taxonomy®“.

An alternative ‘inside-out’ approach instead prioritizes the
biological substrate®®, conceptualizing the brain as a pattern
generator that maps initially ‘meaningless’ activity patterns to
environmental phenomena through actions, ultimately giving them
their ‘meaning’. Under this view, characterizing the neural patterns
and establishing their meaning post hoc can lead to the discovery
of new concepts. Although this approach is, therefore, free of
the constraints imposed by existing taxonomies, it requires first
discovering meaningful physiological patterns, and then finding the
correct mapping between these patterns and an endless number
of possible real-world phenomena and actions, probably without a
unique mapping solution®.

Importantly, neither outside-in nor inside-out approaches typically
test the central assumption in neuroscience and psychology that
inferences based on one task generalize to others, or even to the
real world. This long-standing assumption of generalization is
based on another: namely, that a task engages a specific mental
process that operates beyond the specific experimental setting.
These assumptions often lead to generalizations on the level of
putative mental processes rather than the data. As a consequence,
studies framed around the same process are often grouped
together and distinguished from those examining other processes,
and the task demands imposed by the experiments often receive
less consideration. We suggest that by relying on such meta-level
comparisons across studies on the level of mental processes,
rather than explicitly testing for generalization across tasks on the
level of the data, the predominant approaches have contributed
to an unwarranted reification of existing taxonomies, and to an
unnecessary fragmentation of the literature.

Our perspective is that regardless of which approach is taken,
the link between the concept and the data is fundamentally the task
demands of the specific experiment conducted. Thus, understanding
the mutual constraints task demands impose on neural activity and
behavior is key to formulating new concepts, theories and models
that jointly explain these domains, alongside concomitant mental
states. Understanding the constraints imposed by task demands
requires formal quantifications of the generalization of results
(or lack thereof) across tasks on the level of the data. Moreover,
testing whether patterns generalize across neural and behavioral
measures will allow the discovery of concepts that jointly explain
data modalities. Such tests of generalization can reveal meaningful
patterns in the data that can then be interpreted by linking them to
the experimental components that were varied, ultimately fueling the
creation of new empirically defined concepts.
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BOX2

Shared task demands: the case of attention, working memory and

mental imagery

To understand how task demands shape our empirical observations,
consider the case of attention, mental imagery and working
memory—three psychological concepts traditionally associated
with separate mental processes. Although largely distinct literatures
provide seemingly abundant behavioral and neurophysiological
evidence for each one of these putative mental processes, much

of this evidence overlaps across the three (Box 2 Fig.), calling into
question the separability of the concepts themselves (see, for
example, ref. 63).

In endogenous attention tasks, internally generated signals
prepare one to attend to specific features of a stimulus, even in the
physical absence of that stimulus. During such tasks, feature-specific
modulations are observed in the neural response of many regions (for
example, ref. 66). In working memory tasks, information needs to be
maintained over time in the absence of a physical stimulus and often
directly engages the same cortices that responded when the stimulus
was present (for example, ref. 67). Such findings have been taken as

a@ Many putatively distinct mental processes engage
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support for a sensorimotor recruitment framework®® and predict the
behavioral pattern of interference between currently perceived and
memorized stimuli®®’®. In mental imagery tasks, specific stimulus
features must be called to mind in the absence of a physical stimulus,
with results suggesting a depictive representation mediated by
common neural substrates for imagery and perception’'. Converging
evidence for shared neural substrates for imagery and perception
has even prompted the question of how we are able to differentiate
between the two”.

Importantly, all three of these tasks engage neural substrates
keyed to the stimulus content, which becomes especially apparent
when directly compared within individuals™. In fact, the neural
evidence taken as support for attention, working memory and
imagery also overlaps with many other putative mental processes
(for example, generating expectations), hinting at the possibility of
formulating unified, more parsimonious concepts that explain these
data (Box 1). Indeed, data-driven quantification of the relatedness
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Box 2 Fig. Shared task demands drive similarities across domains. a, Putatively distinct mental processes engage overlapping physiological
substrates. Example concepts that are typically probed with specialized tasks. Statistical maps show regions with strong association with
the terms ‘attention’, ‘working memory’ and ‘imagery’ across hundreds of studies adapted from neurosynth’. Depicted are meta-analysis

uniformity tests thresholded at P<0.01 (false discovery rate-corrected) overlaid on Freesurfer’s FSaverage surface. Note that these maps may
mask individual differences in activity strength and localization. b, Common task demands probably explain neural overlap observed across
putatively distinct mental concepts. We depict a surface render of the overlap between the statistical maps in a. Bright blue shows areas that
overlap across all three example concepts. ¢, Example studies reporting similar principles across species and techniques. Left, Neurons in

the macaque show increased spiking during a cue-target delay period when the target is expected to appear in their receptive field (adapted
from data in ref. 66). Middle, Neurons in the mouse show selectivity for specific odors during delay period (adapted from data in ref. 67). Right,
Stimulus identity can be decoded from early visual areas during both working memory and mental imagery tasks (adapted from data in ref. 73).
FEF, frontal eye field; LIP, lateral intraparietal area. d, Example study showing that neural activity is task dependent. Decoding of object identity
in posterior fusiform cortex and lateral prefrontal cortex depends on the task used (adapted from data in ref. 70).
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of the most prominent concepts currently used in cognitive
neuroscience shows that the boundaries between them are blurry
at best®. We argue that neuroscientific evidence, such as the
engagement of ‘sensory’ cortices by ‘high-level cognitive processes’
(for example, emotion schemas™), belies the distinction between
even the most deeply rooted terms in our field such as perception

be manipulated indirectly through the choice of such experimental
components. As the factors these components attempt to control
interact, seemingly small changes in one component can produce
large differences in task demands, making it difficult to disentangle
the impact of individual experimental components on the level of
behavioraland physiological measures. To address this challenge and
uncover how task demands drive empirical measures, we argue that
studies need to characterize the interactive influence of experimen-
tal components on the data. This quantification can be achieved by
varying multiple components simultaneously, and formally testing the
generalization of results across tasks and across neural and behavioral
data. We contend that such an approach will enable the data-driven
discovery of new concepts while remaining grounded in theory, com-
bining the strengths of the established and predominant ‘outside-in’
and ‘inside-out’ approaches while simultaneously overcoming their
limitations (Box 1).

The following sections describe the theoretical and practical
implications of this framework based on a synthesis of perspectives,
approaches and data from diverse literatures. We begin by discussing
why all empirical measures are ultimately grounded in task demands,
and how their influence can be understood through the interaction
between experimental components. Next, we outline how agent-
environment interactions, which underlie task demands, shape all
aspects of physiology on multiple spatiotemporal scales, leading
into three sections focusing on the dynamic, interconnected and
multifunctional nature of neural circuits. We then highlight the fun-
damental importance of comprehensively analyzing behavior for
any and all tasks, and why improvements in behavioral testing and
study design are essential for advancing our understanding of the
nervous system. We conclude by emphasizing the relevance of open
science and large-scale interdisciplinary initiatives for accomplishing
the long-term objectives of cognitive neuroscience, which includes
the creation of a new and adaptive taxonomy that unifies neural,
behavioral and mental states.

Behavioral and physiological measures are
grounded in task demands

Traditionally, studies vary asingle experimental component (for exam-
ple, stimuli) while keeping others constant (for example, instructions),
mapping variations in that component to variations in the recorded
data (for example, neural spiking and behavioral responses). Although
this approach has led to key discoveries, it has a central limitation:
varying only one componentrendersus blind tointeractions between
components (Fig.1). However, alarge body of literature suggests that
the choice of each experimental component can affect the influence of
others, makingit challenging to attribute results to a single component
orvariable. Further, most neurons exhibit mixed selectivity thatis task
dependent. The activity of subicular neurons, for instance, reflects
aninteraction between an animal’s location, head direction and run-
ningspeed, but the variance in activity accounted for by each depends
on the animal’s task Similarly, neural activity in putatively sensory
cortices, such as early visual cortex, reflects not just stimulus-evoked
responses but also task-related goals, behaviors®and physiological sig-
nals (suchas arousal)’. Studies using multiple tasks have further shown
astronginfluence of experimentalinstructions or cues on widespread

and cognition. We suggest that rather than the psychological
concepts themselves, the similarity in task demands across studies
(for example, maintaining stimulus information over time) can explain
the commonalities and differences in physiological responses they
observe, and that many seemingly established distinctions between
putative mental processes are unsubstantiated.

neural activity in humans (for example, ref. 5), monkeys (for example,
ref. 6) and rodents (for example, ref. 7), and multitask designs offer
improved parcellation and connectivity estimates when compared to
traditional approaches (for example, ref. 8). Experimental instructions
also have profound effects on behavior (for example, ref. 9). Finally,
studies probing putatively distinct mental processes (for example,
working memory, attention and mentalimagery) often report similar
or overlapping neural activity, which probably reflects similarities in
their underlying task demands (Box 2). These results collectively sug-
gest that behavioral and neural measures—and the mapping between
them—are inherently task dependent.

In light of these findings, we propose that task demands emerg-
ing from interacting experimental components underlie any neural
or behavioral result, making it crucial to formally unpack their influ-
ence. To this aim, studies need to vary multiple experimental compo-
nents (for example, stimuli, instructions and, prompted behaviors)
and quantify their interaction on the level of the data. Such multitask
studies enable the identification of patterns of results that generalize
across tasks and across data types, which can then be interpreted by
linking them to the experimental components that were varied, as
well as to other factors not explicitly manipulated (for example, time
of day). Formal tests of generalization are essential for the broader
applicability of research findings, as across-task generalization is a
crucial prerequisite for generalization to the real world. To enhance
ecological validity of experiments and, therefore, generalizability of
their results, we agree with others in prioritizing naturalistic condi-
tions (for example, ref. 10) or allowing free ambulatory behavior (for
example, ref.11). Notably, naturalistic conditions canbe achieved while
maintaining a high level of experimental control, for example, through
photorealistic rendering™ or the use of virtual reality”. Ultimately, by
focusing on multitask studies, naturalistic conditions and the pursuit
of across-task generalization, we believe that empirically grounded
concepts canbe derived from the data thatjointly explain neural activ-
ity, behavior and mental states (Box 3).

Agent-environment interactions shape all
aspects of physiology

Although task demands are specifically defined within experimen-
tal contexts, determining their influence on empirical measures can
reveal general principles about the nervous system and its groundingin
agent-environmentinteractions. Given that activity drives plasticity,
plasticity shapes anatomy, and anatomy constrains activity (Fig.1), the
nervous system continuously adapts to meet demands on the agent.
These adaptations range from immediate, local adaptations in pro-
tein synthesis and synaptic modifications (for example, ref. 14), to
large-scale network changes on developmental” and evolutionary
timescales'®. As the history of behavioral successes and failures deter-
mines which neural circuits and dynamics persist”, all aspects of the
nervous system are ultimately yoked to the behavior it produces. This
action-centric view accounts for aburgeoning literature showing that
behavioral correlates can be found in activity throughout the brain®,
eveninearly sensory cortices”, as well as for the widespread integration
of motor outputs and sensory inputs (for example, efference copies™).
Moreover, this perspective supports theidea that actions are aninte-
gral partof sensory processing®, and suggests that the conjunction of
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BOX3

Empirical approaches for examining the constraints of task
demands on physiology and behavior

Experiments yield a relationship between empirical measures
(for example, neural responses) and a specific combination of
experimental components (for example, stimuli, instructions and
behavioral responses). To unpack task demands, experiments need
to be designed to specifically characterize the interaction between
these components, ideally within individuals, which can be achieved
by implementing a multitude of task variations and empirical
measures, yielding rich datasets that combine high experimental
control with high data variability (Box 3 Fig.). When neural activity
and behavior are densely sampled, such multitask designs are ideal
for testing generalization of results across task conditions and across
data modalities (Box 3 Fig.), leveraging the full richness of neural and
behavioral dynamics to uncover their common constraints. Moreover,
focusing on task demands and generalization through multitask
studies will make studies more naturally extendable and comparable
to later studies, especially when designed with open science and
quantitative convergence as the goal (see section ‘Transforming the
culture of cognitive neuroscience’).

Various analysis techniques can discover patterns that generalize
across tasks and data modalities. For example, the behavioral
or neural patterns that generalize across tasks can be identified
through clustering analyses applied to across-task similarity matrices
(Box 3 Fig.), via representational similarity analysis (for example,
ref. 5), component modeling or factor analysis of all tasks together
(similar to, for example, ref. 76), or training and testing encoding/
decoding models across tasks (similar to, for example, ref. 77).
Similar techniques could establish the mapping between neural and
behavioral data, for example, by comparing principal components
estimated for each measure’®, or through behavioral encoding
models (for example, ref. 13). Alternatively, the mapping could
be achieved by estimating joint low-dimensional embeddings for
behavior and neural activity®®. Not only do such techniques identify
the general patterns that are shared across data types or tasks (Box 2),
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but they also yield those patterns that are unique to each one, which
can then inform new hypotheses to be targeted in subsequent
experiments (for example, ref. 78).

To interpret results, patterns that generalize across tasks and/or
data types can be linked to the specific variations in the experimental
components, for example, by computing how much variance each
component explains in the across-task similarity matrices (Box 3
Fig.). Moreover, by considering the broader experimental context
(for example, time of day), the component’s contribution and their
interaction can further be disentangled from factors that were
not explicitly varied. Only by fitting all experimental components
together, and by quantifying nonlinearities in their mapping to the
empirical measures, can their interaction be directly characterized
on the level of the data, which we argue is required to go beyond
reification of existing taxonomies (for example, Box 2) and empirically
derive new mental concepts that jointly explain behavioral, neural
and mental states (Box 1).

Given resource constraints, one concern is whether multitask
designs are practically feasible, especially at a larger scale. We
believe that challenges associated with multitask designs are
surmountable even for individual studies, and that multitask
studies are ultimately efficient and cost-effective, as they balance
the increase in the number of experimental components with the
advantage of harnessing systematic variability within the data.

For example, unlike single-task studies, multitask studies allow

for new and numerous questions to be addressed within the

same data, and pooling data across tasks still allows addressing
individual questions with high statistical power. As characterizing
behavior thoroughly can inform both the phenomena targeted

and the design of physiological investigations, the efficiency of
multitask designs can further be improved by diversifying our
behavioral measures, which in turn probably decreases the amount
of more costly neural data required. Fortunately, behavioral

C Generalization across tasks and modalities

Neural data Behavioral data

Link patterns
that generalize
to experimental
components

[} ]
Across-task

Task conditions Across-modality
generalization?

Box 3 Fig. Example approach for quantifying the effects of task demands. a, Example study varying multiple experimental components
(instructions, prompted actions and stimuli) with a total of 27 task conditions. Varying the experimental components indirectly manipulates
task demands. b, Similarity between task conditions within experimental components. ¢, Generalization analysis. Matrices depict

generalization scores for behavioral data (for example, similarity of whisker movements) or neural data (for example, neural pattern similarity
in a region of interest) across task conditions. Arrows and boxes indicate example analyses toward quantifying the influence of task demands.
First, clustering analyses can reveal which tasks elicit similar behaviors and neural activity. Second, meaningful patterns can be discovered by
testing for across-task generalization (for example, decodability, encoding-model performance and representational similarity analysis). Third,
brain-behavior relationships can be revealed by finding patterns that generalize across behavioral and neural data. Finally, data patterns that
generalize form the basis for new concepts by linking them to the experimental components.
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tracking continues to become simpler and more affordable due to
advances in machine learning®’. In general, the number and extent
of behavioral studies should be increased drastically’ as they
tend to be more affordable and practical than neural recordings
(for example, crowd-sourced psychophysics®’). Notably, as it

sensory and action statistics is not just reflected in the activity of the
nervous system, but also its structural organization.

These considerations underscore the need for theoretical and
analytical approaches capable of linking conjunctive sensory and
action statistics to physiological phenomena, while also uncovering
common constraints on activity, plasticity and anatomy. We propose
that centering the empirical approach on task demands can achieve
these aims simultaneously, as it captures theinterplay between sensory
impressions, goals and behaviors that shape an agent’s physiology
broadly. As the very structure of the nervous system is a product of
thisinterplay, characterizing the influence of task demands on empiri-
cal measures is critical for informing our interpretations beyond the
specific experimental setting, even for studies involving self-generated
experiences (for example, memory recall??), putative rest” or perturba-
tion (for example, brain stimulation®*). Further, activity patterns are
fundamentally a function of the underlying anatomy and only in the
context of that anatomy is it possible to reveal why one specific activ-
ity pattern emerged and not another. Synthesizing measurements
of anatomy and activity obtained under varying task demands can,
therefore, uncover important latent patterns that generalize across
tasks and data modalities (for example, computational modeling of
toroidal attractor dynamicsin entorhinal grid cells*), and inform our
understanding of neural activity, cell diversity, local architecture, con-
nectivity and plasticity across spatiotemporal scales. Finally, because
allaspects of behavior and physiology reflect an agent’s unique history,
we suggest that insights gained about the influence of task demands on
ourempirical measures can be leveraged for understandingindividual
differences in health and disease (Box 4).

Every brain stateis unique
As neural activity is yoked to anatomy through plasticity, all of our
experiences and behaviors leave structural traces throughout the
nervous system. Thus, the global state of the nervous system never
repeats. Indeed, many studies report substantial variability in neural
activity across trials even for repeated conditions (for example, rep-
resentational drift*®). Although multiple potential mechanisms have
been proposed, one commonality is that these variations appear to
be systematic. For example, neural activity does not differ randomly
across trials, but tends to driftin atask-dependent manner, with simi-
larity inactivity across trials diminishing with increased time between
trials (for example, ref. 27). Such drift is paralleled in behavior, where
performance in one trial depends on performance and experience in
prior trials (for example, serial dependence®). Moreover, behavioral
and neural activity drift often coincide (for example, ref. 29). Together,
these findings demonstrate the non-static nature of behavior and neu-
ronal firing patterns (Fig. 2) and suggest a possible common mecha-
nism, such as accumulating plasticity-induced changes. An additional
source of uncontrolled variability in neural and behavioral data stems
from changes in the internal state of an agent, which fundamentally
affects how a task is performed. For example, results can be affected
by the duration that participants waited for the experiment to start*°.
The presence of such hysteresis and state-dependency effects sug-
gests that variability in empirical measures across trials is as informa-
tive asany stable pattern observed. Rather than treating this variability
asnoise (forexample, when computing test-retest reliability), it could
be leveraged to understand the dynamics of and covariance between

is not feasible to test every possible variation in experimental
components, the choice of what to vary must be informed by

the research question and theory in general, the testing and
refining of which should be both the starting point and the goal of
experimentation.

physiology and behavior. This can be achieved through multitask
experiments that maximize variability in the measures while main-
taining experimental control (Box 3). To take full advantage of the
resulting datasets, analytical toolkits need be expanded beyond met-
rics of reproducibility and central tendency, toward developing new
time-resolved, trial-wise and longitudinal analysis techniques (for
example, manifold-learning techniques for time-series data®). Exploit-
ing systematic variability in the data allows for adeeper understanding
of the ongoing andinevitable changes in task demands and the physi-
ological adaptations they induce over time. Notably, by considering
broader temporal scales and the effect of often-overlooked contextual
factors (for example, time of day), we can gain additional insightsinto
dynamics extending beyond the scope of single experiments.

Neural circuits are both locally specificand
globally constrained

Because all parts of the nervous system are collectively shaped by com-
mon demands, the activity and structure of any local neural circuit
dependsonitsembeddinginthe wider network. No part of the nervous
systemis fullyindependent from the rest. This intrinsic network embed-
ding conflicts with along-standing focus on parcellating the neural
substrate in search of dissociable contributions to mental states and
behavior. Although parcellation efforts align with lesion studies that
show that damage to one part of the brain canlead to selective deficits
inthe agent’s experiences and abilities*, such findings do notimply that
activity indifferent circuitsisindependent. For example, neural signals
linked withananimal’'s movements are tightly integrated with sensory
inputs across the brain (for example, ref. 18), suggesting that ‘sensory
systems’ and ‘motor systems’ are not cleanly separable. This notion
extendsto the brain asawhole, which cannot be fully understood sepa-
rate fromitsembedding within alarger nervous system that spans the
entire body. A consequence of the interconnected nature of circuits is
that measuring changes inlocal activity between task conditions does
not straightforwardly indicate a circuit’sinvolvementin a task or lack
thereof. In particular, finding similar activity across conditions does
not necessarily reflect the lack of that circuit’s contribution to task
performance. The circuit may contribute equally, with similar activity
across conditions reflecting shared task demands. Alternatively, there
could be adifferential effect across conditions of that circuit on other
circuits, despite similar local activity®, or local inactivity itself could
inform the global state and behavior®. This complexity suggests that
the nervous system’s activity and structure are not strictly modular®;
however, nor are computations homogeneously distributed. Instead,
the contribution of any given circuit to task performanceisinfluenced
by the contribution of other circuits within the broader network (Fig. 2).
Furthermore, localized activity and lesion effects should not be taken
asevidence for one-to-one mappings between functions and neurons.
Considering theinterconnected and dynamic nature of neural circuits,
viewing the nervous system as a heterarchical network withoutaclear
start or apex may provide a more accurate framework than a strict
hierarchical model®.

The considerations above suggest that understanding the contri-
butions of local neural circuits to task performance requires examining
their embedding within the wider network. The network embedding
of local neural circuits can be revealed through causal perturbations
(for example, local cooling®, ultrasound® or other techniques®*®)
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BOX4

Elucidating individual differences in health and disease

A primary objective in understanding health and disease is to link

the unique characteristics and history of individuals to potential
health risks, diagnoses and personalized treatment options. Recent
years have seen the popularization of brain-wide association

studies for elucidating individual differences based on the mapping
between physiological and behavioral markers®'. However, although
brain-wide association studies promise an understanding of how the
unigue characteristics of individuals and their history (for example,
lifestyle) relate to physiology, in practice, their utility for cognitive
neuroscience and clinical research is limited. For example, inherent
assumptions of localization and the stationarity of brain functions (for
example, when relating optimized task measures or questionnaires
to resting-state data®) necessitate large study sample sizes and high
resulting costs. Given the history-dependent and task-dependent
nature of behavioral and physiological measurements and the strong
dependencies in activity between local circuits, these approaches
are, therefore, unlikely to comprehensively capture the multivariate
spectrum of traits, behaviors and physiological characteristics that
defines us.

Nowhere is the characterization of this spectrum more important
than in the study of mental health, neurological disorders and
neurodiversity. In hope of reducing costs and offering diagnoses
and treatments at scale, much clinical research has focused on
identifying specialized behavioral or physiological markers, rather
than diversifying the tasks and measures used. One example that
illustrates the risk of this specialization is the recent meta-level test
of the serotonin hypothesis of depression, which did not confirm the
long-standing assumption that depression is associated with lowered
serotonin levels®. Ultimately, it is important to acknowledge that

while quantifying the effect of the perturbation on the wider network
and behavior across multiple task demands®*°. Although established
perturbation techniques often limit experimental design and behavior
(for example, they restrict the agent’s movements), new methodo-
logical developments can overcome these limitations (for example,
wireless optogenetic stimulation*'). Combining multitask designs
with activity-dependent tracing techniques (for example, ref. 42) is
a promising approach to measure how local activity dynamics influ-
ence the wider network in a task-specific manner. Most importantly,
interpretations of results should adopt an integrated view of the
nervous system in which an interconnected network produces local
activity dynamics that contribute to behavior and mental states in a
task-dependent manner.

Thereis no singular function

Theinterconnected and dynamic nature of neural activity inherently
complicates defining brain functions and their localization to specific
circuits (for example, refs. 43,44). For example, although the function
ofareaV5/MT hasbeen described as motion perception or motioninte-
gration (for example, ref. 45), its neural responses reflect task aspects
thatextend beyond the movement of stimuli (for example, behavioral
choice®). These findings are in line with the idea that mixed selectivity
exhibited by neurons may be central for their flexible engagement in
different tasks*’. Mixed selectivity, together with strong dependencies
inactivity between circuits®, suggests that neurons and neural ensem-
bles can serve multiple functions depending on the agent’s goal (Fig. 2).
The difficulty in ascribing clear, single functions is underscored by
research suggesting that the selectivity of neural circuitsis notinnate,

conditions such as depression, and neurodiversity more generally,
are grounded in physiological and behavioral idiosyncrasies that are
best understood in terms of their mutual constraints®, which cannot
be captured or treated using single, optimized measures or tasks.
Therefore, advancing the understanding of individual differences
and health requires a move away from the model of the critical
or ‘silver bullet’ experiment, and an increase in the diversity of
tasks, measures and tested populations (for example, patient
groups and different cultures). Multitask studies, especially when
combined with rich behavioral and neural sampling over longer
time periods (for example, All of Us initiative), are ideal to capture
both within-participant and across-participant variability, which is
key for assessing each individual in light of the spectrum defined
by the population. In doing so, patterns that generalize across
individuals (for example, activity during language processing®*) can
be identified, in addition to gaining a better understanding of how
variation in individual histories shapes these patterns. Importantly,
achieving this experimentation at the scale needed requires an
expanded approach to behavioral testing (for example, ref. 28),
which can reveal meaningful and stable individual differences (for
example, ref. 85) and predict neurological disorders such as epilepsy
(for example, in rodents®). Linking specific behavioral patterns to
corresponding diagnoses could further enable earlier and more
personalized interventions, which is especially crucial for diseases
with late neurological symptoms such as Alzheimer’s disease®’.
Lastly, it is important to acknowledge the interdependence between
physiology and behavior for developing treatments: integrating
medication-based and behavioral therapies is probably key for a
holistic treatment of any neurological or mental health condition.

even those traditionally thought to have evolved for specific sensory or
motor functions. For example, language processing engages the early
visual cortex in people born without sight*®, and circuits thought to
control hand movements are engaged during foot movementsinpeople
born without hands*. Akin to the presumed functions of neurons, it
is common to make a complementary assumption about the func-
tion of behaviors. For example, our thumb has a clear set of potential
articulations, but those articulations serve different functions when
grasping amug, communicating through sign language, or swimming.
Collectively, these examplesillustrate that the function of neural or
behavioral patterns can only be understood in the context of what the
agentisaimingto do. Extending theseideas, the presence of anactivity
patternin an experiment does not necessarily signify the engagement
of a particular mental process. Although this task dependency com-
plicates the definition of function, the question of function cannot be
eschewed; it serves as a reminder that the formulation of a question
steers toward a certain answer’. For example, identifying one func-
tion of a neuron or ensemble in one task may lead to a modular view
ofthe nervous system that overlooks the complexity described above.

Capturing the complexity and task dependence of empirical meas-
ures starts with formulating the question: rather than asking about
singular functions of neurons or behaviors, we suggest reformulat-
ing the question to probe their contribution to task performance. By
exploring these contributions across various tasks and relating data
to task demands, we may find not one but many answers, in keeping
with the task dependence of our measures and the interconnected
nature of the brain. Through analyzing similarities across results,
principles that generalize across multiple tasks can be established for
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Fig.2|Interconnected neural circuits generate activity dynamics in service
of mental and behavioral flexibility. Top, Goals, behavior and sensory
impressions of the environment change over time in an interdependent manner.
For example, amouse prioritizes different aspects of the environment depending
onwhether itis eating, running or climbing. Middle, Neural circuit schematic
with five example units, each of which may reflect an individual neuron oralocal
population of neurons. Each unit simultaneously codes for multiple variables
(mixed selectivity, for example, color, head direction and optic flow), which
depends on what the agent is trying to do (for example, posture may explain
activity of aunit during running and climbing, but not during eating). Bottom,
Activity profile of two example units (for example, explained variance in spike
trains of two neurons or two neural populations). The activity profile of unit A
generalizes across behavioral states, whereas the one of unit Bdoes not. However,
within unit B, certain elements do generalize across states (for example, portion
of variance explained by variables 1and 3). To discover the principles that are
unique to each state, and those common to all states, a multitude of sensory and
behavioral variables must be tracked and related to neural activity. Moreover,
because each unit’s activity depends on the activity of other units, large-scale
neural recordings and network-level investigations are required. Finally, mixed
selectivity and its task dependency suggest that neural circuits do not have one
but many functions, which are definable only within the context of a task.

formal testing (Box 3). This approach leverages multitask studies that
manipulate instructed goals in conjunction with other experimental
components in a theory-driven manner, assessing how these goals
affect our empirical measures (for example, inferring experimental
goals from gaze patterns®).

Behavior is ubiquitous and fundamental

Acentralideathroughout our Perspective is that an organism’s physi-
ology can only be fully understood in the context of the behavior it
produces. Behavior could in fact be viewed as the natural means to
extend physiology into the environment to maintain homeostasis®,
andisthereforeintrinsically linked to the mental states that arise (for
example, visual experiences inherently reflect sensorimotor integra-
tion?°). Even seemingly passive tasks involve behaviors in ways that
may not be intuited (for example, saccades reveal recall content?,
pupil size indexes brightness of imagined stimuli*?). Behavior is thus
anessential consideration wheninterpreting neural activity recorded
inany and all tasks used. Although many have already highlighted the
importance of incorporating behavior in our understanding of the
nervous system (for example, ref. 53), cognitive neuroscience often
narrows behavioral analysis to alimited set of actions deemed relevant
by experimenters, such as quantifying the accuracy and efficiency of a
smallset of instructed or cued actions (for example, lever presses). Typi-
cally, task-relevant actions are included, and task-irrelevant actions are
often neglected (for example, fin strokes in the curious zebrafish, eye
movementsin the disengaged participant) or restricted (for example,
head fixation). However, relying onintuition for classifying behaviors as
taskrelevant or taskirrelevant builds on strong assumptions that may

obscure our understanding of task performance and risks overlooking
important explanatory accounts of the data (for example, uninstructed
behaviors explain V1activity during auditory stimulation in mice>*).

We contend that even seemingly task-irrelevant behaviors should
notbe considered epiphenomenal or anuisance, as they could emerge
asadirectexpression and inherent part of any mental state. Thus, itis
vital to consider behavior for all experiments, analyses, interpreta-
tions and models in cognitive neuroscience**> (Box 5). Total control
orrestriction of behaviorsis neither feasible nor desirable, because it
disrupts task performance and undermines the ecological validity of
anexperiment. Instead, behavior should be comprehensively tracked
and analyzed inrelation to neural activity and the experimental com-
ponentsthat were varied. Because behaviors are ubiquitous and their
expression often unpredictable a priori, dense behavioral tracking is
crucial even in seemingly passive tasks (for example, active sampling
during recognition®®), when behaviors are restricted (for example,
fixation tasks and head restriction), or when no specific responses
are required (for example, free foraging in mice and resting state in
humans). Recent advances in machine learning are central to this aim
as they enable the quantification of the rich behavioral repertoire of
animals (for example, ref. 57) including humans (for example, ref. 58),
which can then be linked to neural dynamics (for example, through
behavioral encoding models”) or modeled together with neural activity
in ajoint framework®. A particularly exciting avenue in this direction
is the automated quantification of behavioral syllables (that is, stereo-
typed behavioral patterns with learnable transition probabilities™),
which allows for across-task comparisons of complex repeated action
sequences. Especially when different behavioral measures are com-
bined, this approach could uncover regularities in patterns that span
different tasks at unanticipated levels of abstraction, and reveal task
demands that are shared between experiments and would otherwise
remain hidden (Box 2). Moreover, comparing behavioral syllables
observedinanexperimentto those measuredinthe wild would enable
the estimation of the experiment’s ecological validity, help to differenti-
ate experimental phases® and allow individual traits to be examined
with respect to behavioral repertoires obtained over ontogenetic and
phylogenetic timescales (Box 4).

Adaptive theories of flexible demands

We have argued that cognitive neuroscience can articulate concepts
that jointly explain behavioral, neural and mental states by centering
the empirical approach on multitask studies and tests of generaliza-
tion. The feasibility of formulating generalizable concepts has been
demonstrated, for example, by work on attractor models that explain
both neural and behavioral dynamics and their relationship®. This
perspective calls for strengthening integrative efforts across all dis-
ciplinesthat fuelthefield (for example, philosophy, psychology, biol-
ogy and computer science), and overcoming tensions inherited from
them (for example, outside-in versus inside-out debates; Fig. 3 and
Box 1). Cognitive neuroscience can and should grow to be more than
the sumofits constituent disciplines. Doing so requires moving beyond
utilizing specialized tasks to map psychological concepts to neural
or behavioral data, or mapping neural dynamics to natural behavior
without constraints. Instead, we should aim to uncover patterns that
generalize across data types and across tasks chosen based ontheory,
which will serve as the basis for new taxonomies.

Critically, we should not replace onerigid taxonomy with another,
nor should theories and taxonomies be abandoned altogether in favor
of purely data-driven quantifications. Cognitive neuroscience seeks to
link utterly disparate phenomena (for example, scent and attraction)
inpursuit of understanding a system that optimizesitself continuously
from channelsto networks, and whose state depends on environmental
factors and on its own history. A single taxonomy cannot cover the
necessary range of abstraction and spatiotemporal scales for such an
endeavor®, and new taxonomies must be capable of accommodating
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BOX5

Implications for computational models of brain and behavior

The present article highlights an action-oriented, dynamic
and integrated view of the brain, with broad implications for
computational models in cognitive neuroscience and psychiatry®4°,

Models need behavior. First, as sensory impressions, goals and
behavior are inextricable, neural, behavioral and mental states can
never be fully understood based on stimulus features alone (that
is, they are not stimulus computable). Therefore, models need to
go beyond stimulus computability and incorporate goal-driven
behavior, even models restricted to sensory processes. This includes
popular deep neural network models (for example, of recognition®®),
which should vastly extend their behavioral repertoire (for example,
active sampling) if used as models of the brain®. Other common
modeling approaches incorporate actions more actively, typically
to minimize the error between sensory inputs and predictions, to
maximize reward, or a combination of both (for example, Bayesian
models®, active inference® or reinforcement learning®). Depending
on how these models are trained, they can learn to perform complex
behaviors and tasks similar to rodents and humans (for example,
navigation®).

Models need to generalize across tasks. To capture the
task-dependent nature of behavior and neural activity, models
should incorporate task dependencies® and be formally tested
on across-task generalization. Depending on the type of training,
reinforcement learning models, for instance, can learn to generalize
the structure of problems they solve across tasks (for example,
ref. 94). A powerful approach to promote generalization, and
to generate highly flexible models that reproduce real-world

the changing nature of physiological, behavioral and mental states
(for example, smartphones have rapidly become ubiquitous). These
considerations donot meanthat our current theories areinconsequen-
tial-theories arerequired for any experimentation and understanding
(Box 3), but they do imply that cognitive neuroscienceisafield in con-
tinuous evolution, without a definitive endpoint. A sustainable cogni-
tive neuroscienceis one thatenablesthe creation of adaptable theories
that capture theinevitable and ongoing changes in the systemitis try-
ing to understand. We propose that achieving this requires centering
the approach on task demands, as they can parsimoniously account
for a wide range of behavioral and neural dynamics observed across
experiments, species, methodologies and research domains (Box 2).

Transforming the culture of cognitive
neuroscience

Itisbroadly accepted that understanding the nervous systemisamul-
tigenerational endeavor that extends well beyond the capabilities of
any single laboratory or institution, but fully embracing that under-
standing necessitates a radical shift in the current research culture.
As afield, we need to maintain a mindset of sustained science and
quantitative convergence (that is, reuse, refinement and extension
of data and techniques by others), which starts with vastly increasing
thedepthand breadth of paradigm, dataand code sharing and imple-
menting standards for all of them®. Such open-science practices, by
making research more accessible and inclusive, invite a diversification
of perspectives urgently needed for challenging and refining theories.
Openscienceis essential tothe long-termobjectives of cognitive neu-
roscience, such as unifying theories of behavioral, mental and neural
states, and its practice should be strongly incentivized and rewarded,
from experimental design to publication and tenure considerations.

behavior is multitask learning (for example, ref. 95). Indeed, training
deep neural networks on multiple tasks leads to the emergence of
units with task-dependent mixed selectivity®, to a representational
geometry” similar to the brain, and to abstract representations

that support generalization®. Although the properties of multitask
trained networks depend on the relatedness of tasks that are
chosen®, and on which aspects of the tasks are relevant®, such
reports show that multitask models are feasible and can provide
mechanistic insights, especially when their components are directly
tested on task transfer'®°.

Models need naturalistic tasks. Extending the behavioral
repertoire and across-task generalization of modeling approaches
must go hand in hand with the development of new naturalistic
tasks and stimulus sets, for which rich behavioral and neural data
need to be acquired in a wide range of species. Even those models
currently capable of learning task-general representations are often
limited to artificial scenarios, or even to static stimuli with defined
onsets and offsets. However, in natural experience, objects and
features can often be predicted by context and peripheral cues,
which are then actively sampled, or by statistical regularities in their
temporal co-occurrence. In the absence of direct quantifications
of performance and the generalization of that performance under
naturalistic conditions, the models will remain constrained to tasks
that do not capture the real-world experience of living organisms.
Likewise, because the precise tasks on which models are trained can
have an important role in determining a model’s properties®, a large
and diverse set of naturalistic tasks and stimulus sets is needed.

Importantly, individual studies can follow the core suggestions
outlined in this article, such as embracing multitask study designs and
formaltests of generalization (Box 3). However, realizing the full potential
ofthisapproach will also require new large-scale initiatives that explore
theinfluence of task demands across diverse populations and species with
avariety of data collection techniques. Existing initiatives have already
made important strides, for example by advancing data standards (for
example, BrainImaging Data Structure) and analysis pipelines (Brainlife),
making datasets and code publicly available online (for example, Open-
Neuro, GitHub), and increasing sample sizes while diversifying the types
of dataacquired for eachindividual (for example, All of Us initiative).

Notably, several initiatives have shared datasets involving mul-
tiple tasks (for example, CNeuroMod, Human Connectome Project,
Adolescent Brain Cognitive Development project and Healthy Brain
Network). However, most initiatives deployed small sets of specific
tasks built around putative psychological concepts, often rather pas-
siveinnature (forexample, resting state). By doing so, they miss much
of the critical covariance in behavioral and neural dynamics (Box 3),
and the utility of the data may not always justify the economic invest-
ments. Critically, the specificity of tasks is designed to test preexisting
putative psychological concepts (for example, working memory) and
thus the resulting datasets inherently favor those concepts, limiting
opportunities to formulate new ones (Box 1). To maximize the utility of
future data collection, initiatives should systematically vary multiple
experimental components (for example, instructions and stimuli) while
densely sampling neural activity and behavior under conditions that
mimic natural settings as closely as possible'. Realizing such initia-
tives may necessitate new infrastructures (for example, community
platforms for coordinating efforts across groups) and a consensus on
priority research questions and methodologies. Ideally, research should
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Fig.3| Task demands bridge mental concepts and data. a, Outside-in
approach. Predefined psychological concepts are mapped to neural data using
highly specialized tasks (for example, ‘working memory task’). New concepts
cannotbe discovered. b, Inside-out approach. Neural dynamics recorded
during natural behavior are mapped to actions and environmental factors. New
concepts could be discovered, but mappings are non-unique and search space
isunderconstrained. ¢, Defining new concepts through generalization. Top
left, Multitask studies systematically vary task demands by varying multiple
experimental components (that is, sensory information, goals and behavior).
Bottom left, Multitask experiments combined with neural recordings and
behavioral tracking create datasets designed to leverage variability while
maintaining experimental control. Bottom right: Formal tests of generalization
identify data patterns that are shared across tasks and across behavioral and
neural data. Top right, Generalizable patterns can be described, labeled and
organized into a new taxonomy, which then informs experimental design.

prioritize understanding the demands placed onagentsin their natural
environments, and the potential societal benefits that may emerge
from the work (for example, applications and therapeutic advances).

Concluding remarks

We have outlined aframework for cognitive neuroscience that centers
ontask demands, which emerge frominteractions between an agent’s
goals, behavior and sensory impressions of the environment, and thus
shape the activity and structure of the nervous system across spatial
and temporal scales. To understand how task demands constrain
behavior and neural activity jointly—and how these two domains are
linked—varying multiple experimental components is essential (for
example, instructions and stimuli). We further highlight the importance
of dense behavioral sampling alongside large-scale recordings of neu-
ral activity, data sharing and code sharing to foster convergence, and
integrative efforts across disciplines. By focusing on theoretical and
practicalimplications, the proposed framework aims to pave the way
toward the discovery of new concepts and theories that unify accounts
of behavioral, physiological and mental states, in pursuit of results that
generalize beyond the laboratory to the real world.

References

1. Gibson, J. J. The ecological approach to visual perception.
J. Aesthet. Art. Crit. 39, 203 (1979).

2. Ledergerber, D. et al. Task-dependent mixed selectivity in the
subiculum. Cell Rep. 35, 109175 (2021).

3. Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J. & Barack, D. L.
Tasks and their role in visual neuroscience. Neuron https://doi.org/
10.1016/j.neuron.2023.03.022 (2023).

4. Burlingham, C. S. et al. Task-related hemodynamic responses in
human early visual cortex are modulated by task difficulty and
behavioral performance. eLife 11, e73018 (2022).

5. Ito, T. & Murray, J. D. Multitask representations in the human cortex
transform along a sensory-to-motor hierarchy. Nat. Neurosci. 26,
306-315 (2023).

10.

1.

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Koida, K. & Komatsu, H. Effects of task demands on the responses
of color-selective neurons in the inferior temporal cortex.

Nat. Neurosci. 10, 108-116 (2007).

Lee, J. J., Krumin, M., Harris, K. D. & Carandini, M. Task specificity
in mouse parietal cortex. Neuron 110, 2961-2969 (2022).

Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for
adaptive task control. Nat. Neurosci. 16, 1348-1355 (2013).

Cox, P. H., Kravitz, D. J. & Mitroff, S. R. Great expectations: minor
differences in initial instructions have a major impact on visual
search in the absence of feedback. Cogn. Res. Princ. Implic. 6,19
(2021).

Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking
the primacy of experimental control in cognitive neuroscience.
Neurolmage 222, 117254 (2020).

Topalovic, U. et al. A wearable platform for closed-loop
stimulation and recording of single-neuron and local field
potential activity in freely moving humans. Nat. Neurosci.
https://doi.org/10.1038/s41593-023-01260-4 (2023).

Schmid, A. C., Barla, P. & Doerschner, K. Material category of
visual objects computed from specular image structure.

Nat. Hum. Behav. 7, 1152-1169 (2023).

Nau, M., Navarro Schrdoder, T., Frey, M. & Doeller, C. F.
Behavior-dependent directional tuning in the human
visual-navigation network. Nat. Commun. 1, 3247 (2020).

Chiu, C. Q., Barberis, A. & Higley, M. J. Preserving the balance:
diverse forms of long-term GABAergic synaptic plasticity.

Nat. Rev. Neurosci. 20, 272-281(2019).

Lindenberger, U. & Lévdén, M. Brain plasticity in human lifespan
development: the exploration-selection-refinement model.
Annu. Rev. Dev. Psychol. 1,197-222 (2019).

Cisek, P. Resynthesizing behavior through phylogenetic
refinement. Atten. Percept. Psychophys. 81, 2265-2287 (2019).
Hedrick, N. G. et al. Learning binds new inputs into functional
synaptic clusters via spinogenesis. Nat. Neurosci. 25, 726-737
(2022).

Musall, S., Kaufman, M. T,, Juavinett, A. L., Gluf, S. & Churchland,
A. K. Single-trial neural dynamics are dominated by richly varied
movements. Nat. Neurosci. 22, 1677-1686 (2019).

Stringer, C. et al. Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364, eaav7893 (2019).

Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal
monitoring of movements. Annu. Rev. Neurosci. 31, 317-338
(2008).

Rolfs, M. & Schweitzer, R. Coupling perception to action through
incidental sensory consequences of motor behaviour. Nat. Rev.
Psychol. 1, 112-123 (2022).

Wynn, J. S., Shen, K. & Ryan, J. D. Eye movements actively
reinstate spatiotemporal mnemonic content. Vision 3, 21(2019).
Zhao, W. et al. Task fMRI paradigms may capture more
behaviorally relevant information than resting-state functional
connectivity. Neurolmage 270, 119946 (2023).

Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B.
State-dependent effects of neural stimulation on brain function
and cognition. Nat. Rev. Neurosci. 23, 459-475 (2022).

Gardner, R. J. et al. Toroidal topology of population activity in grid
cells. Nature 602, 123-128 (2022).

Driscoll, L. N., Duncker, L. & Harvey, C. D. Representational drift:
emerging theories for continual learning and experimental future
directions. Curr. Opin. Neurobiol. 76, 102609 (2022).
Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P.
Representational drift in primary olfactory cortex. Nature 594,
541-546 (2021).

Kramer, M. R., Cox, P. H., Mitroff, S. R. & Kravitz, D. J. A precise
quantification of how prior experience informs current behavior.
J. Exp. Psychol. Gen. 151, 1854-1865 (2022).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1016/j.neuron.2023.03.022
https://doi.org/10.1016/j.neuron.2023.03.022
https://doi.org/10.1038/s41593-023-01260-4

Perspective

https://doi.org/10.1038/s41593-024-01711-6

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

Sadeh, S. & Clopath, C. Contribution of behavioural variability to
representational drift. eLife 11, 77907 (2022).

Jangraw, D. C. et al. A highly replicable decline in mood during
rest and simple tasks. Nat. Hum. Behav. https://doi.org/10.1038/
s41562-023-01519-7 (2023).

Busch, E. L. et al. Multi-view manifold learning of human
brain-state trajectories. Nat. Comput. Sci. https://doi.org/10.1038/
s43588-023-00419-0 (2023).

Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A. & Fellows, L.
K. Lesion studies in contemporary neuroscience. Trends Cogn.
Sci. 23, 653-671(2019).

Gidon, A. et al. Dendritic action potentials and computation in
human layer 2/3 cortical neurons. Science 367, 83-87 (2020).
Pessoa, L. The entangled brain. J. Cogn. Neurosci. 35, 349-360
(2023).

Bechtel, W. & Bich, L. Grounding cognition: heterarchical control
mechanisms in biology. Philos. Trans. R. Soc. B Biol. Sci. 376,
20190751 (2021).

Long, M. A. & Fee, M. S. Using temperature to analyse temporal
dynamics in the songbird motor pathway. Nature 456, 189-194
(2008).

Folloni, D. et al. Manipulation of subcortical and deep cortical
activity in the primate brain using transcranial focused ultrasound
stimulation. Neuron 101, 1109-1116 (2019).

Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping
of human brain function. Nat. Rev. Neurosci. 23, 361-375 (2022).
Jun, S., Lee, S. A, Kim, J. S., Jeong, W. & Chung, C.K.
Task-dependent effects of intracranial hippocampal stimulation
on human memory and hippocampal theta power. Brain Stimul.
13, 603-613 (2020).

Basile, B. M., Templer, V. L., Gazes, R. P. & Hampton, R. R.
Preserved visual memory and relational cognition performance
in monkeys with selective hippocampal lesions. Sci. Adv. 6,
eaaz0484 (2020).

Ausra, J. et al. Wireless, battery-free, subdermally implantable
platforms for transcranial and long-range optogenetics in freely
moving animals. Proc. Natl Acad. Sci. USA 118, 2025775118
(2021).

Uselman, T. W., Medina, C. S., Gray, H. B., Jacobs, R. E. &

Bearer, E. L. Longitudinal manganese-enhanced magnetic
resonance imaging of neural projections and activity.

NMR Biomed. 35, e4675 (2022).

Rust, N. C. & LeDoux, J. E. The tricky business of defining brain
functions. Trends Neurosci. 46, 3-4 (2023).

Burnston, D. C. A contextualist approach to functional localization
in the brain. Biol. Philos. 31, 527-550 (2016).

Huk, A. C. & Shadlen, M. N. Neural activity in macaque parietal
cortex reflects temporal integration of visual motion signals
during perceptual decision making. J. Neurosci. 25, 10420-10436
(2005).

Levi, A. J., Zhao, Y., Park, I. M. & Huk, A. C. Sensory and choice
responses in MT distinct from motion encoding. J. Neurosci. 43,
2090-2103 (2023).

Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high
dimensionality for higher cognition. Curr. Opin. Neurobiol. 37,
66-74 (2016).

Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko,

E. & Saxe, R. Language processing in the occipital cortex of
congenitally blind adults. Proc. Natl Acad. Sci. USA 108,
4429-4434 (2011).

Liu, Y., Vannuscorps, G., Caramazza, A. & Striem-Amit, E. Evidence
for an effector-independent action system from people born
without hands. Proc. Natl Acad. Sci. USA 117, 28433-28441 (2020).
Levenstein, D. et al. On the role of theory and modeling in
neuroscience. J. Neurosci. 43, 1074-1088 (2023).

51.

52.

53.

54.

56.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

Haji-Abolhassani, A. & Clark, J. J. An inverse Yarbus process:
predicting observers’ task from eye movement patterns. Vis. Res.
103, 127-142 (2014).

Kay, L., Keogh, R., Andrillon, T. & Pearson, J. The pupillary light
response as a physiological index of aphantasia, sensory and
phenomenological imagery strength. eLife 11, 72484 (2022).
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., Maclver, M.

A. & Poeppel, D. Neuroscience needs behavior: correcting a
reductionist bias. Neuron 93, 480-490 (2017).

Bimbard, C. et al. Behavioral origin of sound-evoked activity in
mouse visual cortex. Nat. Neurosci. 26, 251-258 (2023).

Miller, C. T. et al. Natural behavior is the language of the brain.
Curr. Biol. 32, R482-R493 (2022).

DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve
visual object recognition? Neuron 73, 415-434 (2012).

Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A.
Computational neuroethology: a call to action. Neuron 104, 11-24
(2019).

Frey, M., Nau, M. & Doeller, C. F. Magnetic resonance-based eye
tracking using deep neural networks. Nat. Neurosci. 24, 1772-1779
(2021).

Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent
embeddings for joint behavioural and neural analysis. Nature
https://doi.org/10.1038/s41586-023-06031-6 (2023).

Hazeltine, E., Dykstra, T. & Schumacher, E. In Experimental
Psychology (eds. Gozli, D. & Valsiner, J.) 75-95 https://doi.org/
10.1007/978-3-031-17053-9_6 (Springer International Publishing,
2022).

Khona, M. & Fiete, I. R. Attractor and integrator networks in the
brain. Nat. Rev. Neurosci. 23, 744-766 (2022).

Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S. & Armafanzas,
R. Win-win data sharing in neuroscience. Nat. Methods 14, 112-116
(2017).

Buzséaki, G. The Brain From Inside Out (Oxford University Press,
2019).

Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. A data-driven
framework for mapping domains of human neurobiology.

Nat. Neurosci. 24, 1733-1744 (2021).

Poeppel, D. & Adolfi, F. Against the epistemological primacy of
the hardware: the brain from inside out, turned upside down.
eNeuro 7, ENEURO.0215-20.2020 (2020).

Fiebelkorn, I. C. & Kastner, S. Functional specialization in the
attention network. Annu. Rev. Psychol. 71, 221-249 (2020).
Zhang, X. et al. Active information maintenance in working
memory by a sensory cortex. eLife 8, e43191(2019).

Rademaker, R. L., Chunharas, C. & Serences, J. T. Coexisting
representations of sensory and mnemonic information in human
visual cortex. Nat. Neurosci. https://doi.org/10.1038/s41593-019-
0428-x (2019).

Teng, C. & Kravitz, D. J. Visual working memory directly alters
perception. Nat. Hum. Behav. 3, 827-836 (2019).

Lee, S.-H., Kravitz, D. J. & Baker, C. |. Goal-dependent dissociation
of visual and prefrontal cortices during working memory.

Nat. Neurosci. 16, 997-999 (2013).

Favila, S. E., Kuhl, B. A. & Winawer, J. Perception and memory
have distinct spatial tuning properties in human visual cortex.
Nat. Commun. 13, 5864 (2022).

Dijkstra, N. & Fleming, S. M. Subjective signal strength distinguishes
reality from imagination. Nat. Commun. 14, 1627 (2023).

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & de Lange, F. P.
Shared representations for working memory and mental imagery
in early visual cortex. Curr. Biol. 23, 1427-1431 (2013).

Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion
schemas are embedded in the human visual system. Sci. Adv. 5,
eaaw4358 (2019).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41562-023-01519-7
https://doi.org/10.1038/s41562-023-01519-7
https://doi.org/10.1038/s43588-023-00419-0
https://doi.org/10.1038/s43588-023-00419-0
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1007/978-3-031-17053-9_6
https://doi.org/10.1007/978-3-031-17053-9_6
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x

Perspective

https://doi.org/10.1038/s41593-024-01711-6

75. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. &
Wager, T. D. Large-scale automated synthesis of human functional
neuroimaging data. Nat. Methods 8, 665-670 (2011).

76. Shine, J. M. et al. Human cognition involves the dynamic
integration of neural activity and neuromodulatory systems.
Nat. Neurosci. 22, 289-296 (2019).

77. Nakai, T. & Nishimoto, S. Quantitative models reveal the
organization of diverse cognitive functions in the brain.

Nat. Commun. 11, 1142 (2020).

78. Gitelman, D. R., Nobre, A. C., Sonty, S., Parrish, T. B. &

Mesulam, M.-M. Language network specializations: an analysis
with parallel task designs and functional magnetic resonance
imaging. Neurolmage 26, 975-985 (2005).

79. Niv, Y. The primacy of behavioral research for understanding the
brain. Behav. Neurosci. 135, 601-609 (2021).

80. Hebart, M. N., Zheng, C. Y., Pereira, F. & Baker, C. |. Revealing
the multidimensional mental representations of natural objects
underlying human similarity judgements. Nat. Hum. Behav. 4,
1173-1185 (2020).

81. Marek, S. et al. Reproducible brain-wide association studies
require thousands of individuals. Nature 603, 654-660 (2022).

82. Moncrieff, J. et al. The serotonin theory of depression: a
systematic umbrella review of the evidence. Mol. Psychiatry
https://doi.org/10.1038/s41380-022-01661-0 (2022).

83. Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric
diagnosis: the seven pillars of RDoC. BMC Med. 11, 126
(2013).

84. Malik-Moraleda, S. et al. An investigation across 45 languages and
12 language families reveals a universal language network.

Nat. Neurosci. 25, 1014-1019 (2022).

85. Jaffe, P. 1., Poldrack, R. A., Schafer, R. J. & Bissett, P. G. Modelling
human behaviour in cognitive tasks with latent dynamical
systems. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-
01510-8 (2023).

86. Gschwind, T. et al. Hidden behavioral fingerprints in epilepsy.
Neuron https://doi.org/10.1016/j.neuron.2023.02.003 (2023).

87. Porsteinsson, A. P., Isaacson, R. S., Knox, S., Sabbagh, M. N.

& Rubino, I. Diagnosis of early Alzheimer’s disease: clinical
practice in 2021. J. Prev. Alzheimers Dis. https://doi.org/10.14283/
jpad.2021.23 (2021).

88. Montague, P.R., Dolan, R. J., Friston, K. J. & Dayan, P.
Computational psychiatry. Trends Cogn. Sci. 16, 72-80 (2012).

89. Zador, A. et al. Catalyzing next-generation artificial intelligence
through NeuroAl. Nat. Commun. 14,1597 (2023).

90. Kording, K. P. & Wolpert, D. M. Bayesian integration in
sensorimotor learning. Nature 427, 244-247 (2004).

91. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. &

Pezzulo, G. Active inference: a process theory. Neural Comput. 29,
1-49 (2017).

92. Dayan, P. & Daw, N. D. Decision theory, reinforcement learning,
and the brain. Cogn. Affect. Behav. Neurosci. 8, 429-453 (2008).

93. de Cothi, W. et al. Predictive maps in rats and humans for spatial
navigation. Curr. Biol. 32, 3676-3689 (2022).

94. Momennejad, |. Learning structures: predictive representations,
replay, and generalization. Curr. Opin. Behav. Sci. 32, 155-166
(2020).

95. Tomov, M. S., Schulz, E. & Gershman, S. J. Multi-task
reinforcement learning in humans. Nat. Hum. Behav. 5, 764-773
(2021).

96. Yang, G.R., Joglekar, M. R., Song, H. F., Newsome, W. T. &
Wang, X.-J. Task representations in neural networks trained to
perform many cognitive tasks. Nat. Neurosci. 22, 297-306 (2019).

97. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield,
C. Orthogonal representations for robust context-dependent task
performance in brains and neural networks. Neuron 110,
1258-1270 (2022).

98. Johnston, W. J. & Fusi, S. Abstract representations emerge
naturally in neural networks trained to perform multiple tasks.
Nat. Commun. 14, 1040 (2023).

99. Scholte, H. S., Losch, M. M., Ramakrishnan, K., de Haan, E. H.
F. & Bohte, S. M. Visual pathways from the perspective of cost
functions and multi-task deep neural networks. Cortex 98,
249-261(2018).

100. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a
model of human visual perception: testing Bayesian transfer.
Vis. Neurosci. 26, 147-155 (2009).

Acknowledgements

We thank B. Averbeck, B. Conway, K. Kay, J. B. Ritchie, and M. Rolfs
for helpful comments on an earlier version of this paper. M.N. was
supported by a Feodor Lynen Research Fellowship funded by the
Alexander von Humboldt Foundation. A.C.S. was supported by

a Walter Benjamin Fellowship funded by the German Research
Foundation (DFG). M.N., A.C.S. and C.I.B. were further supported by
C.I.B’s funding provided by the Intramural Research Program of the
NIMH (ZIAMHO002909). S.M.K. and D.J.K. were supported by D.J.K's
funding provided by the National Science Foundation (grant no.
BCS2022572).

Author contributions

The framework presented in this article was developed through

the collaborative efforts of all authors. C.I.B. and D.J.K. initiated

the project. M.N., C.I.B., and D.J.K. conceptualized the key points

of the article. M.N. wrote the manuscript, created the figures, and
incorporated feedback from A.C.S., S.K., C.I.B., and D.J.K. All authors
contributed to the ideas and writing of the manuscript over the course
of weekly meetings, with M.N. and A.C.S. drafting the final version of
the manuscript together, with edits from C.I.B. and D.J.K.

Competinginterests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to Matthias Nau, Chris |. Baker
or Dwight J. Kravitz.

Peer review information Nature Neuroscience thanks David Barack,
Rachel Denison and Luiz Pessoa for their contribution to the peer
review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This is a U.S. Government work and not under copyright protection in
the US; foreign copyright protection may apply 2024

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41380-022-01661-0
https://doi.org/10.1038/s41562-022-01510-8
https://doi.org/10.1038/s41562-022-01510-8
https://doi.org/10.1016/j.neuron.2023.02.003
https://doi.org/10.14283/jpad.2021.23
https://doi.org/10.14283/jpad.2021.23
http://www.nature.com/reprints

	Centering cognitive neuroscience on task demands and generalization

	Outside-in versus inside-out: task demands bridge mental concepts and neural data

	Behavioral and physiological measures are grounded in task demands

	Shared task demands: the case of attention, working memory and mental imagery

	Empirical approaches for examining the constraints of task demands on physiology and behavior


	Agent–environment interactions shape all aspects of physiology

	Elucidating individual differences in health and disease


	Every brain state is unique

	Neural circuits are both locally specific and globally constrained

	There is no singular function

	Behavior is ubiquitous and fundamental

	Implications for computational models of brain and behavior


	Adaptive theories of flexible demands

	Transforming the culture of cognitive neuroscience

	Concluding remarks

	Acknowledgements

	Fig. 1 Centering task demands in our thinking.
	Fig. 1 Box 2 Fig.
	Fig. 1 Box 3 Fig.
	Fig. 2 Interconnected neural circuits generate activity dynamics in service of mental and behavioral flexibility.
	Fig. 3 Task demands bridge mental concepts and data.




