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Centering cognitive neuroscience on task  
demands and generalization

Matthias Nau    1  , Alexandra C. Schmid1, Simon M. Kaplan2, 
Chris I. Baker    1,4   & Dwight J. Kravitz    2,3,4 

Cognitive neuroscience seeks generalizable theories explaining the 
relationship between behavioral, physiological and mental states. In pursuit 
of such theories, we propose a theoretical and empirical framework that 
centers on understanding task demands and the mutual constraints they 
impose on behavior and neural activity. Task demands emerge from the 
interaction between an agent’s sensory impressions, goals and behavior, 
which jointly shape the activity and structure of the nervous system on 
multiple spatiotemporal scales. Understanding this interaction requires 
multitask studies that vary more than one experimental component (for 
example, stimuli and instructions) combined with dense behavioral and 
neural sampling and explicit testing for generalization across tasks and data 
modalities. By centering task demands rather than mental processes that 
tasks are assumed to engage, this framework paves the way for the discovery 
of new generalizable concepts unconstrained by existing taxonomies, and 
moves cognitive neuroscience toward an action-oriented, dynamic and 
integrated view of the brain.

Cognitive neuroscience seeks to understand physiological, mental 
and behavioral phenomena, articulating theories that jointly explain 
these domains. Central to this understanding is a foundational idea 
that has long been recognized but is often overlooked in empirical 
practice: we are agents, not observers of our environment1. We sample, 
move through and interact with the world in order to accomplish goals 
and satisfy innate drives. Sensory inputs are, therefore, not passively 
received by the nervous system, but a direct consequence of actions 
and the goals that drive them. Reciprocally, our goals, and the actions 
required to accomplish them, are constrained by the environment. For 
example, an animal may sniff while foraging for food, guided by smell, 
but may run in the presence of a predator, prioritizing hearing and 
sight to escape. The dynamic and interdependent nature of sensory 
impressions, goals and behavior implies that the demands imposed on 
an agent in any given moment are defined by the convergence of all of 
these factors, rather than by any single factor (Fig. 1). As the nervous 
system affords and is continuously shaped by such agent–environment 

interactions, the demands that emerge from this interplay ultimately 
determine the behavioral, mental and physiological states that persist. 
We argue that parsimonious, generalizable theories of these states can 
only be formulated by unpacking the constraints mutually imposed on 
them by such demands, which, in an experimental context, we refer to 
as ‘task demands’.

In pursuit of generalizable theories, we propose a framework for 
cognitive neuroscience that centers on elucidating how task demands 
influence behavioral and physiological measures. Operationalizing 
task demands and determining their influence on empirical data comes 
with a critical challenge: Although task demands drive neural activity 
and behavior broadly with measurable effects, they themselves can be 
neither directly controlled nor observed by the experimenter. Rather, 
task demands are the product of the requirements and conditions an 
agent encounters during an experiment and emerge from the inher-
ent (that is, unavoidable) interaction between experimental compo-
nents (for example, stimuli and instructions). Therefore, they can only 
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Fig. 1 | Centering task demands in our thinking. Interdependent factors 
collectively define agent–environment interactions, physiology and 
experimentation. a, Agent–environment interaction. Goals, behavior and 
sensory impressions of the environment are interdependent and need to be 
understood in terms of their constraints on each other, rather than individually. 
For example, the choice of instructions influences which aspects of the 
environment are relevant (for example, stimulus color versus motion), how 
the environment is sampled (for example, through eye movements) and the 
behavioral response given (for example, lever press). These factors jointly 
determine the demands on the agent in any given moment. b, Physiology. 
The nervous system adapts continuously to meet the demands on the agent. 

Activity drives plasticity, plasticity shapes anatomy, and anatomy constrains 
activity. c, Experimentation. In the experimental context, we attempt to control 
agent–environment interactions by manipulating experimental components 
(for example, stimuli, instructions and behavioral responses). Task demands 
emerge from the interaction between these components, constituting latent 
variables that determine the behavioral, physiological and mental states that 
occur during the experiment. Different experiments may have shared and unique 
experimental components, affecting their overlap in task demands (for example, 
experiments 1 and 2 feature button clicks but differ in stimuli and instructions; 
experiments 2 and 3 share instructions but differ in stimuli and prompted 
behaviors).

Box 1

Outside-in versus inside-out: task demands bridge mental 
concepts and neural data
Cognitive neuroscience aims to formulate theories and models 
that jointly explain behavior, neural activity and mental states. 
The predominant approach relies on preexisting psychological 
concepts that guide the collection of physiological or behavioral 
evidence through experimentation and modeling, (for example, 
finding a mapping between neural activity and working memory). 
Although these types of experiments may be well suited to answer 
questions about specific putative concepts, they are not well suited 
for the empirical discovery of new concepts. This is because the 
psychological concepts and the tasks used to probe them are 
so tightly linked that any data acquired will necessarily lack the 
variability to avoid biases toward that concept. In fact, many tasks are 
even named according to the respective process they are assumed 
to engage (for example, a ‘recognition task’, ‘working memory task’). 
This approach, often referred to as an ‘outside-in approach’, has been 
challenged63, especially because psychological concepts do not 
provide a satisfying account for a growing body of neuroscientific 
data. More fundamentally, mapping preexisting concepts to the brain 
can only ever reify rather than redefine the century-old ‘divisionist’ 
taxonomy64.

An alternative ‘inside-out’ approach instead prioritizes the 
biological substrate63, conceptualizing the brain as a pattern 
generator that maps initially ‘meaningless’ activity patterns to 
environmental phenomena through actions, ultimately giving them 
their ‘meaning’. Under this view, characterizing the neural patterns 
and establishing their meaning post hoc can lead to the discovery 
of new concepts. Although this approach is, therefore, free of 
the constraints imposed by existing taxonomies, it requires first 
discovering meaningful physiological patterns, and then finding the 
correct mapping between these patterns and an endless number 
of possible real-world phenomena and actions, probably without a 
unique mapping solution65.

Importantly, neither outside-in nor inside-out approaches typically 
test the central assumption in neuroscience and psychology that 
inferences based on one task generalize to others, or even to the 
real world. This long-standing assumption of generalization is 
based on another: namely, that a task engages a specific mental 
process that operates beyond the specific experimental setting. 
These assumptions often lead to generalizations on the level of 
putative mental processes rather than the data. As a consequence, 
studies framed around the same process are often grouped 
together and distinguished from those examining other processes, 
and the task demands imposed by the experiments often receive 
less consideration. We suggest that by relying on such meta-level 
comparisons across studies on the level of mental processes, 
rather than explicitly testing for generalization across tasks on the 
level of the data, the predominant approaches have contributed 
to an unwarranted reification of existing taxonomies, and to an 
unnecessary fragmentation of the literature.

Our perspective is that regardless of which approach is taken, 
the link between the concept and the data is fundamentally the task 
demands of the specific experiment conducted. Thus, understanding 
the mutual constraints task demands impose on neural activity and 
behavior is key to formulating new concepts, theories and models 
that jointly explain these domains, alongside concomitant mental 
states. Understanding the constraints imposed by task demands 
requires formal quantifications of the generalization of results 
(or lack thereof) across tasks on the level of the data. Moreover, 
testing whether patterns generalize across neural and behavioral 
measures will allow the discovery of concepts that jointly explain 
data modalities. Such tests of generalization can reveal meaningful 
patterns in the data that can then be interpreted by linking them to 
the experimental components that were varied, ultimately fueling the 
creation of new empirically defined concepts.
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Box 2

Shared task demands: the case of attention, working memory and 
mental imagery
To understand how task demands shape our empirical observations, 
consider the case of attention, mental imagery and working 
memory—three psychological concepts traditionally associated 
with separate mental processes. Although largely distinct literatures 
provide seemingly abundant behavioral and neurophysiological 
evidence for each one of these putative mental processes, much 
of this evidence overlaps across the three (Box 2 Fig.), calling into 
question the separability of the concepts themselves (see, for 
example, ref. 63).

In endogenous attention tasks, internally generated signals 
prepare one to attend to specific features of a stimulus, even in the 
physical absence of that stimulus. During such tasks, feature-specific 
modulations are observed in the neural response of many regions (for 
example, ref. 66). In working memory tasks, information needs to be 
maintained over time in the absence of a physical stimulus and often 
directly engages the same cortices that responded when the stimulus 
was present (for example, ref. 67). Such findings have been taken as 

support for a sensorimotor recruitment framework68 and predict the 
behavioral pattern of interference between currently perceived and 
memorized stimuli69,70. In mental imagery tasks, specific stimulus 
features must be called to mind in the absence of a physical stimulus, 
with results suggesting a depictive representation mediated by 
common neural substrates for imagery and perception71. Converging 
evidence for shared neural substrates for imagery and perception 
has even prompted the question of how we are able to differentiate 
between the two72.

Importantly, all three of these tasks engage neural substrates 
keyed to the stimulus content, which becomes especially apparent 
when directly compared within individuals73. In fact, the neural 
evidence taken as support for attention, working memory and 
imagery also overlaps with many other putative mental processes 
(for example, generating expectations), hinting at the possibility of 
formulating unified, more parsimonious concepts that explain these 
data (Box 1). Indeed, data-driven quantification of the relatedness 

a Many putatively distinct mental processes engage 
overlapping physiological substrates

c Similar principles across species and techniques d Activity is task dependent
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Box 2 Fig. Shared task demands drive similarities across domains. a, Putatively distinct mental processes engage overlapping physiological 
substrates. Example concepts that are typically probed with specialized tasks. Statistical maps show regions with strong association with 
the terms ‘attention’, ‘working memory’ and ‘imagery’ across hundreds of studies adapted from neurosynth75. Depicted are meta-analysis 
uniformity tests thresholded at P < 0.01 (false discovery rate-corrected) overlaid on Freesurfer’s FSaverage surface. Note that these maps may 
mask individual differences in activity strength and localization. b, Common task demands probably explain neural overlap observed across 
putatively distinct mental concepts. We depict a surface render of the overlap between the statistical maps in a. Bright blue shows areas that 
overlap across all three example concepts. c, Example studies reporting similar principles across species and techniques. Left, Neurons in 
the macaque show increased spiking during a cue–target delay period when the target is expected to appear in their receptive field (adapted 
from data in ref. 66). Middle, Neurons in the mouse show selectivity for specific odors during delay period (adapted from data in ref. 67). Right, 
Stimulus identity can be decoded from early visual areas during both working memory and mental imagery tasks (adapted from data in ref. 73). 
FEF, frontal eye field; LIP, lateral intraparietal area. d, Example study showing that neural activity is task dependent. Decoding of object identity 
in posterior fusiform cortex and lateral prefrontal cortex depends on the task used (adapted from data in ref. 70).
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be manipulated indirectly through the choice of such experimental 
components. As the factors these components attempt to control 
interact, seemingly small changes in one component can produce 
large differences in task demands, making it difficult to disentangle 
the impact of individual experimental components on the level of 
behavioral and physiological measures. To address this challenge and 
uncover how task demands drive empirical measures, we argue that 
studies need to characterize the interactive influence of experimen-
tal components on the data. This quantification can be achieved by 
varying multiple components simultaneously, and formally testing the 
generalization of results across tasks and across neural and behavioral 
data. We contend that such an approach will enable the data-driven 
discovery of new concepts while remaining grounded in theory, com-
bining the strengths of the established and predominant ‘outside-in’ 
and ‘inside-out’ approaches while simultaneously overcoming their 
limitations (Box 1).

The following sections describe the theoretical and practical 
implications of this framework based on a synthesis of perspectives, 
approaches and data from diverse literatures. We begin by discussing 
why all empirical measures are ultimately grounded in task demands, 
and how their influence can be understood through the interaction 
between experimental components. Next, we outline how agent–
environment interactions, which underlie task demands, shape all 
aspects of physiology on multiple spatiotemporal scales, leading 
into three sections focusing on the dynamic, interconnected and 
multifunctional nature of neural circuits. We then highlight the fun-
damental importance of comprehensively analyzing behavior for 
any and all tasks, and why improvements in behavioral testing and 
study design are essential for advancing our understanding of the 
nervous system. We conclude by emphasizing the relevance of open 
science and large-scale interdisciplinary initiatives for accomplishing 
the long-term objectives of cognitive neuroscience, which includes 
the creation of a new and adaptive taxonomy that unifies neural, 
behavioral and mental states.

Behavioral and physiological measures are 
grounded in task demands
Traditionally, studies vary a single experimental component (for exam-
ple, stimuli) while keeping others constant (for example, instructions), 
mapping variations in that component to variations in the recorded 
data (for example, neural spiking and behavioral responses). Although 
this approach has led to key discoveries, it has a central limitation: 
varying only one component renders us blind to interactions between 
components (Fig. 1). However, a large body of literature suggests that 
the choice of each experimental component can affect the influence of 
others, making it challenging to attribute results to a single component 
or variable. Further, most neurons exhibit mixed selectivity that is task 
dependent. The activity of subicular neurons, for instance, reflects 
an interaction between an animal’s location, head direction and run-
ning speed, but the variance in activity accounted for by each depends 
on the animal’s task2. Similarly, neural activity in putatively sensory 
cortices, such as early visual cortex, reflects not just stimulus-evoked 
responses but also task-related goals, behaviors3 and physiological sig-
nals (such as arousal)4. Studies using multiple tasks have further shown 
a strong influence of experimental instructions or cues on widespread 

neural activity in humans (for example, ref. 5), monkeys (for example, 
ref. 6) and rodents (for example, ref. 7), and multitask designs offer 
improved parcellation and connectivity estimates when compared to 
traditional approaches (for example, ref. 8). Experimental instructions 
also have profound effects on behavior (for example, ref. 9). Finally, 
studies probing putatively distinct mental processes (for example, 
working memory, attention and mental imagery) often report similar 
or overlapping neural activity, which probably reflects similarities in 
their underlying task demands (Box 2). These results collectively sug-
gest that behavioral and neural measures—and the mapping between 
them—are inherently task dependent.

In light of these findings, we propose that task demands emerg-
ing from interacting experimental components underlie any neural 
or behavioral result, making it crucial to formally unpack their influ-
ence. To this aim, studies need to vary multiple experimental compo-
nents (for example, stimuli, instructions and, prompted behaviors) 
and quantify their interaction on the level of the data. Such multitask 
studies enable the identification of patterns of results that generalize 
across tasks and across data types, which can then be interpreted by 
linking them to the experimental components that were varied, as 
well as to other factors not explicitly manipulated (for example, time 
of day). Formal tests of generalization are essential for the broader 
applicability of research findings, as across-task generalization is a 
crucial prerequisite for generalization to the real world. To enhance 
ecological validity of experiments and, therefore, generalizability of 
their results, we agree with others in prioritizing naturalistic condi-
tions (for example, ref. 10) or allowing free ambulatory behavior (for 
example, ref. 11). Notably, naturalistic conditions can be achieved while 
maintaining a high level of experimental control, for example, through 
photorealistic rendering12 or the use of virtual reality13. Ultimately, by 
focusing on multitask studies, naturalistic conditions and the pursuit 
of across-task generalization, we believe that empirically grounded 
concepts can be derived from the data that jointly explain neural activ-
ity, behavior and mental states (Box 3).

Agent–environment interactions shape all 
aspects of physiology
Although task demands are specifically defined within experimen-
tal contexts, determining their influence on empirical measures can 
reveal general principles about the nervous system and its grounding in 
agent–environment interactions. Given that activity drives plasticity, 
plasticity shapes anatomy, and anatomy constrains activity (Fig. 1), the 
nervous system continuously adapts to meet demands on the agent. 
These adaptations range from immediate, local adaptations in pro-
tein synthesis and synaptic modifications (for example, ref. 14), to 
large-scale network changes on developmental15 and evolutionary 
timescales16. As the history of behavioral successes and failures deter-
mines which neural circuits and dynamics persist17, all aspects of the 
nervous system are ultimately yoked to the behavior it produces. This 
action-centric view accounts for a burgeoning literature showing that 
behavioral correlates can be found in activity throughout the brain18, 
even in early sensory cortices19, as well as for the widespread integration 
of motor outputs and sensory inputs (for example, efference copies20). 
Moreover, this perspective supports the idea that actions are an inte-
gral part of sensory processing21, and suggests that the conjunction of 

of the most prominent concepts currently used in cognitive 
neuroscience shows that the boundaries between them are blurry 
at best64. We argue that neuroscientific evidence, such as the 
engagement of ‘sensory’ cortices by ‘high-level cognitive processes’ 
(for example, emotion schemas74), belies the distinction between 
even the most deeply rooted terms in our field such as perception 

and cognition. We suggest that rather than the psychological 
concepts themselves, the similarity in task demands across studies 
(for example, maintaining stimulus information over time) can explain 
the commonalities and differences in physiological responses they 
observe, and that many seemingly established distinctions between 
putative mental processes are unsubstantiated.

(continued from previous page)
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Box 3

Empirical approaches for examining the constraints of task 
demands on physiology and behavior
Experiments yield a relationship between empirical measures 
(for example, neural responses) and a specific combination of 
experimental components (for example, stimuli, instructions and 
behavioral responses). To unpack task demands, experiments need 
to be designed to specifically characterize the interaction between 
these components, ideally within individuals, which can be achieved 
by implementing a multitude of task variations and empirical 
measures, yielding rich datasets that combine high experimental 
control with high data variability (Box 3 Fig.). When neural activity 
and behavior are densely sampled, such multitask designs are ideal 
for testing generalization of results across task conditions and across 
data modalities (Box 3 Fig.), leveraging the full richness of neural and 
behavioral dynamics to uncover their common constraints. Moreover, 
focusing on task demands and generalization through multitask 
studies will make studies more naturally extendable and comparable 
to later studies, especially when designed with open science and 
quantitative convergence as the goal (see section ‘Transforming the 
culture of cognitive neuroscience’).

Various analysis techniques can discover patterns that generalize 
across tasks and data modalities. For example, the behavioral 
or neural patterns that generalize across tasks can be identified 
through clustering analyses applied to across-task similarity matrices 
(Box 3 Fig.), via representational similarity analysis (for example, 
ref. 5), component modeling or factor analysis of all tasks together 
(similar to, for example, ref. 76), or training and testing encoding/
decoding models across tasks (similar to, for example, ref. 77). 
Similar techniques could establish the mapping between neural and 
behavioral data, for example, by comparing principal components 
estimated for each measure76, or through behavioral encoding 
models (for example, ref. 13). Alternatively, the mapping could 
be achieved by estimating joint low-dimensional embeddings for 
behavior and neural activity59. Not only do such techniques identify 
the general patterns that are shared across data types or tasks (Box 2), 

but they also yield those patterns that are unique to each one, which 
can then inform new hypotheses to be targeted in subsequent 
experiments (for example, ref. 78).

To interpret results, patterns that generalize across tasks and/or 
data types can be linked to the specific variations in the experimental 
components, for example, by computing how much variance each 
component explains in the across-task similarity matrices (Box 3 
Fig.). Moreover, by considering the broader experimental context 
(for example, time of day), the component’s contribution and their 
interaction can further be disentangled from factors that were 
not explicitly varied. Only by fitting all experimental components 
together, and by quantifying nonlinearities in their mapping to the 
empirical measures, can their interaction be directly characterized 
on the level of the data, which we argue is required to go beyond 
reification of existing taxonomies (for example, Box 2) and empirically 
derive new mental concepts that jointly explain behavioral, neural 
and mental states (Box 1).

Given resource constraints, one concern is whether multitask 
designs are practically feasible, especially at a larger scale. We 
believe that challenges associated with multitask designs are 
surmountable even for individual studies, and that multitask 
studies are ultimately efficient and cost-effective, as they balance 
the increase in the number of experimental components with the 
advantage of harnessing systematic variability within the data. 
For example, unlike single-task studies, multitask studies allow 
for new and numerous questions to be addressed within the 
same data, and pooling data across tasks still allows addressing 
individual questions with high statistical power. As characterizing 
behavior thoroughly can inform both the phenomena targeted 
and the design of physiological investigations, the efficiency of 
multitask designs can further be improved by diversifying our 
behavioral measures, which in turn probably decreases the amount 
of more costly neural data required. Fortunately, behavioral 
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sensory and action statistics is not just reflected in the activity of the 
nervous system, but also its structural organization.

These considerations underscore the need for theoretical and 
analytical approaches capable of linking conjunctive sensory and 
action statistics to physiological phenomena, while also uncovering 
common constraints on activity, plasticity and anatomy. We propose 
that centering the empirical approach on task demands can achieve 
these aims simultaneously, as it captures the interplay between sensory 
impressions, goals and behaviors that shape an agent’s physiology 
broadly. As the very structure of the nervous system is a product of 
this interplay, characterizing the influence of task demands on empiri-
cal measures is critical for informing our interpretations beyond the 
specific experimental setting, even for studies involving self-generated 
experiences (for example, memory recall22), putative rest23 or perturba-
tion (for example, brain stimulation24). Further, activity patterns are 
fundamentally a function of the underlying anatomy and only in the 
context of that anatomy is it possible to reveal why one specific activ-
ity pattern emerged and not another. Synthesizing measurements 
of anatomy and activity obtained under varying task demands can, 
therefore, uncover important latent patterns that generalize across 
tasks and data modalities (for example, computational modeling of 
toroidal attractor dynamics in entorhinal grid cells25), and inform our 
understanding of neural activity, cell diversity, local architecture, con-
nectivity and plasticity across spatiotemporal scales. Finally, because 
all aspects of behavior and physiology reflect an agent’s unique history, 
we suggest that insights gained about the influence of task demands on 
our empirical measures can be leveraged for understanding individual 
differences in health and disease (Box 4).

Every brain state is unique
As neural activity is yoked to anatomy through plasticity, all of our 
experiences and behaviors leave structural traces throughout the 
nervous system. Thus, the global state of the nervous system never 
repeats. Indeed, many studies report substantial variability in neural 
activity across trials even for repeated conditions (for example, rep-
resentational drift26). Although multiple potential mechanisms have 
been proposed, one commonality is that these variations appear to 
be systematic. For example, neural activity does not differ randomly 
across trials, but tends to drift in a task-dependent manner, with simi-
larity in activity across trials diminishing with increased time between 
trials (for example, ref. 27). Such drift is paralleled in behavior, where 
performance in one trial depends on performance and experience in 
prior trials (for example, serial dependence28). Moreover, behavioral 
and neural activity drift often coincide (for example, ref. 29). Together, 
these findings demonstrate the non-static nature of behavior and neu-
ronal firing patterns (Fig. 2) and suggest a possible common mecha-
nism, such as accumulating plasticity-induced changes. An additional 
source of uncontrolled variability in neural and behavioral data stems 
from changes in the internal state of an agent, which fundamentally 
affects how a task is performed. For example, results can be affected 
by the duration that participants waited for the experiment to start30.

The presence of such hysteresis and state-dependency effects sug-
gests that variability in empirical measures across trials is as informa-
tive as any stable pattern observed. Rather than treating this variability 
as noise (for example, when computing test–retest reliability), it could 
be leveraged to understand the dynamics of and covariance between 

physiology and behavior. This can be achieved through multitask 
experiments that maximize variability in the measures while main-
taining experimental control (Box 3). To take full advantage of the 
resulting datasets, analytical toolkits need be expanded beyond met-
rics of reproducibility and central tendency, toward developing new 
time-resolved, trial-wise and longitudinal analysis techniques (for 
example, manifold-learning techniques for time-series data31). Exploit-
ing systematic variability in the data allows for a deeper understanding 
of the ongoing and inevitable changes in task demands and the physi-
ological adaptations they induce over time. Notably, by considering 
broader temporal scales and the effect of often-overlooked contextual 
factors (for example, time of day), we can gain additional insights into 
dynamics extending beyond the scope of single experiments.

Neural circuits are both locally specific and 
globally constrained
Because all parts of the nervous system are collectively shaped by com-
mon demands, the activity and structure of any local neural circuit 
depends on its embedding in the wider network. No part of the nervous 
system is fully independent from the rest. This intrinsic network embed-
ding conflicts with a long-standing focus on parcellating the neural 
substrate in search of dissociable contributions to mental states and 
behavior. Although parcellation efforts align with lesion studies that 
show that damage to one part of the brain can lead to selective deficits 
in the agent’s experiences and abilities32, such findings do not imply that 
activity in different circuits is independent. For example, neural signals 
linked with an animal’s movements are tightly integrated with sensory 
inputs across the brain (for example, ref. 18), suggesting that ‘sensory 
systems’ and ‘motor systems’ are not cleanly separable. This notion 
extends to the brain as a whole, which cannot be fully understood sepa-
rate from its embedding within a larger nervous system that spans the 
entire body. A consequence of the interconnected nature of circuits is 
that measuring changes in local activity between task conditions does 
not straightforwardly indicate a circuit’s involvement in a task or lack 
thereof. In particular, finding similar activity across conditions does 
not necessarily reflect the lack of that circuit’s contribution to task 
performance. The circuit may contribute equally, with similar activity 
across conditions reflecting shared task demands. Alternatively, there 
could be a differential effect across conditions of that circuit on other 
circuits, despite similar local activity8, or local inactivity itself could 
inform the global state and behavior33. This complexity suggests that 
the nervous system’s activity and structure are not strictly modular34; 
however, nor are computations homogeneously distributed. Instead, 
the contribution of any given circuit to task performance is influenced 
by the contribution of other circuits within the broader network (Fig. 2). 
Furthermore, localized activity and lesion effects should not be taken 
as evidence for one-to-one mappings between functions and neurons. 
Considering the interconnected and dynamic nature of neural circuits, 
viewing the nervous system as a heterarchical network without a clear 
start or apex may provide a more accurate framework than a strict 
hierarchical model35.

The considerations above suggest that understanding the contri-
butions of local neural circuits to task performance requires examining 
their embedding within the wider network. The network embedding 
of local neural circuits can be revealed through causal perturbations 
(for example, local cooling36, ultrasound37 or other techniques24,38) 

tracking continues to become simpler and more affordable due to 
advances in machine learning57. In general, the number and extent 
of behavioral studies should be increased drastically79 as they 
tend to be more affordable and practical than neural recordings 
(for example, crowd-sourced psychophysics80). Notably, as it 

is not feasible to test every possible variation in experimental 
components, the choice of what to vary must be informed by 
the research question and theory in general, the testing and 
refining of which should be both the starting point and the goal of 
experimentation.

(continued from previous page)
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while quantifying the effect of the perturbation on the wider network 
and behavior across multiple task demands39,40. Although established 
perturbation techniques often limit experimental design and behavior 
(for example, they restrict the agent’s movements), new methodo-
logical developments can overcome these limitations (for example, 
wireless optogenetic stimulation41). Combining multitask designs 
with activity-dependent tracing techniques (for example, ref. 42) is 
a promising approach to measure how local activity dynamics influ-
ence the wider network in a task-specific manner. Most importantly, 
interpretations of results should adopt an integrated view of the 
nervous system in which an interconnected network produces local 
activity dynamics that contribute to behavior and mental states in a 
task-dependent manner.

There is no singular function
The interconnected and dynamic nature of neural activity inherently 
complicates defining brain functions and their localization to specific 
circuits (for example, refs. 43,44). For example, although the function 
of area V5/MT has been described as motion perception or motion inte-
gration (for example, ref. 45), its neural responses reflect task aspects 
that extend beyond the movement of stimuli (for example, behavioral 
choice46). These findings are in line with the idea that mixed selectivity 
exhibited by neurons may be central for their flexible engagement in 
different tasks47. Mixed selectivity, together with strong dependencies 
in activity between circuits34, suggests that neurons and neural ensem-
bles can serve multiple functions depending on the agent’s goal (Fig. 2). 
The difficulty in ascribing clear, single functions is underscored by 
research suggesting that the selectivity of neural circuits is not innate, 

even those traditionally thought to have evolved for specific sensory or 
motor functions. For example, language processing engages the early 
visual cortex in people born without sight48, and circuits thought to 
control hand movements are engaged during foot movements in people 
born without hands49. Akin to the presumed functions of neurons, it 
is common to make a complementary assumption about the func-
tion of behaviors. For example, our thumb has a clear set of potential 
articulations, but those articulations serve different functions when 
grasping a mug, communicating through sign language, or swimming. 
Collectively, these examples illustrate that the function of neural or 
behavioral patterns can only be understood in the context of what the 
agent is aiming to do. Extending these ideas, the presence of an activity 
pattern in an experiment does not necessarily signify the engagement 
of a particular mental process. Although this task dependency com-
plicates the definition of function, the question of function cannot be 
eschewed; it serves as a reminder that the formulation of a question 
steers toward a certain answer50. For example, identifying one func-
tion of a neuron or ensemble in one task may lead to a modular view 
of the nervous system that overlooks the complexity described above.

Capturing the complexity and task dependence of empirical meas-
ures starts with formulating the question: rather than asking about 
singular functions of neurons or behaviors, we suggest reformulat-
ing the question to probe their contribution to task performance. By 
exploring these contributions across various tasks and relating data 
to task demands, we may find not one but many answers, in keeping 
with the task dependence of our measures and the interconnected 
nature of the brain. Through analyzing similarities across results, 
principles that generalize across multiple tasks can be established for 

Box 4

Elucidating individual differences in health and disease
A primary objective in understanding health and disease is to link 
the unique characteristics and history of individuals to potential 
health risks, diagnoses and personalized treatment options. Recent 
years have seen the popularization of brain-wide association 
studies for elucidating individual differences based on the mapping 
between physiological and behavioral markers81. However, although 
brain-wide association studies promise an understanding of how the 
unique characteristics of individuals and their history (for example, 
lifestyle) relate to physiology, in practice, their utility for cognitive 
neuroscience and clinical research is limited. For example, inherent 
assumptions of localization and the stationarity of brain functions (for 
example, when relating optimized task measures or questionnaires 
to resting-state data81) necessitate large study sample sizes and high 
resulting costs. Given the history-dependent and task-dependent 
nature of behavioral and physiological measurements and the strong 
dependencies in activity between local circuits, these approaches 
are, therefore, unlikely to comprehensively capture the multivariate 
spectrum of traits, behaviors and physiological characteristics that 
defines us.

Nowhere is the characterization of this spectrum more important 
than in the study of mental health, neurological disorders and 
neurodiversity. In hope of reducing costs and offering diagnoses 
and treatments at scale, much clinical research has focused on 
identifying specialized behavioral or physiological markers, rather 
than diversifying the tasks and measures used. One example that 
illustrates the risk of this specialization is the recent meta-level test 
of the serotonin hypothesis of depression, which did not confirm the 
long-standing assumption that depression is associated with lowered 
serotonin levels82. Ultimately, it is important to acknowledge that 

conditions such as depression, and neurodiversity more generally, 
are grounded in physiological and behavioral idiosyncrasies that are 
best understood in terms of their mutual constraints83, which cannot 
be captured or treated using single, optimized measures or tasks.

Therefore, advancing the understanding of individual differences 
and health requires a move away from the model of the critical 
or ‘silver bullet’ experiment, and an increase in the diversity of 
tasks, measures and tested populations (for example, patient 
groups and different cultures). Multitask studies, especially when 
combined with rich behavioral and neural sampling over longer 
time periods (for example, All of Us initiative), are ideal to capture 
both within-participant and across-participant variability, which is 
key for assessing each individual in light of the spectrum defined 
by the population. In doing so, patterns that generalize across 
individuals (for example, activity during language processing84) can 
be identified, in addition to gaining a better understanding of how 
variation in individual histories shapes these patterns. Importantly, 
achieving this experimentation at the scale needed requires an 
expanded approach to behavioral testing (for example, ref. 28), 
which can reveal meaningful and stable individual differences (for 
example, ref. 85) and predict neurological disorders such as epilepsy 
(for example, in rodents86). Linking specific behavioral patterns to 
corresponding diagnoses could further enable earlier and more 
personalized interventions, which is especially crucial for diseases 
with late neurological symptoms such as Alzheimer’s disease87. 
Lastly, it is important to acknowledge the interdependence between 
physiology and behavior for developing treatments: integrating 
medication-based and behavioral therapies is probably key for a 
holistic treatment of any neurological or mental health condition.
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formal testing (Box 3). This approach leverages multitask studies that 
manipulate instructed goals in conjunction with other experimental 
components in a theory-driven manner, assessing how these goals 
affect our empirical measures (for example, inferring experimental 
goals from gaze patterns51).

Behavior is ubiquitous and fundamental
A central idea throughout our Perspective is that an organism’s physi-
ology can only be fully understood in the context of the behavior it 
produces. Behavior could in fact be viewed as the natural means to 
extend physiology into the environment to maintain homeostasis16, 
and is therefore intrinsically linked to the mental states that arise (for 
example, visual experiences inherently reflect sensorimotor integra-
tion20). Even seemingly passive tasks involve behaviors in ways that 
may not be intuited (for example, saccades reveal recall content22, 
pupil size indexes brightness of imagined stimuli52). Behavior is thus 
an essential consideration when interpreting neural activity recorded 
in any and all tasks used. Although many have already highlighted the 
importance of incorporating behavior in our understanding of the 
nervous system (for example, ref. 53), cognitive neuroscience often 
narrows behavioral analysis to a limited set of actions deemed relevant 
by experimenters, such as quantifying the accuracy and efficiency of a 
small set of instructed or cued actions (for example, lever presses). Typi-
cally, task-relevant actions are included, and task-irrelevant actions are 
often neglected (for example, fin strokes in the curious zebrafish, eye 
movements in the disengaged participant) or restricted (for example, 
head fixation). However, relying on intuition for classifying behaviors as 
task relevant or task irrelevant builds on strong assumptions that may 

obscure our understanding of task performance and risks overlooking 
important explanatory accounts of the data (for example, uninstructed 
behaviors explain V1 activity during auditory stimulation in mice54).

We contend that even seemingly task-irrelevant behaviors should 
not be considered epiphenomenal or a nuisance, as they could emerge 
as a direct expression and inherent part of any mental state. Thus, it is 
vital to consider behavior for all experiments, analyses, interpreta-
tions and models in cognitive neuroscience53,55 (Box 5). Total control 
or restriction of behaviors is neither feasible nor desirable, because it 
disrupts task performance and undermines the ecological validity of 
an experiment. Instead, behavior should be comprehensively tracked 
and analyzed in relation to neural activity and the experimental com-
ponents that were varied. Because behaviors are ubiquitous and their 
expression often unpredictable a priori, dense behavioral tracking is 
crucial even in seemingly passive tasks (for example, active sampling 
during recognition56), when behaviors are restricted (for example, 
fixation tasks and head restriction), or when no specific responses 
are required (for example, free foraging in mice and resting state in 
humans). Recent advances in machine learning are central to this aim 
as they enable the quantification of the rich behavioral repertoire of 
animals (for example, ref. 57) including humans (for example, ref. 58), 
which can then be linked to neural dynamics (for example, through 
behavioral encoding models13) or modeled together with neural activity 
in a joint framework59. A particularly exciting avenue in this direction 
is the automated quantification of behavioral syllables (that is, stereo-
typed behavioral patterns with learnable transition probabilities57), 
which allows for across-task comparisons of complex repeated action 
sequences. Especially when different behavioral measures are com-
bined, this approach could uncover regularities in patterns that span 
different tasks at unanticipated levels of abstraction, and reveal task 
demands that are shared between experiments and would otherwise 
remain hidden (Box 2). Moreover, comparing behavioral syllables 
observed in an experiment to those measured in the wild would enable 
the estimation of the experiment’s ecological validity, help to differenti-
ate experimental phases60 and allow individual traits to be examined 
with respect to behavioral repertoires obtained over ontogenetic and 
phylogenetic timescales (Box 4).

Adaptive theories of flexible demands
We have argued that cognitive neuroscience can articulate concepts 
that jointly explain behavioral, neural and mental states by centering 
the empirical approach on multitask studies and tests of generaliza-
tion. The feasibility of formulating generalizable concepts has been 
demonstrated, for example, by work on attractor models that explain 
both neural and behavioral dynamics and their relationship61. This 
perspective calls for strengthening integrative efforts across all dis-
ciplines that fuel the field (for example, philosophy, psychology, biol-
ogy and computer science), and overcoming tensions inherited from 
them (for example, outside-in versus inside-out debates; Fig. 3 and 
Box 1). Cognitive neuroscience can and should grow to be more than 
the sum of its constituent disciplines. Doing so requires moving beyond 
utilizing specialized tasks to map psychological concepts to neural 
or behavioral data, or mapping neural dynamics to natural behavior 
without constraints. Instead, we should aim to uncover patterns that 
generalize across data types and across tasks chosen based on theory, 
which will serve as the basis for new taxonomies.

Critically, we should not replace one rigid taxonomy with another, 
nor should theories and taxonomies be abandoned altogether in favor 
of purely data-driven quantifications. Cognitive neuroscience seeks to 
link utterly disparate phenomena (for example, scent and attraction) 
in pursuit of understanding a system that optimizes itself continuously 
from channels to networks, and whose state depends on environmental 
factors and on its own history. A single taxonomy cannot cover the 
necessary range of abstraction and spatiotemporal scales for such an 
endeavor50, and new taxonomies must be capable of accommodating 
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Fig. 2 | Interconnected neural circuits generate activity dynamics in service 
of mental and behavioral flexibility. Top, Goals, behavior and sensory 
impressions of the environment change over time in an interdependent manner. 
For example, a mouse prioritizes different aspects of the environment depending 
on whether it is eating, running or climbing. Middle, Neural circuit schematic 
with five example units, each of which may reflect an individual neuron or a local 
population of neurons. Each unit simultaneously codes for multiple variables 
(mixed selectivity, for example, color, head direction and optic flow), which 
depends on what the agent is trying to do (for example, posture may explain 
activity of a unit during running and climbing, but not during eating). Bottom, 
Activity profile of two example units (for example, explained variance in spike 
trains of two neurons or two neural populations). The activity profile of unit A 
generalizes across behavioral states, whereas the one of unit B does not. However, 
within unit B, certain elements do generalize across states (for example, portion 
of variance explained by variables 1 and 3). To discover the principles that are 
unique to each state, and those common to all states, a multitude of sensory and 
behavioral variables must be tracked and related to neural activity. Moreover, 
because each unit’s activity depends on the activity of other units, large-scale 
neural recordings and network-level investigations are required. Finally, mixed 
selectivity and its task dependency suggest that neural circuits do not have one 
but many functions, which are definable only within the context of a task.
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the changing nature of physiological, behavioral and mental states 
(for example, smartphones have rapidly become ubiquitous). These 
considerations do not mean that our current theories are inconsequen-
tial—theories are required for any experimentation and understanding 
(Box 3), but they do imply that cognitive neuroscience is a field in con-
tinuous evolution, without a definitive endpoint. A sustainable cogni-
tive neuroscience is one that enables the creation of adaptable theories 
that capture the inevitable and ongoing changes in the system it is try-
ing to understand. We propose that achieving this requires centering 
the approach on task demands, as they can parsimoniously account 
for a wide range of behavioral and neural dynamics observed across 
experiments, species, methodologies and research domains (Box 2).

Transforming the culture of cognitive 
neuroscience
It is broadly accepted that understanding the nervous system is a mul-
tigenerational endeavor that extends well beyond the capabilities of 
any single laboratory or institution, but fully embracing that under-
standing necessitates a radical shift in the current research culture. 
As a field, we need to maintain a mindset of sustained science and 
quantitative convergence (that is, reuse, refinement and extension 
of data and techniques by others), which starts with vastly increasing 
the depth and breadth of paradigm, data and code sharing and imple-
menting standards for all of them62. Such open-science practices, by 
making research more accessible and inclusive, invite a diversification 
of perspectives urgently needed for challenging and refining theories. 
Open science is essential to the long-term objectives of cognitive neu-
roscience, such as unifying theories of behavioral, mental and neural 
states, and its practice should be strongly incentivized and rewarded, 
from experimental design to publication and tenure considerations.

Importantly, individual studies can follow the core suggestions 
outlined in this article, such as embracing multitask study designs and 
formal tests of generalization (Box 3). However, realizing the full potential 
of this approach will also require new large-scale initiatives that explore 
the influence of task demands across diverse populations and species with 
a variety of data collection techniques. Existing initiatives have already 
made important strides, for example by advancing data standards (for 
example, Brain Imaging Data Structure) and analysis pipelines (Brainlife), 
making datasets and code publicly available online (for example, Open-
Neuro, GitHub), and increasing sample sizes while diversifying the types 
of data acquired for each individual (for example, All of Us initiative).

Notably, several initiatives have shared datasets involving mul-
tiple tasks (for example, CNeuroMod, Human Connectome Project, 
Adolescent Brain Cognitive Development project and Healthy Brain 
Network). However, most initiatives deployed small sets of specific 
tasks built around putative psychological concepts, often rather pas-
sive in nature (for example, resting state). By doing so, they miss much 
of the critical covariance in behavioral and neural dynamics (Box 3), 
and the utility of the data may not always justify the economic invest-
ments. Critically, the specificity of tasks is designed to test preexisting 
putative psychological concepts (for example, working memory) and 
thus the resulting datasets inherently favor those concepts, limiting 
opportunities to formulate new ones (Box 1). To maximize the utility of 
future data collection, initiatives should systematically vary multiple 
experimental components (for example, instructions and stimuli) while 
densely sampling neural activity and behavior under conditions that 
mimic natural settings as closely as possible10. Realizing such initia-
tives may necessitate new infrastructures (for example, community 
platforms for coordinating efforts across groups) and a consensus on 
priority research questions and methodologies. Ideally, research should 

Box 5

Implications for computational models of brain and behavior
The present article highlights an action-oriented, dynamic 
and integrated view of the brain, with broad implications for 
computational models in cognitive neuroscience and psychiatry88,89.

Models need behavior. First, as sensory impressions, goals and 
behavior are inextricable, neural, behavioral and mental states can 
never be fully understood based on stimulus features alone (that 
is, they are not stimulus computable). Therefore, models need to 
go beyond stimulus computability and incorporate goal-driven 
behavior, even models restricted to sensory processes. This includes 
popular deep neural network models (for example, of recognition56), 
which should vastly extend their behavioral repertoire (for example, 
active sampling) if used as models of the brain89. Other common 
modeling approaches incorporate actions more actively, typically 
to minimize the error between sensory inputs and predictions, to 
maximize reward, or a combination of both (for example, Bayesian 
models90, active inference91 or reinforcement learning92). Depending 
on how these models are trained, they can learn to perform complex 
behaviors and tasks similar to rodents and humans (for example, 
navigation93).

Models need to generalize across tasks. To capture the 
task-dependent nature of behavior and neural activity, models 
should incorporate task dependencies3 and be formally tested 
on across-task generalization. Depending on the type of training, 
reinforcement learning models, for instance, can learn to generalize 
the structure of problems they solve across tasks (for example,  
ref. 94). A powerful approach to promote generalization, and  
to generate highly flexible models that reproduce real-world 

behavior is multitask learning (for example, ref. 95). Indeed, training 
deep neural networks on multiple tasks leads to the emergence of 
units with task-dependent mixed selectivity96, to a representational 
geometry97 similar to the brain, and to abstract representations  
that support generalization98. Although the properties of multitask 
trained networks depend on the relatedness of tasks that are 
chosen99, and on which aspects of the tasks are relevant98, such 
reports show that multitask models are feasible and can provide 
mechanistic insights, especially when their components are directly 
tested on task transfer100.

Models need naturalistic tasks. Extending the behavioral 
repertoire and across-task generalization of modeling approaches 
must go hand in hand with the development of new naturalistic 
tasks and stimulus sets, for which rich behavioral and neural data 
need to be acquired in a wide range of species. Even those models 
currently capable of learning task-general representations are often 
limited to artificial scenarios, or even to static stimuli with defined 
onsets and offsets. However, in natural experience, objects and 
features can often be predicted by context and peripheral cues, 
which are then actively sampled, or by statistical regularities in their 
temporal co-occurrence. In the absence of direct quantifications 
of performance and the generalization of that performance under 
naturalistic conditions, the models will remain constrained to tasks 
that do not capture the real-world experience of living organisms. 
Likewise, because the precise tasks on which models are trained can 
have an important role in determining a model’s properties99, a large 
and diverse set of naturalistic tasks and stimulus sets is needed.
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prioritize understanding the demands placed on agents in their natural 
environments, and the potential societal benefits that may emerge 
from the work (for example, applications and therapeutic advances).

Concluding remarks
We have outlined a framework for cognitive neuroscience that centers 
on task demands, which emerge from interactions between an agent’s 
goals, behavior and sensory impressions of the environment, and thus 
shape the activity and structure of the nervous system across spatial 
and temporal scales. To understand how task demands constrain 
behavior and neural activity jointly—and how these two domains are 
linked—varying multiple experimental components is essential (for 
example, instructions and stimuli). We further highlight the importance 
of dense behavioral sampling alongside large-scale recordings of neu-
ral activity, data sharing and code sharing to foster convergence, and 
integrative efforts across disciplines. By focusing on theoretical and 
practical implications, the proposed framework aims to pave the way 
toward the discovery of new concepts and theories that unify accounts 
of behavioral, physiological and mental states, in pursuit of results that 
generalize beyond the laboratory to the real world.

References
1.	 Gibson, J. J. The ecological approach to visual perception.  

J. Aesthet. Art. Crit. 39, 203 (1979).
2.	 Ledergerber, D. et al. Task-dependent mixed selectivity in the 

subiculum. Cell Rep. 35, 109175 (2021).
3.	 Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J. & Barack, D. L. 

Tasks and their role in visual neuroscience. Neuron https://doi.org/ 
10.1016/j.neuron.2023.03.022 (2023).

4.	 Burlingham, C. S. et al. Task-related hemodynamic responses in 
human early visual cortex are modulated by task difficulty and 
behavioral performance. eLife 11, e73018 (2022).

5.	 Ito, T. & Murray, J. D. Multitask representations in the human cortex 
transform along a sensory-to-motor hierarchy. Nat. Neurosci. 26, 
306–315 (2023).

6.	 Koida, K. & Komatsu, H. Effects of task demands on the responses 
of color-selective neurons in the inferior temporal cortex.  
Nat. Neurosci. 10, 108–116 (2007).

7.	 Lee, J. J., Krumin, M., Harris, K. D. & Carandini, M. Task specificity 
in mouse parietal cortex. Neuron 110, 2961–2969 (2022).

8.	 Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for 
adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

9.	 Cox, P. H., Kravitz, D. J. & Mitroff, S. R. Great expectations: minor 
differences in initial instructions have a major impact on visual 
search in the absence of feedback. Cogn. Res. Princ. Implic. 6, 19 
(2021).

10.	 Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking 
the primacy of experimental control in cognitive neuroscience. 
NeuroImage 222, 117254 (2020).

11.	 Topalovic, U. et al. A wearable platform for closed-loop 
stimulation and recording of single-neuron and local field 
potential activity in freely moving humans. Nat. Neurosci.  
https://doi.org/10.1038/s41593-023-01260-4 (2023).

12.	 Schmid, A. C., Barla, P. & Doerschner, K. Material category of 
visual objects computed from specular image structure.  
Nat. Hum. Behav. 7, 1152–1169 (2023).

13.	 Nau, M., Navarro Schröder, T., Frey, M. & Doeller, C. F. 
Behavior-dependent directional tuning in the human 
visual-navigation network. Nat. Commun. 11, 3247 (2020).

14.	 Chiu, C. Q., Barberis, A. & Higley, M. J. Preserving the balance: 
diverse forms of long-term GABAergic synaptic plasticity.  
Nat. Rev. Neurosci. 20, 272–281 (2019).

15.	 Lindenberger, U. & Lövdén, M. Brain plasticity in human lifespan 
development: the exploration–selection–refinement model. 
Annu. Rev. Dev. Psychol. 1, 197–222 (2019).

16.	 Cisek, P. Resynthesizing behavior through phylogenetic 
refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).

17.	 Hedrick, N. G. et al. Learning binds new inputs into functional 
synaptic clusters via spinogenesis. Nat. Neurosci. 25, 726–737 
(2022).

18.	 Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, 
A. K. Single-trial neural dynamics are dominated by richly varied 
movements. Nat. Neurosci. 22, 1677–1686 (2019).

19.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional, 
brainwide activity. Science 364, eaav7893 (2019).

20.	 Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal 
monitoring of movements. Annu. Rev. Neurosci. 31, 317–338 
(2008).

21.	 Rolfs, M. & Schweitzer, R. Coupling perception to action through 
incidental sensory consequences of motor behaviour. Nat. Rev. 
Psychol. 1, 112–123 (2022).

22.	 Wynn, J. S., Shen, K. & Ryan, J. D. Eye movements actively 
reinstate spatiotemporal mnemonic content. Vision 3, 21 (2019).

23.	 Zhao, W. et al. Task fMRI paradigms may capture more 
behaviorally relevant information than resting-state functional 
connectivity. NeuroImage 270, 119946 (2023).

24.	 Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. 
State-dependent effects of neural stimulation on brain function 
and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022).

25.	 Gardner, R. J. et al. Toroidal topology of population activity in grid 
cells. Nature 602, 123–128 (2022).

26.	 Driscoll, L. N., Duncker, L. & Harvey, C. D. Representational drift: 
emerging theories for continual learning and experimental future 
directions. Curr. Opin. Neurobiol. 76, 102609 (2022).

27.	 Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. 
Representational drift in primary olfactory cortex. Nature 594, 
541–546 (2021).

28.	 Kramer, M. R., Cox, P. H., Mitroff, S. R. & Kravitz, D. J. A precise 
quantification of how prior experience informs current behavior.  
J. Exp. Psychol. Gen. 151, 1854–1865 (2022).

a Outside-in c Defining new concepts through generalization

Concept

Specialized task

Neural dynamics

b Inside-out

Concept

Natural behavior

Neural dynamics

Multitask studies

Vary sensory 
impressions, goals and 
behavioral responses

Concept

Articulate new theories, 
models and adaptive 
taxonomies

Data

Dense sampling of
behavior and neural
activity

Generalization

Find neural and 
behavioral patterns that
are shared across tasks

Fig. 3 | Task demands bridge mental concepts and data. a, Outside-in 
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highly specialized tasks (for example, ‘working memory task’). New concepts 
cannot be discovered. b, Inside-out approach. Neural dynamics recorded 
during natural behavior are mapped to actions and environmental factors. New 
concepts could be discovered, but mappings are non-unique and search space 
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left, Multitask studies systematically vary task demands by varying multiple 
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Bottom left, Multitask experiments combined with neural recordings and 
behavioral tracking create datasets designed to leverage variability while 
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