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Conditional Sampling with Monotone GANs: From Generative Models to

Likelihood-Free Inference\ast 
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Abstract. We present a novel framework for conditional sampling of probability measures, using block tri-
angular transport maps. We develop the theoretical foundations of block triangular transport in
a Banach space setting, establishing general conditions under which conditional sampling can be
achieved and drawing connections between monotone block triangular maps and optimal transport.
Based on this theory, we then introduce a computational approach, called monotone generative
adversarial networks (M-GANs), to learn suitable block triangular maps. Our algorithm uses only
samples from the underlying joint probability measure and is hence likelihood-free. Numerical exper-
iments with M-GAN demonstrate accurate sampling of conditional measures in synthetic examples,
Bayesian inverse problems involving ordinary and partial differential equations, and probabilistic
image inpainting.
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1. Introduction. Conditional simulation can be viewed as the process of generating sam-
ples from certain ``slices"" of a probability measure \nu \in \BbbP (\scrU \times \scrY ). Intuitively, simulating u\in \scrU 
conditioned on a given value of y \in \scrY amounts to restricting \nu along a hyperplane y = y\ast ,
renormalizing, and generating samples from the resulting distribution. Conditional sampling
problems are ubiquitous in statistics, applied mathematics, and engineering, where u may
represent an output or prediction of interest and y may represent a variable that is observed.1

Many supervised learning algorithms such as ridge, lasso, or neural network regression as-
sume a finite-dimensional parameterization of u and use a statistical model of the observations,
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CONDITIONAL SAMPLING WITH MONOTONE GANs 869

\nu (\cdot | u), perhaps paired with some penalization scheme, to construct a point estimator \^u(y\ast )
of u for any y\ast . In the probabilistic setting described above, where the \scrU -marginal \nu \scrU is nat-
urally interpreted as a prior measure, such point estimators may coincide with the mode of
u conditioned on y\ast under specific likelihood and prior models [45]. Fully Bayesian methods,
however, go further and seek to characterize the entire conditional measure \nu (\cdot | y\ast ), thereby
providing a natural way of quantifying uncertainty in the predicted outputs. Gaussian process
regression is a canonical example, where u is an element of an infinite-dimensional space and
\nu is also Gaussian on the product space.

Inverse problems in the Bayesian setting [55, 104] fall into the aforementioned framework
as well; here, one seeks to recover an unknown parameter u from a realization of indirect
and noisy observations y\ast , where u is typically infinite-dimensional. A prototypical inverse
problem takes the form

\scrL (u)p= 0, y= g(p) + \epsilon ,(1.1)

where u \in \scrU represents the parameter of interest, p \in \scrP is a state variable, and \scrL (u) is an
operator acting on p, parameterized by u. Here, g : \scrP \rightarrow \scrY is an observation operator that
extracts y \in \scrY from p, and \epsilon \in \scrY is a random variable representing observational noise; \scrU , \scrY , \scrP 
are assumed to be Banach spaces. For instance, \scrL could be a partial differential operator and g
could return pointwise evaluations of the PDE solution p, defined with appropriate boundary
conditions (see subsection 4.5 for a concrete example). From a probabilistic perspective, (1.1)
specifies the conditional distribution \nu (\cdot | u). In the Bayesian setting [104], one also endows u
with a prior and thus fully specifies the joint probability measure \nu , with the goal of then
characterizing the posterior measure \nu (\cdot | y\ast ).

The common challenge in the applications outlined above is therefore to sample from a
conditional measure \nu (\cdot | y\ast ), as sampling enables the estimation of arbitrary moments or other
expectations. Markov chain Monte Carlo (MCMC) algorithms are widely used for this purpose
and provide asymptotically exact estimates, but require repeatedly evaluating the likelihood
(e.g., solving (1.1) in the case of Bayesian inverse problems); moreover, one must simulate an
entirely new Markov chain for each new value of y\ast . Also, the performance of most MCMC
algorithms is quite sensitive to the choice of prior and likelihood models [26, 43, 46, 47, 107].
These issues often limit the utility of MCMC in large-scale applications. Variational inference
(VI) methods [19, 35, 113] offer an alternative to MCMC by approximating the conditional
measure \nu (\cdot | y\ast ) with a measure \nu \theta chosen from a certain tractable family parameterized by
\theta . For example, one can take \nu \theta to be the family of Gaussian measures on \scrU parameterized
by their means and covariance operators. While VI can be significantly more efficient than
MCMC, the accuracy of VI is very much limited by the quality of the approximating family.
(See [19] for a more detailed discussion and for comparisons between MCMC and VI.)

In this article, we present and analyze a novel framework for conditional sampling using
transportation of measure. Our methods fall under the umbrella of VI, although the optimiza-
tion problems and distributional approximations of interest to us are not standard in VI: our
family of approximating measures \nu \theta comprises the pushforwards of a chosen reference measure
by parameterized block triangular transport maps; also, we solve optimization problems whose
objectives involve statistical divergences inspired by optimal transport (OT) distances, rather
than the KL divergence. In this light, our methods are closely related to modern generative
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870 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

models in machine learning (ML), such as generative adversarial networks (GANs) [41] and
normalizing flows (NFs) [64]. Another feature differentiating our approach from MCMC and
standard VI is the ability to approximate the entire family of conditionals \nu (\cdot | y) by solving
a single optimization problem, making it attractive for settings where conditional simulation
for a large collection of observation values is desired. A further distinguishing feature is that
our approach is entirely data-driven: the approximate conditionals \nu \theta (\cdot | y

\ast ) are computed only
using samples from the joint measure \nu .

In the remainder of this section, we give a summary of our main contributions, followed
by a review of relevant literature.

1.1. Main contributions. Consider a reference measure \eta and a target measure \nu , both
of which are Borel measures on the separable Banach space \scrY \times \scrU . We assume that \eta is
known and can be simulated at low cost; for example, we can choose \eta to be the standard
Gaussian measure whenever \scrY , \scrU are finite-dimensional, or an appropriate Gaussian process
in the Banach space setting. Our goal is to generate approximate samples from \nu (\cdot | y\ast ). To
this end, we pose optimization problems of the form

\left\{ 
   
   

min
F,G

\scrD (T\sharp \eta , \nu ) +\scrR (T),

s.t. T(y,u) = (F(y),G(F(y), u)),

F :\scrY \rightarrow \scrY , G :\scrY \times \scrU \rightarrow \scrU ,

(1.2)

where \scrD is a statistical divergence on \BbbP (\scrY \times \scrU ), \scrR is an appropriate regularization term, and
F, G are parametric maps. We make three main contributions in this work:

\bullet We present a theoretical analysis of (1.2) in an idealized setting where \scrU , \scrY are
Banach spaces and \scrR \equiv 0. Our analysis yields three primary results: (a) If T\sharp \eta = \nu ,
then G(y\ast , \cdot )\sharp \eta \scrU = \nu (\cdot | y\ast ), where \eta \scrU is the \scrU -marginal of \eta . (b) Under very general
conditions on \eta , \nu and for wide choices of \scrD , problem (1.2) has a minimizer T\dagger that
satisfies T\dagger 

\sharp \eta = \nu . (c) Under appropriate monotonicity constraints on T, and when \scrY 

and \scrU are finite-dimensional Euclidean spaces, the resulting conditioning map G\dagger (y\ast , \cdot )
is also unique and is the solution to an OT problem (in fact it is a conditional Brenier
map [24]). We present these results in section 2.

\bullet Motivated by this theoretical foundation, we present a computational framework called
monotone generative adversarial networks (M-GANs) that approximates (1.2) in three
steps: (a) Take \scrD to be an approximate Wasserstein-1 type distance; (b) parameterize
F, G as neural networks; (c) impose monotonicity on T via the regularization term \scrR .
We then solve the resulting optimization problem using stochastic gradient descent

to obtain a minimizer G\dagger . Given a y\ast , we then draw samples uj
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \eta \scrU and evaluate

G\dagger (y\ast , uj) to obtain approximate samples from \nu (\cdot | y\ast ). The M-GAN framework is
outlined in section 3.

\bullet We evaluate the performance of the M-GAN approach numerically, with experimental
settings ranging from low-dimensional synthetic problems to high-dimensional ML ap-
plications and infinite-dimensional Bayesian inverse problems involving PDEs. These
experiments can be found in section 4.

A core feature of the M-GAN framework is that to solve (1.2) numerically, we only re-
quire samples from the joint measure \nu , yet the map G\dagger characterizes all of the conditionals
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CONDITIONAL SAMPLING WITH MONOTONE GANs 871

\nu (\cdot | y). In other words, M-GAN is entirely data-driven and does not require evaluations of a
likelihood function or prior density; more generally, it does not require any explicit knowledge
or modeling assumptions on the relationship between u and y. Moreover, since the computed
G\dagger can be evaluated at multiple values of y\ast without any additional optimization, the cost of
inference is ``amortized"" over y\ast [38, 90, 113, 27, 70].

1.2. Relevant literature. Conditional sampling is an active area of research in computa-
tional statistics, ML, and applied mathematics. Conventional methods such as MCMC and
VI, as mentioned earlier, have a rich and active literature but a thorough review of these
topics is outside the present scope. Instead we focus on literature pertaining to conditional
sampling and transportation of measure.

1.2.1. Measure transport in uncertainty quantification. The use of transport maps for
conditional sampling has been explored in the uncertainty quantification and inverse prob-
lems communities [74, 33, 102, 98]. For problems in Bayesian inference and ML [23, 53, 85], a
common approach is to seek monotone triangular maps that approximate the classic Knothe--
Rosenblatt (KR) rearrangement [95]. By construction, components of the KR rearrangement
push forward a product reference measure \eta to the target conditionals, which is precisely what
is desired for conditional sampling. While the KR rearrangement can be written explicitly
in terms of marginal-conditional distribution and quantile functions, direct computation us-
ing this definition is typically infeasible. coordinate bases. We demonstrateThe approach of
[74, 33, 102] instead is to formulate problems akin to (1.2) by choosing \scrD to be the KL diver-
gence, taking the reference \eta to be the standard Gaussian, and parameterizing T in a space
of monotone triangular functions. These choices naturally affect the accuracy of the resulting
transport. Also, most triangular map representations (with the exception of [111]) are lim-
ited to finite-dimensional input spaces \scrU and \scrY , and the fully triangular form of T requires
selecting a particular ordering of the coordinate bases. We demonstrate in subsection 4.2 that
this choice can have a significant impact on accuracy in practice. Furthermore, monotone
parameterizations of T can lead to poorly behaved optimization problems (e.g., with many
local minima) unless one exercises sufficient care, as described in [13]. Our M-GAN frame-
work addresses the aforementioned drawbacks of triangular transport maps by generalizing
the formulation of [74, 33, 102] in several ways: (a) we allow wider choices of \scrD ; (b) we ask
only for T to be block triangular, such that no ordering of coordinate bases for \scrU or \scrY is
needed; and (c) we establish validity of our formulation on infinite-dimensional Banach spa-
ces. To achieve conditional sampling, we do not even require T to be monotone, although we
do impose monotonicity in practice and enforce it in some of our theoretical results (e.g., in
making a link to OT).

Analysis of triangular transport maps is a classical topic going back to the works of Knothe
[63] and Rosenblatt [93]. Basic properties of such maps, such as existence, uniqueness, and
regularity, have since been studied in general settings including infinite-dimensional Banach
spaces [22, 21]. Applied analysis of triangular maps, pertaining to algorithms, has become
of interest much more recently: [110, 111] show that under appropriate assumptions on the
reference and target measures, the KR rearrangement is analytic on the finite- or infinite-
dimensional hypercube and can be well approximated with sparse polynomials or deep ReLU
networks; [50] considers a variational characterization of the KR rearrangement akin to (1.2)
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872 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

and studies the statistical consistency and convergence of the empirical approximation of the
map given samples from the target \nu ; [108] establishes optimal minimax rates of conver-
gence for nonparametric density estimators based on triangular and other transport maps, by
adapting techniques from M -estimation and empirical process theory to the transport setting;
[52] analyzes the tail behavior of triangular maps, revealing an intricate balance between the
tails of the reference and target measures and the expressive power of Lipschitz maps; and
[29] presents an efficient and scalable tensor train parameterization of triangular maps for
conditional sampling.

Our theoretical contributions are distinct from the aforementioned articles in four aspects:
(a) we do not limit ourselves to triangular/KR maps and instead consider the much more
general problem in (1.2); (b) we allow for a generic choice of\scrD as opposed to the KL divergence;
(c) we develop existence and convergence results for the conditioning map G as opposed to
the full map T; and (d) we connect our block triangular construction to recent results in OT.

1.2.2. Measure transport in ML. Measure transport problems have also attracted con-
siderable interest in the ML literature, particularly for generative modeling [80, 54]. Following
[54], we say that an ML model or algorithm is ``generative"" if it characterizes the joint mea-
sure \nu rather than the conditional measure \nu (\cdot | y\ast ). In this definition, the map T obtained by
solving (1.2) is a generative model. Popular generative models of relevance to our M-GAN
framework are GANs [41, 40], NFs [90, 84, 64], and, to some extent, variational autoencoders
(VAEs) [62, 32]. All of these methods and their variants solve problems of a form similar
to (1.2), but with three core differences: (a) the reference measure \eta in GANs and VAEs
is often defined on a lower-dimensional space, enabling natural dimension reduction; (b) the
map T is parameterized directly and the maps F,G are omitted from the formulation; and (c)
the regularization term R is not identified, or its impact is not analyzed explicitly. In GANs,
the map T is often parameterized by a single neural network and \scrD is taken to be a GAN
loss function, which can be viewed as an approximation to a Wasserstein-type distance or
a variational form of a statistical divergence [81, 10]. NFs represent T as a composition of
invertible and often triangular [53] neural networks, typically interleaved with permutations,
and may choose \scrD to be the KL divergence [84]. In this light, NFs are closely related to the
triangular maps of [74, 33, 102, 98].2 VAEs pose a slightly different problem to GANs and NFs
by parameterizing both T and its inverse T - 1 as separate neural networks and approximating
them simultaneously. The KL divergence is again employed in most VAE applications.

As the name M-GAN suggests, our proposed framework is closely related to GANs. In fact,
one can view M-GAN as a combination of GANs and NFs with a particular parameterization
of the map T. However, we emphasize that the aforementioned generative models aim to
approximate the map T, with the ultimate goal of sampling the joint distribution \nu . The
task of conditioning \nu is not of direct interest and is often tackled in a secondary step using
Bayes' rule or other standard (or ad hoc) conditioning techniques. Thus, a defining feature of
M-GAN is that it allows us to directly characterize the family of conditionals \nu (\cdot | y) through
the map G. We then obtain the generative model T as a by-product.

2In fact, this connection to triangular maps and our analysis in section 2 imply that NFs can easily be
retrofitted for conditional sampling, simply by appending the conditioning variables y as additional inputs and
constraining the permutation layers appropriately [27, 88, 9, 74].
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CONDITIONAL SAMPLING WITH MONOTONE GANs 873

Several previous efforts to adapt generative models for conditional sampling exist in the
ML literature. Most notably, [76, 51] define conditional GANs and VAEs by training neural
networks that depend on the joint variables (y,u) to obtain maps that can generate samples
from multimodal distributions. However, these formulations are limited to settings where y is
a discrete variable and many u samples are available for a given y; such data is typically not
available for continuous y.

The articles [51, 15] addressed the more difficult problem of approximating all the condi-
tionals of the joint distribution \nu by employing a weighted loss function over all possible choices
of conditionals. The article [103] also considers the related problem of estimating arbitrary con-
ditional densities using an energy-based model. These approaches have two major drawbacks:
the loss does not guarantee that any particular conditional is obtained correctly/accurately,
and the problem quickly becomes infeasible in high- or infinite-dimensional settings. [109]
considered the problem of correctly extracting a single conditional from a fixed generative
model using a VI loss. The proposed method must be retrained for each new value of y,
in contrast to M-GAN where the map G\dagger characterizes the entire conditional family \nu (\cdot | y)
simultaneously.

The articles [1, 89, 114] are closest to our construction. The approaches of [1, 89] are
similar to each other and can be viewed as particular versions of M-GAN by taking F to
be the identity map, omitting the monotonicity penalty/constraint on T, and choosing a
particular form of \scrD and G. The article [114] considers a similar situation by assuming \eta to
be Gaussian, choosing \scrD to be an f -divergence, and parameterizing G with a neural network.
The theoretical exposition in [114] is well aligned with our results in section 2, although they
only consider the case where \scrY ,\scrU are finite-dimensional Euclidean spaces and do not make
the connection to OT. Our work can be differentiated from these efforts in three directions:
(a) our theoretical results and algorithms are valid on infinite-dimensional Banach spaces, a
setting that is crucial for PDE inverse problems; (b) our formulation is more general, placing
minimal assumptions on \scrD , the parameterization of T, or the choice of reference distribution
\eta ; (c) by including a monotonicity penalty, we are able to provide further understanding of
the solution of (1.2) by connecting our minimizer to OT.

We briefly mention other relevant works at the intersection of conditional simulation, gen-
erative modeling, and statistical inference. The works [18, 94, 8, 97, 5] use parametric or
nonparametric models for density estimation although they mainly focus on structural con-
straints on target conditional densities and do not focus on conditional sampling as we do
here. The article [44] considers a GAN for conditional simulation in the setting where a priori
information about the moments of the conditional measure is available and utilizes this infor-
mation to improve the quality of the generative model. The article [77] introduces a specialized
discrepancy that measures the quality of a conditional GAN after training, while [36, 100, 86]
leverage generative models to enhance the convergence properties of MCMC algorithms. Fi-
nally, we note that probabilistic diffusion models have recently been adapted for the solution
of inverse problems [101, 14, 99] which take a different approach to transport maps by learning
a (possibly problem-agnostic) diffusion model given prior samples and appropriately guiding
the reverse process to generate samples from the conditional of interest.
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874 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

1.2.3. Connection to OT. Given two measures \eta , \nu \in \BbbP (\scrZ ), the Monge problem of op-
timal transportation seeks maps T that satisfy T\sharp \eta = \nu while minimizing functionals of the
form

\int 
c(z,T(z))\eta (dz) for appropriate cost functions c : \scrZ \times \scrZ \rightarrow \scrR . Our analysis and the

construction of the M-GAN framework are strongly inspired by OT. In fact, existence and
uniqueness results from OT can be extended to minimizers of (1.2). Furthermore, the mono-
tonicity penalty in the M-GAN framework is directly motivated by uniqueness results for the
well-known Brenier maps [75] and their block triangular extensions [24]. The articles [25, 79]
are also closely related to our (block) triangular constructions. We present a more detailed
discussion of how our approach relates to OT in subsection 2.3.

We note, however, that there are fundamental differences between problem (1.2) and the
OT problem. Most importantly, OT maps are constrained to push the reference \eta to the target
\nu exactly while minimizing a transport cost; instead, we ask only to minimize \scrD (T\sharp \eta , \nu ) and
thus may not match the target measure \nu exactly. Furthermore, we restrict the function space
to which T belongs and regularize this map via the penalty R. These relaxations allow us
to obtain ``nicer"" transport maps that can be computed in a stable manner. Despite these
relaxations, we demonstrate in subsection 4.3 that M-GAN maps converge to certain OT maps
if \scrD and the space in which one seeks T are chosen correctly. Our results in this direction
draw on results from [24]. This observation suggests that M-GAN can serve as a numerical
method for approximating (conditional) OT maps, which is a topic that has attracted much
interest in the ML community [37, 96, 66]. We also mention recent articles [59, 105, 3] that
use conditional OT strategies resembling M-GANs for filtering and data assimilation.

1.3. Outline. The remainder of this paper is organized as follows. Section 2 establishes
the necessary conditions for performing conditional sampling via block triangular transport
maps, and discusses the existence and uniqueness of these maps in relation to those found via
OT. Section 3 presents our framework for monotone transport map approximation. Section
4 presents numerical results for generative modeling and the solution of Bayesian inverse
problems, followed by a concluding discussion in section 5.

2. Theoretical foundations. In this section, we develop a theoretical analysis of problem
(1.2) in idealized settings, which serves as a foundation for the M-GAN framework introduced
in section 3.

Let \scrU , \scrV , \scrY , \scrW be separable Banach spaces with Borel \sigma -algebras \scrB (\scrU ), \scrB (\scrV ), \scrB (\scrY ),
\scrB (\scrW ), respectively. Define the product spaces \scrZ :=\scrY \times \scrU and \scrS :=\scrW \times \scrV , with corresponding
product Borel \sigma -algebras \scrB (\scrZ ) and \scrB (\scrS ). Let \BbbP (\scrU ), \BbbP (\scrY ), \BbbP (\scrZ ), \BbbP (\scrV ), \BbbP (\scrW ), \BbbP (\scrS ) denote
spaces of Borel probability measures on their respective Banach spaces. For a measure \mu \in 
\BbbP (\scrZ ) (resp., \in \BbbP (\scrS )) we use \mu \scrU and \mu \scrY (resp., \mu \scrV and \mu \scrW ) to denote the marginals of \mu on \scrU 
and \scrY (resp., \scrV and \scrW ). Finally, for any set B \in \scrZ we define the slice By := \{ u : (u, y) \in B\} .
In what follows, \scrU will represent the parameter space and \scrY will represent the space of data
on which we condition, with \scrV and \scrW being their corresponding ``reference"" spaces. We now
recall the definition of regular conditional measures:

Definition 2.1 (regular conditional measures). Let \mu \in \BbbP (\scrZ ). We say \mu (\cdot | y) is a system of
regular conditional measures for \mu if

1. \forall y \in \scrY , \mu (\cdot | y) is a probability measure on \scrB (\scrU );
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CONDITIONAL SAMPLING WITH MONOTONE GANs 875

2. \forall A \in \scrB (\scrU ), the function y \mapsto \rightarrow \mu (A| y) is measurable with respect to \scrB (\scrY ) and is \mu \scrY -
integrable;

3. \forall B \in \scrB (\scrZ ), it holds that \mu (B) =
\int 
\scrY \mu (By| y)\mu \scrY (dy).

In what follows, we often refer to systems of regular conditional measures simply as sys-
tems of conditional measures or ``conditionals."" By [20, Cor. 10.4.15] we have the following
existence and uniqueness result.

Proposition 2.2. Consider the above setting with \mu \in \BbbP (\scrZ ). Then the following hold:
(a) (Existence) There exist Radon conditional measures \mu (\cdot | y) of \mu \forall y \in \scrY .
(b) (Uniqueness) The conditional measures \mu (\cdot | y) are unique up to \mu \scrY null sets.

Now consider a reference measure \eta = \eta \scrW \otimes \eta \scrV \in \BbbP (\scrS ), that is, of product form, and a
target measure \nu \in \BbbP (\scrZ ). Our goal throughout this article is to characterize the conditionals
\nu (\cdot | y) via a transformation of the reference measure \eta ---specifically, a transformation of the
marginal \eta \scrW . To this end, consider a block triangular map of the form

T : \scrS \rightarrow \scrZ , T(w,v) = (F(w),G(F(w), v)),(2.1)

which in turn is defined through the maps

F :\scrW \rightarrow \scrY , G :\scrY \times \scrV \rightarrow \scrU .(2.2)

Remark 2.3. We refer to T as a block triangular map since, in the setting where \scrV , \scrU , \scrW ,
and \scrY are finite-dimensional Euclidean spaces, the Jacobian matrix of T is block triangular.
We note that such maps are also simply called triangular in the literature; see, for example, [20,
sect. 10.10(vii)]. However, we prefer the term block triangular to set our parameterizations
apart from strictly triangular maps such as the KR rearrangement considered in [74] or the
elementary maps in NFs [64, 84]. We demonstrate in subsection 4.2 that block triangular maps
perform quite differently from strictly triangular maps in practice.

2.1. Block triangular transport. The following theorem is the cornerstone of our method-
ology for approximating the conditionals of \nu via block triangular transport.

Theorem 2.4. Consider a reference \eta = \eta \scrW \otimes \eta \scrV \in \BbbP (\scrS ) and a target \nu \in \BbbP (\scrZ ) and let T
be a block triangular map of the form (2.1) satisfying T\sharp \eta = \nu . Then for F\sharp \eta \scrW -a.e. y it holds
that G(y, \cdot )\sharp \eta \scrV = \nu (\cdot | y).

Proof. Consider the maps \widetilde T : (y, v) \mapsto \rightarrow (y,G(y, v)) and (F \times Id) : (w,v) \mapsto \rightarrow (F(w), v) and
observe that T= \widetilde T \circ (F\times Id). Let B \in \scrB (\scrZ ). We have by the hypothesis of the theorem that

\int 

B
\nu (dz) =

\int 

B
T\sharp \eta (dz) =

\int 

\widetilde T - 1(B)
(F\times Id)\sharp (\eta \scrW \otimes \eta \scrV )(dw,dv)

=

\int 

\widetilde T - 1(B)
(F\sharp \eta \scrW \otimes \eta \scrV )(dy,dv) =

\int 

\widetilde T - 1(B)
(\nu \scrY \otimes \eta \scrV )(dy,dv),

where the last identity follows from the observation that T\sharp \eta = \nu implies F\sharp \eta \scrW = \nu \scrY due to the

product structure of \eta . Now observe that \widetilde T - 1(B)y = \{ u : (y,u) \in \widetilde T - 1(B)\} = G(y, \cdot ) - 1(By).
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876 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

We can continue the above calculation as follows:
\int 

B
\nu (dz) =

\int 

\scrY 
\eta \scrV (\widetilde T - 1(B)y)\nu \scrY (dy) =

\int 

\scrY 
\eta \scrV (G(y, \cdot )

 - 1(By))\nu \scrY (dy) =

\int 

\scrY 
G(y, \cdot )\sharp \eta \scrV (By)\nu \scrY (dy).

Thus we have established that G(y, \cdot )\sharp \eta \scrV is a conditional measure for \nu . The desired result
now follows from Proposition 2.2(b) stating the essential uniqueness of conditional
measures.

We highlight the simplicity of the proof and the generality of the conditions in Theorem
2.4. We do not require any assumptions such as regularity or monotonicity of the map T
beyond the parameterization (2.1), and we certainly do not require \eta and \nu to be defined
on the same spaces. The main restriction of our result is the assumption that \eta = \eta \scrW \otimes \eta \scrV ,
but this is an assumption on the reference measure, which can be chosen with considerable
freedom.

The existence of the maps F and G may appear nontrivial at first sight. However, upon
inspection of the proof of Theorem 2.4 we realize that the map F is to some extent innocuous.
For example, we can simply choose \scrW = \scrY and \eta = \nu \scrY \otimes \eta \scrV and take F to be the identity
map. Indeed, this is the approach taken in [24, 89, 114]. If the above choice for \eta is infeasible
we can still take F to be any map that transports \eta \scrW to \nu \scrY . An obvious choice would be a
Brenier OT map, which exists under very general assumptions on \eta \scrW [106]. Thus we focus
our attention on the map G for the remainder of this subsection. First, we demonstrate that
G can be identified in closed form in certain settings.

Example 2.5 (Gaussian random variables). Let \eta and \nu be multivariate Gaussian measures
where the conditional distribution \nu (\cdot | y) has mean my and covariance \Sigma y and \eta \scrV is standard

Gaussian. Let G be the affine transport map G(y, v) =my +\Sigma 
1/2
y v, where \Sigma 

1/2
y is any matrix

square root. Then, v \mapsto \rightarrow G(y, v) pushes forward \eta \scrV to the conditional measure \nu (\cdot | y).

Example 2.6 (invertible transformations of random variables). Consider measures of the
form \nu = Law\{ (y,u)| y = h(u - \xi ), u \sim \pi 1, \xi \sim \pi 2\} , where \pi 1, \pi 2 \in \BbbP (\scrU ). If h - 1 exists, then
we can readily verify that u= h - 1(y) + \xi . In other words, \nu (u| y) = \pi 2(u - h - 1(y)). Now take
\eta = \nu \scrY \otimes \pi 2 and observe that G(y, v) = v+ h - 1(y) is the desired transport map.

A natural question arises regarding the existence of G. While identification of G is nontriv-
ial, the existence of such a map can be guaranteed under very general assumptions, following
classic results from probability theory. Below we consider the case where F= Id.

Proposition 2.7. Take \eta = \nu \scrY \otimes U [0,1] where U [0,1] denotes the uniform measure on the
interval [0,1]. Then there exists a measurable map G : \scrY \times [0,1]\rightarrow \scrU so that G(y, \cdot )\sharp U [0,1] =
\nu (\cdot | y) for any target \nu \in \BbbP (\scrZ ).

Proof. Recall that we equipped \scrZ with the Borel \sigma -algebra and that the system of con-
ditional measures \nu (\cdot | y) are by definition transition kernels. Then a direct application of [58,
Lem. 2.22] gives the desired result.

We can extend the above result by replacing the uniform measure U [0,1] with another
Radon measure \eta \scrV \in \BbbP (\scrV ).3 This uses the fact that Borel measures on Polish spaces are

3Indeed [114] presents a similar extension for the case of a Gaussian reference measure following the same
line of thinking.
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CONDITIONAL SAMPLING WITH MONOTONE GANs 877

isomorphic to Borel measures on [0,1]; see [58, Chap. 1 and Thm. A1.6]. Thus, the existence
of G is not an issue in our separable Banach space setting. More delicate questions arise,
however, such as the characterization and regularity of the maps G (and subsequently T), which
are important for approximation. We address some of these questions in the next subsection.

2.2. Variational characterization of block triangular maps. We now turn our attention
to identifying block triangular maps T of the form (2.1) via variational formulations, with a
view toward practical algorithms. Any computational approach will require approximation of
the map T with a sequence of maps Tn and so we need a notion of convergence for the resulting
pushforwards to the conditional measures \nu (\cdot | y). We obtain such a result below under the
assumption that the target \nu is nondegenerate. Recall the following definition.

Definition 2.8. A measure \mu \in \BbbP (\scrZ ) is nondegenerate if for any collection of bounded linear
functionals \ell 1, . . . , \ell n \in \scrZ \ast (the dual of \scrZ ) the measures (\ell 1, . . . , \ell n)\sharp \mu \in \BbbP (\BbbR n) are absolutely
continuous.

We now obtain the following convergence result in the setting where the approximating
sequence Tn

\sharp \eta converges to \nu weakly on the product space.

Theorem 2.9. Consider a reference measure \eta = \eta \scrW \otimes \eta \scrV \in \BbbP (\scrS ) and a nondegenerate target
measure \nu \in \BbbP (\scrZ ). Let \{ Tn\} n\geq 0 be a sequence of maps of the form (2.1) with component maps
Fn,Gn as in (2.2). Furthermore, suppose that Tn

\sharp \eta \rightarrow \nu weakly as n\rightarrow \infty . Then, for any r > 0,
y\ast \in \scrY , and f \in Cb(\scrU ) it holds that

lim
n\rightarrow \infty 

\int 

Br(y\ast )

\int 

\scrU 
f(u)Gn(y, \cdot )\sharp \eta \scrV (du)F

n
\sharp \eta \scrW (dy)\rightarrow 

\int 

Br(y\ast )

\int 

\scrU 
f(u)\nu (dy,du),

where Cb(\scrU ) denotes the space of continuous and bounded functions on \scrU .

Proof. By definition of weak convergence we have for (g, f)\in Cb(\scrY )\times Cb(\scrX ) that

\int 

\scrY 
g(y)

\int 

\scrU 
f(u)Gn(y, \cdot )\sharp \eta \scrV (du)F

n
\sharp \eta \scrW (dy)\rightarrow 

\int 

\scrY 
g(y)

\int 

\scrU 
f(u)\nu (dy,du).

It further follows from [2, Lem. 6.1] that since \nu is nondegenerate, then open and convex sets
are continuity sets of \nu . The desired result then follows from an application of the Portmanteau
theorem [20, Cor. 8.2.10].

We view the above theorem as an averaged weak convergence for the conditionals, i.e.,
integrals of bounded and continuous functions with respect to Gn(y\ast , \cdot )\sharp \eta \scrV converge to integrals
with respect to \nu (\cdot | y\ast ) so long as we average those integrals over small balls around y\ast . One
can obtain stronger convergence results such as y-a.s. convergence of Gn(y, \cdot )\sharp \eta \scrV to \nu (\cdot | y) by
imposing stronger conditions on \nu using general convergence results for conditional measures;
see [28, 39]. We do not pursue this direction at the moment since the required conditions on
\nu are difficult to verify in practice.

We also note that the assumption of nondegeneracy on the target \nu can be replaced with
other (possibly more relaxed) conditions. For example, we only need Br(y

\ast ) to be a continuity
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878 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

set of \nu \scrY . Alternatively, if \nu is degenerate we can always relax the statement of Theorem 2.9
to a convergence result of the form

lim
n\rightarrow \infty 

\int 

\scrY 
g(y)

\int 

\scrU 
f(u)Gn(y, \cdot )\sharp \eta \scrV (du)F

n
\sharp \eta \scrW (dy)\rightarrow 

\int 

\scrY 
g(y)

\int 

\scrU 
f(u)\nu (dy,du),

where g is a Lipschitz approximation to the indicator of Br(y
\ast )---for example,

g(y) :=

\left\{ 
 
 

1, y \in Br(y
\ast ),

max

\biggl\{ 
0,1 - 

\| y - y\ast \| \scrY  - r

\epsilon 

\biggr\} 
, y \in Br(y

\ast )c,

for a small parameter \epsilon > 0.
The above approximation result motivates a variational characterization of the block tri-

angular maps T (along with their approximations Tn) by minimizing statistical divergences.
If the chosen divergence metrizes weak convergence, one can then directly apply Theorem
2.4 to obtain convergence of expected values of quantities of interest. This line of thinking
leads us to optimization problems of the form (1.2). We recall the definition of a statistical
divergence.

Definition 2.10. A function \scrD : \BbbP (\scrZ )\times \BbbP (\scrZ )\rightarrow \BbbR is called a statistical divergence (or simply
a divergence) on \BbbP (\scrZ ) if for \mu 1, \mu 2 \in \BbbP (\scrZ ) it holds that

1. \scrD (\mu 1, \mu 2)\geq 0,
2. \scrD (\mu 1, \mu 2) = 0 if and only if \mu 1 = \mu 2.

We now pose the following optimization problem:

minimize
T\in \scrT 

\scrD (T\sharp \eta , \nu ),(2.3)

where \scrT is the space of measurable maps T parameterized as in (2.1) and (2.2). That is,

\scrT := \{ T : \scrS \rightarrow \scrZ : T(w,v) = (F(w),G(F(w), v)) for F :\scrW \rightarrow \scrY , G :\scrY \times \scrV \rightarrow \scrU \} .(2.4)

Remark 2.11. It follows from Proposition 2.7 and the subsequent discussion that problem
(2.3) has a global minimizer T\dagger achieving D(T\dagger 

\sharp \eta , \nu ) = 0 so long as we take \eta = \eta \scrW \otimes \eta \scrV . These
minimizers, however, are not unique. For example, if we take \scrS =\scrZ to be finite-dimensional
Euclidean spaces with an atomless reference measure \eta , then the KR rearrangement T\mathrm{K}\mathrm{R} serves
as a global minimizer of (2.3). At the same time, letting P be a block-diagonal permutation
matrix that reorders the \scrU (similarly the \scrY ) coordinates of \scrZ , we can also construct the KR
rearrangement T\prime 

\mathrm{K}\mathrm{R} between the measures P\sharp \eta and P\sharp \nu , and then P - 1 \circ T\prime \circ P will also be
a minimizer of (2.3). Another example is the conditional Brenier maps of Proposition 2.12,
which are fully block triangular as opposed to the KR maps that are strictly triangular.

2.3. Monotone block triangular maps. We now consider restricting the set \scrT in problem
(2.3) in a way that leads to unique minimizers, which also have the desirable regularity prop-
erties of OT maps. To this end, we restrict our attention to the setting where \scrW =\scrY , \scrV = \scrU ,
and hence \scrS =\scrZ =\scrY \times \scrU , i.e., the reference measure \eta and the target measure \nu are defined
on the same space. We also let \scrY and \scrU be finite-dimensional Euclidean spaces. Motivated
by [24] and existing literature on approximations of the KR rearrangement [74], we consider
two subsets of \scrT :
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CONDITIONAL SAMPLING WITH MONOTONE GANs 879

\bullet the set \scrT M \subset \scrT of monotone maps,

\scrT M :=
\Bigl\{ 
T\in \scrT :

\bigl( 
T(z) - T(z\prime )

\bigr) \top 
(z  - z\prime )\geq 0 \forall z, z\prime \in \scrZ 

\Bigr\} 
;

\bullet the set \scrT B \subset \scrT of maps for which F and G are gradients of convex functions,

\scrT B := \{ T\in \scrT : \exists f :\scrY \rightarrow \scrR , \exists g :\scrY \times \scrU \rightarrow \scrR such that

y \mapsto \rightarrow f(y) and v \mapsto \rightarrow g(y, v) are convex and

F(y) =\nabla yf(y), G(y, v) =\nabla vg(y, v)\} .

The spaces \scrT M and \scrT B are closely related but are not the same. Elements of \scrT B are
monotone, but \scrT B \subset \scrT M due to a well-known result of Rockafellar stating that maximal
cyclically monotone maps T are uniquely determined by gradients of proper convex functions
[91, Thm. 24.8, 24.9]. Cyclic monotonicity is a stronger condition than monotonicity and so
there are monotone maps that are not gradients of convex functions.

In subsection 3.2 we develop regularization techniques using the space \scrT M , but we note
that \scrT B is more convenient for our theoretical analysis. Using \scrT M leads to a natural penalty
term that is convenient in practice and can be implemented with minimal restrictions on our
parameterization of the maps, while \scrT B motivates the use of parameterizations for convex
functions [7]. In either case, the monotonicity of the minimizers leads to desirable uniqueness
and regularity properties. In particular, the Browder--Minty theorem tells us that continuous,
bounded, and coercive monotone maps are surjective [112], and this surjectivity allows us to
overcome issues with overfitting, which is also referred to as mode collapse in the generative
modeling literature. We now show a uniqueness result for (2.3) when the space \scrT B is utilized.
Let us start by recalling [24, Thm. 2.3]. We emphasize that we only consider the case where
\scrV = \scrU , and hence eliminate the notation for the reference space of the parameter.

Proposition 2.12. Let \scrY and \scrU be finite-dimensional Euclidean spaces. Consider a target
measure \nu \in \BbbP (\scrY \times \scrU ) and a reference measure \eta \in \BbbP (\scrY \times \scrU ). Assume the following:

(i) The reference measure \eta \in \BbbP (\scrY \times \scrU ) has the form \eta = \nu \scrY \otimes \eta \scrU .
(ii) The reference marginal \eta \scrU has a Lebesgue density with convex support on \scrU .
(iii) For each y \in \scrY , the target conditional measure \nu (\cdot | y) admits a Lebesgue density.
(iv)

\int 
\scrY 

\int 
\scrU \| u\| 2\nu (dy,du)<\infty and

\int 
\scrU \| u\| 2\eta \scrU (du)<\infty .

Then there exists a unique map G=\nabla ug(y,u), where u \mapsto \rightarrow g(y,u) is convex \forall y \in \scrY , such that

G(y, \cdot )\sharp \eta \scrU = \nu (\cdot | y) for \nu \scrY -a.e. y.(2.5)

Moreover, this G minimizes the quadratic cost \scrM (S) :=\BbbE (y,u)\sim \eta \| u - S(y,u)\| 2 among all maps
S :\scrY \times \scrU \rightarrow \scrU that satisfy (2.5).

Following [24], we call the map identified by Proposition 2.12 a ``conditional Brenier map.""
Next, combining this result with Theorem 2.4, we obtain a uniqueness result for optimization
problems of the form (2.3) over the set \scrT B.

Theorem 2.13. Let \scrY and \scrU be finite-dimensional Euclidean spaces. Consider a target
measure \nu \in \BbbP (\scrY \times \scrU ) and a reference measure \eta \in \BbbP (\scrY \times \scrU ) of the form \eta = \eta \scrY \otimes \eta \scrU . Suppose
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\eta \scrY has no atoms and that conditions (ii)--(iv) of Proposition 2.12 are satisfied. Then, the
optimization problem

minimize
T\in \scrT B

\scrD (T\sharp \eta , \nu )

has a unique minimizer T\dagger achieving \scrD (T\dagger 
\sharp \eta , \nu ) = 0 and G\dagger (y, \cdot )\sharp \eta \scrU = \nu (\cdot | y) for \nu \scrY -a.e. y.

Proof. We begin by showing the existence of a minimizer T\dagger which achieves \scrD (T\dagger 
\sharp \eta , \nu ) = 0.

Since we assumed \eta \scrY has no atoms it follows from the celebrated result of McCann [75, Main
Theorem] that there exists a unique map F\dagger : \scrY \rightarrow \scrY which is the gradient of a convex function
and F\dagger \sharp \eta \scrY = \nu \scrY . Thus (F\dagger \times Id)\sharp \eta = \nu \scrY \otimes \eta \scrU . Let G\dagger denote the unique monotone map from

Proposition 2.12 and define \widetilde T : (y,u) \mapsto \rightarrow (y,G\dagger (y,u)). Now observe that T\dagger = \widetilde T \circ (F\dagger \times Id)
satisfies T\dagger 

\sharp \eta = \nu and belongs to \scrT B by construction.

We now verify the uniqueness of T\dagger . Suppose there exists another map T\prime \in \scrT B, with
components F\prime ,G\prime given by gradients of convex functions, and such that T\prime 

\sharp \eta = \nu . By definition
the \scrY marginal of T\prime 

\sharp \eta coincides with \nu \scrY and so F\prime \sharp \eta \scrY = \nu \scrY thanks to the product structure

of \eta . It follows from the uniqueness of F\dagger that we should have F\prime = F\dagger . On the other hand,
Theorem 2.4 implies that G\prime (y, \cdot )\sharp \eta \scrU = \nu (\cdot | y) for \nu \scrY -a.e. y \in \scrY . It follows from Proposition
2.12 that we should have G\prime =G\dagger , which yields the desired result.

Remark 2.14. We observe in subsection 4.3 that using the space \scrT M still produces numer-
ical solutions that approach the OT map of Theorem 2.13, meaning that these minimizers over
\scrT M are ``close to"" gradients of convex functions. Characterizing this behavior is an interesting
direction of future research.

Remark 2.15. We highlight that Theorem 2.13 applies only to the finite-dimensional
setting and in particular when \scrS =\scrZ . Our numerical algorithms in section 3 and some of the
experiments in section 4 will extend outside of these settings. Thus, there are still gaps in our
theory that pose interesting directions for future research. An extension of Theorem 2.13 to
the infinite-dimensional setting will require extending Proposition 2.12, which in turn relies
heavily on McCann's result. Existence and uniqueness of Brenier maps in infinite dimensions
is a contemporary topic in OT and is only known under certain assumptions on the underlying
spaces and on the reference and target measures [6, 34, 65].

3. The monotone GAN framework. This section develops a practical framework for
solving problems of the form (1.2), motivated by the analysis of section 2. We primarily
focus on settings where we only have access to samples from the reference \eta and the target \nu .
Henceforth, we write \widehat \eta N , \widehat \nu N to denote empirical approximations to the respective measures
with N independent and identically distributed (i.i.d.) samples. That is,

\widehat \eta N :=
1

N

N\sum 

j=1

\delta sj , \widehat \nu N :=
1

N

N\sum 

j=1

\delta zj , sj
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \eta , zj

\mathrm{i}\mathrm{i}\mathrm{d}
\sim \nu .

We note that the methodology presented in this section will readily generalize to settings
where different number of samples are available from \eta , \nu , but we choose to take N samples
from both measures for simplicity of presentation. We propose to approximate (1.2)
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D
o
w

n
lo

ad
ed

 0
9
/0

3
/2

4
 t

o
 2

0
5
.1

7
5
.1

1
8
.1

0
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



CONDITIONAL SAMPLING WITH MONOTONE GANs 881

min
T\in \scrT \theta 

max
g\in \scrF \omega 

\scrJ (T\sharp \widehat \eta N ,\widehat \nu N ;g) +\scrR (T; \widehat \eta N ),(3.1)

where \scrT \theta \subset \scrT is a space of block triangular maps of the form (2.4), parameterized by \theta ; \scrF \omega 

is an appropriate space of functions g : \scrZ \rightarrow \scrR known as discriminators, parameterized by \omega ;
and \scrR : \scrT \theta \times \BbbP (\scrZ )\rightarrow \BbbR is a regularization functional. The functional \scrJ : \BbbP (\scrZ )\times \BbbP (\scrZ )\times \scrF \omega \rightarrow \BbbR 

is chosen so that maxg\in \scrF \omega 
\scrJ (\cdot , \cdot ; g) approximates a distance measure \scrD such as an integral

probability metric or f -divergence [78, 17]. Our interest in such divergences stems from their
successful deployment in large-scale problems in ML, particularly in vision [60]. We will
further discuss the choice of \scrJ and the role of the discriminator in subsection 3.3.

Let T\dagger 
\theta (w,v) = (F\dagger \theta (w),G

\dagger 
\theta (F

\dagger 
\theta (w), v)) denote a minimizer of (3.1), suppressing its depen-

dence on N,\scrF \omega , and \scrR . Our hope is that G\dagger 
\theta is a good approximation to a true conditioning

map G\dagger , such as the map from Theorem 2.13. We can then approximately sample the condi-

tional measure \nu (\cdot | y\ast ) for a fixed y\ast \in \scrY by drawing vj
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \eta \scrV and evaluating uj =G\dagger 

\theta (y
\ast , vj).

In the remainder of this section we outline the details of our conditional simulation frame-
work based on solving (3.1). We discuss neural network parameterizations of T and g in
subsection 3.1, followed by our choices of regularization \scrR in subsection 3.2 and of the objec-
tive functional \scrJ in subsection 3.3. We summarize our algorithm in subsection 3.4, followed
by a discussion of how our approach can be used to solve likelihood-free Bayesian inference
problems in subsection 3.5.

3.1. Neural network parameterizations of \bfscrT \bfittheta and \bfscrF \bfitomega . Let \scrX ,\scrH be separable Banach
spaces. Below we define the notion of a neural network mapping \scrX \rightarrow \scrH ; our construction
is inspired by general families of neural operators such as those found in [68, 69, 67]. Let
\sigma : \BbbR \rightarrow \BbbR be a fixed function, henceforth referred to as an activation function. We overload
our notation by writing \sigma (\bfv ) = (\sigma (v1), . . . \sigma (vk))

\top \in \BbbR 
k for any vector \bfv \in \BbbR 

k. Let us fix an
integer L\geq 1 (i.e., the depth parameter), the vector of integers \bfd = (d0, d1, . . . , dL)\in \BbbN 

L (i.e.,
the width parameters), activation functions \sigma (\ell ) : \BbbR \rightarrow \BbbR , matrices \bfW (\ell ) \in \BbbR 

d\ell \times d\ell  - 1 (i.e., the
weights), vectors \bfb (\ell ) \in \BbbR 

d\ell (i.e., the biases), and bounded linear operators \Psi I : \scrX \rightarrow \BbbR 
d0 and

\Psi O : \BbbR dL \rightarrow \scrH . We then say that a map Q\alpha : \scrX \rightarrow \scrH is a neural network if it has the form

Q\alpha (x) =\Psi O

\biggl( 
\sigma (L)

\Bigl( 
\bfW (L)\bfx (L) + \bfb (L)

\Bigr) \biggr) 
, \bfx (\ell ) = \sigma (\ell )

\Bigl( 
\bfW (\ell )\bfx (\ell  - 1) + \bfb (\ell )

\Bigr) 
, \bfx (0) =\Psi I(x),

where we use \alpha := \{ (\bfW (\ell ),\bfb (\ell ))\} L\ell =1 to denote the collection of weights and biases of the
neural network Q\alpha . Furthermore, we refer to the collection of integers L,d0, . . . , dL together
with activation functions \sigma (1), . . . , \sigma (L) and the operators \Psi I ,\Psi O as the architecture of Q\alpha . To
this end, we define the spaces of neural networks sharing the same architecture as

\scrQ \alpha (\scrX ,\scrH ;\scrA ) :=
\Bigl\{ 
Q\alpha :\scrX \rightarrow \scrH | Q\alpha has architecture \scrA = \{ L,\bfd , \sigma (1), . . . , \sigma (L),\Psi I ,\Psi O\} 

\Bigr\} 
.

With the above notation, we then consider the spaces for the maps T and the discriminator
f given by

\scrF \omega =\scrQ \omega (\scrZ ;\scrR ;\scrA 0),

\scrT \theta =
\Bigl\{ 
T : \scrS \rightarrow \scrZ , \theta = (\theta 1, \theta 2) | T(w,v) = (F\theta 1(w),G\theta 2(F\theta 1(w), v)),

F\theta 1 \in \scrQ \theta 1(\scrW ;\scrY ;\scrA 1),G\theta 2 \in \scrQ \theta 2(\scrZ ;\scrU ;\scrA 2)
\Bigr\} 
.
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882 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

For brevity, the architectures \scrA 0,\scrA 1,\scrA 2 are suppressed in our notation for \scrF \omega ,\scrT \theta ,\scrT 
B
\theta and

will be identified on a case-by-case basis for the numerical experiments in section 4.

Remark 3.1. We note that our choice of the space \scrT \theta is completely generic and does
not impose any form of monotonicity on the components F\theta 1 ,G\theta 2 . We make this choice to
have maximal flexibility in the design of architectures and to allow practitioners to utilize
existing optimal architectures for the task at hand. Instead, we impose monotonicity using
a penalty term that is outlined in subsection 3.2. An alternative approach would be to
directly parameterize F\theta 1 , G\theta 2 as gradients of (partially) convex functions [7]. Indeed, such
parameterizations have already been used for approximation of OT maps [48, 72, 82], but
the expressivity of the associated input-convex neural networks and the design of appropriate
architectures in high-dimensional examples are not well understood, so we do not utilize these
constructions here.

3.2. Monotonicity penalty. In order to make our maps T\theta (approximately) monotone
we propose to regularize (3.1) using an average monotonicity penalty. More precisely, let
\scrZ =\scrY \times \scrU as before and suppose that \scrS =\scrZ , i.e., that T maps \scrZ \rightarrow \scrZ . Then we propose the
idealized penalty term

\scrR (T;\mu ) = - \lambda \BbbE z\sim \mu \BbbE z\prime \sim \mu \langle T(z) - T(z\prime ), z  - z\prime \rangle \scrZ 

for some positive constant \lambda > 0 and any measure \mu \in \BbbP (\scrZ ). Including this regularization term
in the minimization problem (3.1) in fact encourages T to be increasing (in the prescribed
sense) over regions that \mu endows with mass. It is natural for us to take \mu \equiv \eta so that
the regularization term encourages monotonicity of the map at inputs in the support of the
reference distribution. In practice, one can set \mu \equiv \widehat \eta N , or alternatively generate a new set of
i.i.d. samples from the reference and use those samples to evaluate the penalty term.

It is important to note that while the average monotonicity penalty does not ensure
that T is monotone everywhere (not even on the support of \mu ), numerically we find that
this regularization term is sufficient to ensure that T is monotone with high probability. In
particular, one can easily compute an empirical approximation to

\BbbP z\sim \mu ,z\prime \sim \mu [\langle T(z) - T(z\prime ), z  - z\prime \rangle \scrZ > 0],(3.2)

which can be tracked during training as a proxy for the map's monotonicity over supp(\mu ).

3.3. Choosing the functional \bfscrJ . The appropriate choice of the functional \scrJ is a compro-
mise between the computational cost of solving (3.1) and the quality of the minimizer as an
approximation to the solution of (2.3). Various popular choices of the divergence \scrD exist in the
literature. Most notably, the forward KL divergence (equivalently, maximum likelihood esti-
mation) is widely used for finding invertible triangular maps and NFs [84], and the reverse KL
divergence is used for VI or for training autoencoders [90, 19]. Other possible choices include
maximum mean discrepancy [16], Wasserstein distances [11], and f -divergences [81, 114].

Our proposed framework is not tied to a specific choice of \scrJ . Our theoretical results
suggest that so long as \scrJ yields a good approximation to a divergence, then the resulting
algorithm should be capable of approximating the map G\dagger well. In our current setup, our
main requirement on \scrJ is that it does not involve the pushforward density G(y, \cdot )\sharp \eta \scrU , as
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CONDITIONAL SAMPLING WITH MONOTONE GANs 883

computing this quantity would require evaluating the inverse of the map u \mapsto \rightarrow G(y,u) and its
Jacobian determinant, which are computationally intensive.

Our choice of \scrJ in (3.1) can be motivated by the family of f -divergences [17]: Let f : \Omega f \subseteq 
\BbbR \rightarrow \BbbR be a continuous, convex function with f(1) = 0 and let f\ast : \Omega f\ast \subseteq \BbbR \rightarrow \BbbR denote its
Legendre transform. We then define the f -divergence \scrD f : \BbbP (\scrZ )\times \BbbP (\scrZ )\rightarrow \BbbR as

\scrD f (\mu 1, \mu 2) = sup
g\in \scrF 

\int 
g(z)\mu 1(dz) - 

\int 
f\ast (g(z))\mu 2(dz),(3.3)

where \scrF is a class of (measurable) functions mapping \scrZ \rightarrow \Omega f\ast , often referred to as the
discriminator class in the terminology of generative adversarial models. We note that the
standard definition of an f -divergence, as in [4], matches our definition in (3.3) under the
assumption \mu 1 and \mu 2 are equivalent measures, i.e., \mu 1 \sim \mu 2.

4 For specific choices of Legendre
transforms f\ast , we also observe that the objective functional maxg\in \scrF \omega 

\scrJ (T\sharp \widehat \eta N ,\widehat \nu N ;g) in (3.1)
can be viewed as an approximation to the divergence \scrD f (T\sharp \widehat \eta N ,\widehat \nu N ), where the space \scrF is
replaced by a (possibly parametric) class \scrF \omega . We now outline some choices of \scrD f and the
associated functional \scrJ that we used in our experiments in section 4.

\bullet Following [81, Table 2], we can choose f\ast (t) =  - log(2  - exp(t)), which leads to a
generalization of the Jensen--Shannon divergence \scrD f . Moreover, reparameterizing the
discriminator as g(z) = log 2v(z) for some measurable function5 v :\scrZ \rightarrow (0,1) yields

\scrD \mathrm{G}\mathrm{A}\mathrm{N}(\mu 1, \mu 2) := sup
v\in \scrF 

\int 
log v(z)\mu 1(dz) +

\int 
log(1 - v(z))\mu 2(dz)

=: sup
v\in \scrF 

\scrJ \mathrm{G}\mathrm{A}\mathrm{N}(\mu 1, \mu 2;v),

which is precisely the original GAN loss of [41], up to the additive constant log(4).
\bullet We may take f\ast (t) = t and \scrF to be the class of Lipschitz-1 functions on \scrZ to obtain

the dual formulation of the Wasserstein-1 distance

\scrD \mathrm{W}1
(\mu 1, \mu 2) := sup

g\in \mathrm{L}\mathrm{i}\mathrm{p}1

\int 
g(z)\mu 1(dz) - 

\int 
g(z)\mu 2(dz).

In the case where \scrZ is a finite-dimensional Euclidean space the Lipschitz-1 constraint
on g can be further relaxed to a gradient penalty (GP) to obtain

\scrD \mathrm{W}\mathrm{G}\mathrm{P}(\mu 1, \mu 2) := sup
g\in C1(\scrZ )

\int 
g(z)\mu 1(dz) - 

\int 
g(z)\mu 2(dz) + \gamma 

\int 
(\| \nabla g(z)\|  - 1)2\mu \ast (dz)

=: sup
g\in C1(\scrZ )

\scrJ \mathrm{W}\mathrm{G}\mathrm{P}(\mu 1, \mu 2;g),

where \gamma > 0 is a penalty coefficient. The measure \mu \ast is somewhat arbitrary, but the
following particular choice yields the Wasserstein-GAN GP loss of [42]:

\mu \ast := Law\{ z | z = \alpha z1 + (1 - \alpha )z2, \alpha \sim U [0,1], z1 \sim \mu 1, z2 \sim \mu 2\} .

4This follows by a calculation similar to [81, eq. (4)] with the observation that the continuity assumption on
f allows us to use [92, Thm. 14.60] to obtain equality, instead of a lower bound, between an integral probability
metric and an f -divergence.

5Here, we mean measurable as being with respect to a measure to which both \mu 1, \mu 2 are absolutely contin-
uous, e.g., 1/2\mu 1 + 1/2\mu 2.
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884 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

\bullet In some of our low-dimensional examples we shall also use the \bfl east squares GAN
(LS) functional of [73] due to its simplicity and the fact that it showed good empirical
performance. That is,

\scrJ \mathrm{L}\mathrm{S}(\mu 1, \mu 2;g) :=
1

2

\biggl[ \int 
(g(z) - a)2  - (g(z) - b)2\mu 1(dz) - 

\int 
(g(z) - c)2\mu 2(dz)

\biggr] 
,

where a, b, c are scalar constants, which we simply chose as a= c= 1 and b= 0. Note
that, unlike other loss functions, the LS loss cannot be written as an f -divergence. In
practice, this functional is optimized using alternating steps that maximize the last
two terms with respect to g, and minimize the first term alone with respect to \mu 2.

We reiterate that our above choices of \scrJ are driven by empirical success with numerical
experiments in section 4. However, the differences between these losses for our experiments
were fairly small, suggesting that the performance of the method is not very sensitive to
the choice of \scrJ and in practical applications one may simple choose a \scrJ that is simple and
convenient to train. At the same time, the question of the optimal choice of \scrJ and more
broadly the divergence \scrD , however, is a contemporary topic in generative modeling and is
the subject of intense research [17, 81, 17]. Our goal is not to make a statement on the best
choice of these functionals, but rather to focus on the transport methodology for conditional
simulation.

3.4. Summary of the algorithm. We now present a summary of the M-GAN training
procedure, leading to Algorithm 3.1, which is used in the numerical experiments of section
4. To learn the parameters \theta ,\omega for T, f , we solve (3.1) using an alternating gradient descent
procedure that is common for training GANs [41]. This approach repeats the following two
steps: (1) update the parameters \theta while holding \omega fixed; and (2) update the parameters \omega 
while holding \theta fixed. Informally, the first step improves the map T so that the pushforward
samples are closer to \widehat \nu N . The second step updates the discriminator g to better distinguish
``real"" and ``fake"" samples from \widehat \nu N and T\sharp \widehat \eta N , respectively. We note that when using the
WGP functional for the image in-painting example of subsection 4.6, \theta is updated once for
every five updates of \omega , as is standard practice for large-scale problems.

For conditional sampling, we are primarily interested in approximating the component
function G of the map T, which pushes forward \eta \scrV to \nu (\cdot | y). Thus, for the experiments below,
we choose F= Id, which implies that \eta \scrW = \nu \scrY . We also choose \scrV = \scrU , but with \eta \scrV \equiv \eta \scrU \not = \nu \scrU 
in general. To simplify notation, we thus write the product reference measure as \eta = \nu \scrY \otimes \eta \scrU ,
as was done in subsection 2.3.

At each gradient descent step, we replace the expectations in \scrJ with empirical averages
over minibatches from the reference measure \widehat \eta N and the target measure \widehat \nu N , as in the standard
GAN training procedure [41]. In particular, for each update of the parameters \theta ,\omega , two mini-
batches of size M are sampled: one from the reference marginal \eta \scrU , and one from the training
set of the joint target \widehat \nu N . We then form the two joint empirical measures \widehat \eta M and \widehat \nu M using
the same samples yi \sim \widehat \nu N\scrY . For some objective functionals (e.g., LS), we found good empirical
performance by also sampling an independent minibatch of size M from the marginal \widetilde yi \sim \widehat \nu N\scrY 
and forming the empirical measure \widehat \eta M from \{ (\widetilde yi, vi)\} Mi=1 where vi \sim \eta \scrU , although this extra
sampling step is not strictly necessary for unbiased estimates of the objective. We update the
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CONDITIONAL SAMPLING WITH MONOTONE GANs 885

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone Outline of the M-GAN training procedure.

1: \bfI \bfn \bfp \bfu \bft : Target samples \{ (yj , uj)\} 
N
j=1

\mathrm{i}\mathrm{i}\mathrm{d}
\sim \nu , monotonicity penalty parameter \lambda > 0,

number of epochs, batch size M
2: \bfO \bfu \bft \bfp \bfu \bft : Mapping G\in \scrQ \theta 2 satisfying G(y, \cdot )\sharp \eta \scrU \approx \nu (\cdot | y) for any y \in \scrY 
3: \bff \bfo \bfr number of epochs \bfd \bfo 

4: Sample minibatch of size M from training set (y1, u1), . . . , (yM , uM )
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \widehat \nu N

5: Draw M reference samples v1, . . . , vM
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \eta \scrU 

6: Form empirical measures \widehat \eta M and \widehat \nu M from \{ (yi, vi)\} 
M
i=1 and \{ (yi, ui)\} 

M
i=1, respectively

7: Update \theta in G by descending its stochastic gradient \nabla \theta \scrJ (T\sharp \widehat \eta M ,\widehat \nu M ;g) +\scrR (T; \widehat \eta M )
8: Update \omega in g by ascending its stochastic gradient \nabla \omega \scrJ (T\sharp \widehat \eta M ,\widehat \nu M ;g)
9: \bfe \bfn \bfd \bff \bfo \bfr 

parameters for multiple epochs (i.e., passes through the training set), until the evaluations of
the functional \scrJ and the penalty \scrR converge.

3.5. Likelihood-free Bayesian inference. Since conditional simulation is a fundamental
task in Bayesian inference, we use this section to illustrate how M-GANs can be used for
likelihood-free Bayesian inference. To this end, let \scrY and \scrU denote the data space and param-
eter space of interest, respectively, and let the conditional measure \nu (\cdot | u) represent a statistical
model for the data y \in \scrY , parameterized by u \in \scrU . Furthermore, let \nu 0 \in \BbbP (\scrU ) denote a prior
measure on u. Then, the goal of Bayesian inference is to characterize the conditional measures
\nu (\cdot | y), which is the system of conditionals of the joint measure \nu (dy,du) = \nu (dy| u)\nu 0(du) \in 
\BbbP (\scrY \times \scrU ), where \nu (\cdot | u) are regarded as transition kernels.

Let us now consider a reference measure \eta = \eta \scrY \otimes \eta \scrU \in \BbbP (\scrY \times \scrU ). Then from any T\dagger that
is a global minimizer of (2.3) we can extract G\dagger and it follows from Theorem 2.4 that

G\dagger (y, \cdot )\sharp \eta \scrU = \nu (\cdot | y) for \nu \scrY -a.e. y \in \scrY .(3.4)

In other words, G\dagger completely characterizes the posterior measure for all values of y\sim \nu \scrY .
We make two key observations about the map. First, the identity (3.4) suggests that

in the case of Bayesian inverse problems it is reasonable to choose \eta \scrU = \nu 0, i.e., to choose
the prior as the reference measure on \scrU . This choice is motivated by the fact that posterior
measures often deviate from the prior (essentially) over a low-dimensional subspace [31, 30, 23].
Hence, one expects that this choice of the reference would result in a map G\dagger that is also
(essentially) low-dimensional and that captures how the posterior deviates from the prior.
Second, similarly to other conditional generative models [83], the map G\dagger provides a single
function for cheaply sampling from the conditional \nu (\cdot | y) given any realization of the data
y \in supp \nu \scrY . In comparison to traditional sampling algorithms (e.g., MCMC) that must be
repeated for each new realization of y, the process of learning this single map amortizes the
cost of inference over the data.
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To make our approach concrete, we simulate a set of samples uj
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \nu 0 and evaluate our

forward model to obtain corresponding observations yj
\mathrm{i}\mathrm{i}\mathrm{d}
\sim \nu (\cdot | uj). The tuples (yj , uj) are then

draws from the target joint measure \nu . We draw an additional set of samples \~uj \sim \nu 0 so that
(yj , \~uj) are draws from the reference distribution \eta = \nu \scrY \otimes \nu 0. We then apply the M-GAN
approach to identify the posterior using the aforementioned empirical samples.

We remark that a likelihood function does not appear in the optimization problems (2.3)
or (3.1) and so we only need to evaluate the forward map when generating the samples
yj \sim \nu (\cdot | uj). In the case of PDE-constrained inverse problems (see, for example, subsection
4.5), simulating the measurements yj is the most costly step in generating the data for M-
GANs. Given that these samples are independent, however, they can be generated in parallel,
which is a major advantage over standard MCMC algorithms.

4. Numerical experiments. We now present a series of experiments that demonstrate the
effectiveness of M-GANs in various conditional sampling applications. We emphasize that the
goal of these experiments is to highlight the versatility and wide applicability of the M-GAN
formulation and block triangular maps in general, rather than focusing on state-of-the-art
performance through tuning of network architectures and training recipes. Indeed, our neural
networks can easily be replaced with the latest GAN or NF architectures to improve task-
specific performance. In subsection 4.1 we demonstrate the importance of the monotonicity
constraint for accurate uncertainty quantification on nonlinear regression problems with non-
Gaussian noise models. In subsection 4.2 we show that block triangular maps are insensitive to
variable ordering, in contrast with strictly triangular maps. Subsection 4.3 shows that the M-
GAN framework can recover L2 OTmaps. In subsections 4.4 and 4.5 we present applications to
two inverse problems with non-Gaussian posterior measures: parameter inference in coupled
ODEs and a Darcy flow model. Finally, subsection 4.6 demonstrates the feasibility of M-
GAN in high-dimensional conditional sampling problems arising in imaging. Unless otherwise
stated, we take the reference measure to be \eta = \nu \scrY \otimes N(0, I); that is, \eta has the same y marginal
as the training data, allowing us to take F= Id, while the u marginal is a standard Gaussian
of the appropriate dimension. Code to reproduce the numerical results is available online at
www.github.com/baptistar/MGAN.

4.1. Synthetic examples. We start with a simple set of synthetic examples where the
conditionals \nu (\cdot | y) can be computed explicitly. Consider the following input-to-output maps:

u= tanh(y) + \xi , \xi \sim \Gamma (1,0.3),(4.1)

u= tanh(y+ \xi ), \xi \sim \scrN (0,0.05),(4.2)

u= \xi tanh(y), \xi \sim \Gamma (1,0.3),(4.3)

where y \sim U [ - 3,3] in all cases. We considered the problem of conditioning u on y and
compared M-GAN maps computed via the LS loss functional using N = 50,000 training
samples and with \lambda = 0 (i.e., no monotonicity penalty) and \lambda = 0.01. We parameterized each
map G as a three-layer, fully connected neural network with hidden layer sizes 256/512/128 and
leaky ReLU activation functions [71] with parameter \alpha = 0.2. We used the same architecture
for our discriminator with an additional linear transformation in the final layer to make the
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CONDITIONAL SAMPLING WITH MONOTONE GANs 887

(4.1) u

(4.2) u

(4.3) u

y

(a) \nu .

y

(b) \lambda = 0.

y

(c) \lambda = 0.01.

u

(d) \nu (\cdot | y).

Figure 4.1. The rows correspond to problems (4.1), (4.2), and (4.3), respectively. The first three columns
compare the true joint densities for \nu to kernel density estimates (KDEs) of conditional samples from M-
GAN with (\lambda = 0.01) and without (\lambda = 0) the monotonicity penalty. The last column compares histograms
of conditional samples from M-GAN with \lambda = 0.01 to the true conditional densities (solid lines) for all three
problems. The red, green, and blue colors correspond to the distributions for u| y= - 1.1, u| y= 0, and u| y= 1.1.

output one-dimensional. Training was performed using the Adam algorithm [61] with learning
rate 2\times 10 - 4 and parameters \beta 1 = 0.5 and \beta 2 = 0.999. We used a batch size of M = 100 and
trained for 300 epochs.

Figures 4.1(a)--(c) compare the true joint densities \nu to the M-GAN approximations with
and without the monotonicity penalty. We observe a better match between the true density
and the M-GAN pushforward T\sharp \eta obtained with the monotonicity penalty, particularly in
regions of high probability. Figure 4.1(d) compares histograms of conditional samples obtained
from M-GAN to the true conditional PDFs, explicitly showing M-GAN's ability to capture
the conditionals correctly.

Since this example is two-dimensional, our map parameterization is immediately strictly
triangular, and thus we expect M-GAN to approximate the KR rearrangement, as the latter
is a global minimizer of (2.3). Figure 4.2 compares the second component function of the
true KR rearrangement to the M-GAN map G, with \lambda = 0.01. Interestingly, the M-GAN
map approximates the KR map very closely, despite not using the explicit KR construction.
We note that the pointwise convergence of G to the KR map also implies that the samples
generated using G will be close to the target conditionals following the stability theory of [12],
which states that for appropriate divergences D (such as the maximum mean discrepancy and
the Wasserstein-2 metric) it holds that D(G\sharp \eta \scrU ,G

\dagger 
\sharp \eta U )\lesssim \| G - G\dagger \| L2

\eta \scrU 
. Thus, the error between

the maps controls the error between the pushforward measures.
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(4.1)

KR M-GAN Error

u

(4.2) u

(4.3) u

y y y

Figure 4.2. Each row corresponds to the problems (4.1), (4.2), and (4.3), respectively. The first column
shows the (second component function of) the true KR rearrangement, the second column shows the M-GAN
map G, and the last column shows the absolute pointwise error between the two.

4.2. Insensitivity to variable ordering. We now illustrate a benefit of using nontriangular
maps, rather than triangular maps such as the KR rearrangement. Consider the random
vector u= (u1, u2) with u1 \sim \scrN (0,1) and u2| u1 \sim \scrN (u21 +1,0.52). For simplicity, we omit the
conditioning variables y in this example. The bivariate distribution of u can be represented
exactly as the pushforward of \eta \scrV = \scrN (0, I2) by the map T(v) = [v1;v

2
1 + 1 + 0.5v2]. Hence,

T is easily approximated by a triangular map of this form. When the ordering of u1 and u2
are reversed, however---i.e., when the first component of T must represent the marginal of u2
instead of u1---the triangular map is more challenging to approximate. To resolve this issue,
one common approach is to compose many maps to define an expressive NF; see [85] for a
similar application. We demonstrate instead that by using a nontriangular parameterization
(which would become block triangular when there are conditioning variables), we can avoid
issues pertaining to the ordering of the u variables and achieve a more robust map in practice.

We use N = 104 training samples, \lambda = 0.01, and the LS loss function to train an M-GAN
with either triangular or nontriangular structure. We use three-layer fully connected neural
networks with hidden layer sizes 32/64/32 for the nontriangular maps and neural networks
with hidden layer sizes 22/46/22 for each component of the triangular map. In total, the
nontriangular and triangular maps have about the same number of parameters. Both M-
GAN maps are trained using the same optimization setup as in subsection 4.1.

Figure 4.3 compares the samples generated by the triangular and nontriangular maps to
the true density of u. We observe that the nontriangular map is able to capture the target
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CONDITIONAL SAMPLING WITH MONOTONE GANs 889

u2

u1 u1 u1

Figure 4.3. (Left) The true density of (u1, u2) considered in subsection 4.2. (Middle) Samples generated by
M-GAN using a nontriangular map with the reverse ordering of the variables. (Right) Samples generated by
M-GAN using a triangular map, also with reverse ordering.

Table 4.1

KL divergence errors for nontriangular and triangular M-GANs computed using N = 104 training samples.
The approximate densities are estimated using KDE by generating 5 \times 104 samples and using an optimal
bandwidth parameter that is chosen using fivefold cross-validation. The KL divergence is evaluated using an
average of 104 independent test samples and is reported with its 95\% standard error in parentheses.

Nontriangular Triangular

Favorable order (u1, u2) 0.056 (0.003) 0.039 (0.002)
Reverse order (u2, u1) 0.058 (0.002) 0.102 (0.004)

density with an unfavorable ordering of the variables, unlike the triangular map. Table 4.1
reports the KL divergence between the true and approximated distributions for both variable
orderings. The nontriangular map provides essentially the same performance independent
of ordering, while the performance of the triangular map improves or degrades significantly
depending on the ordering. This suggests that nontriangular maps are less sensitive to the
variable ordering, a major advantage of M-GANs in comparison to autoregressive models
where it is necessary to specify a variable ordering in advance.

4.3. Approximation of OT maps. Now we show how the M-GAN framework using an
average monotonicity penalty recovers the transport map G that minimizes the L2 transport
cost \BbbE (y,v)\sim \eta \| v - G(y, v)\| 2, i.e., the conditional Brenier map of Proposition 2.12. We consider
a multivariate Gaussian distribution \nu with \scrY = \BbbR and \scrU = \BbbR 

5. The marginal distribution
of u is chosen to be \scrN (mu,\Sigma u) where the mean and covariance are randomly sampled as
mu \sim \scrN (0, I5) and \Sigma u = UU\top for orthonormal column vectors U \in \scrR 5\times 5 (from the QR
decomposition of a matrix with standard Gaussian entries) and fixed for this experiment.
The measurement y is given by y = u4 + \xi where \xi \sim \scrN (0,1). By Proposition 2.12, the
monotone transport map pushing forward a standard Gaussian reference \eta \scrV =\scrN (0, I5) to the
conditionals \nu (\cdot | y) is unique among all maps that are gradients of a convex function. In this

Gaussian case, the optimal map is given by G\dagger (y, v) :=mu| y(y)+\Sigma 
1/2
u| y v; see [24, Example 2.1].

Given N = 104 training samples from \nu , we learn the M-GAN map G using the WGP
loss with GP \gamma = 1 and three increasing values of the monotonicity penalty \lambda . We param-
eterize the maps and the discriminators using three-layer, fully connected neural networks
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890 R. BAPTISTA, B. HOSSEINI, N. B. KOVACHKI, AND Y. M. MARZOUK

Figure 4.4. (Left) The transport cost \BbbE (y,v)\sim \eta \| v - G(y, v)\| 2 associated with M-GAN maps G converges to the
minimal transport cost, achieved by the optimal map G\dagger , when increasing the monotonicity penalty \lambda . (Right)
The maps themselves converge in the L2

\eta sense to the optimal map G\dagger when increasing \lambda .

with hidden layer sizes 64/64/64. While affine maps (in v and y) are sufficient to represent
the Gaussian conditionals in this example, our goal is to demonstrate the convergence of the
M-GAN training procedure to the conditional Brenier map over the large space of nonlinear
functions described in subsection 3.1. We train using the Adam algorithm as in subsection
4.1, with a batch size of M = 1000 and a scheduled learning rate that decays by 0.995 starting
from 4\times 10 - 3, over 1000 epochs.

Figure 4.4 plots the transport cost \BbbE (y,v)\sim \eta \| v  - G(y, v)\| 2 for the estimated maps G and

the expected squared error between the estimated maps and the optimal map G\dagger . We observe
that maps found with the average monotonicity penalty term indeed converge to the optimal
map of Proposition 2.12 and similarly that the associated transport cost converges to the
OT cost, when increasing the penalty \lambda from 0 to 0.01. We further observe that choosing
\lambda to be too large leads to diminishing returns and higher errors (or even divergence in the
optimization) as is customary in regularized optimization due to excessive bias. It is also
important to note that choosing an appropriate value of \lambda not only improves the accuracy
of the map but also improves the rate of convergence of both the map and the loss toward
their optimal counterparts. Of course, an alternative approach could involve replacing the
\lambda -dependent monotonicity penalty with the constraint that T lie in \scrT B; this involves some
practical difficulties, as described in Remark 3.1. In the Gaussian case one could write T as
the gradient of a quadratic function as in [105, 3], for example.

4.4. Inference of ODE parameters. Next, we use the MGAN framework to infer the pa-
rameters in a Lotka--Volterra population model, which is a common benchmark for likelihood-
free inference [70]. This model describes the populations of interacting species, such as preda-
tors and prey, using nonlinear coupled ODEs where the rates of change of the two populations
depend on four parameters u = (\alpha ,\beta , \gamma , \delta ) \in \scrR 4. Our goal is to infer these parameters given
noisy observations of the populations of predators and prey, i.e., the system states, at select
times. The states p(t)\in \BbbR 

2
+ evolve according to the coupled ODEs

dp1
dt

= \alpha p1(t) - \beta p1(t)p2(t),

dp2
dt

= - \gamma p2(t) + \delta p1(t)p2(t),
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CONDITIONAL SAMPLING WITH MONOTONE GANs 891

Figure 4.5. Posterior samples of the parameters in the deterministic Lotka--Volterra model using (left) the
M-GAN framework, and (right) the adaptive Metropolis MCMC algorithm.

with the initial condition p(0) = (30,1). We simulate the ODEs for T = 20 time units and
collect noisy observations of the state every \Delta t\mathrm{o}\mathrm{b}\mathrm{s} = 2 time units. The observations are
corrupted with log-normal noise, i.e., log yk \sim \scrN (log p(k\Delta t\mathrm{o}\mathrm{b}\mathrm{s}), \sigma 

2I2) for k = 1, . . . ,9, with
standard deviation \sigma = 0.01. For inference, we use an independent log-normal prior distri-
bution for the parameters given by logu\sim \scrN (mu,0.5I4) with mu = ( - 0.125, - 3, - 0.125, - 3).
Figure 4.6 displays the states p(t) (solid line) for the parameter u\ast = (0.92,0.05,1.50,0.02)
and an observation y\ast \in \BbbR 

18 drawn from the conditional distribution \nu (\cdot | u\ast ).
We then sample from the posterior density for u| y = y\ast given N = 105 training samples

from \nu using both M-GAN and an MCMC algorithm. First, we train an M-GAN network with
the WGP loss using the monotonicity penalty \lambda = 0.1 and the GP \gamma = 1. For this example we
used three-layer, fully connected neural networks with hidden layer sizes 128/256/512 for the
map and hidden layer sizes 512/256/128 for the discriminator. We used the Adam optimizer
with the same parameters as in subsection 4.1 and trained for 400 epochs.

Figure 4.5 displays 100,000 parameter samples from M-GAN, i.e., G(y\ast , ui) for ui \sim 
\scrN (0, I4) after learning the map G, and from an adaptive Metropolis MCMC sampler, re-
spectively. We observe similar one- and two-dimensional marginal distributions using both
methods. The true parameter u\ast that generated the data (denoted in red) is contained in
the bulk of the posterior distributions and appears like a representative sample. Last, we
integrate the ODEs for sample realizations of the posterior parameters to sample from the
predictive distribution for the states p(t). The dashed lines in Figure 4.6 plot 10 posterior
predictive samples for both M-GAN and MCMC. We observe that samples from both methods
concentrate around the true states and that the predictions from M-GAN have similar spread
to MCMC (i.e., the ground truth), especially at earlier times.

4.5. Darcy flow Bayesian inverse problem. We now consider a benchmark inverse prob-
lem from subsurface flow modeling [49] and electrical impedance tomography [56] whose for-
ward model is given by the partial differential equation (PDE)
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Figure 4.6. Posterior predictive samples for the states p(t) given 10 posterior samples from (left) the
M-GAN map and (right) the MCMC algorithm.
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(d) M-GAN mean.
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Figure 4.7. A comparison of posterior samples for the Darcy flow inverse problem using M-GANs and pCN.
(a) A realization of the Gaussian random field u. (b) The solution to the PDE with the measurement locations
denoted in red. (c) and (d) The mean of the posterior samples from M-GAN and pCN, respectively. (e) and (f)
The standard deviation of the posterior samples from M-GAN and pCN, respectively.

 - \nabla \cdot (a(s)\nabla p(s)) = 1, s\in (0,1)2,

p(s) = 0, s\in \partial (0,1)2.
(4.4)

We interpret p(s) as the pressure field of subsurface flow in a reservoir with permeability
coefficient a(s)\in \BbbR + under constant forcing. We further introduce a log-normal random field
for the permeability given by u = log(a) \sim \scrN (0, ( - \Delta + 9I) - 2) where \Delta is the Laplacian
operator with zero Neumann boundary conditions. The inverse problem is to recover the
random field u given noisy measurements y of the pressure at 64 regularly spaced locations, i.e.,
y = (p(s1), . . . , p(s64)) + \gamma where \gamma \sim \scrN (0,10 - 6I64). Figures 4.7(a) and (d) plot a realization
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CONDITIONAL SAMPLING WITH MONOTONE GANs 893

of u along with the solution to the PDE on a grid of size 256\times 256 as well as the location of
pressure measurements s1, . . . , s64.

To recover the permeability a, we train an M-GAN following the discussion of subsection
3.5. We sample a training set of size N = 105 from \nu that was obtained using the following
recipe: draw u\sim \scrN (0, ( - \Delta +9I) - 2) and set a= exp(u); solve the PDE using finite differences
to obtain p; use spline interpolation to simulate a set of measurements y at the observation
locations. The M-GAN map was trained using the WGP loss functional with the GP \gamma = 1
and the monotonicity penalty \lambda = 0.01. To make our network architectures consistent in
the continuum limit, and hence mesh independent, we use PCA projections to reduce the
dimension of the u samples at the input to the networks, i.e., the \Psi I operator in subsection 3.1
is taken to be the PCA projection of the random field u onto its first 25 PCA modes, which
capture 99.98\% of the total prior variation (as measured by the trace of the prior covariance).
To this end, the G component of our M-GAN map takes inputs in \BbbR 

64 \times \BbbR 
25 (64 for y and 25

for the leading PCA modes of u) and outputs a vector of PCA modes of u in \BbbR 
25 which can

then be lifted to a random field by taking \Psi O to be the PCA reconstruction map. In summary,
our map G will condition the first 25 PCA coefficients of u on observations of the data y. In
this experiment we use the same network architectures and optimizer as in subsection 4.4 and
train for 500 epochs.

We used 5\times 104 prior samples in order to compute the PCA modes of u and generated
a fixed realization y\ast for a single draw of the field u, that is taken to be the ground truth.
To avoid any inverse crimes [57] we generated the data y\ast using a mesh that was twice as
fine as the mesh used to generate the training data. Figures 4.7(b), (e), (c), and (f) compare
the posterior mean and the standard deviation for the field u obtained by M-GANs with the
preconditioned Crank--Nicolson (pCN) MCMC algorithm [26], which is regarded as the gold
standard solution. We tuned the pCN step size to achieve an acceptance rate between 20\% and
40\% after burn-in and used 106 samples to compute the mean and standard deviations. We
observe good agreement between the M-GAN mean and pCN while the standard deviation
appears to have been slightly underestimated by M-GAN, a feature that is common with
prior-based dimension reduction techniques. Note that a more conservative estimate for the
standard deviation can be obtained by sampling the trailing PCA coefficients from their prior
distribution, i.e., without conditioning on the data, and combining these with the M-GAN
posterior samples for the leading PCA coefficients [23, 31].

This experiment not only demonstrates the feasibility of M-GANs for likelihood-free in-
ference on function spaces, but also suggests that M-GANs can potentially lead to improved
performance for PDE inverse problems: Our maps were computed using only 105 PDE solves
while pCN required 106 samples to compute a stable estimate of the standard deviation.
Moreover, the latter would have to be rerun for any new realization of the data y, whereas
the M-GAN map can be applied, without additional training, to any new realization of y.
Furthermore, the M-GAN training set can be generated fully in parallel since its samples are
independent, unlike MCMC that requires sequential PDE solves for each accept/reject step.

4.6. Probabilistic image in-painting. For our final set of experiments, we consider the
``in-painting"" problem of reconstructing an image after a portion of it has been removed. We
view this problem in our general probabilistic setting, as image-to-image regression where the
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Truth y
\ast 

u| y\ast samples \BbbE [u| y\ast ] \BbbV [u| y\ast ]

Figure 4.8. Example in-paintings using M-GAN for the CelebA test set. The first column depicts the ground
truth image, the second column shows the observed image y\ast , while the next three columns are random samples
from the conditional distribution for u| y\ast . The last two columns show the pointwise means and variances for
the intensities of the conditional samples generated by the M-GAN map.

input/measurement y is the incomplete image and the output u is the in-painting. The con-
ditional distribution \nu (\cdot | y) thus quantifies uncertainty in the reconstruction, with its samples
being understood as candidate in-paintings. We consider the CelebA dataset consisting of
64\times 64\times 3 RGB images of celebrity faces (converted to a standard size using bicubic inter-
polation). The input y \in \BbbR 

32\times 64\times 3 consists of the top half of each image, and the output
u\in \BbbR 

32\times 64\times 3 consists of the bottom half.
We trained an M-GAN on the training set of N = 162770 images using the WGP loss

functional with the monotonicity penalty \lambda = 10 - 4 and GP \gamma = 1. We also added independent
Gaussian white noise with standard deviation 0.05 to corrupt each image in the training set, as
in [60]. We chose our reference measure to be \eta = \nu \scrY \otimes \scrN (0, I100), i.e., the \scrY marginal coincides
with that of the training data, while the latent space for the \scrU variable is assumed to be \BbbR 100

equipped with standard Gaussian measure. Hence, the input and output spaces of T do not
match in this example, in contrast with our previous experiments. As for the architectures, we
used the convolutional architectures introduced in [87] with suitable modifications for our input
and output dimensions. We used the same training/optimization setup as in subsection 4.1.

Figure 4.8 shows conditional samples of image in-paintings for the CelebA test set, to-
gether with the conditional mean and variance of the pixelwise image intensities. We note
the variability among the M-GAN samples, producing different smiles, hair styles, jawlines,
outfits, and backgrounds---as one should expect from a probabilistic in-painting method. We
also computed a FID score of approximately 35 for the M-GAN map in this example. We
emphasize, however, that while FID is a common metric for photorealism, it fails to cap-
ture accuracy in characterizing the conditional distributions. For example, we noticed that
maps whose range collapses conditionally onto a single point and as result sample the same
in-painting G(y,w) for any realization of w \sim \scrN (0, I100) can still obtain similarly good FID
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scores, while failing to capture the true conditional distribution. To the best of our knowledge,
distributional in-painting on the CelebA dataset has not been explored in the literature, and
thus we cannot compare the FID of our result to others. The closest to the state of the art is
a FID of 30 reported in [109] for the CelebA-HQ dataset.

5. Conclusions. We have developed M-GAN, a transport-based approach for conditional
generative modeling and likelihood-free (simulation-based) inference. Our approach seeks a
block triangular transport map that pushes forward a chosen reference measure \eta to a target
measure \nu , defined on the joint space of the parameter and data. Under very mild assumptions,
essentially that the reference measure has an appropriate product structure, we show that this
construction produces a component transport map that captures the conditional measures
\nu (\cdot | y) of the target, and that this map enables direct conditional sampling. We propose an
adversarial training procedure to learn such a map, incorporating a monotonicity penalty
that drives the solution of the optimization problem toward the unique conditional OT map
minimizing an L2 transport cost.

Our numerical experiments demonstrate the effectiveness and versatility of M-GANs in
applications ranging from parameter inference and inverse problems to imaging, all tackled
in an entirely data-driven and likelihood-free setting. In most of our examples we compared
M-GAN to MCMC as our gold standard for conditional sampling. This raises the following
question: Are M-GAN and, more broadly, any transport-based sampling method better than
MCMC and in what sense? Our numerical results paint an interesting and nuanced picture
in response to this question that warrants careful study in the future. The entire training
of M-GAN can be performed offline with very fast evaluations at the inference stage, i.e.,
conditional samples can be generated using M-GAN by simply evaluating the network, which
is often orders of magnitude faster than MCMC algorithms. For example, in the case of the
Darcy flow example in subsection 4.5, MCMC takes multiple hours to converge on a personal
computer. On the other hand, to achieve high accuracy with M-GAN, one may need to
employ large networks with specialized architectures, which require long training times and so
the learning cost may be an important factor. Finally, M-GAN requires the generation of large
amounts of training data which can be costly for complex models such as PDEs. The sample-
generation procedure, however, is highly parallelizable and the cost is amortized when solving
multiple inverse problems for different values of the conditioning variables, unlike MCMC.

In future research, the interplay between the quality of an M-GANmap obtained by solving
the practical optimization problem (3.1) and the accuracy of the derived conditionals warrants
theoretical investigation. Relatedly, approximation results characterizing the expressiveness
of parametric classes of block triangular maps would be of great interest. It would also be
useful to extend the links to OT described here to infinite-dimensional function spaces, as
such a connection would be pertinent to inverse problems.
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